WO2024091069A1 - 리튬 이차 전지 - Google Patents

리튬 이차 전지 Download PDF

Info

Publication number
WO2024091069A1
WO2024091069A1 PCT/KR2023/016897 KR2023016897W WO2024091069A1 WO 2024091069 A1 WO2024091069 A1 WO 2024091069A1 KR 2023016897 W KR2023016897 W KR 2023016897W WO 2024091069 A1 WO2024091069 A1 WO 2024091069A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2023/016897
Other languages
English (en)
French (fr)
Inventor
허민지
고명수
최은석
박성빈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230143340A external-priority patent/KR20240062982A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024091069A1 publication Critical patent/WO2024091069A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags

Definitions

  • the present invention relates to lithium secondary batteries.
  • cylindrical batteries are currently commonly used as batteries for power tools.
  • the weight of the battery can is heavy, so when they are used, the overall weight of the power tool increases, which reduces the convenience of work.
  • the present invention is intended to solve the above problems, and its purpose is to provide a lithium secondary battery that can prevent the power tool from turning off due to a low voltage drop in the battery during high-rate discharge.
  • Another object of the present invention is to provide a pouch-type lithium secondary battery that has a low battery voltage drop during high-rate discharge, is relatively light in weight, has excellent workability, and has low resistance and excellent output characteristics.
  • the present invention includes a battery case, and an electrode assembly and an electrolyte stored in the battery case, wherein the electrode assembly includes a positive electrode, and the positive electrode includes a first positive electrode active material, a second positive electrode active material, and a conductive material.
  • the second positive electrode active material is a single particle consisting of one primary particle, a quasi-single particle that is an aggregate of 2 to 30 primary particles, or a combination thereof, and the first positive electrode active material and the second positive electrode active material
  • the weight ratio is 7.5:2.5 to 9.5:0.5
  • the conductive material includes a point-shaped conductive material and a linear conductive material in a weight ratio of 10:1 to 50:1.
  • the first positive electrode active material may include a compound represented by the following formula (1).
  • M1 is Mn, Al, or a combination thereof
  • M2 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca , Ce, Nb, Mg, B, and Mo
  • X1 is one or more elements selected from the group consisting of F, Cl, Br, I, At, P, and S.
  • the second positive electrode active material may include a compound represented by the following formula (2).
  • M3 is Mn, Al, or a combination thereof
  • M4 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca , Ce, Nb, Mg, B, and Mo
  • X2 is one or more elements selected from the group consisting of F, Cl, Br, I, At, P, and S.
  • the first positive electrode active material may include lithium nickel-based oxide containing 80 mol% or more, specifically 80 mol% to 85 mol%, of nickel based on the total number of moles of transition metals excluding lithium.
  • the second positive electrode active material may include lithium nickel-based oxide containing 85 mol% or more of nickel based on the total number of moles of transition metals excluding lithium.
  • the first positive electrode active material may be secondary particles in which 50 or more primary particles are aggregated together.
  • the second positive electrode active material may have an average particle diameter D 50 smaller than that of the first positive electrode active material.
  • the average particle diameter D 50 of the first positive electrode active material may be 8 ⁇ m to 12 ⁇ m.
  • the average particle diameter D 50 of the second positive electrode active material may be 1 ⁇ m to 7 ⁇ m.
  • the point-shaped conductive material may be carbon black, and the linear conductive material may be a multi-walled carbon nanotube.
  • the battery resistance (DC-IR) at SOC 100 may be 7 m ⁇ or less, specifically 1 m ⁇ to 7 m ⁇ .
  • the battery case may be a pouch-type battery case.
  • the lithium secondary battery according to the present invention includes large-diameter secondary particles (first positive electrode active material) and small-diameter single particles and/or pseudo-single particles (second positive electrode active material) at a weight ratio of 7.5:2.5 to 9.5:0.5. It is characterized by using a positive electrode conductive material containing a point-shaped conductive material and a linear conductive material in a weight ratio of 10:1 to 50:1 along with a modal positive electrode active material.
  • the lithium secondary battery according to the present invention is a pouch-type lithium secondary battery, it has a relatively light weight and thus has excellent work convenience.
  • the lithium secondary battery according to the present invention is a pouch-type lithium secondary battery, a plurality of electrode tabs are present, and accordingly, resistance is lower and output characteristics are excellent compared to cylindrical batteries, so it can be used as a power source for power tools. suitable to become
  • a and/or B herein means A, or B, or A and B.
  • D 50 means the particle size corresponding to 50% of the volume accumulation amount in the particle size distribution curve.
  • the D 50 can be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle diameters ranging from the submicron region to several millimeters, and can obtain results with high reproducibility and high resolution.
  • specific surface area is measured by the BET method, and can be specifically calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mino II from BEL Japan.
  • Battery resistance (DC-IR) at SOC 100 refers to charging a lithium secondary battery to SOC 100% and then charging it for 0.1 seconds, 10A through the PNE Cycle program (CTSMonPro, PNE SOLUTION CO., LTD). It can be calculated by measuring the voltage change and current change of the battery as a result of applying a pulse, respectively, and dividing the voltage change value by the current change value.
  • a lithium secondary battery includes a battery case, an electrode assembly and an electrolyte stored in the battery case, the electrode assembly includes a positive electrode, and the positive electrode includes a first positive electrode active material, a second positive electrode active material and a conductive conductive material. It includes ash, and the second positive electrode active material is a single particle consisting of one primary particle, a quasi-single particle that is an aggregate of 2 to 30 primary particles, or a combination thereof, and the first positive electrode active material and the The weight ratio of the second positive electrode active material is 7.5:2.5 to 9.5:0.5, and the conductive material includes a point-shaped conductive material and a linear conductive material in a weight ratio of 10:1 to 50:1.
  • the power tool system may determine that the battery capacity is insufficient and turn off the power tool, even though there is actually battery capacity remaining.
  • first positive electrode active material large-diameter secondary particles
  • second positive electrode active material small-diameter single particles and/or pseudo-single particles
  • the electrode assembly according to the present invention may include an anode, a cathode, and a separator disposed between the anode and the cathode.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode current collector can be any conductive material without causing chemical changes in the battery, and is not particularly limited.
  • the current collector may be stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface treated with carbon, nickel, titanium, silver, etc.
  • the thickness of the positive electrode current collector may be 10 ⁇ m to 500 ⁇ m, specifically 10 ⁇ m to 300 ⁇ m, and more specifically 10 ⁇ m to 50 ⁇ m. If the loading amount of the positive electrode active material layer is reduced to lower the resistance of the positive electrode in order to improve the output characteristics of the battery, the positive active material may become embedded in the positive electrode current collector and the positive electrode current collector may be disconnected. However, when the thickness of the positive electrode current collector according to the present invention satisfies the above numerical range, disconnection of the current collector can be prevented because the thickness of the positive electrode current collector is thicker than the conventional one.
  • the positive electrode active material layer includes a first positive electrode active material and a second positive electrode active material, and may further include a conductive material, a binder, etc., if necessary.
  • the first and second positive electrode active materials are compounds capable of reversible intercalation and deintercalation of lithium, and are composed of lithium metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel, or aluminum. It can be included.
  • the first positive electrode active material and the second positive electrode active material may each include lithium nickel-based oxide to facilitate the implementation of a large capacity battery.
  • the first positive electrode active material and the second positive electrode active material may have different compositions.
  • the first positive electrode active material according to the present invention may include a compound represented by the following formula (1).
  • M1 may be Mn, Al, or a combination thereof.
  • M2 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B , and may be one type of metal element selected from the group consisting of Mo.
  • X1 may be one or more elements selected from the group consisting of F, Cl, Br, I, At, P, and S.
  • the lithium nickel-based oxide contained in the first positive electrode active material contains 80 mol% or more, specifically 80 mol% to 95 mol%, more specifically 80 mol% to 85 mol% of nickel, based on the total number of moles of transition metals excluding lithium. It may contain.
  • the content of nickel in the lithium nickel-based oxide contained in the first positive electrode active material satisfies the above numerical range, the positive electrode energy density increases and sufficient battery capacity can be secured, so the battery of the present invention can be used in power tools requiring large capacity. Suitable for use as a battery.
  • the second positive electrode active material according to the present invention may include a compound represented by the following formula (2).
  • M3 may be Mn, Al, or a combination thereof.
  • M4 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B , and may be one type of metal element selected from the group consisting of Mo.
  • X2 may be one or more elements selected from the group consisting of F, Cl, Br, I, At, P, and S.
  • the lithium nickel-based oxide contained in the second positive electrode active material contains 85 mol% or more, specifically 85 mol% to 95 mol%, more specifically 85 mol% to 90 mol% of nickel based on the total number of moles of transition metals excluding lithium. It may contain.
  • the nickel content in the lithium nickel-based oxide contained in the second positive electrode active material satisfies the above numerical range, the average nickel content in the positive electrode active material increases compared to the case where only the first positive electrode active material is used, thereby further increasing the positive electrode energy density and producing a large capacity battery. It is easy to implement.
  • the first positive electrode active material and the second positive electrode active material according to the present invention differ in average particle diameter D 50 or more.
  • the second positive electrode active material has an average particle diameter D 50 smaller than that of the first positive electrode active material.
  • the first positive electrode active material may be secondary particles in which primary particles are aggregated together.
  • the secondary particles may be particles in which 50 or more, specifically 50 to 80, and more specifically 50 to 70 primary particles are aggregated together.
  • the average particle diameter D 50 of the first positive electrode active material may be 8 ⁇ m to 12 ⁇ m, specifically 8 ⁇ m to 10 ⁇ m, and more specifically 8 ⁇ m to 9 ⁇ m.
  • the charging capacity of the battery can be secured at an appropriate level.
  • the BET specific surface area of the first positive electrode active material is 0.38 m 2 /g to 0.60 m 2 /g, specifically 0.49 m 2 /g to 0.58 m 2 /g, more specifically 0.50 m 2 /g to 0.57 m 2 /g. It can be. When the BET specific surface area of the first positive electrode active material satisfies the above numerical range, the output level can be maintained even when the battery is discharged at a high rate.
  • the first positive electrode active material may be formed by washing lithium transition metal oxide with water, followed by drying and heat treatment. Through the water washing treatment, boron (B) coating, zirconium (Zr) doping, and/or strontium (Sr) doping can be performed on the particle surface, thereby improving the capacity and stability of the battery.
  • the second positive electrode active material is a single particle and/or a quasi-single particle.
  • the single particle may be composed of one primary particle.
  • the quasi-single particle may be an aggregate of 2 to 30 primary particles, specifically 2 to 20 primary particles, and more specifically 2 to 10 primary particles.
  • the second positive electrode active material may have an average particle diameter D 50 smaller than that of the first positive electrode active material. More specifically, the average particle diameter D 50 of the second positive electrode active material may be 1 ⁇ m to 7 ⁇ m, specifically 2 ⁇ m to 6 ⁇ m, and more specifically 4 ⁇ m to 5 ⁇ m. When the average particle diameter D 50 of the second positive electrode active material satisfies the above numerical range, the second positive active material has a high specific surface area, so the total specific surface area of the positive electrode active material may increase.
  • the BET specific surface area of the second positive electrode active material is 0.54 m 2 /g to 0.74 m 2 /g, specifically 0.59 m 2 /g to 0.69 m 2 /g, more specifically 0.61 m 2 /g to 0.67 m 2 /g. It can be.
  • the BET specific surface area of the second positive electrode active material satisfies the above numerical range, the total specific surface area of the positive electrode active material increases, thereby increasing the number of lithium ion reaction sites, thereby improving the output characteristics of the battery.
  • the second positive electrode active material may be a lithium transition metal oxide that has not been washed with water. By omitting water washing treatment when manufacturing the second positive electrode active material, the initial resistance is reduced.
  • the positive electrode active material may be included in an amount of 60% to 99% by weight, preferably 70% to 99% by weight, and more preferably 80% to 98% by weight, based on the total weight of the positive electrode active material layer.
  • content of the positive electrode active material satisfies the above range, battery capacity can be improved by securing sufficient positive energy density.
  • the weight ratio of the first positive electrode active material and the second positive electrode active material may be 7.5:2.5 to 9.5:0.5, specifically 7.5:2.5 to 8.5:1.5, and more specifically 7.8:2.2 to 8.2:1.8.
  • the weight ratio of the first positive electrode active material and the second positive electrode active material satisfies the above range, the voltage drop during high-rate discharge may be reduced.
  • the first positive electrode active material is included in less than 75% by weight or the second positive electrode active material is included in more than 25% by weight, a problem occurs in which the capacity characteristics of the battery are deteriorated.
  • the first positive electrode active material is contained in an amount exceeding 95% by weight or the second positive electrode active material is contained in an amount less than 5% by weight, the total specific surface area of the positive electrode active material decreases, thereby reducing resistance and output characteristics.
  • the positive conductive material is a component to further improve the conductivity of the positive electrode active material, and such conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the anode conductive material includes carbon powder such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black; Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; Conductive fibers such as carbon fiber and metal fiber; Fluorinated carbon powder; Conductive powders such as aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • carbon powder such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black
  • Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure
  • Conductive fibers such as carbon fiber and metal fiber
  • Fluorinated carbon powder such as aluminum powder and nickel powder
  • Conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as
  • the anode conductive material according to the present invention includes both point-shaped conductive materials and linear conductive materials.
  • the conductive material may include a point-shaped conductive material and a linear conductive material in a weight ratio of 10:1 to 50:1, preferably 10:1 to 40:1, more preferably 20:1 to 40:1. there is. If the weight ratio of the point-shaped conductive material and the linear conductive material is less than 10:1, side reactions increase as the specific surface area of the conductive material increases, resulting in excessive gas generation in a hot box test. If the weight ratio of the point-shaped conductive material and the linear conductive material exceeds 50:1, there is a problem that the anode resistance value increases because the conductive network in the anode is not sufficiently secured.
  • the content of the linear conductive material may be 0.5 wt% or less, specifically 0.05 wt% to 0.3 wt%, and more specifically 0.05 wt% to 0.2 wt%, based on the total weight of the positive electrode active material layer.
  • the positive electrode conductive material may be included in an amount of 1% to 20% by weight, preferably 1% to 15% by weight, and more preferably 1% to 10% by weight, based on the total weight of the positive electrode active material layer.
  • the electrical conductivity of the positive electrode can be improved by securing the positive electrode conductive network.
  • the positive electrode binder is a component that assists in the bonding of the active material and the conductive material and the bonding to the current collector.
  • Examples of such anode binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polyethylene (PE), polypropylene, and ethylene-propylene.
  • CMC carboxymethylcellulose
  • PE polyethylene
  • PE polypropylene
  • -Diene monomer sulfonated ethylene-propylene-diene monomer
  • styrene-butadiene rubber fluororubber, various copolymers, etc., of which one type alone or a mixture of two or more types may be used.
  • the positive electrode binder may be included in an amount of 0.5% to 5.0% by weight, specifically 1.0% to 4.0% by weight, and more specifically 1.0% to 3.5% by weight, based on the total weight of the positive electrode active material layer.
  • the content of the positive electrode binder satisfies the above range, the contact area between the positive electrode binder and the positive electrode active material is increased, thereby ensuring excellent positive electrode adhesion.
  • the loading amount of the positive active material layer may be less than 11.0 mg/cm 2 , specifically 8.0 mg/cm 2 to 10.0 mg/cm 2 , and more specifically 8.0 mg/cm 2 to 9.4 mg/cm 2 .
  • the loading amount of the positive electrode active material layer is 11.0 mg/cm 2 or more, the resistance of the battery increases as the positive electrode resistance value increases, leading to a problem that output characteristics deteriorate.
  • the porosity of the positive electrode active material layer may be greater than 30%, specifically 32% to 38%, and more specifically 32% to 37%.
  • the porosity of the positive electrode active material layer satisfies the above range, the interfacial resistance of the positive electrode can be lowered, thereby improving the output characteristics of the battery.
  • the packing density of the positive electrode active material layer may be 2.8 g/cc or more, specifically 2.8 g/cc to 3.5 g/cc, and more specifically 2.9 g/cc to 3.2 g/cc, and accordingly, the porosity of the positive electrode active material layer may be It may have the above-described appropriate numerical range.
  • the positive electrode can be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the positive electrode may be manufactured by preparing a positive electrode slurry composition containing the positive electrode active material, positive conductive material, and/or positive electrode binder, applying the positive electrode slurry composition on a positive electrode current collector, and then drying and rolling. You can.
  • the positive electrode may be manufactured by casting the positive electrode slurry composition on a separate support and then laminating the film obtained by peeling from this support onto the positive electrode current collector.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, carbon on the surface of copper or stainless steel. , surface treated with nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the negative electrode current collector may typically have a thickness of 8 ⁇ m to 500 ⁇ m, and like the positive electrode current collector, fine irregularities may be formed on the surface of the negative electrode current collector to strengthen the bonding force of the negative electrode active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the negative electrode active material layer includes a negative electrode active material and, if necessary, may further include a conductive material, binder, etc.
  • the negative electrode active material is a material that can reversibly intercalate/deintercalate lithium metal and lithium ions.
  • the negative electrode active material may include at least one selected from the group consisting of carbon-based materials, metals or alloys of these metals and lithium, metal composite oxides, materials capable of doping and dedoping lithium, and transition metal oxides.
  • the carbon-based active material may be crystalline carbon, amorphous carbon, or a combination thereof.
  • the crystalline carbon include graphite such as amorphous, plate-shaped, flake-shaped, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon).
  • soft carbon low-temperature calcined carbon
  • hard carbon mesophase pitch carbide, calcined coke, etc. may be mentioned.
  • Examples of the above metals or alloys of these metals and lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al. and Sn, or an alloy of these metals and lithium may be used.
  • the metal complex oxides include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1 ) and Sn Pb, Ge': Al, B, P, Si, group 1, 2, and 3 elements of the periodic table, halogen; 1 ⁇ y ⁇ 3) Any one selected from can be used.
  • Materials capable of doping and dedoping lithium include Si, SiO It is an element selected from the group consisting of rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, Group 13 element, Group 14 element, transition metal, rare earth elements selected from the group consisting of elements and combinations thereof, but not Sn), and the like, and at least one of these may be mixed with SiO 2 .
  • the element Y includes Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, It may be selected from the group consisting of Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium complex oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative electrode active material according to the present invention may be artificial graphite, and more specifically, may be artificial graphite surface-coated with hard carbon.
  • artificial graphite When artificial graphite is used as a negative electrode active material, the capacity characteristics of the battery are improved by lowering the resistance of the negative electrode, and the cycle life characteristics of the battery are improved by lowering the overvoltage during charging and preventing lithium precipitation due to side reactions.
  • the negative electrode active material may be included in an amount of 60% to 99% by weight, preferably 70% to 99% by weight, and more preferably 80% to 99% by weight, based on the total weight of the negative electrode active material layer.
  • battery capacity can be improved by securing sufficient negative energy density while maintaining the content of the negative electrode conductive material and negative electrode binder at a desirable level.
  • the anode conductive material is a component to further improve the conductivity of the anode active material.
  • Such conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon black, acetylene black, and Ketjen black carbon powders such as channel black, furnace black, lamp black, or thermal black; Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; Conductive fibers such as carbon fiber and metal fiber; Fluorinated carbon powder; Conductive powders such as aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the negative electrode conductive material may be included in an amount of 1% to 20% by weight, preferably 1% to 15% by weight, and more preferably 1% to 10% by weight, based on the total weight of the negative electrode active material layer.
  • the electrical conductivity of the negative electrode can be improved by securing the negative electrode conductive network.
  • the negative electrode binder is a component that assists in bonding between the negative electrode conductive material, the negative electrode active material, and the negative electrode current collector.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polyethylene, Examples include polypropylene, ethylene-propylene-diene monomer, sulfonated ethylene-propylene-diene monomer, styrene-butadiene rubber, fluororubber, and various copolymers thereof, and one type of these may be used alone or a mixture of two or more types. You can.
  • the negative electrode binder may be included in an amount of 1% to 20% by weight, preferably 1% to 15% by weight, and more preferably 1% to 10% by weight, based on the total weight of the negative electrode active material layer.
  • the negative electrode active material particles can be smoothly bound to minimize the problem of volume expansion of the negative electrode active material, and the negative electrode active material can be well attached to the negative electrode current collector.
  • the separator can be used without particular restrictions as long as it is normally used as a separator in a lithium secondary battery.
  • the separator has low resistance to ion movement in the electrolyte and has excellent electrolyte moistening ability.
  • the separator may be a porous polymer film containing polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or two layers thereof.
  • polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or two layers thereof.
  • polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or two layers thereof.
  • the above laminated structures may be used.
  • conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fiber
  • the thickness of the separator may be 5 ⁇ m to 20 ⁇ m, preferably 5 ⁇ m to 15 ⁇ m, and more preferably 6 ⁇ m to 13 ⁇ m. If the thickness of the separator satisfies the above range, the cell resistance value can be minimized while preventing short circuit between the anode and cathode. As a result, the lifespan characteristics and output characteristics of lithium secondary batteries can be improved.
  • the lithium secondary battery according to the present invention may include an electrolyte.
  • the electrolyte may include organic solvents and lithium salts commonly used in the art, but is not particularly limited.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes methyl propionate, ethyl propionate, methyl acetate, ethyl acetate, and ⁇ -butyrolactone.
  • ester-based solvents such as ⁇ -caprolactone
  • Ether-based solvents such as dibutyl ether or tetrahydrofuran
  • Ketone-based solvents such as cyclohexanone
  • Aromatic hydrocarbon solvents such as benzene and fluorobenzene
  • DMC dimethylcarbonate
  • DEC diethylcarbonate
  • MEC methylethylcarbonate
  • EMC ethylmethylcarbonate
  • EMC ethylene carbonate
  • EC propylene carbonate
  • carbonate-based solvents such as PC
  • the electrolyte may use a mixed solution of a carbonate-based solvent and an ester-based solvent as an organic solvent, specifically, a cyclic carbonate-based solvent and an ester-based solvent or a cyclic carbonate-based solvent, a linear carbonate-based solvent, and an ester-based solvent.
  • a mixed solution of solvents can be used.
  • the cyclic carbonate-based solvent may be at least one of ethylene carbonate and propylene carbonate.
  • the linear carbonate-based solvent may be one or more selected from the group consisting of dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate.
  • the ester-based solvent may be ethyl propionate (EP).
  • EP ethyl propionate
  • Ethyl propionate has a lower viscosity compared to conventional electrolyte components, so when it is included, the ionic conductivity of the electrolyte can be increased.
  • Ethyl propionate may be included in an amount of 80% by weight or less, specifically 5% to 80% by weight, and more specifically 40% to 70% by weight, based on the total weight of the electrolyte.
  • the viscosity of the electrolyte can be optimized to achieve excellent ionic conductivity of the electrolyte.
  • the lithium salt can be used without particular restrictions as long as it is a compound that can provide lithium ions used in lithium secondary batteries.
  • the lithium salt is LiN(SO 2 F) 2 , LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN ( C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 may be used.
  • the lithium salt is preferably contained in the electrolyte at a concentration of approximately 0.6 mol% to 2 mol%.
  • the electrolyte according to the present invention may further include additives to further improve the physical properties of the secondary battery.
  • additives include cyclic carbonate-based compounds, halogen-substituted carbonate-based compounds, nitrile-based compounds, sultone-based compounds, sulfate-based compounds, phosphate-based compounds, borate-based compounds, benzene-based compounds, amine-based compounds, silane-based compounds, and lithium. and at least one selected from the group consisting of salt-based compounds.
  • the cyclic carbonate-based compound may be, for example, vinylene carbonate (VC) or vinylethylene carbonate (VEC).
  • the halogen-substituted carbonate-based compound may be, for example, fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • the nitrile-based compound may be, for example, succinonitrile, adiponitrile, hexanetricyanide, 1,4-dicyano-2-butene, etc.
  • the sultone-based compound may be, for example, 1,3-propanesultone, 1,3-propenesultone, etc.
  • the sulfate-based compound may be, for example, ethylene sulfate (Esa), trimethylene sulfate (TMS), or methyl trimethylene sulfate (MTMS).
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyl trimethylene sulfate
  • the phosphate-based compounds include, for example, lithium difluoro(bisoxalato)phosphate, lithium difluorophosphate, tetramethyl trimethyl silyl phosphate, trimethyl silyl phosphite, and tris(2,2,2-trifluoro). It may be one or more compounds selected from the group consisting of ethyl) phosphate and tris (trifluoroethyl) phosphite.
  • the borate-based compound may be, for example, tetraphenyl borate, lithium oxalyl difluoroborate (LiODFB), etc.
  • the benzene-based compound may be, for example, fluorobenzene
  • the amine-based compound may be triethanolamine or ethylenediamine
  • the silane-based compound may be tetravinylsilane.
  • the lithium salt-based compound is a compound different from the lithium salt contained in the non-aqueous electrolyte solution, and is selected from the group consisting of LiPO 2 F 2 , LiODFB, LiBOB (lithium bisoxalate borate (LiB(C 2 O 4 ) 2 ) and LiBF 4 It may be one or more types of compounds.
  • additives may be used alone, or two or more types may be mixed.
  • the total amount of the additive may be 1% by weight to 20% by weight, specifically 1% by weight to 15% by weight, and more specifically 2% by weight to 10% by weight, based on the total weight of the electrolyte.
  • the additives are included within the above range. In this case, it is possible to stably form a film on the electrode and suppress ignition during overcharging, while preventing side reactions from occurring or additives from remaining or precipitating during the initial activation process of the secondary battery.
  • the lithium secondary battery according to the present invention may include a cylindrical, prismatic, pouch-type, or coin-type battery case, and may preferably include a pouch-type battery case.
  • the pouch-type battery case includes a barrier layer, a base layer formed on one side of the barrier layer, and a sealant layer formed on the other side of the barrier layer, and includes at least one cup portion indented in one direction.
  • the pouch-type battery case is flexible, and a pouch film laminate in which a base layer, a barrier layer, and a sealant layer are sequentially laminated is inserted into a press molding device, and a partial area of the pouch film laminate is punched. It can be manufactured by applying pressure and stretching to form a cup portion with a shape that is indented in one direction.
  • the base layer is disposed on the outermost layer of the pouch to protect the electrode assembly from external shock and electrically insulate it.
  • the base layer may be made of a polymer material, for example, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, It may be made of one or more polymer materials selected from the group consisting of nylon, polyester, polyparaphenylenebenzobisoxazole, polyarylate, and Teflon.
  • a polymer material for example, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, It may be made of one or more polymer materials selected from the group consisting of nylon, polyester, polyparaphenylenebenzobisoxazole, polyarylate, and Teflon.
  • the base layer may have a single-layer structure or a multi-layer structure in which different polymer films are stacked.
  • an adhesive layer may be interposed between the polymer films.
  • the total thickness of the base layer may be 10 ⁇ m to 60 ⁇ m, preferably 20 ⁇ m to 50 ⁇ m, and more preferably 30 ⁇ m to 50 ⁇ m.
  • the thickness includes the adhesive layer.
  • durability, insulation, and moldability are excellent. If the thickness of the base layer is too thin, durability decreases and damage to the base layer may occur during the molding process. If it is too thick, moldability may decrease, the overall thickness of the pouch increases, and the battery storage space decreases, lowering the energy density. may deteriorate.
  • the barrier layer is intended to secure the mechanical strength of the pouch-type battery case, block gas or moisture from entering and exiting the secondary battery, and prevent electrolyte leakage.
  • the barrier layer may have a thickness of 40 ⁇ m to 100 ⁇ m, more preferably 50 ⁇ m to 80 ⁇ m, and more preferably 60 ⁇ m to 80 ⁇ m.
  • the barrier layer thickness satisfies the above range, formability is improved and the molding depth of the cup portion is increased or cracks and/or pinholes are less likely to occur even when molding two cups, thereby improving resistance to external stress after molding.
  • the barrier layer may be made of a metal material, and specifically, may be made of an aluminum alloy thin film.
  • the aluminum alloy thin film includes aluminum and metal elements other than aluminum, such as iron (Fe), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), magnesium (Mg), and silicon. It may include one or two or more types selected from the group consisting of (Si) and zinc (Zn).
  • metal elements other than aluminum such as iron (Fe), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), magnesium (Mg), and silicon. It may include one or two or more types selected from the group consisting of (Si) and zinc (Zn).
  • the sealant layer is bonded through heat compression to seal the pouch, and is located in the innermost layer of the pouch film laminate.
  • the sealant layer is the surface that comes into contact with the electrolyte and electrode assembly after the pouch is molded, it must have insulation and corrosion resistance. It must completely seal the interior to block material movement between the inside and the outside, so it must have high sealing properties.
  • the sealant layer may be made of a polymer material, for example, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, and aramid. , nylon, polyester, polyparaphenylenebenzobisoxazole, polyarylate, and Teflon.
  • a polymer material for example, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, and aramid.
  • nylon polyester
  • polyparaphenylenebenzobisoxazole polyarylate
  • Teflon Teflon
  • the sealant layer may have a single-layer structure or a multi-layer structure including two or more layers made of different polymer materials.
  • the sealant layer may have a total thickness of 60 ⁇ m to 100 ⁇ m, preferably 60 ⁇ m to 90 ⁇ m, more preferably 70 ⁇ m to 90 ⁇ m. If the thickness of the sealant layer is too thin, sealing durability and insulation may be reduced, and if it is too thick, flexibility may decrease and the total thickness of the pouch film laminate may increase, resulting in a decrease in energy density relative to volume.
  • the pouch film laminate can be manufactured through a pouch film laminate manufacturing method known in the art.
  • the pouch film laminate may be manufactured by attaching a base layer to the upper surface of the barrier layer using an adhesive, and forming a sealant layer through co-extrusion or adhesive on the lower surface of the barrier layer, but is limited to this. It doesn't work.
  • the pouch-type battery case may be sealed while accommodating the electrode assembly so that a portion of the electrode lead, that is, the terminal portion, is exposed. Specifically, when the electrode lead is connected to the electrode tab of the electrode assembly and an insulating part is formed on a portion of the electrode lead, the electrode assembly is accommodated in the receiving space provided in the cup portion, and the electrolyte is injected. Then, the pouch-type battery case can be sealed. .
  • the thickness of the electrode lead may be 0.05 mm to 0.5 mm, specifically 0.08 mm to 0.3 mm, and more specifically 0.1 mm to 0.2 mm.
  • the lithium secondary battery according to the present invention is a pouch-type lithium secondary battery, it is lighter than a cylindrical secondary battery, and the resistance is reduced due to the presence of multiple tabs, resulting in excellent output characteristics, making it suitable for use as a battery for power tools.
  • the lithium secondary battery according to the present invention may have a battery resistance (DC-IR) of 7 m ⁇ or less at SOC 100, specifically 1 m ⁇ to 7 m ⁇ , and more specifically 1 m ⁇ to 6.5 m ⁇ .
  • DC-IR battery resistance
  • the battery resistance (DC-IR) satisfies the above numerical range, the voltage drop is not large even when the battery is discharged at a high rate, so the battery of the present invention may be suitable for use as a power source for power tools.
  • the lithium secondary battery according to the present invention can not only be used in battery cells used as a power source for small devices such as power tools, but can also be used as a unit cell in medium to large-sized battery modules containing multiple battery cells.
  • Preferred examples of the medium-to-large devices include electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and energy storage systems (ESS).
  • the cathode slurry was applied at a loading amount of 6.96 mAh/cm 2 to one side of a 10 ⁇ m thick copper (Cu) metal thin film and then dried in vacuum. Afterwards, the dried cathode slurry was rolled, dried in a vacuum oven at 130°C for 12 hours, and punched to prepare a cathode.
  • Cu copper
  • the average particle diameter D 50 was 10 ⁇ m
  • the BET specific surface area was 0.57 m 2 /g
  • secondary particles Li[Ni 0.83 Co 0.12 Mn 0.05 ]O 2 were used
  • the second positive electrode active material had an average particle diameter D 50.
  • Li[Ni 0.86 Co 0.08 Mn 0.06 ]O 2 of 4 ⁇ m, BET specific surface area of 0.65 m 2 /g, and single particle and/or quasi-single particle was used.
  • Fluoride (PVdF) and hydrogenated nitrile-based butadiene rubber (H-NBR) were added to N-methylpyrrolidone (NMP) solvent at a weight ratio of 95.28:3.1:1.3:0.32 and stirred to prepare a positive electrode slurry.
  • the solid content of the positive electrode slurry was 70% by weight.
  • the anode slurry was applied at a loading amount of 9.24 mg/cm 2 to one side of a 15 ⁇ m thick aluminum thin film, and then vacuum dried at 130°C for 10 hours.
  • the dried positive electrode slurry was rolled, dried in a vacuum oven at 130°C for 12 hours, and punched to prepare a positive electrode.
  • An electrode assembly was manufactured by assembling the cathode and anode prepared as above and a 10 ⁇ m thick porous polyethylene separator using a stacking method.
  • a lithium secondary battery was manufactured by storing the electrode assembly in a pouch-type battery case, injecting the electrolyte, and sealing it.
  • the positive electrode active material a conductive material mixed with carbon black and multi-walled carbon nanotubes (MWCNT) at a weight ratio of 15:1, polyvinylidene fluoride (PVdF), and hydrogenated nitrile-based butadiene rubber (H-NBR) were mixed at a weight ratio of 95.16:3.2. : 1.3 : 0.34 weight ratio was mixed and used, and the positive electrode was manufactured in the same manner as Example 1, except that the positive electrode loading amount was 9.24 mg/cm 2 .
  • MWCNT carbon black and multi-walled carbon nanotubes
  • PVdF polyvinylidene fluoride
  • H-NBR hydrogenated nitrile-based butadiene rubber
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was used.
  • a cathode was manufactured in the same manner as Example 1, except that the cathode loading amount was 6.52 mg/cm 2 .
  • the first positive electrode active material, carbon black, polyvinylidene fluoride (PVdF), and hydrogenated nitrile-based butadiene rubber (H-NBR) were mixed and used at a weight ratio of 94.85:3.5:1.3:0.35, and the positive electrode loading amount was 9.64 mg.
  • a positive electrode was manufactured in the same manner as in Example 1, except that /cm 2 .
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the negative electrode and positive electrode were used.
  • a cathode was manufactured in the same manner as Example 1, except that the cathode loading amount was 6.52 mg/cm 2 .
  • the first positive electrode active material a conductive material mixed with carbon black and multi-walled carbon nanotubes (MWCNT) at a weight ratio of 6:1, polyvinylidene fluoride (PVdF), and hydrogenated nitrile-based butadiene rubber (H-NBR) were mixed at a weight ratio of 94.8. : 3.5 : 1.3 : 0.4 weight ratio was mixed and used, and the positive electrode was manufactured in the same manner as Example 1, except that the positive electrode loading amount was 9.64 mg/cm 2 .
  • MWCNT carbon black and multi-walled carbon nanotubes
  • PVdF polyvinylidene fluoride
  • H-NBR hydrogenated nitrile-based butadiene rubber
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the negative electrode and positive electrode were used.
  • a cathode was manufactured in the same manner as Example 1, except that the cathode loading amount was 6.56 mg/cm 2 .
  • the first positive electrode active material a conductive material mixed with carbon black and multi-walled carbon nanotubes (MWCNT) at a weight ratio of 2:1, polyvinylidene fluoride (PVdF), and hydrogenated nitrile-based butadiene rubber (H-NBR) were mixed at a weight ratio of 94.8. : 3.5 : 1.3 : 0.4 weight ratio was mixed and used, and the positive electrode was manufactured in the same manner as Example 1, except that the positive electrode loading amount was 9.64 mg/cm 2 .
  • MWCNT carbon black and multi-walled carbon nanotubes
  • PVdF polyvinylidene fluoride
  • H-NBR hydrogenated nitrile-based butadiene rubber
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the negative electrode and positive electrode were used.
  • a cathode was manufactured in the same manner as Example 1, except that the cathode loading amount was 6.32 mg/cm 2 .
  • the first positive electrode active material a conductive material mixed with carbon black and multi-walled carbon nanotubes (MWCNT) at a weight ratio of 30:1, polyvinylidene fluoride (PVdF), and hydrogenated nitrile-based butadiene rubber (H-NBR) were mixed at a weight ratio of 95.28. : 3.1 : 1.3 : 0.32 was mixed at a weight ratio, and the positive electrode was manufactured in the same manner as Example 1, except that the positive electrode loading amount was 9.28 mg/cm 2 .
  • MWCNT multi-walled carbon nanotubes
  • PVdF polyvinylidene fluoride
  • H-NBR hydrogenated nitrile-based butadiene rubber
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the negative electrode and positive electrode were used.
  • the positive electrode active material a conductive material mixed with carbon black and multi-walled carbon nanotubes (MWCNT) at a weight ratio of 2:1, polyvinylidene fluoride (PVdF), and hydrogenated nitrile-based butadiene rubber (H-NBR) were mixed at a weight ratio of 93.88:4.5. : 1.3 : 0.32 was mixed at a weight ratio, and the positive electrode was manufactured in the same manner as Example 1, except that the positive electrode loading amount was 9.23 mg/cm 2 .
  • MWCNT carbon black and multi-walled carbon nanotubes
  • PVdF polyvinylidene fluoride
  • H-NBR hydrogenated nitrile-based butadiene rubber
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was used.
  • the positive electrode active material, carbon black, polyvinylidene fluoride (PVdF), and hydrogenated nitrile butadiene rubber (H-NBR) were mixed and used at a weight ratio of 96.88:1.5:1.3:0.32, and the positive electrode loading was 9.23 mg/cm 2
  • a positive electrode was manufactured in the same manner as in Example 1 except that.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was used.
  • a positive electrode was manufactured in the same manner as Example 1, except that the first and second positive electrode active materials were mixed at a weight ratio of 7:3.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was used.
  • the internal resistance of the lithium secondary battery was evaluated by measuring the DC-IR (Direct Current Internal Resistance) value. Specifically, DC-IR was charged to 100% SOC and 50% SOC in two lithium secondary batteries manufactured in Examples and Comparative Examples, respectively, and then 0.1 through the PNE Cycle program (CTSMonPro, PNE SOLUTION CO. LTD). The voltage change and current change of the battery as a pulse of 10 A per second was applied were measured, respectively, and calculated by dividing the voltage change value by the current change value. The results are shown in Table 1 below.
  • positive electrode active material anode conductive material DC-IR (m ⁇ ) SOC 100% SOC 50%
  • Example 1 80% by weight of first positive electrode active material 20% by weight of second positive electrode active material Carbon black 3.0% MWCNT 0.1% 6.2 4.3 6.2 4.3
  • Example 2 80% by weight of first positive electrode active material 20% by weight of second positive electrode active material Carbon black 3.0% MWCNT 0.2% 6.2 4.5 6.3 4.5 Comparative Example 1 100% by weight of first positive electrode active material Carbon black 3.5% 8.4 5.1 8.4 5.2 Comparative Example 2 100% by weight of first positive electrode active material Carbon black 3.0% MWCNT 0.5% 8 5.2 7.8 5.1 Comparative Example 3 100% by weight of first positive electrode active material Carbon black 2.0% MWCNT 1.0% 10 4.5 10 4.4 Comparative Example 4 100% by weight of first positive electrode active material Carbon black 3.0% MWCNT 0.1% 9.3 4.6 9.3 4.5 Comparative Example 5 80% by weight of first positive electrode active material 20% by weight of second positive electrode active material Carbon black 3.0% MWCNT 1.5% 10.2 4.6 9.8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 따른 리튬 이차 전지는, 전지 케이스, 및 상기 전지 케이스에 수납되는 전극 조립체 및 전해질을 포함하고, 상기 전극 조립체는 양극을 포함하고, 상기 양극은 제1 양극 활물질, 제2 양극 활물질 및 도전재를 포함하고, 상기 제2 양극 활물질은 1개의 1차 입자로 이루어진 단입자, 2개 내지 30개의 상기 1차 입자들의 응집체인 유사-단입자 또는 이들의 조합이고, 상기 제1 양극 활물질과 상기 제2 양극 활물질의 중량 비는 7.5 : 2.5 내지 9.5 : 0.5이고, 상기 도전재는 점형 도전재와 선형 도전재를 10:1 내지 50:1의 중량 비로 포함한다.

Description

리튬 이차 전지
관련출원과의 상호인용
본 출원은 2022년 10월 27일자 한국 특허 출원 제 10-2022-0140776호 및 2023년 10월 24일자 한국 특허 출원 제 10-2023-0143340호에 기초한 우선권의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
기술분야
본 발명은 리튬 이차 전지에 관한 것이다.
전동 공구, 전기 자동차, 에너지 저장 시스템(Energy Storage System, ESS)에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 이러한 장치의 전원으로 높은 용량을 갖는 리튬 이차 전지에 대한 시장의 니즈(needs)가 커짐에 따라, 셀 에너지 밀도를 높이기 위한 연구가 활발히 진행되고 있다. 또한, 전동 공구와 같이 고출력이 요구되는 디바이스에 적용할 수 있는 전지로써, 용량 특성뿐만 아니라 율 특성도 우수한 전지에 대한 수요가 증가하고 있다.
그러나, 전동 공구에 내장된 이차 전지를 고출력으로 방전시키는 경우, 이차 전지의 전압 강하로 인해 전동 공구의 시스템 작동이 종료되는 문제가 있다. 즉, 고율 방전 시 이차 전지의 전위 값이 크게 감소함으로써, 실제로는 전지 용량이 남아있음에도 시스템에서 전지 용량이 부족하다고 판단하여 전동 공구의 전원이 꺼지는 일이 발생한다는 문제점이 있다.
또한, 현재 전동 공구용 전지로는 원통형 전지가 일반적으로 사용되고 있는데, 원통형 전지의 경우 전지 캔의 무게가 무겁기 때문에 이를 사용할 경우 전동 공구 전체 무게가 증가하고, 이로 인해 작업 편이성이 떨어진다는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 고율 방전 시 전지의 전압 강하 정도가 낮아 전동 공구의 전원 꺼짐 현상을 방지할 수 있는 리튬 이차 전지를 제공하는 것을 목적으로 한다.
또한, 고율 방전 시 전지의 전압 강하 정도가 낮으면서도, 상대적으로 가벼운 무게를 가져 작업 편이성이 우수하며, 저항이 낮고 출력 특성이 우수한 파우치형 리튬 이차 전지를 제공하는 것도 목적으로 한다.
본 발명에 따르면, 전지 케이스, 및 상기 전지 케이스에 수납되는 전극 조립체 및 전해질을 포함하고, 상기 전극 조립체는 양극을 포함하고, 상기 양극은 제1 양극 활물질, 제2 양극 활물질 및 도전재를 포함하고, 상기 제2 양극 활물질은 1개의 1차 입자로 이루어진 단입자, 2개 내지 30개의 상기 1차 입자들의 응집체인 유사-단입자 또는 이들의 조합이고, 상기 제1 양극 활물질과 상기 제2 양극 활물질의 중량 비는 7.5 : 2.5 내지 9.5 : 0.5이고, 상기 도전재는 점형 도전재와 선형 도전재를 10:1 내지 50:1의 중량 비로 포함하는 리튬 이차 전지가 제공된다.
본 발명에 따르면, 상기 제1 양극 활물질은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
Li1+x[NiaCobM1cM2d]1-xO2-yX1y
상기 화학식 1에서, 0.8≤a≤0.95, 0≤b≤0.2, 0≤c≤0.2, 0≤d≤0.1, a+b+c+d=1, 0≤x≤0.3, 0≤y≤0.2이고, M1은 Mn, Al 또는 이들의 조합이며, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택된 1종의 금속 원소이며, X1는 F, Cl, Br, I, At, P 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이다.
본 발명에 따르면, 상기 제2 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
[화학식 2]
Li1+z[NigCohM3iM4j]1-zO2-wX2w
상기 화학식 2에서, 0.85≤g≤0.95, 0≤h≤0.15, 0≤i≤0.15, 0≤j≤0.1, g+h+i+j=1, 0≤z≤0.3, 0≤w≤0.2이고, M3은 Mn, Al 또는 이들의 조합이며, M4는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택된 1종의 금속 원소이고, X2는 F, Cl, Br, I, At, P 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이다.
본 발명에 따르면, 상기 제1 양극 활물질은 리튬을 제외한 전이금속 총 몰수에 대하여 80 몰% 이상, 구체적으로 80 몰% 내지 85 몰%의 니켈을 함유하는 리튬 니켈계 산화물을 포함할 수 있다.
본 발명에 따르면, 상기 제2 양극 활물질은 리튬을 제외한 전이금속 총 몰수에 대하여 85 몰% 이상의 니켈을 함유하는 리튬 니켈계 산화물을 포함할 수 있다.
본 발명에 따르면, 상기 제1 양극 활물질은 50개 이상의 1차 입자들이 서로 응집된 2차 입자일 수 있다.
본 발명에 따르면, 상기 제2 양극 활물질은 상기 제1 양극 활물질보다 평균 입경 D50이 작을 수 있다.
본 발명에 따르면, 상기 제1 양극 활물질의 평균 입경 D50은 8μm 내지 12μm일 수 있다.
본 발명에 따르면, 상기 제2 양극 활물질의 평균 입경 D50은 1μm 내지 7μm일 수 있다.
본 발명에 따르면, 상기 점형 도전재는 카본블랙이고, 상기 선형 도전재는 다중벽 탄소나노튜브일 수 있다.
본 발명에 따르면, SOC 100일 때의 전지 저항(DC-IR)이 7 mΩ 이하, 구체적으로 1 mΩ 내지 7 mΩ일 수 있다.
본 발명에 따르면, 상기 전지 케이스는 파우치형 전지 케이스일 수 있다.
본 발명에 따른 리튬 이차 전지는 대입경 2차입자(제1 양극 활물질)와 소입경 단입자 및/또는 유사-단입자(제2 양극 활물질)를 7.5 : 2.5 내지 9.5 : 0.5의 중량 비로 포함하는 바이모달 양극 활물질과 함께, 점형 도전재 및 선형 도전재를 10:1 내지 50:1의 중량 비로 포함하는 양극 도전재를 사용하는 것을 그 특징으로 한다. 그 결과, 본 발명의 리튬 이차 전지를 고율 방전시키는 경우에도 전지의 전압 강하 정도가 크지 않으므로, 본 발명에 따른 전지를 전동 공구의 전원으로 사용할 시 고율 방전에 따른 전동 공구의 전원 종료 현상을 방지할 수 있다.
또한, 본 발명에 따른 리튬 이차 전지가 파우치형 리튬 이차 전지일 경우, 상대적으로 가벼운 무게를 가져 작업 편이성이 우수하다.
또한, 본 발명에 따른 리튬 이차 전지가 파우치형 리튬 이차 전지일 경우, 전극 탭이 다수 존재하며, 이에 따라, 원통형 전지에 비해 저항이 낮고, 출력 특성이 우수하게 나타나므로, 전동 공구의 전원으로 사용되기 적합하다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 명세서에서 "A 및/또는 B"의 기재는 A, 또는 B, 또는 A 및 B를 의미한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
본 명세서에서, D50은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경을 의미하는 것이다. 상기 D50은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
본 명세서에서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출될 수 있다.
본 명세서에서, "SOC 100일 때의 전지 저항(DC-IR)"은 리튬 이차 전지를 SOC 100%로 충전한 후, PNE Cycle 프로그램(CTSMonPro, PNE SOLUTION CO., LTD)을 통해 0.1초, 10A의 펄스를 인가함에 따른 전지의 전압 변화와 전류 변화를 각각 측정하고, 상기 전압 변화 값을 전류 변화 값으로 나누어 산출될 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
리튬 이차 전지
본 발명에 따른 리튬 이차 전지는, 전지 케이스, 및 상기 전지 케이스에 수납되는 전극 조립체 및 전해질을 포함하고, 상기 전극 조립체는 양극을 포함하고, 상기 양극은 제1 양극 활물질, 제2 양극 활물질 및 도전재를 포함하고, 상기 제2 양극 활물질은 1개의 1차 입자로 이루어진 단입자, 2개 내지 30개의 상기 1차 입자들의 응집체인 유사-단입자 또는 이들의 조합이고, 상기 제1 양극 활물질과 상기 제2 양극 활물질의 중량 비는 7.5 : 2.5 내지 9.5 : 0.5이고, 상기 도전재는 점형 도전재와 선형 도전재를 10:1 내지 50:1의 중량 비로 포함한다.
일반적으로, 리튬 이차 전지를 고율 방전시키면 전지의 전압이 크게 감소하게 된다. 이러한 전지를 전동 공구의 전원으로 사용하면, 실제로는 전지 용량이 남아있음에도 전동 공구 시스템에서 전지 용량이 부족하다고 판단하여 전동 공구의 전원이 종료될 수 있다.
본 발명자들은 이러한 문제를 해결하기 위해 연구를 거듭한 결과, 대입경 2차입자(제1 양극 활물질)와 소입경 단입자 및/또는 유사-단입자(제2 양극 활물질)를 7.5 : 2.5 내지 9.5 : 0.5의 중량 비로 포함하는 바이모달 양극 활물질을 사용하되, 점형 도전재와 선형 도전재를 10:1 내지 50:1의 중량 비로 함께 사용하는 경우, 전지를 고율 방전시키더라도 전압 강하 정도가 크지 않으므로, 이러한 전지를 전동 공구의 전원으로 사용할 시 상기 전동 공구의 전원 종료 현상을 방지할 수 있음을 알아내고 본 발명을 완성하였다.
이하 본 발명에 따른 리튬 이차 전지의 각 구성을 보다 자세히 설명한다.
<전극 조립체>
본 발명에 따른 전극 조립체는 양극, 음극, 및 상기 양극과 음극 사이에 배치되는 분리막을 포함할 수 있다.
이하, 상기 전극 조립체의 각 구성에 대해 보다 자세히 설명한다.
(1) 양극
양극은 양극 집전체, 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함할 수 있다.
양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 집전체의 두께는 10㎛ 내지 500㎛, 구체적으로 10㎛ 내지 300㎛, 보다 구체적으로 10㎛ 내지 50㎛일 수 있다. 전지의 출력 특성 개선을 위해 양극의 저항을 낮추고자 양극 활물질층의 로딩량을 감소시키는 경우, 양극 집전체에 양극 활물질이 박혀 양극 집전체가 단선될 수 있다. 그러나, 본 발명에 따른 양극 집전체의 두께가 상기 수치 범위를 만족하는 경우, 양극 집전체의 두께가 종래에 비해 두꺼우므로 집전체의 단선이 방지될 수 있다.
양극 활물질층은 제1 양극 활물질 및 제2 양극 활물질을 포함하고, 필요에 따라 도전재, 바인더 등을 더 포함할 수 있다.
상기 제1 양극 활물질 및 제2 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 금속 산화물을 포함할 수 있다. 구체적으로, 상기 제1 양극 활물질 및 제2 양극 활물질은 대용량 전지 구현이 용이하도록 각각 리튬 니켈계 산화물을 포함할 수 있다.
상기 제1 양극 활물질과 제2 양극 활물질은 조성이 상이할 수 있다.
예를 들어, 본 발명에 따른 제1 양극 활물질은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
Li1+x[NiaCobM1cM2d]1-xO2-yX1y
상기 화학식 1에서, 0.8≤a≤0.95, 0≤b≤0.2, 0≤c≤0.2, 0≤d≤0.1, a+b+c+d=1, 0≤x≤0.3, 0≤y≤0.2일 수 있다.
상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합일 수 있다.
상기 화학식 1에서, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택된 1종의 금속 원소일 수 있다.
상기 화학식 1에서, X1는 F, Cl, Br, I, At, P 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다.
상기 제1 양극 활물질에 포함된 리튬 니켈계 산화물은, 리튬을 제외한 전이금속 총 몰수에 대하여 80 몰% 이상, 구체적으로 80 몰% 내지 95 몰%, 보다 구체적으로 80 몰% 내지 85 몰%의 니켈을 함유할 수 있다. 제1 양극 활물질에 포함된 리튬 니켈계 산화물 내 니켈의 함량이 상기 수치 범위를 만족하는 경우, 양극 에너지 밀도가 증가하여 충분한 전지 용량을 확보할 수 있으므로, 본 발명의 전지를 대용량이 요구되는 전동 공구용 전지로 사용하기 적합하다.
한편, 본 발명에 따른 제2 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
[화학식 2]
Li1+z[NigCohM3iM4j]1-zO2-wX2w
상기 화학식 2에서, 0.85≤g≤0.95, 0≤h≤0.15, 0≤i≤0.15, 0≤j≤0.1, g+h+i+j=1, 0≤z≤0.3, 0≤w≤0.2일 수 있다.
상기 화학식 2에서, M3은 Mn, Al 또는 이들의 조합일 수 있다.
상기 화학식 2에서, M4는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택된 1종의 금속 원소일 수 있다.
상기 화학식 2에서, X2는 F, Cl, Br, I, At, P 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다.
상기 제2 양극 활물질에 포함된 리튬 니켈계 산화물은, 리튬을 제외한 전이금속 총 몰수에 대하여 85 몰% 이상, 구체적으로 85 몰% 내지 95 몰%, 보다 구체적으로 85 몰% 내지 90 몰%의 니켈을 함유할 수 있다. 제2 양극 활물질에 포함된 리튬 니켈계 산화물 내 니켈의 함량이 상기 수치 범위를 만족하는 경우, 제1 양극 활물질만 사용한 경우보다 양극 활물질 내 평균 니켈 함량이 증가함으로써 양극 에너지 밀도가 더욱 증가하여 대용량 전지를 구현하기 용이하다.
한편, 본 발명에 따른 제1 양극 활물질 및 제2 양극 활물질은 평균 입경 D50이 상이하다. 구체적으로, 상기 제2 양극 활물질은 상기 제1 양극 활물질보다 평균 입경 D50이 작다. 그 결과, 제1 양극 활물질만 사용하는 경우와 비교하여 양극 활물질의 전체 비표면적이 상대적으로 증가함으로써 리튬 이온의 반응 사이트 개수를 높일 수 있으므로 전지의 출력 특성을 향상시킬 수 있다.
상기 제1 양극 활물질은 1차 입자들이 서로 응집된 2차 입자일 수 있다. 예를 들어, 상기 2차 입자는 50개 이상, 구체적으로 50개 내지 80개, 보다 구체적으로 50개 내지 70개의 1차 입자들이 서로 응집된 입자일 수 있다.
상기 제1 양극 활물질의 평균 입경 D50은 8μm 내지 12μm, 구체적으로 8μm 내지 10μm, 보다 구체적으로 8μm 내지 9μm일 수 있다. 제1 양극 활물질의 평균 입경 D50이 상기 수치 범위를 만족할 시 전지의 충전 용량을 적정 수준으로 확보할 수 있다.
상기 제1 양극 활물질의 BET 비표면적은 0.38m2/g 내지 0.60m2/g, 구체적으로 0.49m2/g 내지 0.58m2/g, 보다 구체적으로 0.50m2/g 내지 0.57m2/g 일 수 있다. 제1 양극 활물질의 BET 비표면적이 상기 수치 범위를 만족하는 경우 전지를 고율 방전시키더라도 출력 수준을 유지할 수 있는 효과가 있다.
상기 제1 양극 활물질은 리튬 전이금속 산화물을 수세 처리한 후 건조 및 열처리하여 형성될 수 있다. 상기 수세 처리를 통해 입자 표면에 붕소(B) 코팅, 지르코늄(Zr) 도핑 및/또는 스트론튬(Sr) 도핑이 가능해져 전지의 용량 및 안정성이 향상될 수 있다.
상기 제2 양극 활물질은 단입자 및/또는 유사-단입자이다. 상기 단입자는 1개의 1차 입자로 이루어진 것일 수 있다. 상기 유사-단입자는 2개 내지 30개, 구체적으로 2개 내지 20개, 보다 구체적으로 2개 내지 10개의 1차 입자들의 응집체일 수 있다.
상기 제2 양극 활물질은 상기 제1 양극 활물질보다 평균 입경 D50이 작을 수 있다. 보다 상세하게는, 상기 제2 양극 활물질의 평균 입경 D50은 1μm 내지 7μm, 구체적으로 2μm 내지 6μm, 보다 구체적으로 4μm 내지 5μm일 수 있다. 제2 양극 활물질의 평균 입경 D50이 상기 수치 범위를 만족하는 경우, 제2 양극 활물질이 높은 비표면적을 가지므로 양극 활물질의 전체 비표면적이 증가할 수 있다.
상기 제2 양극 활물질의 BET 비표면적은 0.54m2/g 내지 0.74m2/g, 구체적으로 0.59m2/g 내지 0.69m2/g, 보다 구체적으로 0.61m2/g 내지 0.67m2/g일 수 있다. 제2 양극 활물질의 BET 비표면적이 상기 수치 범위를 만족하는 경우, 양극 활물질의 전체 비표면적이 증가함으로써 리튬 이온의 반응 사이트 개수를 높일 수 있으므로 전지의 출력 특성을 향상시킬 수 있다.
상기 제2 양극 활물질은 리튬 전이금속 산화물을 수세 처리하지 않은 것일 수 있다. 제2 양극 활물질 제조 시 수세 처리를 생략함으로써 초기 저항이 감소하는 효과가 있다.
상기 양극 활물질은 양극 활물질층 전체 중량을 기준으로 60 중량% 내지 99 중량%, 바람직하게는 70 중량% 내지 99 중량%, 보다 바람직하게는 80 중량% 내지 98 중량%로 포함될 수 있다. 양극 활물질의 함량이 상기 범위를 만족하는 경우, 충분한 양극 에너지 밀도를 확보함으로써 전지 용량을 향상시킬 수 있다.
제1 양극 활물질과 상기 제2 양극 활물질의 중량 비는 7.5 : 2.5 내지 9.5 : 0.5, 구체적으로 7.5 : 2.5 내지 8.5 : 1.5, 보다 구체적으로 7.8 : 2.2 내지 8.2 : 1.8일 수 있다. 상기 제1 양극 활물질과 상기 제2 양극 활물질의 중량 비가 상기 범위를 만족시킬 경우, 고율 방전 시 전압 강하가 감소할 수 있다.
이때, 상기 제1 양극 활물질이 75중량% 미만 또는 상기 제2 양극 활물질이 25중량% 초과로 포함되면, 전지의 용량 특성이 저하되는 문제가 발생한다. 또한, 상기 제1 양극 활물질이 95중량% 초과 또는 상기 제2 양극 활물질이 5중량% 미만으로 포함되면, 양극 활물질의 전체 비표면적이 감소함에 따라 저항 및 출력 특성이 저하된다.
양극 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다.
예를 들어, 양극 도전재로는 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말; 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
본 발명에 따른 양극 도전재는 점형 도전재 및 선형 도전재를 모두 포함한다. 구체적으로, 상기 도전재는 점형 도전재와 선형 도전재를 10:1 내지 50:1, 바람직하게는 10:1 내지 40:1, 보다 바람직하게는 20:1 내지 40:1의 중량 비로 포함할 수 있다. 점형 도전재 및 선형 도전재의 중량 비가 10:1 미만인 경우, 도전재의 비표면적이 증가함에 따라 부반응이 증가하여 핫박스 테스트에서 가스가 과도하게 발생하는 문제가 있다. 점형 도전재 및 선형 도전재의 중량 비가 50:1을 초과하는 경우, 양극 내 전도성 네트워크가 충분히 확보되지 않아 양극 저항 값이 높아지는 문제가 있다.
이 경우, 선형 도전재의 함량은 양극 활물질층 전체 중량 대비 0.5 중량% 이하, 구체적으로 0.05 중량% 내지 0.3 중량%, 보다 구체적으로 0.05 중량% 내지 0.2 중량%일 수 있다.
상기 양극 도전재는 양극 활물질층 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다. 양극 활물질층 내 양극 도전재의 함량이 상기 범위를 만족하는 경우, 양극 전도성 네트워크를 확보함으로써 양극의 전기 전도도를 개선할 수 있다.
양극 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이다.
이러한 양극 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리에틸렌(PE), 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 술폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
양극 바인더는 양극 활물질층 전체 중량을 기준으로 0.5 중량% 내지 5.0 중량%, 구체적으로 1.0 중량% 내지 4.0 중량%, 보다 구체적으로 1.0 중량% 내지 3.5 중량%로 포함될 수 있다. 양극 바인더의 함량이 상기 범위를 만족하는 경우, 양극 바인더와 양극 활물질의 접촉 면적이 넓어져 우수한 양극 접착력을 확보할 수 있다.
한편, 양극 활물질층의 로딩량은 11.0 mg/cm2 미만, 구체적으로 8.0 mg/cm2 내지 10.0 mg/cm2, 보다 구체적으로 8.0 mg/cm2 내지 9.4 mg/cm2일 수 있다. 양극 활물질층의 로딩량이 11.0 mg/cm2 이상일 경우, 양극 저항 값이 증가함에 따라 전지의 저항이 증가하여 출력 특성이 저하되는 문제가 있다.
상기 양극 활물질층의 공극률은 30% 초과, 구체적으로 32% 내지 38%, 보다 구체적으로 32% 내지 37%일 수 있다. 양극 활물질층의 공극률이 상기 범위를 만족하는 경우, 양극의 계면 저항이 낮아져 전지의 출력 특성이 향상될 수 있다.
상기 양극 활물질층의 충진 밀도는 2.8 g/cc 이상, 구체적으로 2.8 g/cc 내지 3.5 g/cc, 보다 구체적으로 2.9 g/cc 내지 3.2 g/cc일 수 있으며, 이에 따라 양극 활물질층의 공극률이 전술한 적정 수치 범위를 가질 수 있다.
한편, 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 양극은, 상기한 양극 활물질, 양극 도전재 및/또는 양극 바인더를 포함하는 양극 슬러리 조성물을 제조한 뒤, 상기 양극 슬러리 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다.
또한, 다른 방법으로, 상기 양극은 상기 양극 슬러리 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
(2) 음극
음극은 음극 집전체, 상기 음극 집전체 상에 형성되는 음극 활물질층을 포함할 수 있다.
음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
음극 집전체는 통상적으로 8㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 음극 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
음극 활물질층은 음극 활물질을 포함하고, 필요에 따라 도전재, 바인더 등을 더 포함할 수 있다.
음극 활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질이다.
음극 활물질은 탄소계 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 탄소계 활물질은 결정질 탄소, 비정질 탄소 또는 이들을 조합일 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1) 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
구체적으로, 본 발명에 따른 음극 활물질은 인조 흑연일 수 있으며, 보다 구체적으로 하드 카본으로 표면 코팅된 인조 흑연일 수 있다. 음극 활물질로 인조 흑연을 사용할 경우, 음극의 저항을 낮추어 전지의 용량 특성을 향상시키면서도, 충전 시 과전압을 낮추어 부반응으로 인한 리튬 석출을 방지함으로써 전지의 사이클 수명 특성이 개선되는 효과를 갖는다.
상기 음극 활물질은 음극 활물질층 전체 중량을 기준으로 60 중량% 내지 99 중량%, 바람직하게는 70 중량% 내지 99 중량%, 보다 바람직하게는 80 중량% 내지 99 중량%로 포함될 수 있다. 음극 활물질의 함량이 상기 범위를 만족하는 경우, 음극 도전재와 음극 바인더의 함량을 바람직한 수준으로 유지하면서도, 충분한 음극 에너지 밀도를 확보함으로써 전지 용량을 향상시킬 수 있다.
음극 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말; 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
음극 도전재는 음극 활물질층 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다. 음극 활물질의 함량이 상기 범위를 만족하는 경우, 음극 전도성 네트워크를 확보함으로써 음극의 전기 전도도를 개선할 수 있다.
음극 바인더는 음극 도전재, 음극 활물질 및 음극 집전체 간의 결합에 조력하는 성분이다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 술폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
음극 바인더는, 음극 활물질층 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다. 음극 바인더의 함량이 상기 범위를 만족하는 경우, 음극 활물질 입자들이 원활하게 결착되어 음극 활물질의 부피 팽창 문제를 최소화할 수 있고, 음극 활물질이 음극 집전체에 잘 부착될 수 있다.
(3) 분리막
분리막은 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
예를 들어, 분리막으로는 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자를 포함하는 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또한, 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 분리막으로 사용될 수도 있다.
상기 분리막의 두께는 5μm 내지 20μm, 바람직하게는 5μm 내지 15μm, 더 바람직하게는 6μm 내지 13μm일 수 있다. 분리막의 두께가 상기 범위를 만족할 경우 양극과 음극 간의 단락을 방지하면서도 셀 저항 값을 최소화할 수 있다. 그 결과, 리튬 이차 전지의 수명 특성 및 출력 특성을 개선할 수 있다.
<전해질>
한편, 본 발명에 따른 리튬 이차 전지는 전해질을 포함할 수 있다.
상기 전해질은 당해 기술 분야에서 통상적으로 사용되는 유기 용매 및 리튬염을 포함할 수 있으며, 특별히 제한되는 것은 아니다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 프로피오네이트(methyl propionate), 에틸 프로피오네이트(ethyl propionate), 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매 등을 단독 또는 혼합하여 사용할 수 있다.
바람직하게는, 상기 전해질은 유기 용매로 카보네이트계 용매와 에스테르계 용매의 혼합 용액을 사용할 수 있으며, 구체적으로는, 환형 카보네이트계 용매 및 에스테르계 용매 또는 환형 카보네이트계 용매, 선형 카보네이트계 용매 및 에스테르계 용매의 혼합 용액을 사용할 수 있다.
환형 카보네이트계 용매는 에틸렌 카보네이트 및 프로필렌 카보네이트 중 적어도 1종 이상일 수 있다. 선형 카보네이트계 용매는 디메틸 카보네이트, 디에틸 카보네이트 및 에틸메틸 카보네이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
에스테르계 용매는 에틸 프로피오네이트(Ethyl Propionate, EP)일 수 있다. 에틸 프로피오네이트는 종래 전해질 성분 대비 낮은 점도를 가지고 있어 이를 포함할 경우, 전해질의 이온전도도가 증가하는 효과를 얻을 수 있다.
에틸 프로피오네이트는 상기 전해질 총 중량 대비 80 중량% 이하, 구체적으로 5 중량% 내지 80 중량%, 보다 구체적으로 40 중량% 내지 70 중량%의 양으로 포함될 수 있다. 에틸프로피오네이트의 함량이 상기 수치 범위를 만족하는 경우, 전해질의 우수한 이온전도도를 구현할 수 있도록 전해질의 점도를 최적화할 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로, 상기 리튬염은 LiN(SO2F)2, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염은 상기 전해질 내에 대략 0.6mol% 내지 2mol%의 농도로 포함되는 것이 바람직하다.
본 발명에 따른 전해질은 이차 전지의 물성을 더욱 향상시키기 위하여 첨가제를 더 포함할 수 있다.
이러한 첨가제의 예로는 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 환형 카보네이트계 화합물은, 예를 들면, 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트(VEC) 등일 수 있다.
상기 할로겐 치환된 카보네이트계 화합물은, 예를 들면, 플루오로에틸렌 카보네이트(FEC) 등일 수 있다.
상기 니트릴계 화합물은, 예를 들면, 숙시노니트릴, 아디포니트릴, 헥산트리시아나이드, 1,4-디시아노-2-부텐 등일 수 있다.
상기 설톤계 화합물은, 예를 들면, 1,3-프로판설톤, 1,3-프로펜설톤 등일 수 있다.
상기 설페이트계 화합물은, 예를 들면, 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS) 등일 수 있다.
상기 포스페이트계 화합물은, 예를 들면, 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 테트라메틸 트리메틸 실릴 포스페이트, 트리메틸 실릴 포스파이트, 트리스(2,2,2-트리플루오로에틸)포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물일 수 있다.
상기 보레이트계 화합물은, 예를 들면, 테트라페닐보레이트, 리튬옥살릴디플루오로보레이트(LiODFB) 등일 수 있다.
상기 벤젠계 화합물은, 예를 들면, 플루오로벤젠 등일 수 있고, 상기 아민계 화합물은 트리에탄올아민 또는 에틸렌디아민 등일 수 있으며, 상기 실란계 화합물은 테트라비닐실란 등일 수 있다.
상기 리튬염계 화합물은 상기 비수전해액에 포함되는 리튬염과 상이한 화합물로서, LiPO2F2, LiODFB, LiBOB(리튬 비스옥살레이토보레이트(LiB(C2O4)2) 및 LiBF4로 이루어진 군으로부터 선택된 1종 이상의 화합물일 수 있다.
한편, 상기 첨가제들은 단독으로 사용될 수도 있고, 2종 이상이 혼합되어 사용될 수 있다.
상기 첨가제의 총량은 전해액 전체 중량을 기준으로 1 중량% 내지 20 중량%, 구체적으로 1 중량% 내지 15 중량%, 보다 구체적으로 2 중량% 내지 10 중량%일 수 있다, 첨가제가 상기 범위 내로 포함되는 경우, 전극 상에 안정적으로 피막을 형성하고, 과충전 시 발화 현상을 억제할 수 있으면서도, 이차전지의 초기 활성화 공정 도중 부반응이 발생되거나, 첨가제가 잔류 혹은 석출되는 것을 방지할 수 있다.
<전지 케이스>
본 발명에 따른 리튬 이차 전지는 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형의 전지 케이스를 포함할 수 있으며, 바람직하게는 파우치(pouch)형 전지 케이스를 포함할 수 있다.
상기 파우치형 전지 케이스는, 배리어층, 상기 배리어층 일면에 형성되는 기재층, 및 상기 배리어층의 타면에 형성되는 실런트층을 포함하고, 일 방향으로 만입된 적어도 하나 이상의 컵부를 포함한다.
구체적으로는, 상기 파우치형 전지 케이스는 유연성을 가지며, 기재층, 배리어층, 실런트층이 순차적으로 적층된 파우치 필름 적층체를 프레스 성형 장치에 삽입하고, 상기 파우치 필름 적층체의 일부 영역에 펀치로 압력을 가하여 연신시킴으로써 일 방향으로 만입된 형상의 컵부를 형성하는 방법으로 제조될 수 있다.
기재층은 파우치의 최외층에 배치되어 전극 조립체를 외부 충격으로부터 보호하고 전기적으로 절연시키기 위한 것이다.
상기 기재층은 폴리머 재질로 이루어질 수 있으며, 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 및 테프론으로 이루어진 군으로부터 선택된 1종 이상의 폴리머 재질로 이루어질 수 있다.
상기 기재층은 단층 구조일 수도 있고, 서로 다른 폴리머 필름들이 적층된 다층 구조일 수도 있다. 기재층이 다층 구조인 경우, 폴리머 필름들 사이에 접착층이 개재될 수 있다.
한편, 상기 기재층은 전체 두께가 10㎛ ~ 60㎛, 바람직하게는 20㎛ ~ 50㎛, 더 바람직하게는 30㎛ ~ 50㎛일 수 있다. 기재층이 다층 구조인 경우, 상기 두께는 접착층을 포함하는 두께이다. 기재층이 상기 범위를 만족할 때, 내구성, 절연성 및 성형성이 우수하게 나타난다. 기재층 두께가 너무 얇으면 내구성이 떨어지고, 성형 과정에서 기재층 파손이 발생할 수 있으며, 너무 두꺼우면 성형성이 저하될 수 있고, 파우치의 전체 두께가 증가하고, 전지 수용 공간이 감소되어 에너지 밀도가 저하될 수 있다.
배리어층은 파우치형 전지 케이스의 기계적 강도를 확보하고, 이차 전지 외부의 가스 또는 수분 등의 출입을 차단하며, 전해질의 누수를 방지하기 위한 것이다.
상기 배리어층은 그 두께가 40㎛ 내지 100㎛, 더 바람직하게는 50㎛ 내지 80㎛, 더 바람직하게는 60㎛ 내지 80㎛일 수 있다. 배리어층 두께가 상기 범위를 만족할 경우, 성형성이 개선되어 컵부 성형 깊이를 증가시키거나 2컵 성형 시에도 크랙 및/또는 핀홀 발생이 적어 성형 후 외부 스트레스에 대한 저항성이 개선된다.
한편, 상기 배리어층은 금속 재질로 이루어질 수 있으며, 구체적으로는 알루미늄 합금 박막으로 이루어질 수 있다.
상기 알루미늄 합금 박막은 알루미늄과, 상기 알루미늄 이외의 금속 원소, 예를 들어, 철(Fe), 구리(Cu), 크롬(Cr), 망간(Mn), 니켈(Ni), 마그네슘(Mg), 실리콘(Si) 및 아연(Zn)으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상이 포함할 수 있다.
실런트층은 열 압착을 통해 접착되어 파우치를 밀봉하기 위한 것으로, 파우치 필름 적층체의 최내층에 위치한다.
실런트층은 파우치가 성형된 후에 전해질 및 전극 조립체와 접촉되는 면이기 때문에 절연성 및 내식성을 가져야 하며, 내부를 완전히 밀폐하여 내부 및 외부간의 물질 이동을 차단해야 하므로, 높은 실링성을 가져야 한다.
상기 실런트층은, 폴리머 재질로 이루어질 수 있으며, 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 및 테프론으로 이루어진 군으로부터 선택된 1종 이상으로 이루어질 수 있으며, 이 중에서도 인장강도, 강성, 표면경도, 내마모성, 내열성 등의 기계적 물성과 내식성 등의 화학적 물성이 뛰어난 폴리프로필렌(PP)을 포함하는 것이 특히 바람직하다.
상기 실런트층은 단일층 구조일 수도 있고, 서로 다른 폴리머 재질로 이루어진 2 이상의 층을 포함하는 다층 구조일 수도 있다.
상기 실런트층은 총 두께가 60㎛ 내지 100㎛, 바람직하게는 60㎛ 내지 90㎛, 더 바람직하게는 70㎛ 내지 90㎛일 수 있다. 실런트층의 두께가 너무 얇으면 실링 내구성 및 절연성이 떨어질 수 있으며, 너무 두꺼우면 굴곡성이 떨어지고 파우치 필름 적층체 총 두께가 증가하여 부피 대비 에너지 밀도가 저하될 수 있다.
한편, 상기 파우치 필름 적층체는, 당해 기술 분야에 알려진 파우치 필름 적층체의 제조 방법을 통해 제조될 수 있다. 예를 들면, 파우치 필름 적층체는, 배리어층 상면에 접착제를 통해 기재층을 부착하고, 상기 배리어층의 하면에 공압출이나 접착제를 통해 실런트층을 형성하는 방법을 통해 제조될 수 있으나, 이에 한정되는 것은 아니다.
파우치형 전지 케이스는 전극 리드의 일부, 즉 단자부가 노출되도록 전극 조립체를 수용한 상태에서 실링될 수 있다. 구체적으로, 전극 조립체의 전극 탭에 전극 리드가 연결되고, 전극 리드의 일부분에 절연부가 형성되면, 컵부에 마련된 수용 공간에 전극 조립체가 수용되고 전해질이 주입된 후 파우치형 전지 케이스가 실링될 수 있다.
상기 전극 리드의 두께는 0.05 mm 내지 0.5mm, 구체적으로 0.08mm 내지 0.3mm, 보다 구체적으로 0.1mm 내지 0.2mm일 수 있다. 전극 리드의 두께가 기존 대비 두꺼운 상기 수치 범위를 만족하는 경우, 전지의 저항이 감소하면서도 외부 단락 시 발열이 감소하여 내열성이 향상되는 효과가 있다.
본 발명에 따른 리튬 이차 전지가 파우치형 리튬 이차 전지일 경우, 원통형 이차 전지 대비 무게가 가벼우며, 탭이 다수 존재함에 따라 저항이 작아져 출력 특성이 우수하므로 전동 공구용 전지로 사용되기 적합하다.
한편, 본 발명에 따른 리튬 이차 전지는 SOC 100일 때의 전지 저항(DC-IR)이 7 mΩ 이하, 구체적으로 1 mΩ 내지 7 mΩ, 보다 구체적으로 1 mΩ 내지 6.5 mΩ인 것일 수 있다. 전지 저항(DC-IR)이 상기 수치 범위를 만족하는 경우, 높은 율속으로 전지를 방전시키더라도 전압 강하 정도가 크지 않으므로, 본 발명의 전지가 전동 공구의 전원으로 사용되기 적합할 수 있다.
본 발명에 따른 리튬 이차 전지는 전동 공구와 같은 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템(Energy Storage System, ESS) 등을 들 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
실시예 및 비교예
실시예 1 (리튬 이차 전지의 제조)
하드카본으로 코팅된 인조흑연(평균 입경 D50 = 18.8μm, BET 비표면적 = 1.0 m2/g), 카본 블랙, 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose, CMC) 및 스티렌-부타디엔 고무(Styrene -butadiene rubber, SBR)를 94.3 : 2.0 : 1.2 : 2.5의 중량비로 혼합하고 증류수를 첨가하여 음극 슬러리를 제조하였다. 음극 슬러리의 고형분 함량은 44 중량%이었다.
10㎛ 두께의 구리(Cu) 금속 박막의 일면에 상기 음극 슬러리를 6.96 mAh/cm2의 로딩량으로 도포한 후 진공 건조하였다. 그 후, 상기 건조된 음극 슬러리를 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조한 뒤 타발하여 음극을 제조하였다.
제1 양극 활물질로서 평균 입경 D50이 10μm, BET 비표면적이 0.57m2/g이며 2차 입자인 Li[Ni0.83Co0.12Mn0.05]O2을 사용하였고, 제2 양극 활물질로서 평균 입경 D50이 4μm, BET 비표면적이 0.65m2/g이며 단입자 및/또는 유사-단입자인 Li[Ni0.86Co0.08Mn0.06]O2을 사용하였다.
상기 제1 양극 활물질과 상기 제2 양극 활물질을 8:2의 중량비로 혼합한 양극 활물질, 카본블랙과 다중벽 탄소나노튜브(MWCNT)를 30:1의 중량비로 혼합한 양극 도전재, 폴리비닐리덴플루오라이드(PVdF), 및 수소화 니트릴계 부타디엔 고무(H-NBR)를 95.28 : 3.1 : 1.3 : 0.32의 중량비로 N-메틸피롤리돈(NMP) 용매에 투입하고 교반하여 양극 슬러리를 제조하였다. 상기 양극 슬러리의 고형분 함량은 70 중량%이었다.
15μm 두께의 알루미늄 박막의 일면에 상기 양극 슬러리를 9.24 mg/cm2의 로딩량으로 도포한 후, 130℃에서 10시간 동안 진공 건조하였다. 상기 건조된 양극 슬러리를 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조한 뒤 타발하여 양극을 제조하였다.
상기와 같이 제조된 음극 및 양극과 10μm 두께의 다공성 폴리에틸렌 분리막을 스태킹(Stacking) 방식으로 조립하여 전극 조립체를 제조하였다.
에틸렌카보네이트(EC) 및 에틸프로피오네이트(EP), 에틸메틸카보네이트(EMC)가 20:40:40의 중량 비로 혼합된 용매에 LiPF6가 0.7M, LiFSi가 0.7M이 되도록 용해하여 전해질을 제조하였다.
파우치형 전지 케이스에 상기 전극 조립체를 수납하고 상기 전해질을 주입한 후 밀봉함으로써 리튬 이차 전지를 제조하였다.
실시예 2 (리튬 이차 전지의 제조)
양극 활물질, 카본블랙과 다중벽 탄소나노튜브(MWCNT)를 15:1의 중량비로 혼합한 도전재, 폴리비닐리덴플루오라이드(PVdF), 및 수소화 니트릴계 부타디엔 고무(H-NBR)를 95.16 : 3.2 : 1.3 : 0.34의 중량비로 혼합하여 사용하였으며, 양극 로딩량이 9.24 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 양극을 제조하였다.
상기 양극을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 1 (리튬 이차 전지의 제조)
음극 로딩량이 6.52 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
상기 제1 양극 활물질, 카본블랙, 폴리비닐리덴플루오라이드(PVdF), 및 수소화 니트릴계 부타디엔 고무(H-NBR)를 94.85 : 3.5 : 1.3 : 0.35의 중량비로 혼합하여 사용하였으며, 양극 로딩량이 9.64 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 양극을 제조하였다.
상기 음극 및 양극을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 2 (리튬 이차 전지의 제조)
음극 로딩량이 6.52 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
제1 양극 활물질, 카본블랙과 다중벽 탄소나노튜브(MWCNT)를 6:1의 중량비로 혼합한 도전재, 폴리비닐리덴플루오라이드(PVdF), 및 수소화 니트릴계 부타디엔 고무(H-NBR)를 94.8 : 3.5 : 1.3 : 0.4의 중량비로 혼합하여 사용하였으며, 양극 로딩량이 9.64 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 양극을 제조하였다.
상기 음극 및 양극을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 3 (리튬 이차 전지의 제조)
음극 로딩량이 6.56 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
제1 양극 활물질, 카본블랙과 다중벽 탄소나노튜브(MWCNT)를 2:1의 중량비로 혼합한 도전재, 폴리비닐리덴플루오라이드(PVdF), 및 수소화 니트릴계 부타디엔 고무(H-NBR)를 94.8 : 3.5 : 1.3 : 0.4의 중량비로 혼합하여 사용하였으며, 양극 로딩량이 9.64 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 양극을 제조하였다.
상기 음극 및 양극을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 4 (리튬 이차 전지의 제조)
음극 로딩량이 6.32 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
제1 양극 활물질, 카본블랙과 다중벽 탄소나노튜브(MWCNT)를 30:1의 중량비로 혼합한 도전재, 폴리비닐리덴플루오라이드(PVdF), 및 수소화 니트릴계 부타디엔 고무(H-NBR)를 95.28 : 3.1 : 1.3 : 0.32의 중량비로 혼합하여 사용하였으며, 양극 로딩량이 9.28 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 양극을 제조하였다.
상기 음극 및 양극을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 5 (리튬 이차 전지의 제조)
양극 활물질, 카본블랙과 다중벽 탄소나노튜브(MWCNT)를 2:1의 중량비로 혼합한 도전재, 폴리비닐리덴플루오라이드(PVdF), 및 수소화 니트릴계 부타디엔 고무(H-NBR)를 93.88 : 4.5 : 1.3 : 0.32의 중량비로 혼합하여 사용하였으며, 양극 로딩량이 9.23 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 양극을 제조하였다.
상기 양극을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 6 (리튬 이차 전지의 제조)
양극 활물질, 카본블랙, 폴리비닐리덴플루오라이드(PVdF), 및 수소화 니트릴계 부타디엔 고무(H-NBR)를 96.88 : 1.5 : 1.3 : 0.32의 중량비로 혼합하여 사용하였으며, 양극 로딩량이 9.23 mg/cm2이라는 점을 제외하고는 실시예 1과 동일한 방법으로 양극을 제조하였다.
상기 양극을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 7 (리튬 이차 전지의 제조)
제1 양극 활물질과 제2 양극 활물질을 7:3의 중량비로 혼합하였다는 점을 제외하고는, 실시예 1과 동일한 방법으로 양극을 제조하였다.
상기 양극을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실험예 1 - 리튬 이차 전지의 내부저항 평가
DC-IR(Direct Current Internal Resistance) 값을 측정하여 리튬 이차 전지의 내부저항을 평가하였다. 구체적으로, DC-IR은 실시예 및 비교예에서 각각 2개씩 제조된 리튬 이차 전지를 SOC 100%, SOC 50%로 각각 충전한 후, PNE Cycle 프로그램(CTSMonPro, PNE SOLUTION CO. LTD)을 통해 0.1초, 10A의 펄스를 인가함에 따른 전지의 전압 변화와 전류 변화를 각각 측정하고, 상기 전압 변화 값을 전류 변화 값으로 나누어 계산하였다. 그 결과는 하기 표 1에 나타내었다.
양극 활물질 양극 도전재 DC-IR (mΩ)
SOC 100% SOC 50%
실시예 1 제1 양극 활물질 80 중량%
제2 양극 활물질 20 중량%
카본블랙 3.0%
MWCNT 0.1%
6.2 4.3
6.2 4.3
실시예 2 제1 양극 활물질 80 중량%
제2 양극 활물질 20 중량%
카본블랙 3.0%
MWCNT 0.2%
6.2 4.5
6.3 4.5
비교예 1 제1 양극 활물질 100 중량% 카본블랙 3.5% 8.4 5.1
8.4 5.2
비교예 2 제1 양극 활물질 100 중량% 카본블랙 3.0%
MWCNT 0.5%
8 5.2
7.8 5.1
비교예 3 제1 양극 활물질 100 중량% 카본블랙 2.0%
MWCNT 1.0%
10 4.5
10 4.4
비교예 4 제1 양극 활물질 100 중량% 카본블랙 3.0%
MWCNT 0.1%
9.3 4.6
9.3 4.5
비교예 5 제1 양극 활물질 80 중량%
제2 양극 활물질 20 중량%
카본블랙 3.0%
MWCNT 1.5%
10.2 4.6
9.8 4.6
비교예 6 제1 양극 활물질 80 중량%
제2 양극 활물질 20 중량%
카본블랙 1.5% 11.2 4.9
11.0 4.6
비교예 7 제1 양극 활물질 70 중량%
제2 양극 활물질 30 중량%
카본블랙 3.0%
MWCNT 0.1%
8.9 4.5
9.1 4.6
표 1에 나타난 바와 같이, SOC 100%에서 측정한 실시예 1~2의 DC-IR 값은 7mΩ 이하로써 비교예 1~7 대비 현저히 낮음을 확인할 수 있다. 이는 비교예 1~7 대비 실시예 1~2에서 전지의 전압 강하 정도가 작다는 것을 의미한다. 즉, 제1 양극 활물질과 제2 양극 활물질의 중량 비가 7.5 : 2.5 내지 9.5 : 0.5이고, 점형 도전재와 선형 도전재를 10:1 내지 50:1의 중량 비로 포함하는 실시예 1~2의 경우, 비교예 1~7 대비 고율 방전 시 전지의 전압 강하 정도가 작은 것을 확인할 수 있다.

Claims (13)

  1. 리튬 이차 전지로서,
    전지 케이스; 및
    상기 전지 케이스에 수납되는 전극 조립체 및 전해질을 포함하고,
    상기 전극 조립체는 양극을 포함하고,
    상기 양극은 제1 양극 활물질, 제2 양극 활물질 및 도전재를 포함하고,
    상기 제2 양극 활물질은 1개의 1차 입자로 이루어진 단입자, 2개 내지 30개의 상기 1차 입자들의 응집체인 유사-단입자 또는 이들의 조합이고,
    상기 제1 양극 활물질과 상기 제2 양극 활물질의 중량 비는 7.5 : 2.5 내지 9.5 : 0.5이고,
    상기 도전재는 점형 도전재와 선형 도전재를 10:1 내지 50:1의 중량 비로 포함하는, 리튬 이차 전지.
  2. 청구항 1에 있어서,
    상기 제1 양극 활물질은 하기 화학식 1로 표시되는 화합물을 포함하는, 리튬 이차 전지.
    [화학식 1]
    Li1+x[NiaCobM1cM2d]1-xO2-yX1y
    (상기 화학식 1에서, 0.8≤a≤0.95, 0≤b≤0.2, 0≤c≤0.2, 0≤d≤0.1, a+b+c+d=1, 0≤x≤0.3, 0≤y≤0.2이고, M1은 Mn, Al 또는 이들의 조합이며, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택된 1종의 금속 원소이며, X1는 F, Cl, Br, I, At, P 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)
  3. 청구항 1에 있어서,
    상기 제2 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함하는, 리튬 이차 전지.
    [화학식 2]
    Li1+z[NigCohM3iM4j]1-zO2-wX2w
    (상기 화학식 2에서, 0.85≤g≤0.95, 0≤h≤0.15, 0≤i≤0.15, 0≤j≤0.1, g+h+i+j=1, 0≤z≤0.3, 0≤w≤0.2이고, M3은 Mn, Al 또는 이들의 조합이며, M4는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택된 1종의 금속 원소이고, X2는 F, Cl, Br, I, At, P 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이다.)
  4. 청구항 1에 있어서,
    상기 제1 양극 활물질은, 리튬을 제외한 전이금속 총 몰수에 대하여 80 몰% 이상의 니켈을 함유하는 리튬 니켈계 산화물을 포함하는 것인, 리튬 이차 전지.
  5. 청구항 1에 있어서,
    상기 제1 양극 활물질은, 리튬을 제외한 전이금속 총 몰수에 대하여 80 몰% 내지 85 몰%의 니켈을 함유하는 리튬 니켈계 산화물을 포함하는 것인, 리튬 이차 전지.
  6. 청구항 1에 있어서,
    상기 제2 양극 활물질은, 리튬을 제외한 전이금속 총 몰수에 대하여 85 몰% 이상의 니켈을 함유하는 리튬 니켈계 산화물을 포함하는 것인, 리튬 이차 전지.
  7. 청구항 1에 있어서,
    상기 제1 양극 활물질은 50개 이상의 1차 입자들이 서로 응집된 2차 입자인, 리튬 이차 전지.
  8. 청구항 1에 있어서,
    상기 제2 양극 활물질은 상기 제1 양극 활물질보다 평균 입경 D50이 작은, 리튬 이차 전지.
  9. 청구항 1에 있어서,
    상기 제1 양극 활물질의 평균 입경 D50은 8μm 내지 12μm인, 리튬 이차 전지.
  10. 청구항 1에 있어서,
    상기 제2 양극 활물질의 평균 입경 D50은 1μm 내지 7μm인, 리튬 이차 전지.
  11. 청구항 1에 있어서,
    상기 점형 도전재는 카본블랙이고,
    상기 선형 도전재는 다중벽 탄소나노튜브인, 리튬 이차 전지.
  12. 청구항 1에 있어서,
    SOC 100일 때의 전지 저항(DC-IR)이 7 mΩ 이하인, 리튬 이차 전지.
  13. 청구항 1에 있어서,
    상기 전지 케이스는 파우치형 전지 케이스인 것인, 리튬 이차 전지.
PCT/KR2023/016897 2022-10-27 2023-10-27 리튬 이차 전지 WO2024091069A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0140776 2022-10-27
KR20220140776 2022-10-27
KR1020230143340A KR20240062982A (ko) 2022-10-27 2023-10-24 리튬 이차 전지
KR10-2023-0143340 2023-10-24

Publications (1)

Publication Number Publication Date
WO2024091069A1 true WO2024091069A1 (ko) 2024-05-02

Family

ID=90831407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016897 WO2024091069A1 (ko) 2022-10-27 2023-10-27 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2024091069A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190001566A (ko) * 2017-06-27 2019-01-04 주식회사 엘지화학 리튬 이차전지용 양극 및 그의 제조방법
JP2019061734A (ja) * 2015-12-25 2019-04-18 株式会社日立製作所 リチウムイオン二次電池
KR20200070649A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 양극재, 그 제조 방법, 이를 포함하는 양극 및 리튬 이차전지
KR20210050024A (ko) * 2019-10-25 2021-05-07 한양대학교 산학협력단 2종 이상의 도전성 물질을 포함하는 이차전지용 양극재 슬러리
KR20220110122A (ko) * 2021-01-29 2022-08-05 주식회사 엘지에너지솔루션 양극 및 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061734A (ja) * 2015-12-25 2019-04-18 株式会社日立製作所 リチウムイオン二次電池
KR20190001566A (ko) * 2017-06-27 2019-01-04 주식회사 엘지화학 리튬 이차전지용 양극 및 그의 제조방법
KR20200070649A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 양극재, 그 제조 방법, 이를 포함하는 양극 및 리튬 이차전지
KR20210050024A (ko) * 2019-10-25 2021-05-07 한양대학교 산학협력단 2종 이상의 도전성 물질을 포함하는 이차전지용 양극재 슬러리
KR20220110122A (ko) * 2021-01-29 2022-08-05 주식회사 엘지에너지솔루션 양극 및 이를 포함하는 리튬 이차전지

Similar Documents

Publication Publication Date Title
WO2020122497A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2020111898A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021235818A1 (ko) 이차전지의 제조방법
WO2020004988A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2020180160A1 (ko) 리튬 이차전지
WO2021133027A1 (ko) 음극용 바인더 조성물, 음극, 및 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2022139521A1 (ko) 양극 활물질의 제조방법
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2022119156A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2021015488A1 (ko) 이차전지의 제조방법
WO2024091070A1 (ko) 리튬 이차 전지
WO2024091067A1 (ko) 리튬 이차 전지
WO2024091069A1 (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23883173

Country of ref document: EP

Kind code of ref document: A1