WO2024090345A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2024090345A1
WO2024090345A1 PCT/JP2023/037991 JP2023037991W WO2024090345A1 WO 2024090345 A1 WO2024090345 A1 WO 2024090345A1 JP 2023037991 W JP2023037991 W JP 2023037991W WO 2024090345 A1 WO2024090345 A1 WO 2024090345A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
resonant
switching
power conversion
current
Prior art date
Application number
PCT/JP2023/037991
Other languages
English (en)
French (fr)
Inventor
修 田畑
康弘 新井
弘治 東山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024090345A1 publication Critical patent/WO2024090345A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to a power conversion device, and more specifically, to a power conversion device capable of converting DC power to AC power.
  • Patent Document 1 discloses a resonant inverter device (power conversion device).
  • the DC voltage of the DC voltage source is converted to AC voltage by an inverter section (power conversion circuit).
  • This inverter section is configured with six main switching elements bridge-connected in three phases (U-phase, V-phase, and W-phase) between the positive and negative bus bars.
  • two voltage-dividing capacitors are connected in series between the positive bus and the negative bus. These two voltage-dividing capacitors constitute a voltage-dividing means for dividing the DC voltage of the DC voltage source, and also constitute a means for generating a voltage that is half the DC voltage of the DC voltage source at the connection point between them. Furthermore, a resonant circuit section is provided between the two voltage-dividing capacitors and the inverter section for performing a resonant operation when the main switching element is switched.
  • This resonant circuit section is configured such that a series circuit consisting of a resonant reactor and an auxiliary switch is connected between the connection point of the two voltage-dividing capacitors and the connection point of the upper and lower arms of each phase, and a resonant capacitor is connected in parallel to each series circuit.
  • Each switching element and auxiliary switch is controlled on and off by the control unit.
  • Power conversion devices may need to be made smaller.
  • the purpose of this disclosure is to provide a power conversion device that can be made smaller.
  • a power conversion device includes a first DC terminal and a second DC terminal, a power conversion circuit, a plurality of AC terminals, a plurality of switches, a plurality of resonant capacitors, at least one resonant inductor, a regenerative capacitor, and a control device.
  • the power conversion circuit has a plurality of first switching elements and a plurality of second switching elements.
  • a plurality of switching circuits in which the plurality of first switching elements and the plurality of second switching elements are connected in series in a one-to-one relationship are connected in parallel to each other.
  • the plurality of first switching elements are connected to the first DC terminal, and the plurality of second switching elements are connected to the second DC terminal.
  • the plurality of AC terminals correspond one-to-one to the plurality of switching circuits.
  • Each of the plurality of AC terminals is connected to a connection point of the first switching element and the second switching element in a corresponding one of the plurality of switching circuits.
  • the plurality of switches correspond one-to-one to the plurality of switching circuits.
  • Each of the plurality of switches has a first end and a second end, and the first end is connected to the connection point of the first switching element and the second switching element in a corresponding switching circuit among the plurality of switching circuits.
  • the plurality of resonance capacitors correspond one-to-one to the plurality of switches.
  • Each of the plurality of resonance capacitors is connected between the first end and the second DC terminal of a corresponding switch among the plurality of switches.
  • the at least one resonance inductor has a third end and a fourth end. In the at least one resonance inductor, the third end is connected to the second end of the corresponding switch among the plurality of switches.
  • the regeneration capacitor has a fifth end and a sixth end. In the regeneration capacitor, the fifth end is connected to the second DC terminal, and the sixth end is connected to the fourth end of the at least one resonance inductor.
  • the control device controls the on-off of each of the plurality of first switching elements, the plurality of second switching elements, and the plurality of switches.
  • the control device performs a charging control operation for charging the regeneration capacitor as a startup operation, and an inverter control operation for causing an output current to flow to each of the plurality of AC terminals.
  • a first control operation and a second control operation are alternately performed.
  • the first control operation at least one first switching element among the plurality of first switching elements is turned on, and at least one resonance capacitor corresponding to the at least one first switching element among the plurality of resonance capacitors is charged through a path passing through the first DC terminal and the at least one first switching element.
  • a switch corresponding to the at least one first switching element among the plurality of switches is turned on to charge the regenerative capacitor from the at least one resonance capacitor.
  • FIG. 1 is a circuit diagram of a system including a power conversion device according to a first embodiment.
  • FIG. 2 is an explanatory diagram of an operation when the control device in the power conversion device performs a basic operation when the load current is greater than 0 and the resonance capacitor is being charged.
  • FIG. 3 is another operation explanatory diagram when the control device in the power conversion device performs a basic operation when the load current is greater than 0 and the resonance capacitor is being charged.
  • FIG. 4 is a diagram showing a time change in duty and a time change in load current corresponding to voltage commands for each of three phases in an AC load connected to a plurality of AC terminals of the power conversion device according to the above embodiment.
  • FIG. 1 is a circuit diagram of a system including a power conversion device according to a first embodiment.
  • FIG. 2 is an explanatory diagram of an operation when the control device in the power conversion device performs a basic operation when the load current is greater than 0 and the resonance capacitor is being charged.
  • FIG. 3 is another
  • FIG. 5 is an explanatory diagram of a first current threshold value and a second current threshold value used by a control device in the power conversion device according to the above embodiment.
  • FIG. 6 is an explanatory diagram of an operation when the control device in the power conversion device performs a basic operation when the load current is greater than 0 and the resonant capacitor is discharging.
  • FIG. 7 is an explanatory diagram of an operation when the control device in the power conversion device performs a basic operation when the load current is less than 0 and the resonant capacitor is discharging.
  • FIG. 8 is an explanatory diagram of an operation when the control device in the power conversion device performs a basic operation when the load current is less than 0 and the resonance capacitor is being charged.
  • FIG. 6 is an explanatory diagram of an operation when the control device in the power conversion device performs a basic operation when the load current is greater than 0 and the resonant capacitor is discharging.
  • FIG. 7 is an explanatory diagram of an operation when the control device
  • FIG. 9 is an explanatory diagram of the voltage across the regenerative capacitor in the power conversion device.
  • FIG. 10 is a timing chart for explaining the charging control operation of the control device in the power conversion device.
  • FIG. 11 is an explanatory diagram of an operation when the control device performs a first control operation of the charge control operation in the power conversion device.
  • FIG. 12 is an explanatory diagram of an operation when the control device performs a second control operation of the charge control operation in the power conversion device.
  • FIG. 13 is a circuit diagram of a system including a power conversion device according to a first modification of the first embodiment.
  • FIG. 14 is a circuit diagram of a system including a power conversion device according to a second modification of the first embodiment.
  • FIG. 15 is a circuit diagram of a system including a power conversion device according to a third modification of the first embodiment.
  • FIG. 16 is a circuit diagram of a system including a power conversion device according to a fourth modification of the first embodiment.
  • FIG. 17 is a circuit diagram of a system including a power conversion device according to a fifth modification of the first embodiment.
  • FIG. 18 is a circuit diagram of a system including a power conversion device according to a sixth modification of the first embodiment.
  • FIG. 19 is a circuit diagram of a system including a power conversion device according to the second embodiment.
  • the power conversion device 100 includes a first DC terminal 31, a second DC terminal 32, and a plurality of (e.g., three) AC terminals 41.
  • a DC power source E1 is connected between the first DC terminal 31 and the second DC terminal 32, and an AC load RA1 is connected to the plurality of AC terminals 41.
  • the AC load RA1 is, for example, a three-phase motor.
  • the power conversion device 100 converts the DC output from the DC power source E1 into AC power and outputs it to the AC load RA1.
  • the DC power source E1 includes, for example, a solar cell or a fuel cell.
  • the DC power source E1 may include a DC-DC converter.
  • the AC power is, for example, three-phase AC power having a U phase, a V phase, and a W phase.
  • the power conversion device 100 includes a power conversion circuit 11, a plurality of (e.g., three) switches 8, a plurality of (e.g., three) resonant capacitors 9, a regenerative capacitor 15, a resonant inductor L1, and a control device 50.
  • the power conversion device 100 further includes a protection circuit 17 and a capacitor C10.
  • Each of the plurality of switches 8 is, for example, a bidirectional switch.
  • the power conversion circuit 11 has a plurality (e.g., three) of first switching elements 1 and a plurality (e.g., three) of second switching elements 2.
  • a plurality (e.g., three) of switching circuits 10 in which a plurality of first switching elements 1 and a plurality of second switching elements 2 are connected in series in a one-to-one relationship, are connected in parallel with each other.
  • a plurality of first switching elements 1 are connected to a first DC terminal 31, and a plurality of second switching elements 2 are connected to a second DC terminal 32.
  • a plurality of AC terminals 41 correspond one-to-one to the plurality of switching circuits 10.
  • Each of the plurality of AC terminals 41 is connected to a connection point 3 of the first switching element 1 and the second switching element 2 in a corresponding one of the plurality of switching circuits 10.
  • a plurality of switches 8 correspond one-to-one to the plurality of switching circuits 10.
  • Each of the plurality of switches 8 has a first end 81 and a second end 82.
  • Each of the multiple switches 8 has a first end 81 connected to a connection point 3 between the first switching element 1 and the second switching element 2 in the corresponding switching circuit 10 among the multiple switching circuits 10.
  • the multiple resonance capacitors 9 correspond one-to-one to the multiple switches 8.
  • Each of the multiple resonance capacitors 9 is connected between the first end 81 of the corresponding switch 8 among the multiple switches 8 and the second DC terminal 32.
  • the resonance inductor L1 has a third end and a fourth end. In the resonance inductor L1, the third end is connected to the second end 82 of the corresponding switch 8 among the multiple switches 8 (three switches 8 in the example of FIG. 1).
  • the regenerative capacitor 15 has a fifth end 153 and a sixth end 154. In the regenerative capacitor 15, the fifth end 153 is connected to the second DC terminal 32, and the sixth end 154 is connected to the fourth end of the resonance inductor L1.
  • the control device 50 controls the multiple first switching elements 1, the multiple second switching elements 2, and the multiple switches 8.
  • the switching circuits 10 corresponding to the U-phase, V-phase, and W-phase of the multiple switching circuits 10 may be referred to as a switching circuit 10U, a switching circuit 10V, and a switching circuit 10W, respectively.
  • the first switching element 1 and the second switching element 2 of the switching circuit 10U may be referred to as a first switching element 1U and a second switching element 2U.
  • the first switching element 1 and the second switching element 2 of the switching circuit 10V may be referred to as a first switching element 1V and a second switching element 2V.
  • the first switching element 1 and the second switching element 2 of the switching circuit 10W may be referred to as a first switching element 1W and a second switching element 2W.
  • the connection point 3 between the first switching element 1U and the second switching element 2U may be referred to as the connection point 3U
  • the connection point 3 between the first switching element 1V and the second switching element 2V may be referred to as the connection point 3V
  • the connection point 3 between the first switching element 1W and the second switching element 2W may be referred to as the connection point 3W.
  • the AC terminal 41 connected to the connection point 3U may be referred to as the AC terminal 41U
  • the AC terminal 41 connected to the connection point 3V may be referred to as the AC terminal 41V
  • the AC terminal 41 connected to the connection point 3W may be referred to as the AC terminal 41W.
  • the resonant capacitor 9 connected in parallel to the second switching element 2U may be referred to as the resonant capacitor 9U
  • the resonant capacitor 9 connected in parallel to the second switching element 2V may be referred to as the resonant capacitor 9V
  • the resonant capacitor 9 connected in parallel to the second switching element 2W may be referred to as the resonant capacitor 9W.
  • switch 8U the switch 8 connected to connection point 3U
  • switch 8V the switch 8 connected to connection point 3V
  • switch 8W the switch 8 connected to connection point 3W
  • the high-potential output terminal (positive electrode) of the DC power source E1 is connected to the first DC terminal 31, and the low-potential output terminal (negative electrode) of the DC power source E1 is connected to the second DC terminal 32.
  • the U-phase terminal, V-phase terminal, and W-phase terminal of the AC load RA1 are connected to the three AC terminals 41U, 41V, and 41W, respectively.
  • each of the multiple (e.g., three) first switching elements 1 and the multiple (e.g., three) second switching elements 2 has a control terminal, a first main terminal, and a second main terminal.
  • the control terminals of the multiple first switching elements 1 and the multiple second switching elements 2 are connected to the control device 50.
  • the first main terminal of the first switching element 1 is connected to the first DC terminal 31
  • the second main terminal of the first switching element 1 is connected to the first main terminal of the second switching element 2
  • the second main terminal of the second switching element 2 is connected to the second DC terminal 32.
  • the first switching element 1 is a high-side switching element (P-side switching element), and the second switching element 2 is a low-side switching element (N-side switching element).
  • Each of the multiple first switching elements 1 and the multiple second switching elements 2 is, for example, an IGBT (Insulated Gate Bipolar Transistor). Therefore, the control terminal, the first main terminal, and the second main terminal of each of the multiple first switching elements 1 and the multiple second switching elements 2 are the gate terminal, the collector terminal, and the emitter terminal, respectively.
  • the power conversion circuit 11 further includes a plurality (three) of first diodes 4 connected in anti-parallel to a plurality (three) of first switching elements 1 in a one-to-one relationship, and a plurality (three) of second diodes 5 connected in anti-parallel to a plurality (three) of second switching elements 2 in a one-to-one relationship.
  • the anode of the first diode 4 is connected to the second main terminal (emitter terminal) of the first switching element 1 corresponding to the first diode 4
  • the cathode of the first diode 4 is connected to the first main terminal (collector terminal) of the first switching element 1 corresponding to the first diode 4.
  • the anode of the second diode 5 is connected to the second main terminal (emitter terminal) of the second switching element 2 corresponding to the second diode 5, and the cathode of the second diode 5 is connected to the first main terminal (collector terminal) of the second switching element 2 corresponding to the second diode 5.
  • connection point 3U between the first switching element 1U and the second switching element 2U is connected to, for example, the U-phase terminal of the AC load RA1 via the AC terminal 41U.
  • connection point 3V between the first switching element 1V and the second switching element 2V is connected to, for example, the V-phase of the AC load RA1 via the AC terminal 41V.
  • connection point 3W between the first switching element 1W and the second switching element 2W is connected to, for example, the W-phase of the AC load RA1 via the AC terminal 41W.
  • the multiple resonant capacitors 9 correspond one-to-one to the multiple switches 8. Each of the multiple resonant capacitors 9 is connected between the first end 81 and the second DC terminal 32 of the corresponding switch 8.
  • the power conversion device 100 has multiple resonant circuits.
  • the multiple resonant circuits include a resonant circuit having a resonant capacitor 9U and a resonant inductor L1, a resonant circuit having a resonant capacitor 9V and a resonant inductor L1, and a resonant circuit having a resonant capacitor 9W and a resonant inductor L1.
  • the multiple resonant circuits share the resonant inductor L1 in common.
  • Each of the multiple switches 8 has, for example, two first IGBTs 6 and second IGBTs 7 connected in inverse parallel.
  • the collector terminal of the first IGBT 6 is connected to the emitter terminal of the second IGBT 7, and the emitter terminal of the first IGBT 6 is connected to the collector terminal of the second IGBT 7.
  • the emitter terminal of the first IGBT 6 is connected to the connection point 3 of the switching circuit 10 corresponding to the switch 8 having the first IGBT 6.
  • the collector terminal of the second IGBT 7 is connected to the connection point 3 of the switching circuit 10 corresponding to the switch 8 having the second IGBT 7.
  • the switch 8U is connected to the connection point 3U of the first switching element 1U and the second switching element 2U.
  • the switch 8V is connected to the connection point 3V of the first switching element 1V and the second switching element 2V.
  • the switch 8W is connected to a connection point 3W between the first switching element 1W and the second switching element 2W.
  • the first IGBT 6 and the second IGBT 7 of the switch 8U are referred to as the first IGBT 6U and the second IGBT 7U, respectively
  • the first IGBT 6 and the second IGBT 7 of the switch 8V are referred to as the first IGBT 6V and the second IGBT 7V, respectively
  • the first IGBT 6 and the second IGBT 7 of the switch 8W are referred to as the first IGBT 6W and the second IGBT 7W, respectively.
  • the multiple switches 8 are controlled by the control device 50.
  • the first IGBT 6U, the second IGBT 7U, the first IGBT 6V, the second IGBT 7V, the first IGBT 6W, and the second IGBT 7W are controlled by the control device 50.
  • the resonant inductor L1 has a third end and a fourth end.
  • the third end of the resonant inductor L1 is connected to a common connection point 25.
  • the second ends 82 of the multiple switches 8 are commonly connected to the common connection point 25.
  • the fourth end of the resonant inductor L1 is connected to the sixth end 154 of the regenerative capacitor 15.
  • the regenerative capacitor 15 is connected between the fourth end of the resonant inductor L1 and the second DC terminal 32.
  • the regenerative capacitor 15 is, for example, a film capacitor.
  • the protection circuit 17 includes a third diode 13 and a fourth diode 14.
  • the third diode 13 is connected between the common connection point 25 and the first DC terminal 31.
  • the anode of the third diode 13 is connected to the common connection point 25.
  • the cathode of the third diode 13 is connected to the first DC terminal 31.
  • the fourth diode 14 is connected between the common connection point 25 and the second DC terminal 32.
  • the anode of the fourth diode 14 is connected to the second DC terminal 32.
  • the cathode of the fourth diode 14 is connected to the common connection point 25. Therefore, the fourth diode 14 is connected in series with the third diode 13.
  • Capacitor C10 is connected between the first DC terminal 31 and the second DC terminal 32, and is connected in parallel to the power conversion circuit 11.
  • Capacitor C10 is, for example, an electrolytic capacitor.
  • the control device 50 controls a plurality of first switching elements 1, a plurality of second switching elements 2, and a plurality of switches 8.
  • the execution subject of the control device 50 includes a computer system.
  • the computer system has one or more computers.
  • the computer system is mainly composed of a processor and a memory as hardware.
  • the processor executes a program recorded in the memory of the computer system, thereby realizing the function of the control device 50 as the execution subject in this disclosure.
  • the program may be pre-recorded in the memory of the computer system, or may be provided through an electric communication line, or may be recorded and provided on a non-transitory recording medium such as a memory card, an optical disk, or a hard disk drive (magnetic disk) that can be read by the computer system.
  • the processor of the computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large-scale integrated circuit (LSI).
  • the multiple electronic circuits may be integrated in one chip, or may be distributed across multiple chips.
  • the multiple chips may be integrated in one device, or may be distributed across multiple devices.
  • the control device 50 outputs control signals SU1, SV1, SW1 that control the on/off of each of the multiple first switching elements 1U, 1V, 1W.
  • Each of the control signals SU1, SV1, SW1 is, for example, a PWM (Pulse Width Modulation) signal whose potential level changes between a first potential level (hereinafter also referred to as a low level) and a second potential level (hereinafter also referred to as a high level) that is higher than the first potential level.
  • the first switching elements 1U, 1V, 1W are in an on state when the control signals SU1, SV1, SW1 are at a high level, and in an off state when the control signals SU1, SV1, SW1 are at a low level.
  • the control device 50 also outputs control signals SU2, SV2, SW2 that control the on/off of each of the multiple second switching elements 2U, 2V, 2W.
  • Each of the control signals SU2, SV2, and SW2 is, for example, a PWM signal whose potential level changes between a first potential level (hereinafter also referred to as a low level) and a second potential level (hereinafter also referred to as a high level) that is higher than the first potential level.
  • the second switching elements 2U, 2V, and 2W are turned on when the control signals SU2, SV2, and SW2 are at a high level, and turned off when they are at a low level.
  • the control device 50 uses a sawtooth carrier signal (see FIG. 2) to generate control signals SU1, SV1, SW1 corresponding to each of the first switching elements 1U, 1V, 1W, and control signals SU2, SV2, SW2 corresponding to each of the second switching elements 2U, 2V, 2W. More specifically, the control device 50 generates control signals SU1, SU2 to be provided to the first switching element 1U and the second switching element 2U, respectively, based on at least the carrier signal and a voltage command for the U phase. The control device 50 also generates control signals SV1, SV2 to be provided to the first switching element 1V and the second switching element 2V, respectively, based on at least the carrier signal and a voltage command for the V phase.
  • a sawtooth carrier signal see FIG. 2
  • the control device 50 also generates control signals SW1, SW2 to be provided to the first switching element 1W and the second switching element 2W, respectively, based on at least the carrier signal and a voltage command for the W phase.
  • the U-phase voltage command, V-phase voltage command, and W-phase voltage command are, for example, sinusoidal signals with a phase difference of 120°, and each value (voltage command value) changes over time.
  • the waveform of the carrier signal is not limited to a sawtooth waveform, and may be, for example, a triangular wave or a sawtooth wave obtained by inverting the sawtooth wave in FIG. 2.
  • the length of one cycle of the U-phase voltage command, V-phase voltage command, and W-phase voltage command is the same.
  • the length of one cycle of the U-phase voltage command, V-phase voltage command, and W-phase voltage command is longer than the length of one cycle of the carrier signal.
  • the duty of the control signal SU1 is shown as the U-phase duty.
  • the control device 50 compares the U-phase voltage command with the carrier signal to generate the control signal SU1 to be provided to the first switching element 1U.
  • the control device 50 also inverts the control signal SU1 to be provided to the first switching element 1U to generate the control signal SU2 to be provided to the second switching element 2U.
  • the control device 50 also sets a dead time period Td (see FIG. 2) between the high-level period of the control signal SU1 and the high-level period of the control signal SU2 so that the on periods of the first switching element 1U and the second switching element 2U do not overlap.
  • the duty of the control signal SV1 is shown as the V-phase duty.
  • the control device 50 compares the V-phase voltage command with the carrier signal to generate the control signal SV1 to be provided to the first switching element 1V.
  • the control device 50 also inverts the control signal SV1 to be provided to the first switching element 1V to generate the control signal SV2 to be provided to the second switching element 2V.
  • the control device 50 also sets a dead time period Td (see FIG. 2) between the high-level period of the control signal SV1 and the high-level period of the control signal SV2 so that the on periods of the first switching element 1V and the second switching element 2V do not overlap.
  • the duty of the control signal SW1 is shown as the W phase duty.
  • the control device 50 compares the voltage command of the W phase with the carrier signal to generate the control signal SW1 to be provided to the first switching element 1W.
  • the control device 50 also inverts the control signal SW1 to be provided to the first switching element 1W to generate the control signal SW2 to be provided to the second switching element 2W.
  • the control device 50 also sets a dead time period Td (see FIG. 3) between the high level period of the control signal SW1 and the high level period of the control signal SW2 so that the on periods of the first switching element 1W and the second switching element 2W do not overlap.
  • the U-phase voltage command, V-phase voltage command, and W-phase voltage command are, for example, sinusoidal signals whose phases differ by 120°, and whose values change over time. Therefore, the duty of the control signal SU1 (U-phase duty), the duty of the control signal SV1 (V-phase duty), and the duty of the control signal SW1 (W-phase duty) change in sinusoidal forms whose phases differ by 120°, for example, as shown in FIG. 4. Similarly, the duty of the control signal SU2, the duty of the control signal SV2, and the duty of the control signal SW2 change in sinusoidal forms whose phases differ by 120°.
  • the control device 50 generates the control signals SU1, SU2, SV1, SV2, SW1, and SW2 based on the carrier signal, the voltage commands, and information about the state of the AC load RA1.
  • the information about the state of the AC load RA1 includes, for example, detection values from a plurality of current sensors that detect output currents (hereinafter also referred to as load currents) iU, iV, and iW that flow through the U-phase, V-phase, and W-phase of the AC load RA1, respectively.
  • the multiple switches 8, the resonant inductor L1, the multiple resonant capacitors 9, and the regenerative capacitor 15 are provided to perform zero-voltage soft switching of the multiple first switching elements 1 and the multiple second switching elements 2.
  • control device 50 controls a plurality of switches 8 in addition to a plurality of first switching elements 1 and second switching elements 2 of the power conversion circuit 11.
  • the control device 50 generates control signals SU6, SU7, SV6, SV7, SW6, SW7 that control the on/off of the first IGBT6U, the second IGBT7U, the first IGBT6V, the second IGBT7V, the first IGBT6W, and the second IGBT7W, and outputs them to the gate terminals of the first IGBT6U, the second IGBT7U, the first IGBT6V, the second IGBT7V, the first IGBT6W, and the second IGBT7W.
  • the switch 8U can pass a charging current that flows through the path of the regenerative capacitor 15 - resonant inductor L1 - switch 8U - resonant capacitor 9U.
  • the charging current is a current that charges the resonant capacitor 9U.
  • the switch 8U can pass a discharging current that flows through the path of the resonant capacitor 9U - switch 8U - resonant inductor L1 - regenerative capacitor 15.
  • the discharging current is a current that discharges the charge in the resonant capacitor 9U.
  • the switch 8V can pass a charging current that flows through the path of the regenerative capacitor 15 - resonant inductor L1 - switch 8V - resonant capacitor 9V.
  • the charging current is a current that charges the resonant capacitor 9V.
  • the switch 8V can pass a discharging current that flows through the path of the resonant capacitor 9V - switch 8V - resonant inductor L1 - regenerative capacitor 15.
  • the discharging current is a current that discharges the charge of the resonant capacitor 9V.
  • the switch 8W can pass a charging current that flows through the path of the regenerative capacitor 15 - resonant inductor L1 - switch 8W - resonant capacitor 9W.
  • the charging current is a current that charges the resonant capacitor 9W.
  • the switch 8W can pass a discharging current that flows through the path of the resonant capacitor 9W - switch 8W - resonant inductor L1 - regenerative capacitor 15.
  • the discharging current is a current that discharges the charge of the resonant capacitor 9W.
  • the polarity of the current iL1 flowing through the resonant inductor L1 is defined as positive when it flows in the direction of the arrow in Fig. 1, and the polarity of the current flowing in the opposite direction to the direction of the arrow in Fig. 1 is defined as negative.
  • the polarity of the load currents iU, iV, and iW flowing through the U-phase, V-phase, and W-phase of the AC load RA1 is defined as positive when it flows in the direction of the arrow in Fig.
  • the control device 50 performs a charge control operation to charge the regenerative capacitor 15 as a startup operation of the power conversion device 100, and an inverter control operation to cause output currents iU, iV, and iW to flow through each of the multiple AC terminals 41 as a steady-state operation of the power conversion device 100.
  • the first IGBT 6U of the switch 8U may change from a state in which the first IGBT 6U of the switch 8U is in an on state and the current iL1 flows in the resonance inductor L1 with positive polarity to an off state.
  • the current iL1 flowing in the resonance inductor L1 is regenerated to the power conversion circuit 11 via the third diode 13 until the energy of the resonance inductor L1 is consumed and the current iL1 becomes zero.
  • the second IGBT 7U of the switch 8U may change from a state in which the second IGBT 7U of the switch 8U is in an on state and the current iL1 flows in the resonance inductor L1 with negative polarity to an off state.
  • the current iL1 flowing in the resonance inductor L1 flows through the path of the fourth diode 14-resonance inductor L1-regenerative capacitor 15 until the energy of the resonance inductor L1 is consumed and the current iL1 becomes zero.
  • the first IGBT 6V of the switch 8V may change from an ON state in which the current iL1 flows through the resonant inductor L1 with positive polarity to an OFF state in which the first IGBT 6V of the switch 8V.
  • the current iL1 flowing through the resonant inductor L1 is regenerated to the power conversion circuit 11 via the third diode 13 until the energy of the resonant inductor L1 is consumed and the current iL1 becomes zero.
  • the second IGBT 7V of the switch 8V may change from an ON state in which the current iL1 flows through the resonant inductor L1 with negative polarity to an OFF state in which the second IGBT 7V of the switch 8V.
  • the current iL1 flowing through the resonant inductor L1 may flow through the path of the fourth diode 14-resonant inductor L1-regenerative capacitor 15 until the energy of the resonant inductor L1 is consumed and the current iL1 becomes zero.
  • the first IGBT 6W of the switch 8W may be turned off from a state in which the first IGBT 6W of the switch 8W is on and the current iL1 flows through the resonant inductor L1 with positive polarity.
  • the current iL1 flowing through the resonant inductor L1 is regenerated to the power conversion circuit 11 via the third diode 13 until the energy of the resonant inductor L1 is consumed and the current iL1 becomes zero.
  • the second IGBT 7W of the switch 8W may be turned off from a state in which the second IGBT 7W of the switch 8W is on and the current iL1 flows through the resonant inductor L1 with negative polarity.
  • the current iL1 flowing through the resonant inductor L1 flows through the path of the fourth diode 14 - resonant inductor L1 - regenerative capacitor 15 until the energy of the resonant inductor L1 is consumed and the current iL1 becomes zero.
  • the control device 50 sets a dead time period Td between the high level period of the control signals SU1, SV1, SW1 to the first switching elements 1U, 1V, 1W and the high level period of the control signals SU2, SV2, SW2 to the second switching elements 2U, 2V, 2W for each of the multiple switching circuits 10.
  • the basic operation is an operation when no resonant current flows through two or more of the multiple switches 8 simultaneously in the resonant inductor L1. After explaining the basic operation, we will explain the operation when the control device 50 determines that a resonant current flows through two or more of the multiple switches 8 simultaneously.
  • the basic operation of the control device 50 differs depending on the polarity (positive/negative) of the load current flowing through the AC terminal 41 connected to the target switching element and the operation (charging operation/discharging operation) of the resonant capacitor 9 connected in series or parallel to the target switching element.
  • the load current has positive polarity when it flows from the AC terminal 41 to the AC load RA1, and has negative polarity when it flows from the AC load RA1 to the AC terminal 41.
  • the resonant capacitor 9 is charging, the voltage across the resonant capacitor 9 increases.
  • the resonant capacitor 9 is discharging, the voltage across the resonant capacitor 9 decreases.
  • the voltage across each of the multiple second switching elements 2 is the same as the voltage across the resonant capacitor 9 connected in parallel to the second switching element 2.
  • the control device 50 turns on the first IGBT 6 corresponding to the target first switching element 1.
  • the control device 50 causes the resonant inductor L1 and the resonant capacitor 9 connected to the target first switching element 1 to resonate, charging the resonant capacitor 9 from the regenerative capacitor 15, and setting the voltage across the target first switching element 1 to zero.
  • the power conversion device 100 can realize zero-voltage soft switching of the target first switching element 1.
  • FIG. 2 illustrates the control signals SU1 and SU2 given from the control device 50 to the first switching element 1U and the second switching element 2U of the switching circuit 10U when the target first switching element is the first switching element 1U of the switching circuit 10U.
  • FIG. 2 illustrates the control signal SU6 given from the control device 50 to the first IGBT 6U of the switch 8U, the load current iU flowing in the U-phase of the AC load RA1, the current iL1 flowing in the resonant inductor L1, the voltage V1u across the first switching element 1U, and the voltage V2u across the second switching element 2U.
  • FIG. 1 illustrates the control signals SU1 and SU2 given from the control device 50 to the first switching element 1U and the second switching element 2U of the switching circuit 10U when the target first switching element is the first switching element 1U of the switching circuit 10U.
  • FIG. 2 illustrates the control signal SU6 given from the control device 50 to the first IGBT 6U of the switch 8U,
  • FIG. 2 illustrates the control signals SV1 and SV2 given from the control device 50 to the first switching element 1V and the second switching element 2V of the switching circuit 10V when the target first switching element is the first switching element 1V of the switching circuit 10V.
  • FIG. 2 also illustrates the control signal SV6 provided from the control device 50 to the first IGBT 6V of the switch 8V, the load current iV flowing through the V phase of the AC load RA1, the current iL1 flowing through the resonant inductor L1, the voltage V1v across the first switching element 1V, and the voltage V2v across the second switching element 2V.
  • FIG. 2 also shows the dead time period Td set in the control device 50 to prevent the first switching element 1 and the second switching element 2, which are in phase, from being turned on at the same time.
  • FIG. 2 also shows the additional time Tau set in the control device 50 for the control signal SU6 of the first IGBT 6U of the switch 8U, and the additional time Tav set in the control device 50 for the control signal SV6 of the first IGBT 6V of the switch 8V.
  • the additional time Tau and the additional time Tav will be described later.
  • FIG. 3 illustrates control signals SW1 and SW2 provided from the control device 50 to the first switching element 1W and the second switching element 2W of the switching circuit 10W, respectively, when the target first switching element is the first switching element 1W of the switching circuit 10W.
  • FIG. 3 also illustrates the control signal SW6 provided from the control device 50 to the first IGBT 6W of the switch 8W, and the load current iW flowing through the W phase of the AC load RA1.
  • FIG. 3 also illustrates the current iL1 flowing through the resonant inductor L1.
  • FIG. 3 also illustrates the voltage V1w across the first switching element 1W and the voltage V2w across the second switching element 2W.
  • the voltage value of the DC power source E1 is illustrated as Vd.
  • FIG. 3 also illustrates the dead time period Td that is set in the control device 50 to prevent the first switching element 1W and the second switching element 2W from being turned on at the same time.
  • FIG. 3 also illustrates the additional time Taw that is set in the control device 50 for the control signal SW6 of the first IGBT 6W of the switch 8W. The additional time Taw will be described later.
  • the above-mentioned additional time Tau is a time set to advance the start point (time t1) of the high level period of the control signal SU6 to the start point (time t2) of the dead time period Td, so that the high level period of the control signal SU6 is longer than the dead time period Td, as shown in FIG. 2.
  • the length of the additional time Tau is set based on the value of the load current iU. In order to start LC resonance from the start point (time t2) of the dead time period Td, it is desirable that the value of the current iL1 matches the value of the load current iU at the start point (time t2) of the dead time period Td.
  • the end point of the high level period of the control signal SU6 may be the same as or later than the end point (time t3) of the dead time period Td.
  • FIG. 2 shows an example in which the end point of the high level period of the control signal SU6 is set to the same as the end point (time t3) of the dead time period Td.
  • the control device 50 sets the high-level period of the control signal SU6 to Tau+Td.
  • the voltage V2u across the second switching element 2U becomes Vd at the end of the dead-time period Td (time t3), and the voltage V1u across the first switching element 1U becomes zero at the end of the dead-time period Td (time t3).
  • the current iL1 flowing through the resonance inductor L1 starts to flow at the start of the high-level period of the control signal SU6 (time t1) and becomes zero at time t4 when the additional time Tau has elapsed from the end of the dead-time period Td (time t3).
  • the current iL1 since iL1 ⁇ iU is satisfied from the start of the dead-time period Td (time t2), the current iL1 in the shaded area of the current waveform in the fifth row from the top in FIG. 2 flows into the resonance capacitor 9U, and LC resonance occurs. After the end of the dead time period Td (time t3), the current iL1 is regenerated in the power conversion circuit 11 via the third diode 13 that is directly connected to the resonant inductor L1.
  • the resonance half period in the case of basic operation is half the resonance period, which is the reciprocal of the resonance frequency of the resonance circuit including the resonance inductor L1 and one resonance capacitor 9. Therefore, when the inductance of the resonance inductor L1 is L and the capacitance of the resonance capacitor 9 is C, the resonance half period is ⁇ (L ⁇ C) 1/2 .
  • the resonance half period in the basic operation is set to be the same as the length of the dead time period Td, for example.
  • the above-mentioned additional time Tav is a time set to advance the start point (time t5) of the high level period of the control signal SV6 to be earlier than the start point (time t6) of the dead time period Td, so that the high level period of the control signal SV6 is longer than the dead time period Td, as shown in FIG. 2.
  • the length of the additional time Tav is set based on the value of the load current iV. In order to start LC resonance from the start point (time t6) of the dead time period Td, it is desirable that the value of the current iL1 matches the value of the load current iV at the start point (time t6) of the dead time period Td.
  • the end point of the high level period of the control signal SV6 may be the same as or later than the end point (time t7) of the dead time period Td.
  • FIG. 2 shows an example in which the end point of the high level period of the control signal SV6 is set to be the same as the end point (time t7) of the dead time period Td.
  • the control device 50 sets the high-level period of the control signal SV6 to Tav+Td.
  • the voltage V1v across the first switching element 1V becomes zero at the end of the dead-time period Td (time t7).
  • the current iL1 flowing through the resonant inductor L1 starts to flow at the start of the high-level period of the control signal SV6 (time t5) and becomes zero at time t8 when the additional time Tav has elapsed from the end of the dead-time period Td (time t7).
  • the current iL1 since iL1 ⁇ iV from the start of the dead-time period Td (time t6), the current iL1 in the shaded area of the current waveform in the 10th row from the top in FIG. 2 flows into the resonant capacitor 9V, and LC resonance occurs.
  • the current iL1 is regenerated to the power conversion circuit 11 via the third diode 13 directly connected to the resonant inductor L1.
  • the detection value at the carrier period to which the additional time Tav is added, or at the timing closest to that carrier period, etc. is used.
  • the estimated value of the load current iV at this time an estimated value of the load current iV at the carrier period to which the additional time Tav is added, etc. is used.
  • the above-mentioned additional time Taw is a time set to advance the start point (time t9) of the high level period of the control signal SW6 to be earlier than the start point (time t10) of the dead time period Td, so that the high level period of the control signal SW6 is longer than the dead time period Td, as shown in FIG. 3.
  • the length of the additional time Taw is set based on the value of the load current iW. In order to start LC resonance from the start point (time t10) of the dead time period Td, it is desirable that the value of the current iL1 matches the value of the load current iW at the start point (time t10) of the dead time period Td.
  • the end point of the high level period of the control signal SW6 may be the same as or later than the end point (time t11) of the dead time period Td.
  • FIG. 3 shows an example in which the end point of the high level period of the control signal SW6 is set to be the same as the end point (time t11) of the dead time period Td.
  • the control device 50 sets the high-level period of the control signal SW6 to Taw+Td.
  • the voltage V1w across the first switching element 1W becomes zero at the end of the dead-time period Td (time t11).
  • the current iL1 flowing through the resonant inductor L1 starts to flow at the start of the high-level period of the control signal SW6 (time t9) and becomes zero at time t12 when the additional time Taw has elapsed from the end of the dead-time period Td (time t11).
  • the current iL1 in the shaded area of the current waveform in the fourth row from the top in FIG. 3 flows into the resonant capacitor 9W, and LC resonance occurs.
  • the current iL1 is regenerated to the power conversion circuit 11 via the third diode 13 directly connected to the resonant inductor L1.
  • the control device 50 when the current value of the load current is greater than the first current threshold I1, the control device 50 can discharge the resonance capacitor 9U connected in parallel to the target second switching element 2 with the load current iU without turning on the switch 8 corresponding to the target second switching element 2. This enables the power conversion device 100 to realize zero voltage soft switching of the target second switching element 2 .
  • the target second switching element 2 is the second switching element 2U of the switching circuit 10U, and the control signals SU1, SU2, and SU7, the load current iU, the current i9U flowing from the resonant capacitor 9U, and the voltage V2u across the second switching element 2U are shown for the case where the current value of the load current is greater than the first current threshold I1.
  • Fig. 6 also shows the dead time period Td and the additional time Tau set in the control device 50 for the control signal SU7 of the second IGBT 7U of the switch 8U.
  • the control device 50 When the current value of the load current iU is greater than the first current threshold I1, the control device 50 does not set a high level period for the control signal SU7.
  • the current i9U starts to flow from the resonant capacitor 9U at the start of the dead time period Td (time t22), the current i9U drops to zero before the end of the dead time period Td (time t23), and the voltage V2u across the second switching element 2U becomes zero before the end of the dead time period Td (time t23).
  • the control signal SU2 changes from low level to high level at the end of the dead time period Td (time t23)
  • the second switching element 2U is zero voltage soft switched.
  • the control device 50 When the current value of the load current iU is smaller than the first current threshold I1, the control device 50 provides a high-level period for the control signal SU7, for example, as shown by the two-dot chain line in FIG. 6.
  • the start point of the high-level period of the control signal SU7 at this time is, for example, the same as the start point (time t22) of the dead time period Td.
  • the end point of the high-level period of the control signal SU7 is the same as the end point (time t23) of the dead time period Td.
  • the second switching element 2U when the control signal SU2 changes from low level to high level at the end point (time t23) of the dead time period Td, the second switching element 2U is zero-voltage soft-switched.
  • the start point of the high-level period of the control signal SU7 may be time t21, which is earlier than the start point of the dead time period Td by the additional time Tau.
  • the end point of the high-level period of the control signal SU7 may be time t24, which is later than the end point (time t23) of the dead-time period Td by the additional time Tau. Note that the time before and after the period that overlaps with the dead-time period Td in the high-level period is not limited to the additional time Tau, and may be another set time.
  • control signals SU1, SU2, and SU7 the load current iU, the current iL1 flowing through the resonant inductor L1, and the voltage V2u across the second switching element 2U are shown for the case where the target second switching element 2 is the second switching element 2U of the switching circuit 10U.
  • FIG. 7 also illustrates the dead time period Td set in the control device 50 to prevent the first switching element 1 and the second switching element 2 of the same phase from being turned on at the same time.
  • FIG. 7 illustrates the additional time Tau set in the control device 50 for the control signal SU7 of the second IGBT 7U of the switch 8U.
  • the end point of the high level period of the control signal SU7 may be the same as the end point of the dead time period Td (time t33) or later.
  • FIG. 7 illustrates an example in which the end point of the high level period of the control signal SU7 is set to the same as the end point of the dead time period Td (time t33).
  • the control device 50 sets the high level period of the control signal SU7 to Tau+Td.
  • the voltage V2u across the second switching element 2U becomes zero at the end point of the dead time period Td (time t33).
  • the current iL1 flowing through the resonant inductor L1 starts to flow at the start of the high-level period of the control signal SU7 (time t31) and becomes zero at time t34, when the additional time Tau has elapsed from the end of the dead-time period Td (time t33).
  • the resonance half period in the case of basic operation is half the resonance period, which is the reciprocal of the resonance frequency of the resonance circuit including the resonance inductor L1 and one resonance capacitor 9. Therefore, when the inductance of the resonance inductor L1 is L and the capacitance of the resonance capacitor 9 is C, the resonance half period is ⁇ (L ⁇ C) 1/2 .
  • the resonance half period in the basic operation is set to be the same as the length of the dead time period Td, for example.
  • the power conversion device 100 can charge the resonance capacitor 9U connected in series to the target first switching element 1 with the load current without the control device 50 turning on the switch 8 corresponding to the target first switching element 1. This allows the power conversion device 100 to realize zero-voltage soft switching of the target first switching element 1.
  • FIG. 8 the control signals SU1, SU2, and SU6, the load current iU, the current i9U flowing from the resonant capacitor 9U, and the voltage V2u across the second switching element 2U are shown for the case where the target first switching element 1 is the first switching element 1U of the switching circuit 10U, and the current value of the load current is greater than the second current threshold I2 (in other words, the absolute value of the current value of the load current is less than the absolute value of the second current threshold I2).
  • FIG. 8 also shows the dead time period Td.
  • the control device 50 does not provide a high-level period for the control signal SU6.
  • the current i9U starts to flow through the resonant capacitor 9U at the start of the dead time period Td (time t41).
  • the resonant capacitor 9U is charged and the voltage V2u across the second switching element 2U increases, the current i9U becomes zero before the end of the dead time period Td (time t42), and the voltage V1u across the first switching element 1U becomes zero before the end of the dead time period Td (time t42).
  • the control signal SU1 changes from low level to high level at the end of the dead time period Td (time t42)
  • the first switching element 1U is zero-voltage soft-switched.
  • the control device 50 When the current value of the load current is greater than the second current threshold I2 (in other words, when the absolute value of the load current is less than the absolute value of the second current threshold), the control device 50 provides a high-level period for the control signal SU6, for example as shown by the two-dot chain line in FIG. 8.
  • the start point of the high-level period of the control signal SU6 at this time is the same as the start point (time t41) of the dead time period Td.
  • the end point of the high-level period of the control signal SU6 is the same as the end point (time t42) of the dead time period Td.
  • the voltage V1u across the first switching element 1U becomes zero before the end point (time t42) of the dead time period Td. Therefore, in the power conversion device 100, when the control signal SU1 changes from low level to high level at the end point (time t42) of the dead time period Td, the first switching element 1U is zero-voltage soft-switched.
  • the polarity of the resonant current is the same as the polarity of the current iL1, and in area A1, the polarity of the resonant current is positive, and in area A2, the polarity of the resonant current is negative.
  • region A1 for example, during one cycle of the carrier signal, the time difference between the start point (time t1, see FIG. 2) of the high-level period of the control signal SU6 provided to the first IGBT 6U and the start point (time t5, see FIG. 2) of the high-level period of the control signal SV6 provided to the first IGBT 6V becomes short, and the U-phase resonant current and the V-phase resonant current may flow simultaneously through the resonant inductor L1.
  • the direction of the resonant current is opposite to that in region A1, but the U-phase resonant current and the V-phase resonant current may flow simultaneously through the resonant inductor L1.
  • each of the multiple resonant capacitors 9U, 9V, and 9W is C
  • the resonant frequency of the resonant circuit including the resonant inductor L1 will change compared to when a single-phase current flows through the resonant inductor L1, and zero-voltage soft switching may not be achieved.
  • Fig. 2 is a diagram showing an example of a boundary condition between a case where the U-phase resonance current and the V-phase resonance current do not overlap (do not flow simultaneously) and a case where they overlap (flow simultaneously). The boundary condition will be described with reference to Fig. 2.
  • the time difference ⁇ Tuv between the start point (time t3) of the high-level period of the control signal SU1 and the start point (time t7) of the high-level period of the control signal SV1 is (Tau+Tav+Td) or more, the resonant current of the U phase and the resonant current of the V phase do not overlap, and if the time difference ⁇ Tuv is less than (Tau+Tav+Td), the resonant current of the U phase and the resonant current of the V phase overlap.
  • the control device 50 sets a threshold value for the time difference ⁇ Tuv to, for example, (Tau+Tav+Td), and if the time difference ⁇ Tuv is less than the threshold value, it estimates that resonant currents corresponding to two phases, switching circuit 10U and switching circuit 10V, of the multiple switching circuits 10, will flow simultaneously through the resonant inductor L1.
  • the above threshold setting is an example, and other values may also be considered. For example, it is possible to set the threshold value to a value larger than (Tau+Tav+Td) in consideration of the error of the additional time Tau and the error of the additional time Tav.
  • the calculation method of the time difference ⁇ Tuv used to determine whether the resonant currents of the two phases flow simultaneously is not limited to the above example, and other calculation methods may be used as long as they can calculate a time difference equivalent to the time difference.
  • the time difference ⁇ Tuv used to determine whether two-phase resonant currents flow simultaneously may be the time difference between the end point of the high-level period of the control signal SU2 (time t2) and the end point of the high-level period of the control signal SV2 (time t6).
  • the power conversion device 100 if the time difference between the start point (time t3) of the high-level period of the control signal SU1 and the start point (time t11) of the high-level period of the control signal SW1 is (Tau+Taw+Td) or more, the resonant current of the U phase and the resonant current of the W phase do not overlap, and if the time difference is less than (Tau+Taw+Td), the resonant current of the U phase and the resonant current of the W phase overlap.
  • the control device 50 sets a threshold value for the time difference to, for example, (Tau+Taw+Td), and if the time difference is less than the threshold value, it estimates that the resonant currents corresponding to two phases, the switching circuit 10U and the switching circuit 10W, among the multiple switching circuits 10, flow simultaneously through the resonant inductor L1.
  • the above threshold value setting is an example, and it is also possible to set it to another value. For example, it is possible to set the threshold value to a value even greater than (Tau+Taw+Td) in consideration of the error in the additional time Tau and the error in the additional time Taw.
  • the calculation method of the time difference used to determine whether the two-phase resonance currents flow simultaneously is not limited to the above example, and other calculation methods may be used as long as they can calculate a time difference equivalent to the time difference.
  • time difference between the end point (time t2) of the high level period of the control signal SU2 and the end point (time t10) of the high level period of the control signal SW2 may be used as the time difference used to determine whether the two-phase resonance currents flow simultaneously.
  • the V-phase resonant current and the W-phase resonant current do not overlap, and if the time difference is less than (Tav+Taw+Td), the V-phase resonant current and the W-phase resonant current overlap.
  • the control device 50 sets a threshold value for the time difference to, for example, (Tav+Taw+Td), and if the time difference is less than the threshold value, it estimates that the resonant currents corresponding to two phases, the switching circuit 10V and the switching circuit 10W, of the multiple switching circuits 10, flow simultaneously through the resonant inductor L1.
  • the above threshold setting is an example, and other values may also be considered. For example, it is possible to set the threshold value to a value larger than (Tav+Taw+Td) in consideration of the error of the additional time Tav or the additional time Taw.
  • the control device 50 estimates that the resonance currents corresponding to the two phases of the switching circuit 10V and the switching circuit 10W flow simultaneously in the resonance inductor L1 if the time difference is less than the time length of the dead time period Td.
  • the calculation method of the time difference used to determine whether the two-phase resonance currents flow simultaneously is not limited to the above example, and other calculation methods may be used as long as they can calculate a time difference equivalent to the time difference.
  • the time difference used to determine whether the two-phase resonance currents flow simultaneously may be the time difference between the end point (time t6) of the high level period of the control signal SV2 and the end point (time t10) of the high level period of the control signal SW2.
  • control device 50 can determine whether two-phase resonant currents flow simultaneously using the same time difference and threshold value as in the case of charging operation of the resonant capacitor 9.
  • the control device 50 estimates that the U-phase resonant current and the V-phase resonant current overlap.
  • a threshold value e.g., Tau+Tav+Td
  • the control device 50 estimates that the U-phase resonant current and the W-phase resonant current overlap.
  • a threshold value e.g., Tau+Taw+Td
  • the control device 50 estimates that the V-phase resonant current and the W-phase resonant current overlap.
  • a threshold value e.g., Tav+Taw+Td
  • control device 50 performs shift control to shift the high-level period of the control signal to one of the two switches 8, for example, so that the resonant currents passing through the two switches 8 do not flow simultaneously through the resonant inductor L1.
  • the control device 50 shifts the high level period of the control signal to one of the two switches 8 so that the length of the high level period of the control signal provided to each of the first switching element 1 and the second switching element 2 of one switching circuit 10 corresponding to one of the two switches 8 does not change. For example, when shifting the high level period of the control signal SU6 or SU7 provided to the switch 8U, the control device 50 shifts the high level periods of the control signal SU1 and the control signal SU2, but does not change the duties of the control signal SU1 and the control signal SU2 in one period of the carrier signal.
  • the control device 50 shifts the high level periods of the control signal SV1 and the control signal SV2, but does not change the duties of the control signal SV1 and the control signal SV2 in one period of the carrier signal. Furthermore, when the control device 50 shifts the high-level period of the control signal SW6 or SW7 provided to the switch 8W, it shifts the high-level period of each of the control signals SW1 and SW2, but does not change the duty of each of the control signals SW1 and SW2 in one period of the carrier signal.
  • the control device 50 executes shift control to soft-switch the first switching element 1, for example, the voltages V2u and V2v across the second switching elements 2U and 2V rise to Vd at the point when the control signals SU1 and SV1 change from a low-level period to a high-level period (the end point of the dead time period Td corresponding to the U phase and V phase, respectively).
  • the control device 50 executes shift control, charging of the resonance capacitors 9U and 9V ends at the end point of the dead time period Td corresponding to the U phase and V phase, respectively.
  • the switching of the first switching elements 1U and 1V becomes zero-voltage soft switching.
  • the above example shows an example of shift control when the control device 50 determines in advance that the U-phase resonant current and the V-phase resonant current will flow simultaneously through the resonant inductor L1, but is not limited to this.
  • the control device 50 executes shift control even when it determines in advance that the W-phase resonant current and the U-phase resonant current will flow simultaneously through the resonant inductor L1, thereby enabling zero-voltage soft switching.
  • the control device 50 executes shift control to soft-switch the second switching element 2, for example, the voltages V1u and V1v across the first switching elements 1U and 1V rise to Vd at the point when the control signals SU2 and SV2 change from a low-level period to a high-level period (the end point of the dead time period Td corresponding to the U phase and V phase, respectively).
  • the control device 50 executes shift control, the discharge of the resonance capacitors 9U and 9V ends at the end point of the dead time period Td corresponding to the U phase and V phase, respectively.
  • the switching of the second switching elements 2U and 2V becomes zero-voltage soft switching.
  • the above example shows an example of shift control when the control device 50 determines in advance that the U-phase resonant current and the V-phase resonant current will flow simultaneously through the resonant inductor L1, but is not limited to this.
  • the control device 50 executes shift control even when it determines in advance that the W-phase resonant current and the U-phase resonant current will flow simultaneously through the resonant inductor L1, thereby enabling zero-voltage soft switching.
  • the threshold Vth is, for example, Vd/2, but is not limited thereto, and may be a value between 90% and 110% of Vd/2, and more preferably a value between 95% and 105% of Vd/2.
  • the time Ts until the voltage V15 across the regenerative capacitor 15 rises from 0 V to the threshold Vth can be shortened compared to the case in which the control device 50 performs an inverter control operation without performing a charge control operation.
  • the time Ts can be shortened from 13.5 ms to 2.8 ms, for example.
  • the DC bus voltage in FIG. 9 is the voltage between the first DC terminal 31 and the second DC terminal 32.
  • control device 50 alternates between the first control operation and the second control operation.
  • the control device 50 turns on the multiple (three) first switching elements 1 to charge the multiple (three) resonant capacitors 9 through a path passing through the first DC terminal 31 and each of the multiple (three) first switching elements 1.
  • the control device 50 turns on the multiple (three) switches 8 to charge the regenerative capacitor 15 from the multiple (three) resonant capacitors 9.
  • Figs. 11 and 12 omit some parts of the circuit diagram in Fig. 1 and simplify the diagram, and each of the three first switching elements 1, three second switching elements 2, and three switches 8 is represented by a switch symbol.
  • control device 50 controls the three first switching elements 1 to the on state, the three second switching elements 2 to the off state, and the three switches 8 to the off state.
  • the control device 50 sets each of the three control signals SU1, SV1, and SW1 to a high level, each of the three control signals SU2, SV2, and SW2 to a low level, each of the three control signals SU6, SV6, and SW6 (not shown in FIG. 10) to a low level, and each of the three control signals SU7, SV7, and SW7 to a low level, as shown in FIG. 11, to charge the three resonant capacitors 9U, 9V, and 9W with a current (the current path is shown by an arrow in FIG. 11) that flows from the DC power source E1 through each of the three first switching elements 1.
  • the "charging current of the resonant capacitors" in FIG. 10 shows the current waveform of the current (charging current) that flows from the DC power source E1 to each of the three resonant capacitors 9U, 9V, and 9W.
  • control device 50 controls the three first switching elements 1 to the off state, controls the three second switching elements 2 to the off state, and controls the three switches 8 to the on state.
  • the control device 50 sets each of the three control signals SU1, SV1, and SW1 to a low level, sets each of the three control signals SU2, SV2, and SW2 to a low level, sets each of the three control signals SU6, SV6, and SW6 (not shown in FIG. 10) to a low level, and sets each of the three control signals SU7, SV7, and SW7 to a high level, for example, as shown in FIG. 12.
  • the regenerative capacitor 15 is charged by the current flowing from the three resonant capacitors 9U, 9V, and 9W through the three switches 8U, 8V, and 8W.
  • control device 50 performs the second control operation to discharge the resonant capacitors 9U, 9V, and 9W and charge the regenerative capacitor 15.
  • "Resonant capacitor discharge current” shows the current waveform of the current (discharge current) flowing from each of the three resonant capacitors 9U, 9V, and 9W to the regenerative capacitor 15.
  • the control device 50 sets a dead time period Td between the high level periods of the three control signals SU1, SV1, and SW1 and the high level periods of the three control signals SU2, SV2, and SW2.
  • the control device 50 complementarily turns on and off the three first switching elements 1 and the three second switching elements 2.
  • the control device 50 turns on the multiple switches 8 during the above-mentioned second period T2, which is the dead time period Td during which both the three first switching elements 1 and the three second switching elements 2 are turned off.
  • the control device 50 provides a dead time period Td between the high level period of the control signal SU1 to the first switching element 1U and the high level period of the control signal SU2 to the second switching element 2U, and provides a high level period of the control signal SU7 to the second IGBT 7U of the switch 8U during the dead time period Td.
  • the control device 50 provides a dead time period Td between the high level period of the control signal SV1 to the first switching element 1V and the high level period of the control signal SV2 to the second switching element 2V, and provides a high level period of the control signal SV7 to the second IGBT 7V of the switch 8V during the dead time period Td.
  • control device 50 provides a dead time period Td between the high level period of the control signal SW1 to the first switching element 1W and the high level period of the control signal SW2 to the second switching element 2W, and provides a high level period of the control signal SW7 to the second IGBT 7W of the switch 8W during the dead time period Td.
  • the control device 50 performs a charge control operation for charging the regenerative capacitor 15 as a start-up operation, and an inverter control operation for causing output currents iU, iV, and iW to flow through each of the AC terminals 41.
  • a first control operation and a second control operation are alternately performed.
  • the multiple (three) first switching elements 1 are turned on to charge the multiple (three) resonant capacitors 9 through a path passing through the first DC terminal 31 and each of the multiple (three) first switching elements 1.
  • the multiple (three) switches 8 are turned on to charge the regenerative capacitor 15 from the multiple (three) resonant capacitors 9.
  • the power conversion device 100 according to the first embodiment can be made smaller. More specifically, the power conversion device 100 according to the first embodiment can reduce the number of regenerative capacitors 15 to one, making it possible to make the device smaller.
  • the power conversion device 100 employs a configuration using one regenerative capacitor 15 to generate a voltage of Vd/2, so that the voltage V15 across the regenerative capacitor 15 rises transiently to Vd/2 when the power conversion device 100 is started. For this reason, in the power conversion device 100, if the control device 50 performs an inverter control operation without performing a charge control operation, the switching of each of the first switching elements 1 and the second switching elements 2 may become hard switching during the inverter control operation.
  • the power conversion device 100 has a charge control operation by the control device 50, which makes it possible to shorten the time required to raise the voltage V15 across the regenerative capacitor 15 to Vd/2, and to suppress the occurrence of hard switching of each of the first switching elements 1 and the second switching elements 2 during the inverter control operation.
  • the control device 50 performs the inverter control operation after the voltage V15 across the regenerative capacitor 15 becomes equal to or greater than the threshold value Vth.
  • Vth the threshold value
  • the power conversion device 100 can more reliably achieve soft switching.
  • the power conversion device 100 can use elements with lower withstand voltages and lower allowable currents for each of the first switching elements 1 and the second switching elements 2, thereby enabling costs to be reduced.
  • the control device 50 determines that resonant currents passing through two of the multiple switches 8 flow simultaneously through the resonant inductor L1
  • the control device 50 performs control to shift the high-level period of the control signals to the two switches 8 so that the resonant currents passing through the two switches 8 do not flow simultaneously through the resonant inductor L1. This enables the power conversion device 100 to more reliably achieve soft switching.
  • the first IGBT 6 and the second IGBT 7 are connected in anti-series in each of the multiple switches 8.
  • the collector terminal of the first IGBT 6 and the collector terminal of the second IGBT 7 are connected in each of the multiple switches 8, the emitter terminal of the first IGBT 6 is connected to the connection point 3 of a corresponding one of the multiple switching circuits 10, and the emitter terminal of the second IGBT 7 is connected to the common connection point 25.
  • Each of the multiple switches 8 further includes a diode 61 connected in anti-parallel to the first IGBT 6 and a diode 71 connected in anti-parallel to the second IGBT 7.
  • each of the first IGBT 6 and the second IGBT 7 may be replaced with a MOSFET or a bipolar transistor.
  • the diodes 61 and 71 in FIG. 13 may be replaced with a parasitic diode of the replaced element, or an element built into the chip of the replaced element.
  • the diodes 61 and 71 are not limited to being externally attached to the first IGBT 6 and the second IGBT 7, but may be elements built into the chip.
  • control device 50 The operation of the control device 50 is, for example, the same as that of the control device 50 in embodiment 1.
  • the first IGBT 6 and the second IGBT 7 are connected in anti-series in each of the multiple switches 8.
  • the emitter terminal of the first IGBT 6 and the emitter terminal of the second IGBT 7 are connected in each of the multiple switches 8, the collector terminal of the second IGBT 7 is connected to the connection point 3 of a corresponding one of the multiple switching circuits 10, and the collector terminal of the first IGBT 6 is connected to the common connection point 25.
  • Each of the multiple switches 8 further includes a diode 61 connected in anti-parallel to the first IGBT 6 and a diode 71 connected in anti-parallel to the second IGBT 7.
  • each of the first IGBT 6 and the second IGBT 7 may be replaced with a MOSFET or a bipolar transistor.
  • the diodes 61 and 71 in FIG. 14 may be replaced with a parasitic diode of the replaced element, or an element built into the chip of the replaced element.
  • the diodes 61 and 71 are not limited to being externally attached to the first IGBT 6 and the second IGBT 7, but may also be elements built into the chip.
  • control device 50 The operation of the control device 50 is, for example, the same as that of the control device 50 in embodiment 1.
  • the first MOSFET 6A and the second MOSFET 7A are connected in anti-series in each of the multiple switches 8.
  • the drain terminal of the first MOSFET 6A and the drain terminal of the second MOSFET 7A are connected in anti-parallel in each of the multiple switches 8.
  • Each of the multiple switches 8 further includes a diode 61 connected in anti-parallel to the first MOSFET 6A and a diode 71 connected in anti-parallel to the second MOSFET 7A.
  • the source terminal of the second MOSFET 7A is connected to the common connection point 25.
  • the source terminal of the first MOSFET 6A is connected to the connection point 3 of the switching circuit 10 corresponding to the switch 8 having the first MOSFET 6A.
  • the first MOSFET 6A and the second MOSFET 7A of the switch 8U are provided with control signals SU6 and SU7 from the control device 50.
  • the first MOSFET 6A and the second MOSFET 7A of the switch 8V are provided with control signals SV6 and SV7 from the control device 50.
  • the first MOSFET 6A and the second MOSFET 7A of the switch 8W are provided with control signals SW6 and SW7 from the control device 50.
  • control device 50 The operation of the control device 50 is similar to that of the control device 50 in embodiment 1, for example.
  • a diode 63 is connected in series to the first MOSFET 6A, and a diode 73 is connected in series to the second MOSFET 7A.
  • the series circuit of the first MOSFET 6A and the diode 63 and the series circuit of the second MOSFET 7A and the diode 73 are connected in anti-parallel.
  • control device 50 The operation of the control device 50 is similar to that of the control device 50 in embodiment 1, for example.
  • each of the multiple switches 8 has one MOSFET 80, a diode 83 connected in anti-parallel to the MOSFET 80, a series circuit of two diodes 84 and 85 connected in anti-parallel to the MOSFET 80, and a series circuit of two diodes 86 and 87 connected in anti-parallel to the MOSFET 80.
  • connection point between the diode 84 and the diode 85 in the switch 8 (the first end 81 of the switch 8) is connected to the connection point 3 of the corresponding switching circuit 10 among the multiple switching circuits 10, and the connection point between the diode 86 and the diode 87 (the second end 82 of the switch 8) is connected to the common connection point 25.
  • the switch 8 when the MOSFET 80 is in the on state, the switch 8 is in the on state, and when the MOSFET 80 is in the off state, the switch 8 is in the off state.
  • the MOSFETs 80 of the multiple switches 8 are controlled by the control device 50.
  • the control device 50 outputs a control signal SU8 that controls the on/off state of the MOSFET 80 of the switch 8U, a control signal SV8 that controls the on/off state of the MOSFET 80 of the switch 8V, and a control signal SW8 that controls the on/off state of the MOSFET 80 of the switch 8W.
  • a resonant current flows due to a resonant circuit including the resonant inductor L1 and the resonant capacitor 9.
  • a charging current including the resonant current flows through the path of the regenerative capacitor 15 - resonant inductor L1 - diode 86 - MOSFET 80 - diode 85 - resonant capacitor 9.
  • a discharging current including the resonant current flows through the path of the resonant capacitor 9 - diode 84 - MOSFET 80 - diode 87 - resonant inductor L1 - regenerative capacitor 15.
  • each of the multiple MOSFETs 80 may be replaced with an IGBT.
  • each of the multiple switches 8 may have, for example, a bipolar transistor or a GaN-based GIT (Gate Injection Transistor) instead of the MOSFET 80.
  • control device 50 The operation of the control device 50 is similar to that of the control device 50 in embodiment 1, for example.
  • each of the multiple switches 8 is a dual-gate GaN-based GIT having a first source terminal, a first gate terminal, a second gate terminal, and a second source terminal.
  • a control signal SU6 is applied between the first gate terminal and the first source terminal of the dual-gate GaN-based GIT constituting the switch 8U, and a control signal SU7 is applied between the second gate terminal and the second source terminal.
  • a control signal SV6 is applied between the first gate terminal and the first source terminal of the dual-gate GaN-based GIT constituting the switch 8V, and a control signal SV7 is applied between the second gate terminal and the second source terminal.
  • a control signal SW6 is applied between the first gate terminal and the first source terminal of the dual-gate GaN-based GIT constituting the switch 8W, and a control signal SW7 is applied between the second gate terminal and the second source terminal.
  • control device 50 The operation of the control device 50 is similar to that of the control device 50 in embodiment 1, for example.
  • the power conversion device 100A includes a plurality of resonant inductors L1 (three in the illustrated example), and the plurality (three) resonant inductors L1 and the plurality (three) switches 8 correspond one-to-one.
  • the third end of each of the plurality of resonant inductors L1 is connected to the second end 82 of the corresponding switch 8 among the plurality of switches 8.
  • the fourth end of each of the plurality of resonant inductors L1 is connected to the sixth end 154 of the regenerative capacitor 15.
  • the inductances of the plurality of resonant inductors L1 are the same as each other. That is, the inductances of the three resonant inductors L1 are the same as each other.
  • the inductances of the three resonant inductors L1 are the same as each other” does not only mean that the inductances of two of the three resonant inductors L1 completely match the inductance of the remaining resonant inductor L1, but also means that the inductance of each of the two resonant inductors L1 is within a range of 95% to 105% of the inductance of the remaining resonant inductor L1.
  • the control device 50 performs a charge control operation as an operation at the start-up of the power conversion device 100A. In addition, the control device 50 performs an inverter control operation after the charge control operation.
  • the power conversion device 100A according to the second embodiment can reduce the number of regenerative capacitors 15 to one, making it possible to achieve miniaturization.
  • the control device 50 turns on at least one first switching element 1 (e.g., first switching element 1U) among the multiple first switching elements 1, and charges at least one resonant capacitor 9 (e.g., resonant capacitor 9U) among the multiple resonant capacitors 9 that corresponds to the at least one first switching element 1 through a path passing between the first DC terminal 31 and the at least one first switching element 1.
  • first switching element 1 e.g., first switching element 1U
  • resonant capacitor 9 e.g., resonant capacitor 9U
  • control device 50 may turn on a switch 8 (e.g., switch 8U) among the multiple switches 8 that corresponds to at least one of the first switching elements 1, thereby causing the regenerative capacitor 15 to be charged from the at least one resonant capacitor 9.
  • a switch 8 e.g., switch 8U
  • the control device 50 turns on a switch 8 among the multiple switches 8 that corresponds to the at least one first switching element 1 during a dead time period Td in which both the at least one first switching element 1 and the at least one second switching element 2 (e.g., second switching element 2U) that corresponds one-to-one to the at least one first switching element 1 are turned off.
  • a switch 8 among the multiple switches 8 that corresponds to the at least one first switching element 1 during a dead time period Td in which both the at least one first switching element 1 and the at least one second switching element 2 (e.g., second switching element 2U) that corresponds one-to-one to the at least one first switching element 1 are turned off.
  • the control device 50 may turn on the first switching element 1U to charge the resonant capacitor 9U via a path passing through the first DC terminal 31 and the first switching element 1U.
  • the control device 50 may turn on the switch 8U to charge the regenerative capacitor 15 from the resonant capacitor 9U.
  • the control device 50 may turn on the switch 8U during the dead time period Td in which both the first switching element 1U and the second switching element 2U are turned off.
  • control device 50 determines that two-phase resonant currents flow simultaneously
  • the operation of the control device 50 to "determine that two-phase resonant currents flow simultaneously” is not limited to the operation of "determining that two-phase resonant currents flow simultaneously” when the time difference is less than the threshold value described in embodiment 1.
  • control device 50 may determine that two-phase resonant currents flow simultaneously when any one of the current difference between the U-phase load current iU and the V-phase load current iV, the current difference between the V-phase load current iV and the W-phase load current iW, and the current difference between the W-phase load current iW and the U-phase load current iU is less than a current difference threshold.
  • the control device 50 may also determine that "two-phase resonant currents flow simultaneously" when the electrical angle calculated from sensor information output from a sensor device (e.g., an encoder or resolver) for detecting the rotation speed of the motor, or the estimated electrical angle, is within a first rotation angle range (e.g., 55 degrees or more and 65 degrees or less), a second rotation angle range (e.g., 115 degrees or more and 125 degrees or less), a third rotation angle range (e.g., 175 degrees or more and 185 degrees or less), a fourth rotation angle range (e.g., 235 degrees or more and 245 degrees or less), a fifth rotation angle range (295 degrees or more and 305 degrees or less), or a sixth rotation angle range (e.g., 355 degrees or more and 365 degrees or less).
  • a sensor device e.g., an encoder or resolver
  • each of the multiple first switching elements 1 and the multiple second switching elements 2 is not limited to an IGBT, and may be a MOSFET.
  • each of the multiple first diodes 4 may be substituted with a parasitic diode of a MOSFET constituting the corresponding first switching element 1.
  • each of the multiple second diodes 5 may be substituted with a parasitic diode of a MOSFET constituting the corresponding second switching element 2.
  • the MOSFET is, for example, a Si-based MOSFET or a SiC-based MOSFET.
  • Each of the multiple first switching elements 1 and the multiple second switching elements 2 may be, for example, a bipolar transistor or a GaN-based GIT.
  • the parasitic capacitance between both ends of the multiple second switching elements 2 may also serve as the multiple resonant capacitors 9.
  • the length of the dead time period Td is not limited to being set to be the same as the resonant half cycle, and may be set to a length different from the resonant half cycle. However, in either case, it is preferable that the end point of the dead time period Td coincides with the end point of the resonant half cycle.
  • the dead time period Td may be set by a dead time generation circuit such as a gate driver IC (Integrated Circuit) provided separately from the control device 50.
  • a dead time generation circuit such as a gate driver IC (Integrated Circuit) provided separately from the control device 50.
  • the control device 50 may include a gate driver IC, and the dead time generation circuit of the gate driver IC may set the dead time period Td.
  • the power conversion devices 100 and 100A are not limited to being configured to output three-phase AC, but may be configured to output three or more phases of polyphase AC.
  • the power conversion device (100; 100A) includes a first DC terminal (31) and a second DC terminal (32), a power conversion circuit (11), a plurality of AC terminals (41), a plurality of switches (8), a plurality of resonant capacitors (9), at least one resonant inductor (L1), a regenerative capacitor (15), and a control device (50).
  • the power conversion circuit (11) has a plurality of first switching elements (1) and a plurality of second switching elements (2).
  • a plurality of switching circuits (10) in which a plurality of first switching elements (1) and a plurality of second switching elements (2) are connected in series in a one-to-one relationship are connected in parallel with each other.
  • a plurality of first switching elements (1) are connected to the first DC terminal (31), and a plurality of second switching elements (2) are connected to the second DC terminal (32).
  • the AC terminals (41) correspond one-to-one to the switching circuits (10).
  • Each of the AC terminals (41) is connected to a connection point (3) between a first switching element (1) and a second switching element (2) in a corresponding switching circuit (10) among the switching circuits (10).
  • the switches (8) correspond one-to-one to the switching circuits (10).
  • Each of the switches (8) has a first end (81) of a first end (81) and a second end (82) connected to a connection point (3) between a first switching element (1) and a second switching element (2) in a corresponding switching circuit (10) among the switching circuits (10).
  • the resonance capacitors (9) correspond one-to-one to the switches (8). Each of the resonance capacitors (9) is connected between a first end (81) and a second DC terminal (32) of a corresponding switch (8) among the switches (8). At least one resonance inductor (L1) has a third end and a fourth end. At least one resonant inductor (L1) has a third end connected to a second end (82) of a corresponding switch (8) among the multiple switches (8).
  • the regenerative capacitor (15) has a fifth end (153) and a sixth end (154). In the regenerative capacitor (15), the fifth end (153) is connected to the second DC terminal (32), and the sixth end (154) is connected to a fourth end of at least one resonant inductor (L1).
  • the control device (50) controls the on/off of each of the multiple first switching elements (1), the multiple second switching elements (2), and the multiple switches (8).
  • the control device (50) performs a charging control operation for charging the regenerative capacitor (15) as a start-up operation, and an inverter control operation for causing output currents (iU, iV, iW) to flow through each of the multiple AC terminals (41).
  • a first control operation and a second control operation are alternately performed.
  • At least one of the first switching elements (1) is turned on, and at least one of the multiple resonant capacitors (9) corresponding to the at least one first switching element (1) is charged through a path passing through the first DC terminal (31) and the at least one first switching element (1).
  • a switch (8) corresponding to the at least one first switching element (1) among the multiple switches (8) is turned on, and the regenerative capacitor (15) is charged from the at least one resonant capacitor (9).
  • This aspect makes it possible to achieve miniaturization.
  • the power conversion device (100; 100A) according to the second aspect is based on the first aspect.
  • the control device (50) charges the regenerative capacitor (15) until the voltage (V15) across the regenerative capacitor (15) becomes equal to or greater than the threshold (Vth).
  • the voltage (V15) across the regenerative capacitor (15) can be increased to or above the threshold (Vth) in a shorter time.
  • control device (50) performs inverter control operation after the voltage (V15) across the regenerative capacitor (15) becomes equal to or greater than the threshold value (Vth).
  • the power conversion device (100; 100A) according to the fourth aspect is based on any one of the first to third aspects.
  • the control device (50) complementarily turns on and off at least one first switching element (1) and at least one second switching element (2) corresponding to the at least one first switching element (1) among the plurality of second switching elements (2).
  • the control device turns on a switch (8) among the plurality of switches (8) corresponding to the at least one first switching element (1) during a dead time period (Td) in which both the at least one first switching element (1) and the at least one second switching element (2) are turned off.
  • the power conversion device (100; 100A) according to the fifth aspect is based on any one of the first to fourth aspects.
  • the control device (50) turns on the multiple first switching elements (1).
  • This embodiment makes it possible to increase the voltage (V15) across the regenerative capacitor (15) in a shorter time.
  • At least one resonant inductor (L1) is a single resonant inductor (L1), and the second ends (82) of the multiple switches (8) are commonly connected to the single resonant inductor (L1).
  • the number of resonant inductors (L1) can be reduced to one, making it possible to achieve further miniaturization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

課題は、小型化を図ることである。電力変換装置(100)では、制御装置(50)は、起動時動作として回生用コンデンサ(15)を充電させる充電制御動作と、インバータ制御動作と、を行う。充電制御動作では、第1制御動作と、第2制御動作と、を交互に行う。第1制御動作では、複数の第1スイッチング素子(1)のうち少なくとも1つの第1スイッチング素子(1)をオンさせて、第1直流端子(31)と少なくとも1つの第1スイッチング素子(1)を通る経路で、複数の共振用コンデンサ(9)のうち少なくとも1つの第1スイッチング素子(1)に対応する少なくとも1つの共振用コンデンサ(9)を充電させる。第2制御動作では、複数のスイッチ(8)のうち少なくとも1つの第1スイッチング素子(1)に対応するスイッチ(8)をオンさせて少なくとも1つの共振用コンデンサ(9)から回生用コンデンサ(15)を充電させる。

Description

電力変換装置
 本開示は、電力変換装置に関し、より詳細には、直流電力を交流電力に電力変換可能な電力変換装置に関する。
 特許文献1は、共振形インバータ装置(電力変換装置)を開示している。
 特許文献1に開示された共振形インバータ装置では、直流電圧源の直流電圧が、インバータ部(電力変換回路)によって交流電圧に変換される。このインバータ部は、正母線と負母線の間に、6つの主スイッチング素子が3相(U相、V相、W相)でブリッジ結線された構成となっている。
 また、共振形インバータ装置では、正母線と負母線の間において2つの分圧用コンデンサが直列接続されている。この2つの分圧用コンデンサは、直流電圧源の直流電圧を分圧する分圧手段を構成しており、また、その間の接続点において、直流電圧源の直流電圧の1/2の電圧を発生する手段を構成している。さらに、2つの分圧用コンデンサとインバータ部との間に、主スイッチング素子のスイッチング時に共振動作を行わせるための共振回路部が設けられている。この共振回路部は、2つの分圧用コンデンサの接続点と各相の上下アームの接続点との間に共振用リアクトルと補助スイッチからなる直列回路がそれぞれ接続され、それぞれの直列回路に共振用コンデンサが並列接続されて、構成されている。
 各スイッチング素子及び各補助スイッチは、制御部によりオンオフ制御される。
 電力変換装置では、小型化を求められる場合がある。
特開2000-32775号公報
 本開示の目的は、小型化を図ることが可能な電力変換装置を提供することにある。
 本開示に係る一態様の電力変換装置は、第1直流端子及び第2直流端子と、電力変換回路と、複数の交流端子と、複数のスイッチと、複数の共振用コンデンサと、少なくとも1つの共振用インダクタと、回生用コンデンサと、制御装置と、を備える。前記電力変換回路は、複数の第1スイッチング素子及び複数の第2スイッチング素子を有する。前記電力変換回路では、前記複数の第1スイッチング素子と前記複数の第2スイッチング素子とを一対一に直列接続した複数のスイッチング回路が互いに並列接続されている。前記電力変換回路では、前記複数の第1スイッチング素子が前記第1直流端子に接続されており、前記複数の第2スイッチング素子が前記第2直流端子に接続されている。前記複数の交流端子は、前記複数のスイッチング回路に一対一に対応する。前記複数の交流端子の各々は、前記複数のスイッチング回路のうち対応するスイッチング回路における前記第1スイッチング素子及び前記第2スイッチング素子の接続点に接続されている。前記複数のスイッチは、前記複数のスイッチング回路に一対一に対応する。前記複数のスイッチの各々は、前記複数のスイッチング回路のうち対応するスイッチング回路における前記第1スイッチング素子及び前記第2スイッチング素子の前記接続点に第1端と第2端とのうち前記第1端が接続されている。前記複数の共振用コンデンサは、前記複数のスイッチに一対一に対応する。前記複数の共振用コンデンサの各々は、前記複数のスイッチのうち対応するスイッチの前記第1端と前記第2直流端子との間に接続されている。前記少なくとも1つの共振用インダクタは、第3端及び第4端を有する。前記少なくとも1つの共振用インダクタでは、前記第3端が前記複数のスイッチのうち対応するスイッチの前記第2端に接続されている。前記回生用コンデンサは、第5端及び第6端を有する。前記回生用コンデンサでは、前記第5端が前記第2直流端子に接続されており、前記第6端が前記少なくとも1つの共振用インダクタの前記第4端に接続されている。前記制御装置は、前記複数の第1スイッチング素子、前記複数の第2スイッチング素子及び前記複数のスイッチそれぞれをオンオフ制御する。前記制御装置は、起動時動作として前記回生用コンデンサを充電させる充電制御動作と、前記複数の交流端子それぞれに出力電流を流させるインバータ制御動作と、を行う。前記充電制御動作では、第1制御動作と、第2制御動作と、を交互に行う。前記第1制御動作では、前記複数の第1スイッチング素子のうち少なくとも1つの第1スイッチング素子をオンさせて、前記第1直流端子と前記少なくとも1つの第1スイッチング素子を通る経路で、前記複数の共振用コンデンサのうち前記少なくとも1つの第1スイッチング素子に対応する少なくとも1つの共振用コンデンサを充電させる。前記第2制御動作では、前記複数のスイッチのうち前記少なくとも1つの第1スイッチング素子に対応するスイッチをオンさせて前記少なくとも1つの共振用コンデンサから前記回生用コンデンサを充電させる。
図1は、実施形態1に係る電力変換装置を備えるシステムの回路図である。 図2は、同上の電力変換装置において制御装置が、負荷電流>0、共振用コンデンサの充電動作の場合に基本動作を行ったときの動作説明図である。 図3は、同上の電力変換装置において制御装置が、負荷電流>0、共振用コンデンサの充電動作の場合に基本動作を行ったときの別の動作説明図である。 図4は、同上の電力変換装置の複数の交流端子に接続される交流負荷における3相それぞれの電圧指令に対応するデューティの時間変化及び負荷電流の時間変化を示す図である。 図5は、同上の電力変換装置において制御装置で用いる第1電流閾値及び第2電流閾値の説明図である。 図6は、同上の電力変換装置において制御装置が、負荷電流>0、共振用コンデンサの放電動作の場合に基本動作を行ったときの動作説明図である。 図7は、同上の電力変換装置において制御装置が、負荷電流<0、共振用コンデンサの放電動作の場合に基本動作を行ったときの動作説明図である。 図8は、同上の電力変換装置において制御装置が、負荷電流<0、共振用コンデンサの充電動作の場合に基本動作を行ったときの動作説明図である。 図9は、同上の電力変換装置における回生用コンデンサの両端電圧の説明図である。 図10は、同上の電力変換装置における制御装置の充電制御動作を説明するためのタイミングチャートである。 図11は、同上の電力変換装置において制御装置が充電制御動作の第1制御動作を行った場合の動作説明図である。 図12は、同上の電力変換装置において制御装置が充電制御動作の第2制御動作を行った場合の動作説明図である。 図13は、実施形態1の変形例1に係る電力変換装置を備えるシステムの回路図である。 図14は、実施形態1の変形例2に係る電力変換装置を備えるシステムの回路図である。 図15は、実施形態1の変形例3に係る電力変換装置を備えるシステムの回路図である。 図16は、実施形態1の変形例4に係る電力変換装置を備えるシステムの回路図である。 図17は、実施形態1の変形例5に係る電力変換装置を備えるシステムの回路図である。 図18は、実施形態1の変形例6に係る電力変換装置を備えるシステムの回路図である。 図19は、実施形態2に係る電力変換装置を備えるシステムの回路図である。
 (実施形態1)
 以下では、実施形態1に係る電力変換装置100について、図1~12に基づいて説明する。
 (1)電力変換装置の全体構成
 電力変換装置100は、例えば、図1に示すように、第1直流端子31及び第2直流端子32と、複数(例えば、3つ)の交流端子41と、を備え、第1直流端子31と第2直流端子32との間に直流電源E1が接続され、複数の交流端子41に交流負荷RA1が接続される。交流負荷RA1は、例えば、3相モータである。電力変換装置100は、直流電源E1からの直流出力を交流電力に変換して交流負荷RA1へ出力する。直流電源E1は、例えば、太陽電池又は燃料電池を含む。直流電源E1は、DC-DCコンバータを含んでもよい。電力変換装置100では、複数の交流端子41が3つの交流端子41の場合、交流電力は、例えば、U相、V相及びW相を有する3相の交流電力である。
 電力変換装置100は、電力変換回路11と、複数(例えば、3つ)のスイッチ8と、複数(例えば、3つ)の共振用コンデンサ9と、回生用コンデンサ15と、共振用インダクタL1と、制御装置50と、を備える。また、電力変換装置100は、保護回路17と、コンデンサC10と、を更に備える。複数のスイッチ8の各々は、例えば、双方向スイッチである。
 電力変換回路11は、複数(例えば、3つ)の第1スイッチング素子1及び複数(例えば、3つ)の第2スイッチング素子2を有する。電力変換回路11では、複数の第1スイッチング素子1と複数の第2スイッチング素子2とを一対一に直列接続した複数(例えば、3つ)のスイッチング回路10が互いに並列接続されている。電力変換回路11では、複数の第1スイッチング素子1が第1直流端子31に接続されており、複数の第2スイッチング素子2が第2直流端子32に接続されている。複数の交流端子41は、複数のスイッチング回路10に一対一に対応する。複数の交流端子41の各々は、複数のスイッチング回路10のうち対応するスイッチング回路10における第1スイッチング素子1及び第2スイッチング素子2の接続点3に接続されている。複数のスイッチ8は、複数のスイッチング回路10に一対一に対応する。複数のスイッチ8の各々は、第1端81及び第2端82を有する。複数のスイッチ8の各々は、複数のスイッチング回路10のうち対応するスイッチング回路10における第1スイッチング素子1及び第2スイッチング素子2の接続点3に第1端81が接続されている。複数の共振用コンデンサ9は、複数のスイッチ8に一対一に対応する。複数の共振用コンデンサ9の各々は、複数のスイッチ8のうち対応するスイッチ8の第1端81と第2直流端子32との間に接続されている。共振用インダクタL1は、第3端及び第4端を有する。共振用インダクタL1では、第3端が複数のスイッチ8のうち対応するスイッチ8(図1の例では、3つのスイッチ8)の第2端82に接続されている。回生用コンデンサ15は、第5端153及び第6端154を有する。回生用コンデンサ15では、第5端153が第2直流端子32に接続されており、第6端154が共振用インダクタL1の第4端に接続されている。制御装置50は、複数の第1スイッチング素子1、複数の第2スイッチング素子2及び複数のスイッチ8を制御する。
 (2)電力変換装置の詳細
 以下では、説明の便宜上、複数のスイッチング回路10に関し、U相、V相及びW相に対応するスイッチング回路10を、それぞれ、スイッチング回路10U、スイッチング回路10V及びスイッチング回路10Wと称することもある。また、以下では、スイッチング回路10Uの第1スイッチング素子1及び第2スイッチング素子2を、第1スイッチング素子1U及び第2スイッチング素子2Uと称することもある。また、以下では、スイッチング回路10Vの第1スイッチング素子1及び第2スイッチング素子2を、第1スイッチング素子1V及び第2スイッチング素子2Vと称することもある。また、以下では、スイッチング回路10Wの第1スイッチング素子1及び第2スイッチング素子2を、第1スイッチング素子1W及び第2スイッチング素子2Wと称することもある。また、以下では、第1スイッチング素子1U及び第2スイッチング素子2Uの接続点3を接続点3Uと称し、第1スイッチング素子1V及び第2スイッチング素子2Vの接続点3を接続点3Vと称し、第1スイッチング素子1W及び第2スイッチング素子2Wの接続点3を接続点3Wと称することもある。また、以下では、接続点3Uに接続されている交流端子41を交流端子41Uと称し、接続点3Vに接続されている交流端子41を交流端子41Vと称し、接続点3Wに接続されている交流端子41を交流端子41Wと称することもある。また、以下では、第2スイッチング素子2Uに並列接続されている共振用コンデンサ9を共振用コンデンサ9Uと称し、第2スイッチング素子2Vに並列接続されている共振用コンデンサ9を共振用コンデンサ9Vと称し、第2スイッチング素子2Wに並列接続されている共振用コンデンサ9を共振用コンデンサ9Wと称することもある。また、以下では、接続点3Uに接続されているスイッチ8をスイッチ8Uと称し、接続点3Vに接続されているスイッチ8をスイッチ8Vと称し、接続点3Wに接続されているスイッチ8をスイッチ8Wと称することもある。
 電力変換装置100は、第1直流端子31に直流電源E1の高電位側の出力端子(正極)が接続され、第2直流端子32に直流電源E1の低電位側の出力端子(負極)が接続される。また、電力変換装置100は、例えば、3つの交流端子41U、41V及び41Wに交流負荷RA1のU相端子、V相端子及びW相端子がそれぞれ接続される。
 電力変換回路11では、複数(例えば、3つ)の第1スイッチング素子1及び複数(例えば、3つ)の第2スイッチング素子2の各々は、制御端子、第1主端子及び第2主端子を有する。複数の第1スイッチング素子1及び複数の第2スイッチング素子2の制御端子は、制御装置50に接続されている。電力変換装置100の複数のスイッチング回路10の各々では、第1スイッチング素子1の第1主端子が第1直流端子31に接続され、第1スイッチング素子1の第2主端子が第2スイッチング素子2の第1主端子に接続され、第2スイッチング素子2の第2主端子が第2直流端子32に接続されている。複数のスイッチング回路10の各々では、第1スイッチング素子1がハイサイドスイッチング素子(P側スイッチング素子)であり、第2スイッチング素子2がローサイドスイッチング素子(N側スイッチング素子)である。複数の第1スイッチング素子1及び複数の第2スイッチング素子2の各々は、例えば、IGBT(Insulated Gate Bipolar Transistor)である。したがって、複数の第1スイッチング素子1及び複数の第2スイッチング素子2の各々における、制御端子、第1主端子及び第2主端子は、それぞれ、ゲート端子、コレクタ端子及びエミッタ端子である。
 電力変換回路11は、複数(3つ)の第1スイッチング素子1に一対一に逆並列接続されている複数(3つ)の第1ダイオード4と、複数(3つ)の第2スイッチング素子2に一対一に逆並列接続されている複数(3つ)の第2ダイオード5と、を更に有する。複数の第1ダイオード4の各々では、第1ダイオード4のアノードが、この第1ダイオード4に対応する第1スイッチング素子1の第2主端子(エミッタ端子)に接続され、第1ダイオード4のカソードが、この第1ダイオード4に対応する第1スイッチング素子1の第1主端子(コレクタ端子)に接続されている。複数の第2ダイオード5の各々では、第2ダイオード5のアノードが、この第2ダイオード5に対応する第2スイッチング素子2の第2主端子(エミッタ端子)に接続され、第2ダイオード5のカソードが、この第2ダイオード5に対応する第2スイッチング素子2の第1主端子(コレクタ端子)に接続されている。
 第1スイッチング素子1Uと第2スイッチング素子2Uとの接続点3Uには、交流端子41Uを介して、例えば、交流負荷RA1のU相端子が接続される。また、第1スイッチング素子1Vと第2スイッチング素子2Vとの接続点3Vには、交流端子41Vを介して、例えば、交流負荷RA1のV相が接続される。第1スイッチング素子1Wと第2スイッチング素子2Wとの接続点3Wには、交流端子41Wを介して、例えば、交流負荷RA1のW相が接続される。
 複数の共振用コンデンサ9は、複数のスイッチ8に一対一に対応する。複数の共振用コンデンサ9の各々は、対応するスイッチ8の第1端81と第2直流端子32との間に接続されている。電力変換装置100は、複数の共振回路を有している。複数の共振回路は、共振用コンデンサ9Uと共振用インダクタL1とを有する共振回路と、共振用コンデンサ9Vと共振用インダクタL1とを有する共振回路と、共振用コンデンサ9Wと共振用インダクタL1とを有する共振回路と、を含む。複数の共振回路では、共振用インダクタL1が共通である。
 複数のスイッチ8の各々は、例えば、逆並列接続された2つの第1IGBT6及び第2IGBT7を有する。スイッチ8の各々では、第1IGBT6のコレクタ端子と第2IGBT7のエミッタ端子とが接続され、第1IGBT6のエミッタ端子と第2IGBT7のコレクタ端子とが接続されている。複数のスイッチ8の各々では、第1IGBT6のエミッタ端子は、その第1IGBT6を有するスイッチ8に対応するスイッチング回路10の接続点3に接続されている。複数のスイッチ8の各々では、第2IGBT7のコレクタ端子は、その第2IGBT7を有するスイッチ8に対応するスイッチング回路10の接続点3に接続されている。スイッチ8Uは、第1スイッチング素子1Uと第2スイッチング素子2Uとの接続点3Uに接続されている。スイッチ8Vは、第1スイッチング素子1Vと第2スイッチング素子2Vとの接続点3Vに接続されている。スイッチ8Wは、第1スイッチング素子1Wと第2スイッチング素子2Wとの接続点3Wに接続されている。以下では、説明の便宜上、スイッチ8Uの第1IGBT6及び第2IGBT7を、それぞれ、第1IGBT6U及び第2IGBT7Uと称し、スイッチ8Vの第1IGBT6及び第2IGBT7を、それぞれ、第1IGBT6V及び第2IGBT7Vと称し、スイッチ8Wの第1IGBT6及び第2IGBT7を、それぞれ第1IGBT6W及び第2IGBT7Wと称することもある。
 複数のスイッチ8は、制御装置50によって制御される。言い換えれば、第1IGBT6U、第2IGBT7U、第1IGBT6V、第2IGBT7V、第1IGBT6W及び第2IGBT7Wは、制御装置50によって制御される。
 共振用インダクタL1は、第3端及び第4端を有する。共振用インダクタL1では、共振用インダクタL1の第3端が、共通接続点25に接続されている。共通接続点25には、複数のスイッチ8の第2端82が共通接続されている。共振用インダクタL1の第4端は、回生用コンデンサ15の第6端154に接続されている。
 回生用コンデンサ15は、共振用インダクタL1の第4端と第2直流端子32との間に接続されている。回生用コンデンサ15は、例えば、フィルムコンデンサである。
 保護回路17は、第3ダイオード13と、第4ダイオード14と、を有する。第3ダイオード13は、共通接続点25と第1直流端子31との間に接続されている。第3ダイオード13では、第3ダイオード13のアノードが、共通接続点25に接続されている。また、第3ダイオード13では、第3ダイオード13のカソードが、第1直流端子31に接続されている。第4ダイオード14は、共通接続点25と第2直流端子32との間に接続されている。第4ダイオード14では、第4ダイオード14のアノードが、第2直流端子32に接続されている。第4ダイオード14では、第4ダイオード14のカソードが、共通接続点25に接続されている。したがって、第4ダイオード14は、第3ダイオード13に直列接続されている。
 コンデンサC10は、第1直流端子31と第2直流端子32との間に接続されており、電力変換回路11に並列接続されている。コンデンサC10は、例えば、電解コンデンサである。
 制御装置50は、複数の第1スイッチング素子1、複数の第2スイッチング素子2及び複数のスイッチ8を制御する。制御装置50の実行主体は、コンピュータシステムを含んでいる。コンピュータシステムは、1又は複数のコンピュータを有している。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における制御装置50の実行主体としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されていてもよいが、電気通信回線を通じて提供されてもよいし、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ(磁気ディスク)等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1乃至複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。
 制御装置50は、複数の第1スイッチング素子1U、1V、1Wそれぞれのオンオフを制御する制御信号SU1、SV1、SW1を出力する。制御信号SU1、SV1、SW1の各々は、例えば、電位レベルが第1電位レベル(以下、ローレベルともいう)と、第1電位レベルよりも高電位の第2電位レベル(以下、ハイレベルともいう)と、の間で変化するPWM(Pulse Width Modulation)信号である。第1スイッチング素子1U、1V、1Wは、それぞれ、制御信号SU1、SV1、SW1がハイレベルのときにオン状態となり、ローレベルのときにオフ状態となる。また、制御装置50は、複数の第2スイッチング素子2U、2V、2Wそれぞれのオンオフを制御する制御信号SU2、SV2、SW2を出力する。制御信号SU2、SV2、SW2の各々は、例えば、電位レベルが第1電位レベル(以下、ローレベルともいう)と、第1電位レベルよりも高電位の第2電位レベル(以下、ハイレベルともいう)と、の間で変化するPWM信号である。第2スイッチング素子2U、2V、2Wは、それぞれ、制御信号SU2、SV2、SW2がハイレベルのときにオン状態となり、ローレベルのときにオフ状態となる。
 制御装置50は、のこぎり波状のキャリア信号(図2参照)を用いて、複数の第1スイッチング素子1U、1V、1Wそれぞれに対応する制御信号SU1、SV1、SW1、及び、複数の第2スイッチング素子2U、2V、2Wそれぞれに対応する制御信号SU2、SV2、SW2を生成する。より詳細には、制御装置50は、少なくともキャリア信号及びU相の電圧指令に基づいて、第1スイッチング素子1U、第2スイッチング素子2Uそれぞれへ与える制御信号SU1、SU2を生成する。また、制御装置50は、少なくともキャリア信号及びV相の電圧指令に基づいて、第1スイッチング素子1V、第2スイッチング素子2Vそれぞれへ与える制御信号SV1、SV2を生成する。また、制御装置50は、少なくともキャリア信号及びW相の電圧指令に基づいて、第1スイッチング素子1W、第2スイッチング素子2Wそれぞれへ与える制御信号SW1、SW2を生成する。U相の電圧指令、V相の電圧指令及びW相の電圧指令は、例えば、互いの位相が120°異なる正弦波状の信号であり、それぞれ、時間とともに値(電圧指令値)が変化する。なお、キャリア信号の波形は、のこぎり波状に限らず、例えば、三角波でもよいし、図2の、のこぎり波の左右を反転させたのこぎり波でもよい。また、U相の電圧指令、V相の電圧指令及びW相の電圧指令の1周期の長さは、同じである。また、U相の電圧指令、V相の電圧指令及びW相の電圧指令の1周期の長さは、キャリア信号の1周期の長さよりも長い。
 制御装置50から第1スイッチング素子1U、第2スイッチング素子2Uそれぞれへ与える制御信号SU1、SU2のデューティは、U相の電圧指令に基づいて変化する。図4には、制御信号SU1のデューティをU相デューティとして示してある。制御装置50(図1参照)は、U相の電圧指令とキャリア信号とを比較して第1スイッチング素子1Uへ与える制御信号SU1を生成する。また、制御装置50は、第1スイッチング素子1Uへ与える制御信号SU1を反転させて第2スイッチング素子2Uへ与える制御信号SU2を生成する。また、制御装置50は、第1スイッチング素子1U及び第2スイッチング素子2Uそれぞれのオン期間が重複しないように、制御信号SU1のハイレベル期間と制御信号SU2のハイレベル期間との間にデッドタイム期間Td(図2参照)を設定する。
 制御装置50から第1スイッチング素子1V、第2スイッチング素子2Vそれぞれへ与える制御信号SV1、SV2のデューティは、V相の電圧指令に基づいて変化する。図4には、制御信号SV1のデューティをV相デューティとして示してある。制御装置50(図1参照)は、V相の電圧指令とキャリア信号とを比較して第1スイッチング素子1Vへ与える制御信号SV1を生成する。また、制御装置50は、第1スイッチング素子1Vへ与える制御信号SV1を反転させて第2スイッチング素子2Vへ与える制御信号SV2を生成する。また、制御装置50は、第1スイッチング素子1V及び第2スイッチング素子2Vそれぞれのオン期間が重複しないように、制御信号SV1のハイレベル期間と制御信号SV2のハイレベル期間との間にデッドタイム期間Td(図2参照)を設定する。
 制御装置50から第1スイッチング素子1W、第2スイッチング素子2Wそれぞれへ与える制御信号SW1、SW2のデューティは、W相の電圧指令に基づいて変化する。図4には、制御信号SW1のデューティをW相デューティとして示してある。制御装置50(図1参照)は、W相の電圧指令とキャリア信号とを比較して第1スイッチング素子1Wへ与える制御信号SW1を生成する。また、制御装置50は、第1スイッチング素子1Wへ与える制御信号SW1を反転させて第2スイッチング素子2Wへ与える制御信号SW2を生成する。また、制御装置50は、第1スイッチング素子1W及び第2スイッチング素子2Wそれぞれのオン期間が重複しないように、制御信号SW1のハイレベル期間と制御信号SW2のハイレベル期間との間にデッドタイム期間Td(図3参照)を設定する。
 U相の電圧指令、V相の電圧指令及びW相の電圧指令は、例えば、互いの位相が120°異なる正弦波状の信号であり、それぞれ、時間とともに値が変化する。したがって、制御信号SU1のデューティ(U相デューティ)、制御信号SV1のデューティ(V相デューティ)及び制御信号SW1のデューティ(W相デューティ)は、例えば、図4に示すように、互いの位相が120°異なる正弦波状に変化する。同様に、制御信号SU2のデューティ、制御信号SV2のデューティ及び制御信号SW2のデューティは、互いの位相が120°異なる正弦波状に変化する。
 制御装置50は、キャリア信号と各電圧指令と交流負荷RA1の状態に関する情報とに基づいて各制御信号SU1、SU2、SV1、SV2、SW1、SW2を生成する。例えば、交流負荷RA1が3相モータの場合、交流負荷RA1の状態に関する情報は、例えば、交流負荷RA1のU相、V相及びW相それぞれに流れる出力電流(以下、負荷電流ともいう)iU、iV、iWを検出する複数の電流センサからの検出値を含む。
 複数のスイッチ8、共振用インダクタL1、複数の共振用コンデンサ9及び回生用コンデンサ15は、複数の第1スイッチング素子1及び複数の第2スイッチング素子2のゼロ電圧ソフトスイッチングを行うために設けられている。
 電力変換装置100では、制御装置50が、電力変換回路11の複数の第1スイッチング素子1及び第2スイッチング素子2の他に、複数のスイッチ8も制御する。
 制御装置50は、第1IGBT6U、第2IGBT7U、第1IGBT6V、第2IGBT7V、第1IGBT6W及び第2IGBT7Wそれぞれのオンオフを制御する制御信号SU6、SU7、SV6、SV7、SW6、SW7を生成して、第1IGBT6U、第2IGBT7U、第1IGBT6V、第2IGBT7V、第1IGBT6W及び第2IGBT7Wそれぞれのゲート端子へ出力する。
 スイッチ8Uは、第1IGBT6Uがオン状態で、かつ、第2IGBT7Uがオフ状態の場合、回生用コンデンサ15-共振用インダクタL1-スイッチ8U-共振用コンデンサ9Uの経路で流れる充電電流を通過させることができる。充電電流は、共振用コンデンサ9Uを充電する電流である。スイッチ8Uは、第1IGBT6Uがオフ状態で、かつ、第2IGBT7Uがオン状態の場合、共振用コンデンサ9U-スイッチ8U-共振用インダクタL1-回生用コンデンサ15の経路で流れる放電電流を通過させることができる。放電電流は、共振用コンデンサ9Uの電荷を放電させる電流である。
 スイッチ8Vは、第1IGBT6Vがオン状態で、かつ、第2IGBT7Vがオフ状態の場合、回生用コンデンサ15-共振用インダクタL1-スイッチ8V-共振用コンデンサ9Vの経路で流れる充電電流を通過させることができる。充電電流は、共振用コンデンサ9Vを充電する電流である。スイッチ8Vは、第1IGBT6Vがオフ状態で、かつ、第2IGBT7Vがオン状態の場合、共振用コンデンサ9V-スイッチ8V-共振用インダクタL1-回生用コンデンサ15の経路で流れる放電電流を通過させることができる。放電電流は、共振用コンデンサ9Vの電荷を放電させる電流である。
 スイッチ8Wは、第1IGBT6Wがオン状態で、かつ、第2IGBT7Wがオフ状態の場合、回生用コンデンサ15-共振用インダクタL1-スイッチ8W-共振用コンデンサ9Wの経路で流れる充電電流を通過させることができる。充電電流は、共振用コンデンサ9Wを充電する電流である。スイッチ8Wは、第1IGBT6Wがオフ状態で、かつ、第2IGBT7Wがオン状態の場合、共振用コンデンサ9W-スイッチ8W-共振用インダクタL1-回生用コンデンサ15の経路で流れる放電電流を通過させることができる。放電電流は、共振用コンデンサ9Wの電荷を放電させる電流である。
 (3)電力変換装置の動作
 以下では、共振用インダクタL1に流れる電流iL1について図1中の矢印の向きに流れているときの極性を正とし、図1中の矢印の向きと反対の向きに流れているときの極性を負として説明する。また、以下では、交流負荷RA1のU相、V相、W相それぞれに流れる負荷電流iU、iV、iWについて図1中の矢印の向きに流れているときの極性を正とし、図1中の矢印の向きと反対の向きに流れているときの極性を負として説明する。また、共振用コンデンサ9U、9V、9Wそれぞれに流れる電流i9U、i9V、i9Wについて、図1中の矢印の向きに流れているときの極性を正とし、図1中の矢印の向きと反対の向きに流れているときの極性を負として説明する。したがって、共振用コンデンサ9U、9V、9Wが放電する放電動作の場合には、電流i9U、i9V、i9Wの極性が正となり、共振用コンデンサ9U、9V、9Wが充電される充電動作の場合には、電流i9U、i9V、i9Wの極性が負となる。
 制御装置50は、電力変換装置100の起動時動作として回生用コンデンサ15を充電させる充電制御動作と、電力変換装置100の定常動作として複数の交流端子41それぞれに出力電流iU、iV、iWを流させるインバータ制御動作と、を行う。
 以下では、制御装置50がインバータ制御動作を行う場合の電力変換装置100の動作について説明した後で、制御装置50が充電制御動作を行う場合の電力変換装置100の動作について説明する。
 (3.1)制御装置がインバータ制御動作を行う場合の電力変換装置の動作
 電力変換装置100では、例えば、スイッチ8Uの第1IGBT6Uがオン状態で共振用インダクタL1に電流iL1が正の極性で流れている状態から、スイッチ8Uの第1IGBT6Uがオフ状態に変化する場合がある。この場合、共振用インダクタL1に流れる電流iL1は、共振用インダクタL1のエネルギが消費されて電流iL1がゼロになるまで、第3ダイオード13を介して電力変換回路11に回生される。また、電力変換装置100では、例えば、スイッチ8Uの第2IGBT7Uがオン状態で共振用インダクタL1に電流iL1が負の極性で流れている状態から、第2IGBT7Uがオフ状態になる場合がある。この場合、共振用インダクタL1に流れる電流iL1は、共振用インダクタL1のエネルギが消費されて電流iL1がゼロになるまで、第4ダイオード14-共振用インダクタL1-回生用コンデンサ15の経路で流れる。
 また、電力変換装置100では、例えば、スイッチ8Vの第1IGBT6Vがオン状態で共振用インダクタL1に電流iL1が正の極性で流れている状態から、スイッチ8Vの第1IGBT6Vがオフ状態に変化する場合がある。この場合、共振用インダクタL1に流れる電流iL1は、共振用インダクタL1のエネルギが消費されて電流iL1がゼロになるまで、第3ダイオード13を介して電力変換回路11に回生される。また、電力変換装置100では、例えば、スイッチ8Vの第2IGBT7Vがオン状態で共振用インダクタL1に電流iL1が負の極性で流れている状態から、第2IGBT7Vがオフ状態になる場合がある。この場合、共振用インダクタL1に流れる電流iL1は、共振用インダクタL1のエネルギが消費されて電流iL1がゼロになるまで、第4ダイオード14-共振用インダクタL1-回生用コンデンサ15の経路で流れる。
 また、電力変換装置100では、例えば、スイッチ8Wの第1IGBT6Wがオン状態で共振用インダクタL1に電流iL1が正の極性で流れている状態から、スイッチ8Wの第1IGBT6Wがオフ状態になる場合がある。この場合、共振用インダクタL1に流れる電流iL1は、共振用インダクタL1のエネルギが消費されて電流iL1がゼロになるまで、第3ダイオード13を介して電力変換回路11に回生される。また、電力変換装置100では、例えば、スイッチ8Wの第2IGBT7Wがオン状態で共振用インダクタL1に電流iL1が負の極性で流れている状態から、第2IGBT7Wがオフ状態になる場合がある。この場合、共振用インダクタL1に流れる電流iL1は、共振用インダクタL1のエネルギが消費されて電流iL1がゼロになるまで第4ダイオード14-共振用インダクタL1-回生用コンデンサ15の経路で流れる。
 制御装置50は、複数のスイッチング回路10の各々について第1スイッチング素子1U、1V、1Wへの制御信号SU1、SV1、SW1のハイレベル期間と第2スイッチング素子2U、2V、2Wへの制御信号SU2、SV2、SW2のハイレベル期間との間にデッドタイム期間Tdを設定する。
 以下では、複数の第1スイッチング素子1及び複数の第2スイッチング素子2それぞれのゼロ電圧ソフトスイッチングの基本動作について、図1~8を参照して説明する。基本動作は、共振用インダクタL1に、複数のスイッチ8のうち2つ以上のスイッチ8それぞれを通る共振電流が同時に流れない場合の動作である。基本動作を説明した後で、制御装置50が複数のスイッチ8のうち2つ以上のスイッチ8それぞれを通る共振電流が同時に流れると判断した場合の動作について説明する。
 (3.1.1)基本動作
 第1スイッチング素子1のゼロ電圧ソフトスイッチングでは、ゼロ電圧ソフトスイッチングの対象とする第1スイッチング素子1のターンオン直前に第1スイッチング素子1の両端電圧をゼロにする必要がある。また、第2スイッチング素子2のゼロ電圧ソフトスイッチングでは、ゼロ電圧ソフトスイッチングの対象とする第2スイッチング素子2のターンオン直前に第2スイッチング素子2の両端電圧をゼロにする必要がある。以下では、ゼロ電圧ソフトスイッチングの対象とするスイッチング素子(第1スイッチング素子1又は第2スイッチング素子2)を対象スイッチング素子ともいう。
 制御装置50の基本動作は、対象スイッチング素子に接続された交流端子41に流れる負荷電流の極性(正/負)と、対象スイッチング素子に直列又は並列に接続されている共振用コンデンサ9の動作(充電動作/放電動作)と、の違いにより異なる。負荷電流は、交流端子41から交流負荷RA1に向かって流れるときの極性が正であり、交流負荷RA1から交流端子41へ向かって流れるときの極性が負である。共振用コンデンサ9の充電動作のときには、共振用コンデンサ9の両端電圧が増加する。また、共振用コンデンサ9の放電動作のときには、共振用コンデンサ9の両端電圧が減少する。複数の第2スイッチング素子2の各々の両端電圧は、第2スイッチング素子2に並列接続されている共振用コンデンサ9の両端電圧と同じである。
 (3.1.1.1)負荷電流>0の場合に第1スイッチング素子をソフトスイッチングさせるための動作
 制御装置50は、ソフトスイッチングの対象が第1スイッチング素子1(以下、対象第1スイッチング素子1ともいう)であり、対象第1スイッチング素子1に接続された交流端子41に流れる負荷電流の極性が正の場合、対象第1スイッチング素子1に対応する第1IGBT6をオンさせる。これにより、制御装置50は、対象第1スイッチング素子1に接続されている共振用インダクタL1と共振用コンデンサ9とを共振させて回生用コンデンサ15から共振用コンデンサ9を充電させ、対象第1スイッチング素子1の両端電圧をゼロにする。これにより、電力変換装置100は、対象第1スイッチング素子1のゼロ電圧ソフトスイッチングを実現することができる。
 図2には、対象第1スイッチング素子がスイッチング回路10Uの第1スイッチング素子1Uである場合について、制御装置50からスイッチング回路10Uの第1スイッチング素子1U、第2スイッチング素子2Uそれぞれへ与える制御信号SU1、SU2を図示してある。また、図2には、制御装置50からスイッチ8Uの第1IGBT6Uへ与える制御信号SU6と、交流負荷RA1のU相に流れる負荷電流iUと、共振用インダクタL1に流れる電流iL1と、第1スイッチング素子1Uの両端電圧V1uと、第2スイッチング素子2Uの両端電圧V2uと、を図示してある。また、図2には、対象第1スイッチング素子がスイッチング回路10Vの第1スイッチング素子1Vである場合について、制御装置50からスイッチング回路10Vの第1スイッチング素子1V、第2スイッチング素子2Vそれぞれへ与える制御信号SV1、SV2を図示してある。また、図2には、制御装置50からスイッチ8Vの第1IGBT6Vへ与える制御信号SV6と、交流負荷RA1のV相に流れる負荷電流iVと、共振用インダクタL1に流れる電流iL1と、第1スイッチング素子1Vの両端電圧V1vと、第2スイッチング素子2Vの両端電圧V2vと、を図示してある。
 また、図2には、制御装置50において同相の第1スイッチング素子1及び第2スイッチング素子2が同時にオン状態になることを防止するために設定されたデッドタイム期間Tdを図示してある。また、図2には、制御装置50においてスイッチ8Uの第1IGBT6Uの制御信号SU6に対して設定する追加時間Tauと、スイッチ8Vの第1IGBT6Vの制御信号SV6に対して設定する追加時間Tavと、を図示してある。追加時間Tau及び追加時間Tavについては、後述する。
 図3には、対象第1スイッチング素子がスイッチング回路10Wの第1スイッチング素子1Wである場合について、制御装置50からスイッチング回路10Wの第1スイッチング素子1W、第2スイッチング素子2Wそれぞれへ与える制御信号SW1、SW2を図示してある。図3には、制御装置50からスイッチ8Wの第1IGBT6Wへ与える制御信号SW6と、交流負荷RA1のW相に流れる負荷電流iWと、を図示してある。また、図3には、共振用インダクタL1に流れる電流iL1を図示してある。また、図3には、第1スイッチング素子1Wの両端電圧V1wと、第2スイッチング素子2Wの両端電圧V2wと、を図示してある。図3では、直流電源E1の電圧値をVdとして図示してある。
 また、図3には、制御装置50において第1スイッチング素子1W及び第2スイッチング素子2Wが同時にオン状態になることを防止するために設定されたデッドタイム期間Tdを図示してある。また、図3には、制御装置50においてスイッチ8Wの第1IGBT6Wの制御信号SW6に対して設定する追加時間Tawを図示してある。追加時間Tawについては、後述する。
 上述の追加時間Tauは、図2に示すように、制御信号SU6のハイレベル期間の開始時点(時点t1)をデッドタイム期間Tdの開始時点(時点t2)よりも早めて制御信号SU6のハイレベル期間をデッドタイム期間Tdよりも長くするために設定する時間である。追加時間Tauの長さは、負荷電流iUの値に基づいて設定される。デッドタイム期間Tdの開始時点(時点t2)からLC共振を開始させるためには、デッドタイム期間Tdの開始時点(時点t2)で電流iL1の値が負荷電流iUの値に一致することが望ましい。これは、iL1<iUとなっている間は電流iL1の全電流が交流負荷RA1に流れるので、共振用コンデンサ9Uを充電することができないためである。制御信号SU6のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t3)と同じか、それ以降であればよい。図2では、制御信号SU6のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t3)と同じに設定した例を示してある。制御装置50は、制御信号SU6のハイレベル期間をTau+Tdに設定する。スイッチング回路10Uでは、第2スイッチング素子2Uの両端電圧V2uは、デッドタイム期間Tdの終了時点(時点t3)でVdとなり、第1スイッチング素子1Uの両端電圧V1uは、デッドタイム期間Tdの終了時点(時点t3)でゼロとなる。図2の例では、共振用インダクタL1に流れる電流iL1は、制御信号SU6のハイレベル期間の開始時点(時点t1)から流れ始め、デッドタイム期間Tdの終了時点(時点t3)から追加時間Tauが経過した時点t4でゼロになる。電流iL1に関しては、デッドタイム期間Tdの開始時点(時点t2)からiL1≧iUとなることで、図2における上から5段目の電流波形に関して斜線で示す領域の電流iL1が共振用コンデンサ9Uに流れ込みLC共振が発生する。電流iL1は、デッドタイム期間Tdの終了時点(時点t3)以降は共振用インダクタL1に直接接続されている第3ダイオード13を介して電力変換回路11に回生される。
 制御装置50は、上述の通り、デッドタイム期間Tdの開始時点(時点t2)でLC共振を開始させデッドタイム期間Tdの終了時点で共振半周期を終了させるために、デッドタイム期間Tdの開始時点(時点t2)でiL1=iUとなるように、負荷電流iUに基づいて追加時間Tauを決定する。より詳細には、制御装置50では、例えば、電流センサによる負荷電流iUの検出結果又はその信号処理値、又は負荷電流iUの推定値と、あらかじめ記憶している共振用インダクタL1のインダクタンスLと、回生用コンデンサ15の両端電圧V15の検出結果とを用いて、Tau=iU×(L/V15)の演算により追加時間Tauを決定する。このときの負荷電流iUの検出結果又はその信号処理値としては、追加時間Tauを加算するキャリア周期での、又はそのキャリア周期に最も近いタイミング等での検出値を用いる。また、このときの負荷電流iUの推定値は、追加時間Tauを加算するキャリア周期での負荷電流iUを推定した値等を用いる。基本動作の場合の共振半周期は、共振用インダクタL1と1つの共振用コンデンサ9とを含む共振回路の共振周波数の逆数である共振周期の半分である。したがって、共振用インダクタL1のインダクタンスをLとし、共振用コンデンサ9のキャパシタンスをCとすると、共振半周期は、π×(L・C)1/2である。制御装置50では、基本動作のときの共振半周期は、例えば、デッドタイム期間Tdの長さと同じになるように設定されている。
 上述の追加時間Tavは、図2に示すように、制御信号SV6のハイレベル期間の開始時点(時点t5)をデッドタイム期間Tdの開始時点(時点t6)よりも早めて制御信号SV6のハイレベル期間をデッドタイム期間Tdよりも長くするために設定する時間である。追加時間Tavの長さは、負荷電流iVの値に基づいて設定される。デッドタイム期間Tdの開始時点(時点t6)からLC共振を開始させるためには、デッドタイム期間Tdの開始時点(時点t6)で電流iL1の値が負荷電流iVの値に一致することが望ましい。これは、iL1<iVとなっている間は電流iL1の全電流が交流負荷RA1に流れるので、共振用コンデンサ9Vを充電することができないためである。制御信号SV6のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t7)と同じか、それ以降であればよい。図2では、制御信号SV6のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t7)と同じに設定した例を示してある。制御装置50は、制御信号SV6のハイレベル期間をTav+Tdに設定する。第1スイッチング素子1Vの両端電圧V1vは、デッドタイム期間Tdの終了時点(時点t7)でゼロとなる。図2の例では、共振用インダクタL1に流れる電流iL1は、制御信号SV6のハイレベル期間の開始時点(時点t5)から流れ始め、デッドタイム期間Tdの終了時点(時点t7)から追加時間Tavが経過した時点t8でゼロになる。電流iL1に関しては、デッドタイム期間Tdの開始時点(時点t6)からiL1≧iVとなることで、図2における上から10段目の電流波形に関して斜線で示す領域の電流iL1が共振用コンデンサ9Vに流れ込みLC共振が発生する。電流iL1は、デッドタイム期間Tdの終了時点(時点t7)以降は共振用インダクタL1に直接接続されている第3ダイオード13を介して電力変換回路11に回生される。
 制御装置50は、上述の通り、デッドタイム期間Tdの開始時点(時点t6)でLC共振を開始させるために、デッドタイム期間Tdの開始時点(時点t6)でiL1=iVとなるように、負荷電流iVに基づいて追加時間Tavを決定する。より詳細には、制御装置50では、例えば、電流センサによる負荷電流iVの検出結果又はその信号処理値、又は負荷電流iVの推定値と、あらかじめ記憶している共振用インダクタL1のインダクタンスLと、回生用コンデンサ15の両端電圧V15の検出結果とを用いて、Tav=iV×(L/V15)の演算により追加時間Tavを決定する。このときの負荷電流iVの検出結果又はその信号処理値としては、追加時間Tavを加算するキャリア周期での、又はそのキャリア周期に最も近いタイミング等での検出値を用いる。また、このときの負荷電流iVの推定値は、追加時間Tavを加算するキャリア周期での負荷電流iVを推定した値等を用いる。
 上述の追加時間Tawは、図3に示すように、制御信号SW6のハイレベル期間の開始時点(時点t9)をデッドタイム期間Tdの開始時点(時点t10)よりも早めて制御信号SW6のハイレベル期間をデッドタイム期間Tdよりも長くするために設定する時間である。追加時間Tawの長さは、負荷電流iWの値に基づいて設定される。デッドタイム期間Tdの開始時点(時点t10)からLC共振を開始させるためには、デッドタイム期間Tdの開始時点(時点t10)で電流iL1の値が負荷電流iWの値に一致することが望ましい。これは、iL1<iWとなっている間は電流iL1の全電流が交流負荷RA1に流れるので、共振用コンデンサ9Wを充電することができないためである。制御信号SW6のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t11)と同じか、それ以降であればよい。図3では、制御信号SW6のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t11)と同じに設定した例を示してある。制御装置50は、制御信号SW6のハイレベル期間をTaw+Tdに設定する。第1スイッチング素子1Wの両端電圧V1wは、デッドタイム期間Tdの終了時点(時点t11)でゼロとなる。図3の例では、共振用インダクタL1に流れる電流iL1は、制御信号SW6のハイレベル期間の開始時点(時点t9)から流れ始め、デッドタイム期間Tdの終了時点(時点t11)から追加時間Tawが経過した時点t12でゼロになる。電流iL1に関しては、デッドタイム期間Tdの開始時点(時点t10)からiL1≧iWとなることで、図3における上から4段目の電流波形に関して斜線で示す領域の電流iL1が共振用コンデンサ9Wに流れ込みLC共振が発生する。電流iL1は、デッドタイム期間Tdの終了時点(時点t11)以降は共振用インダクタL1に直接接続されている第3ダイオード13を介して電力変換回路11に回生される。
 制御装置50は、負荷電流iWに基づいて追加時間Tawを決定する。より詳細には、制御装置50では、電流センサによる負荷電流iWの検出結果と、あらかじめ記憶している共振用インダクタL1のインダクタンスLと、回生用コンデンサ15の両端電圧V15の検出結果とを用いて、Taw=iW×(L/V15)の演算により追加時間Tawを決定する。このときの負荷電流iWの検出結果又はその信号処理値としては、追加時間Tawを加算するキャリア周期での、又はそのキャリア周期に最も近いタイミング等での検出値を用いる。また、このときの負荷電流iWの推定値は、追加時間Tawを加算するキャリア周期での負荷電流iWを推定した値等を用いる。
 (3.1.1.2)負荷電流>0の場合に第2スイッチング素子をソフトスイッチングさせるための動作
 制御装置50は、ソフトスイッチングの対象が第2スイッチング素子2(以下、対象第2スイッチング素子2ともいう)であり、対象第2スイッチング素子2に接続された交流端子41に流れる負荷電流(負荷電流iU又は負荷電流iV又は負荷電流iW)の極性が正の場合、負荷電流の電流値と第1電流閾値I1(=Ith、図5参照)とを比較する。制御装置50は、負荷電流の電流値が第1電流閾値I1よりも大きい場合、スイッチ8をオンさせず、負荷電流の電流値が第1電流閾値I1よりも小さい場合、デッドタイム期間Tdにスイッチ8をオンさせる。電力変換装置100では、負荷電流の電流値が第1電流閾値I1よりも大きい場合、制御装置50が対象第2スイッチング素子2に対応するスイッチ8をオンさせることなく、対象第2スイッチング素子2に並列接続されている共振用コンデンサ9Uを負荷電流iUにより放電動作させることができる。これにより、電力変換装置100は、対象第2スイッチング素子2のゼロ電圧ソフトスイッチングを実現できる。
 図6には、対象第2スイッチング素子2がスイッチング回路10Uの第2スイッチング素子2Uであり、負荷電流の電流値が第1電流閾値I1よりも大きい場合について、制御信号SU1、SU2、SU7と、負荷電流iUと、共振用コンデンサ9Uから流れる電流i9Uと、第2スイッチング素子2Uの両端電圧V2uと、を図示してある。また、図6には、デッドタイム期間Tdと、制御装置50においてスイッチ8Uの第2IGBT7Uの制御信号SU7に対して設定する追加時間Tauを図示してある。
 制御装置50は、負荷電流iUの電流値が第1電流閾値I1よりも大きい場合、制御信号SU7にハイレベル期間を設けない。この場合、電力変換装置100では、デッドタイム期間Tdの開始時点(時点t22)で共振用コンデンサ9Uから電流i9Uが流れ始めて、デッドタイム期間Tdの終了時点(時点t23)よりも前に電流i9Uがゼロまで低下し、デッドタイム期間Tdの終了時点(時点t23)よりも前に第2スイッチング素子2Uの両端電圧V2uがゼロになる。これにより、電力変換装置100では、デッドタイム期間Tdの終了時点(時点t23)で制御信号SU2がローレベルからハイレベルに変化したときに、第2スイッチング素子2Uがゼロ電圧ソフトスイッチングされる。
 制御装置50は、負荷電流iUの電流値が第1電流閾値I1よりも小さい場合、例えば図6中に二点鎖線で示すように制御信号SU7にハイレベル期間を設ける。このときの制御信号SU7のハイレベル期間の開始時点は、例えば、デッドタイム期間Tdの開始時点(時点t22)と同じである。また、制御信号SU7のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t23)と同じである。これにより、電力変換装置100では、デッドタイム期間Tdの終了時点(時点t23)よりも前に第2スイッチング素子2Uの両端電圧V2uがゼロになる。よって、電力変換装置100では、デッドタイム期間Tdの終了時点(時点t23)で制御信号SU2がローレベルからハイレベルに変化したときに、第2スイッチング素子2Uがゼロ電圧ソフトスイッチングされる。制御信号SU7のハイレベル期間の開始時点は、デッドタイム期間Tdの開始時点よりも追加時間Tauだけ早い時点t21であってもよい。制御信号SU7のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t23)よりも追加時間Tauだけ遅い時点t24であってもよい。なお、ハイレベル期間においてデッドタイム期間Tdと重複する期間前後の時間は、追加時間Tauに限らず、他の設定時間でもよい。
 (3.1.1.3)負荷電流<0の場合に第2スイッチング素子をソフトスイッチングさせるための動作
 制御装置50は、対象第2スイッチング素子2に接続された交流端子41に流れる負荷電流(負荷電流iU又は負荷電流iV又は負荷電流iW)の極性が負の場合、対象第2スイッチング素子2に対応する第2IGBT7をオンさせる。これにより、制御装置50は、対象第2スイッチング素子2に接続されている共振用コンデンサ9と共振用インダクタL1とを共振させて共振用コンデンサ9から放電させ、対象第2スイッチング素子2の両端電圧をゼロにする。これにより、電力変換装置100は、対象第2スイッチング素子2のゼロ電圧ソフトスイッチングを実現することができる。
 図7には、対象第2スイッチング素子2がスイッチング回路10Uの第2スイッチング素子2Uである場合について、制御信号SU1、SU2、SU7と、負荷電流iUと、共振用インダクタL1に流れる電流iL1と、第2スイッチング素子2Uの両端電圧V2uと、を図示してある。
 また、図7には、制御装置50において同相の第1スイッチング素子1及び第2スイッチング素子2が同時にオン状態になることを防止するために設定されたデッドタイム期間Tdを図示してある。また、図7には、制御装置50においてスイッチ8Uの第2IGBT7Uの制御信号SU7に対して設定する追加時間Tauを図示してある。制御信号SU7のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t33)と同じか、それ以降であればよい。図7では、制御信号SU7のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t33)と同じに設定した例を示してある。制御装置50は、制御信号SU7のハイレベル期間をTau+Tdに設定する。スイッチング回路10Uでは、第2スイッチング素子2Uの両端電圧V2uは、デッドタイム期間Tdの終了時点(時点t33)でゼロとなる。図7の例では、共振用インダクタL1に流れる電流iL1は、制御信号SU7のハイレベル期間の開始時点(時点t31)から流れ始め、デッドタイム期間Tdの終了時点(時点t33)から追加時間Tauが経過した時点t34でゼロになる。電流iL1に関しては、デッドタイム期間Tdの開始時点(時点t32)からiL1≦iUとなることで、LC共振が発生し共振用コンデンサ9Uから共振用インダクタL1に向かう共振電流(共振用コンデンサ9Uの放電電流)が流れる。電流iL1は、デッドタイム期間Tdの終了時点(時点t33)以降は共振用インダクタL1に直接接続されている第4ダイオード14を介して電力変換回路11に回生される。
 制御装置50は、デッドタイム期間Tdの開始時点(時点t32)でLC共振を開始させデッドタイム期間Tdの終了時点(時点t33)で共振半周期を終了させるために、デッドタイム期間Tdの開始時点(時点t32)でiL1=iUとなるように、負荷電流iUに基づいて追加時間Tauを決定する。より詳細には、制御装置50では、例えば、電流センサによる出力電流iUの検出結果又はその信号処理値、又は負荷電流iUの推定値と、あらかじめ記憶している共振用インダクタL1のインダクタンスLと、回生用コンデンサ15の両端電圧V15の検出結果とを用いて、Tau=|iU|×(L/V15)の演算により追加時間Tauを決定する。このときの負荷電流iUの検出結果又はその信号処理値としては、追加時間Tauを加算するキャリア周期での、又はそのキャリア周期に最も近いタイミング等での検出値を用いる。また、このときの負荷電流iUの推定値は、追加時間Tauを加算するキャリア周期での負荷電流iUを推定した値等を用いる。基本動作の場合の共振半周期は、共振用インダクタL1と1つの共振用コンデンサ9とを含む共振回路の共振周波数の逆数である共振周期の半分である。したがって、共振用インダクタL1のインダクタンスをLとし、共振用コンデンサ9のキャパシタンスをCとすると、共振半周期は、π×(L・C)1/2である。制御装置50では、基本動作のときの共振半周期は、例えば、デッドタイム期間Tdの長さと同じになるように設定されている。
 (3.1.1.4)負荷電流<0の場合に第1スイッチング素子をソフトスイッチングさせるための動作
 制御装置50は、対象第1スイッチング素子1に接続された交流端子41に流れる負荷電流(負荷電流iU又は負荷電流iV又は負荷電流iW)の極性が負である場合、負荷電流の電流値と第2電流閾値I2(=-Ith、図5参照)とを比較する。制御装置50は、負荷電流の電流値が第2電流閾値I2よりも小さい場合、スイッチ8をオンさせず、負荷電流の電流値が第2電流閾値I2よりも大きい場合、デッドタイム期間Tdにスイッチ8をオンさせる。電力変換装置100は、負荷電流の電流値が第2電流閾値I2よりも小さい場合、制御装置50が対象第1スイッチング素子1に対応するスイッチ8をオンさせることなく、対象第1スイッチング素子1に直列接続されている共振用コンデンサ9Uを負荷電流により充電できる。これにより、電力変換装置100は、対象第1スイッチング素子1のゼロ電圧ソフトスイッチングを実現できる。
 図8には、対象第1スイッチング素子1がスイッチング回路10Uの第1スイッチング素子1Uであり、負荷電流の電流値が第2電流閾値I2よりも大きい場合(言い換えれば、負荷電流の電流値の絶対値が第2電流閾値I2の絶対値よりも小さい場合)について、制御信号SU1、SU2、SU6と、負荷電流iUと、共振用コンデンサ9Uから流れる電流i9Uと、第2スイッチング素子2Uの両端電圧V2uと、を図示してある。また、図8には、デッドタイム期間Tdを図示してある。
 制御装置50は、負荷電流の電流値が第2電流閾値I2よりも小さい場合(言い換えれば、負荷電流の絶対値が第2電流閾値I2の絶対値よりも大きい場合)、制御信号SU6にハイレベル期間を設けない。この場合、電力変換装置100では、デッドタイム期間Tdの開始時点(時点t41)で共振用コンデンサ9Uに電流i9Uが流れ始める。これにより、電力変換装置100では、共振用コンデンサ9Uが充電されて第2スイッチング素子2Uの両端電圧V2uが増加し、デッドタイム期間Tdの終了時点(時点t42)よりも前に電流i9Uがゼロとなり、デッドタイム期間Tdの終了時点(時点t42)よりも前に第1スイッチング素子1Uの両端電圧V1uがゼロになる。これにより、電力変換装置100では、デッドタイム期間Tdの終了時点(時点t42)で制御信号SU1がローレベルからハイレベルに変化したときに、第1スイッチング素子1Uがゼロ電圧ソフトスイッチングされる。
 制御装置50は、負荷電流の電流値が第2電流閾値I2よりも大きい場合(言い換えれば、負荷電流の絶対値が第2電流閾値の絶対値よりも小さい場合)、例えば図8中に二点鎖線で示すように制御信号SU6にハイレベル期間を設ける。このときの制御信号SU6のハイレベル期間の開始時点は、デッドタイム期間Tdの開始時点(時点t41)と同じである。また、制御信号SU6のハイレベル期間の終了時点は、デッドタイム期間Tdの終了時点(時点t42)と同じである。これにより、電力変換装置100では、デッドタイム期間Tdの終了時点(時点t42)よりも前に第1スイッチング素子1Uの両端電圧V1uがゼロになる。よって、電力変換装置100では、デッドタイム期間Tdの終了時点(時点t42)で制御信号SU1がローレベルからハイレベルに変化したときに、第1スイッチング素子1Uがゼロ電圧ソフトスイッチングされる。
 (3.1.2)シフト制御の動作
 制御装置50は、共振用インダクタL1に、複数のスイッチ8のうち2つのスイッチ8それぞれを通る共振電流が同時に流れると判断した場合、当該2つのスイッチ8それぞれを通る共振電流が共振用インダクタL1に同時に流れないように、当該2つのスイッチ8のうち1つのスイッチ8への制御信号のハイレベル期間をシフトさせるシフト制御を行う。「複数のスイッチ8のうち2つのスイッチ8それぞれを通る共振電流が同時に流れると判断した場合」とは、事前に共振用インダクタL1に2つのスイッチ8それぞれを通る共振電流が同時に流れると推定した場合を意味する。
 (3.1.2.1)2相の共振電流が同時に流れるか否かの判断
 電力変換装置100は、3相(U相、V相及びW相)の電圧指令の位相が互いに120°異なるが、2相の電圧指令の指令値が電気角60°毎に接近し、2相の制御信号のデューティが接近する(図4の領域A1、領域A2参照)。図4の領域A1では、U相の制御信号のデューティ及びV相の制御信号のデューティが0.75付近となる。図4の領域A2では、U相の制御信号のデューティ及びV相の制御信号のデューティが0.25付近となる。共振電流の極性は電流iL1の極性と同じであり、領域A1では、共振電流の極性は、正となり、領域A2では、共振電流の極性は、負となる。領域A1の場合、例えば、キャリア信号の1周期の期間において、第1IGBT6Uへ与える制御信号SU6のハイレベルの期間の開始時点(時点t1、図2参照)と第1IGBT6Vへ与える制御信号SV6のハイレベルの期間の開始時点(時点t5、図2参照)との時間差が短くなり、U相の共振電流とV相の共振電流とが同時に共振用インダクタL1に流れる可能性がある。電力変換装置100では、領域A2の場合、領域A1の場合とは共振電流の向きが逆になるが、U相の共振電流とV相の共振電流とが同時に共振用インダクタL1に流れる可能性がある。
 複数の共振用コンデンサ9U、9V及び9Wの各々のキャパシタンスをCとすると、仮に共振用インダクタL1にU相の電流とV相の電流とが同時に流れた場合、等価回路的には、共振用コンデンサ9Uと共振用コンデンサ9Vとの合成キャパシタンス(=2×C)を有するコンデンサが共振用インダクタL1に直列接続される。したがって、電力変換装置100では、仮に共振用インダクタL1に2相の電流が同時に流れた場合、共振用インダクタL1に1相の電流が流れる場合と比べて、共振用インダクタL1を含む共振回路の共振周波数が変化し、ゼロ電圧ソフトスイッチングを実現できなくなってしまう可能性がある。
 (3.1.2.1.1)共振用コンデンサの充電動作の場合
 図2は、U相の共振電流とV相の共振電流とが重複しない(同時に流れない)場合と重複する(同時に流れる)場合との境界条件の一例を示す図である。その境界条件について、図2を参照して説明する。
 電力変換装置100では、制御信号SU1のハイレベル期間の開始時点(時点t3)と、制御信号SV1のハイレベル期間の開始時点(時点t7)との時間差ΔTuvが(Tau+Tav+Td)以上であれば、U相の共振電流とV相の共振電流とが重複せず、当該時間差ΔTuvが(Tau+Tav+Td)未満であれば、U相の共振電流とV相の共振電流とが重複する。制御装置50は、当該時間差ΔTuvに対する閾値が例えば(Tau+Tav+Td)に設定されており、当該時間差ΔTuvが上記閾値未満となれば、共振用インダクタL1に複数のスイッチング回路10のうち、スイッチング回路10Uとスイッチング回路10Vとの2相に対応する共振電流が同時に流れると推定する。上記閾値の設定は一例であり、他の値に設定にすることも考えられる。例えば、追加時間Tauの誤差、追加時間Tavの誤差を考慮して、上記閾値を(Tau+Tav+Td)よりも更に大きな値に設定すること等が考えられる。また、制御装置50では、時間差ΔTuvに対する閾値が、例えば、共振半周期(本実施形態では、共振半周期=デッドタイム期間Td)と同じ値に設定されていてもよい。この場合、制御装置50は、時間差ΔTuvがデッドタイム期間Tdの時間長さ未満であれば、共振用インダクタL1においてスイッチング回路10Uとスイッチング回路10Vとの2相に対応する共振電流が同時に流れると推定する。また、2相の共振電流が同時に流れるか否かの判断に利用する上記時間差ΔTuvの算出方法は、上述の例に限定されず、上記時間差に相当する時間差を計算できれば他の算出方法でもよい。例えば、2相の共振電流が同時に流れるか否かの判断に利用する上記時間差ΔTuvとして、制御信号SU2のハイレベル期間の終了時点(時点t2)と、制御信号SV2のハイレベル期間の終了時点(時点t6)との時間差を用いてもよい。
 また、電力変換装置100では、制御信号SU1のハイレベル期間の開始時点(時点t3)と、制御信号SW1のハイレベル期間の開始時点(時点t11)との時間差が(Tau+Taw+Td)以上であれば、U相の共振電流とW相の共振電流とが重複せず、当該時間差が(Tau+Taw+Td)未満であれば、U相の共振電流とW相の共振電流とが重複する。制御装置50は、当該時間差に対する閾値が例えば(Tau+Taw+Td)に設定されており、当該時間差が上記閾値未満となれば、共振用インダクタL1に複数のスイッチング回路10のうち、スイッチング回路10Uとスイッチング回路10Wとの2相に対応する共振電流が同時に流れると推定する。上記閾値の設定は一例であり、他の値に設定にすることも考えられる。例えば、追加時間Tauの誤差、追加時間Tawの誤差を考慮して、上記閾値を(Tau+Taw+Td)よりも更に大きな値に設定すること等が考えられる。また、制御装置50では、時間差に対する閾値が、例えば、共振半周期(本実施形態では、共振半周期=デッドタイム期間Td)と同じ値に設定されていてもよい。この場合、制御装置50は、時間差がデッドタイム期間Tdの時間長さ未満であれば、共振用インダクタL1においてスイッチング回路10Uとスイッチング回路10Wとの2相に対応する共振電流が同時に流れると推定する。また、2相の共振電流が同時に流れるか否かの判断に利用する上記時間差の算出方法は、上述の例に限定されず、上記時間差に相当する時間差を計算できれば他の算出方法でもよい。例えば、2相の共振電流が同時に流れるか否かの判断に利用する上記時間差として、制御信号SU2のハイレベル期間の終了時点(時点t2)と、制御信号SW2のハイレベル期間の終了時点(時点t10)との時間差を用いてもよい。
 また、電力変換装置100では、スイッチング回路10Vの第1スイッチング素子1Vに与える制御信号SV1のハイレベル期間の開始時点(時点t7)と、スイッチング回路10Wの第1スイッチング素子1Wに与える制御信号SW1のハイレベル期間の開始時点(時点t11)との時間差が(Tav+Taw+Td)以上であれば、V相の共振電流とW相の共振電流とが重複せず、当該時間差が(Tav+Taw+Td)未満であれば、V相の共振電流とW相の共振電流とが重複する。制御装置50は、当該時間差に対する閾値が例えば(Tav+Taw+Td)に設定されており、当該時間差が上記閾値未満となれば、共振用インダクタL1に複数のスイッチング回路10のうち、スイッチング回路10Vとスイッチング回路10Wとの2相に対応する共振電流が同時に流れると推定する。上記閾値の設定は一例であり、他の値に設定にすることも考えられる。例えば、追加時間Tavや追加時間Tawの誤差を考慮して、上記閾値を(Tav+Taw+Td)よりも更に大きな値に設定すること等が考えられる。また、制御装置50では、時間差に対する閾値が、例えば、共振半周期(本実施形態では、共振半周期=デッドタイム期間Td)と同じ値に設定されていてもよい。この場合、制御装置50は、時間差がデッドタイム期間Tdの時間長さ未満であれば、共振用インダクタL1においてスイッチング回路10Vとスイッチング回路10Wとの2相に対応する共振電流が同時に流れると推定する。また、2相の共振電流が同時に流れるか否かの判断に利用する上記時間差の算出方法は、上述の例に限定されず、上記時間差に相当する時間差を計算できれば他の算出方法でもよい。例えば、2相の共振電流が同時に流れるか否かの判断に利用する上記時間差として、制御信号SV2のハイレベル期間の終了時点(時点t6)と、制御信号SW2のハイレベル期間の終了時点(時点t10)との時間差を用いてもよい。
 (3.1.2.1.2)共振用コンデンサの放電動作の場合
 共振用コンデンサ9の放電動作の場合において、制御装置50は、共振用コンデンサ9の充電動作の場合と同様の時間差と閾値とを用いて、2相の共振電流が同時に流れるか否かの判断することができる。
 例えば、制御装置50は、制御信号SU2のハイレベル期間の開始時点と、制御信号SV2のハイレベル期間の開始時点との時間差が閾値(例えば、Tau+Tav+Td)未満であれば、U相の共振電流とV相の共振電流とが重複すると推定する。
 また、制御装置50は、制御信号SU2のハイレベル期間の開始時点と、制御信号SW2のハイレベル期間の開始時点との時間差が閾値(例えば、Tau+Taw+Td)未満であれば、U相の共振電流とW相の共振電流とが重複すると推定する。
 また、制御装置50は、制御信号SV2のハイレベル期間の開始時点と、制御信号SW2のハイレベル期間の開始時点との時間差が閾値(例えば、Tav+Taw+Td)未満であれば、V相の共振電流とW相の共振電流とが重複すると推定する。
 (3.1.2.2)2相の共振電流が同時に流れると判断した場合のシフト制御
 制御装置50は、例えば、2つのスイッチ8それぞれを通る共振電流が共振用インダクタL1に同時に流れないように、上記2つのスイッチ8のうち1つのスイッチ8への制御信号のハイレベル期間をシフトさせるシフト制御を行う。
 制御装置50は、シフト制御を行うときに、上記2つのスイッチ8のうち1つのスイッチ8に対応する1つのスイッチング回路10の第1スイッチング素子1及び第2スイッチング素子2それぞれへ与える制御信号のハイレベル期間の長さが変化しないように、上記1つのスイッチ8への制御信号のハイレベル期間をシフトさせる。制御装置50は、例えば、スイッチ8Uへ与える制御信号SU6又はSU7のハイレベル期間をシフトさせる場合、制御信号SU1及び制御信号SU2それぞれのハイレベル期間をシフトさせるが、キャリア信号の1周期における制御信号SU1及び制御信号SU2それぞれのデューティは変化させない。また、制御装置50は、スイッチ8Vへ与える制御信号SV6又はSV7のハイレベル期間をシフトさせる場合、制御信号SV1及び制御信号SV2それぞれのハイレベル期間をシフトさせるが、キャリア信号の1周期における制御信号SV1及び制御信号SV2それぞれのデューティは変化させない。また、制御装置50は、スイッチ8Wへ与える制御信号SW6又はSW7のハイレベル期間をシフトさせる場合、制御信号SW1及び制御信号SW2それぞれのハイレベル期間をシフトさせるが、キャリア信号の1周期における制御信号SW1及び制御信号SW2それぞれのデューティは変化させない。
 電力変換装置100では、第1スイッチング素子1をソフトスイッチングさせるために、制御装置50がシフト制御を実行した場合には、例えば、制御信号SU1、SV1がローレベル期間からハイレベル期間に変化する時点(U相、V相それぞれに対応するデッドタイム期間Tdの終了時点)で第2スイッチング素子2U、2Vの両端電圧V2u、V2vがVdまで上昇する。つまり、制御装置50がシフト制御を実行した場合には、U相、V相それぞれに対応するデッドタイム期間Tdの終了時点で共振用コンデンサ9U、9Vの充電が終了する。このため、電力変換装置100では、制御装置50がシフト制御を実行した場合には、第1スイッチング素子1U、1Vのスイッチングがゼロ電圧ソフトスイッチングとなる。
 上述の例は、制御装置50が共振用インダクタL1にU相の共振電流とV相の共振電流とが同時に流れると事前に判断した場合のシフト制御の例を示しているが、これに限らない。例えば、制御装置50が共振用インダクタL1にV相の共振電流とW相の共振電流とが同時に流れると事前に判断した場合、共振用インダクタL1にW相の共振電流とU相の共振電流とが同時に流れると事前に判断した場合の場合にも制御装置50がシフト制御を実行することにより、ゼロ電圧ソフトスイッチングが可能となる。
 また、電力変換装置100では、第2スイッチング素子2をソフトスイッチングさせるために、制御装置50がシフト制御を実行した場合には、例えば、制御信号SU2、SV2がローレベル期間からハイレベル期間に変化する時点(U相、V相それぞれに対応するデッドタイム期間Tdの終了時点)で第1スイッチング素子1U、1Vの両端電圧V1u、V1vがVdまで上昇する。つまり、制御装置50がシフト制御を実行した場合には、U相、V相それぞれに対応するデッドタイム期間Tdの終了時点で共振用コンデンサ9U、9Vの放電が終了する。このため、電力変換装置100では、制御装置50がシフト制御を実行した場合には、第2スイッチング素子2U、2Vのスイッチングがゼロ電圧ソフトスイッチングとなる。
 上述の例は、制御装置50が共振用インダクタL1にU相の共振電流とV相の共振電流とが同時に流れると事前に判断した場合のシフト制御の例を示しているが、これに限らない。例えば、制御装置50が共振用インダクタL1にV相の共振電流とW相の共振電流とが同時に流れると事前に判断した場合、共振用インダクタL1にW相の共振電流とU相の共振電流とが同時に流れると事前に判断した場合の場合にも制御装置50がシフト制御を実行することにより、ゼロ電圧ソフトスイッチングが可能となる。
 (3.2)制御装置が起動時動作として充電制御動作を行う場合の電力変換装置の動作
 制御装置50は、電力変換装置100の起動時に、図9に示すように、回生用コンデンサ15の両端電圧V15が0Vから閾値Vthに上昇するまでの時間Tsを短縮するために回生用コンデンサ15を充電させる充電制御動作を行う。閾値Vthは、例えば、Vd/2であるが、これに限らず、Vd/2の90%以上110%以下の値であればよく、Vd/2の95%以上105%以下の値であることが、より好ましい。実施形態1に係る電力変換装置100では、制御装置50が充電制御動作を行なわずにインバータ制御動作を行った場合と比べて、回生用コンデンサ15の両端電圧V15が0Vから閾値Vthに上昇するまでの時間Tsを短縮することができる。実施形態1に係る電力変換装置100では、例えば、時間Tsを13.5msから2.8msに短縮することができる。なお、図9のDCバス電圧は、第1直流端子31と第2直流端子32との間の電圧である。
 制御装置50は、充電制御動作では、第1制御動作と、第2制御動作と、を交互に行う。
 制御装置50は、第1制御動作では、複数(3つ)の第1スイッチング素子1をオンさせて、第1直流端子31と複数(3つ)の第1スイッチング素子1それぞれを通る経路で、複数(3つ)の共振用コンデンサ9を充電させる。制御装置50は、第2制御動作では、複数(3つ)のスイッチ8をオンさせて、複数(3つ)の共振用コンデンサ9から回生用コンデンサ15を充電させる。
 以下では、第1制御動作及び第2制御動作それぞれについて、図10~12を参照しながら、より詳細に説明する。なお、図11及び12では、図1の回路図の一部を省略するとともに簡略化して記載してあり、3つの第1スイッチング素子1と、3つの第2スイッチング素子2と、3つのスイッチ8と、の各々をスイッチの図記号で表記してある。
 制御装置50は、第1制御動作では、3つの第1スイッチング素子1をオン状態に制御し、3つの第2スイッチング素子2をオフ状態に制御し、3つのスイッチ8をオフ状態に制御する。
 より詳細には、制御装置50は、第1制御動作では、例えば図10に示す第1期間T1のように、3つの制御信号SU1、SV1、SW1の各々をハイレベルとし、3つの制御信号SU2、SV2、SW2の各々をローレベルとし、3つの制御信号SU6、SV6、SW6(図10には図示せず)の各々をローレベルとし、3つの制御信号SU7、SV7、SW7の各々をローレベルとする。これにより、図11に示すように、直流電源E1から3つの第1スイッチング素子1それぞれを通って流れる電流(図11中に電流の経路を矢印で示してある)によって3つの共振用コンデンサ9U、9V、9Wを充電する。図10における「共振用コンデンサの充電電流」は、直流電源E1から3つの共振用コンデンサ9U、9V、9Wの各々に流れる電流(充電電流)の電流波形を示している。
 また、制御装置50は、第2制御動作では、3つの第1スイッチング素子1をオフ状態に制御し、3つの第2スイッチング素子2をオフ状態に制御し、3つのスイッチ8をオン状態に制御する。
 より詳細には、制御装置50は、第2制御動作では、例えば図10に示す第2期間T2のように、3つの制御信号SU1、SV1、SW1の各々をローレベルとし、3つの制御信号SU2、SV2、SW2をローレベルとし、3つの制御信号SU6、SV6、SW6(図10には図示せず)の各々をローレベルとし、3つの制御信号SU7、SV7、SW7の各々をハイレベルとする。これにより、図12に示すように、3つの共振用コンデンサ9U、9V、9Wから3つのスイッチ8U、8V、8Wそれぞれを通って流れる電流によって回生用コンデンサ15を充電する。つまり、制御装置50は、第2制御動作を行うことにより、共振用コンデンサ9U、9V、9Wを放電させ、回生用コンデンサ15を充電させる。図10における「共振用コンデンサの放電電流」は、3つの共振用コンデンサ9U、9V、9Wの各々から回生用コンデンサ15へ流れる電流(放電電流)の電流波形を示している。
 実施形態1に係る電力変換装置100では、制御装置50は、充電制御動作を行う場合にも、3つの制御信号SU1、SV1、SW1の各々のハイレベル期間と3つの制御信号SU2、SV2、SW2の各々のハイレベル期間との間にデッドタイム期間Tdを設定する。ここにおいて、制御装置50は、第1制御動作では、3つの第1スイッチング素子1と、3つの第2スイッチング素子2と、を相補的にオンオフさせる。また、制御装置50は、第2制御動作では、3つの第1スイッチング素子1と3つの第2スイッチング素子2との両方をオフとするデッドタイム期間Tdを上述の第2期間T2として、複数のスイッチ8をオンさせる。
 つまり、制御装置50は、図10に示すように、第1スイッチング素子1Uへの制御信号SU1のハイレベル期間と、第2スイッチング素子2Uへの制御信号SU2のハイレベル期間と、の間にデッドタイム期間Tdを設け、デッドタイム期間Tdにスイッチ8Uの第2IGBT7Uへの制御信号SU7のハイレベル期間を設ける。同様に、制御装置50は、第1スイッチング素子1Vへの制御信号SV1のハイレベル期間と、第2スイッチング素子2Vへの制御信号SV2のハイレベル期間と、の間にデッドタイム期間Tdを設け、デッドタイム期間Tdにスイッチ8Vの第2IGBT7Vへの制御信号SV7のハイレベル期間を設ける。同様に、制御装置50は、第1スイッチング素子1Wへの制御信号SW1のハイレベル期間と、第2スイッチング素子2Wへの制御信号SW2のハイレベル期間と、の間にデッドタイム期間Tdを設け、デッドタイム期間Tdにスイッチ8Wの第2IGBT7Wへの制御信号SW7のハイレベル期間を設ける。
 (4)まとめ
 実施形態1に係る電力変換装置100では、制御装置50は、起動時動作として回生用コンデンサ15を充電させる充電制御動作と、複数の交流端子41それぞれに出力電流iU、iV、iWを流させるインバータ制御動作と、を行う。充電制御動作では、第1制御動作と、第2制御動作と、を交互に行う。第1制御動作では、複数(3つ)の第1スイッチング素子1をオンさせて、第1直流端子31と複数(3つ)の第1スイッチング素子1それぞれを通る経路で、複数(3つ)の共振用コンデンサ9を充電させる。第2制御動作では、複数(3つ)のスイッチ8をオンさせて複数(3つ)の共振用コンデンサ9から回生用コンデンサ15を充電させる。
 実施形態1に係る電力変換装置100によれば、小型化を図ることが可能となる。より詳細には、実施形態1に係る電力変換装置100は、回生用コンデンサ15の数を1つにできるので、小型化を図ることが可能となる。
 ところで、実施形態1に係る電力変換装置100は、Vd/2の電圧を発生させるために1つの回生用コンデンサ15を用いた構成を採用しているので、電力変換装置100の起動時に回生用コンデンサ15の両端電圧V15が過渡的にVd/2まで上昇する。このため、電力変換装置100では、制御装置50が仮に充電制御動作を行なわずにインバータ制御動作を行った場合には、インバータ制御動作したときに複数の第1スイッチング素子1及び複数の第2スイッチング素子2のそれぞれのスイッチングがハードスイッチングとなることがある。これに対して、実施形態1に係る電力変換装置100は、制御装置50が充電制御動作を行うことにより、回生用コンデンサ15の両端電圧V15をVd/2まで上昇させるまでの時間を短縮することが可能となり、かつ、インバータ制御動作のときに複数の第1スイッチング素子1及び複数の第2スイッチング素子2のそれぞれのハードスイッチングが起こることを抑制することが可能となる。
 また、実施形態1に係る電力変換装置100では、制御装置50は、回生用コンデンサ15の両端電圧V15が閾値Vth以上になってから、インバータ制御動作を行う。これにより、電力変換装置100は、インバータ制御動作を行っているときに、複数の第1スイッチング素子1及び複数の第2スイッチング素子2それぞれがハードスイッチングされることを抑制することが可能となる。言い換えれば、電力変換装置100は、より確実にソフトスイッチングを実現することが可能となる。これにより、電力変換装置100は、複数の第1スイッチング素子1及び複数の第2スイッチング素子2の各々に、より低耐圧かつ低許容電流の素子を用いることが可能となり、低コスト化を図ることが可能となる。
 また、実施形態1に係る電力変換装置100では、制御装置50は、共振用インダクタL1に、複数のスイッチ8のうち2つのスイッチ8それぞれを通る共振電流が同時に流れると判断した場合に、上記2つのスイッチ8それぞれを通る共振電流が共振用インダクタL1に同時に流れないように、2つのスイッチ8それぞれへの制御信号のハイレベル期間をシフトさせる制御を行う。これにより、電力変換装置100は、より確実にソフトスイッチングを実現することが可能となる。
 (5)実施形態1の変形例
 (5.1)変形例1
 変形例1に係る電力変換装置100について、図13を参照して説明する。変形例1に係る電力変換装置100に関し、実施形態1に係る電力変換装置100(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例1に係る電力変換装置100では、複数のスイッチ8の各々において、第1IGBT6と第2IGBT7とが逆直列接続されている。変形例1に係る電力変換装置100では、複数のスイッチ8の各々において、第1IGBT6のコレクタ端子と第2IGBT7のコレクタ端子とが接続されており、第1IGBT6のエミッタ端子が、複数のスイッチング回路10のうち対応するスイッチング回路10の接続点3に接続され、第2IGBT7のエミッタ端子が共通接続点25に接続されている。また、複数のスイッチ8の各々は、第1IGBT6に逆並列接続されているダイオード61と、第2IGBT7に逆並列接続されているダイオード71と、を更に有する。
 変形例1に係る電力変換装置100では、第1IGBT6及び第2IGBT7の各々は、MOSFET又はバイポーラトランジスタに置換されていてもよい。この場合、図13のダイオード61及びダイオード71は、それぞれ、置換された素子の寄生ダイオード、又は、置換された素子の1チップに内蔵された素子等で代用されてもよい。また、変形例1に係る電力変換装置100では、ダイオード61及びダイオード71は、それぞれ、第1IGBT6及び第2IGBT7に外付けされる場合に限らず、1チップに内蔵された素子でもよい。
 制御装置50の動作は、例えば、実施形態1の制御装置50の動作と同じである。
 (5.2)変形例2
 変形例2に係る電力変換装置100について、図14を参照して説明する。変形例2に係る電力変換装置100に関し、実施形態1に係る電力変換装置100(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例2に係る電力変換装置100では、複数のスイッチ8の各々において、第1IGBT6と第2IGBT7とが逆直列接続されている。変形例2に係る電力変換装置100では、複数のスイッチ8の各々において、第1IGBT6のエミッタ端子と第2IGBT7のエミッタ端子とが接続されており、第2IGBT7のコレクタ端子が、複数のスイッチング回路10のうち対応するスイッチング回路10の接続点3に接続され、第1IGBT6のコレクタ端子が共通接続点25に接続されている。また、複数のスイッチ8の各々は、第1IGBT6に逆並列接続されているダイオード61と、第2IGBT7に逆並列接続されているダイオード71と、を更に有する。
 変形例2に係る電力変換装置100では、第1IGBT6及び第2IGBT7の各々は、MOSFET又はバイポーラトランジスタに置換されていてもよい。この場合、図14のダイオード61及びダイオード71は、それぞれ、置換された素子の寄生ダイオード、又は、置換された素子の1チップに内蔵された素子等で代用されてもよい。また、変形例2に係る電力変換装置100では、ダイオード61及びダイオード71は、それぞれ、第1IGBT6及び第2IGBT7に外付けされる場合に限らず、1チップに内蔵された素子でもよい。
 制御装置50の動作は、例えば、実施形態1の制御装置50の動作と同じである。
 (5.3)変形例3
 変形例3に係る電力変換装置100について、図15を参照して説明する。変形例3に係る電力変換装置100に関し、実施形態1に係る電力変換装置100(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例3に係る電力変換装置100では、複数のスイッチ8の各々において、第1MOSFET6Aと第2MOSFET7Aとが逆直列接続されている。変形例3に係る電力変換装置100では、複数のスイッチ8の各々において、第1MOSFET6Aのドレイン端子と第2MOSFET7Aのドレイン端子とが接続されている。また、複数のスイッチ8の各々は、第1MOSFET6Aに逆並列接続されているダイオード61と、第2MOSFET7Aに逆並列接続されているダイオード71と、を更に有する。複数のスイッチ8の各々では、第2MOSFET7Aのソース端子が共通接続点25に接続されている。複数のスイッチ8の各々では、第1MOSFET6Aのソース端子が、その第1MOSFET6Aを有するスイッチ8に対応するスイッチング回路10の接続点3に接続されている。スイッチ8Uの第1MOSFET6A、第2MOSFET7Aには、制御装置50から制御信号SU6、SU7が与えられる。スイッチ8Vの第1MOSFET6A、第2MOSFET7Aには、制御装置50から制御信号SV6、SV7が与えられる。スイッチ8Wの第1MOSFET6A、第2MOSFET7Aには、制御装置50から制御信号SW6、SW7が与えられる。
 制御装置50の動作は、例えば、実施形態1の制御装置50の動作と同様である。
 (5.4)変形例4
 変形例4に係る電力変換装置100について、図16を参照して説明する。変形例4に係る電力変換装置100に関し、実施形態1に係る電力変換装置100(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例4に係る電力変換装置100では、複数のスイッチ8の各々において、第1MOSFET6Aにダイオード63が直列接続され、第2MOSFET7Aにダイオード73が直列接続されている。変形例4に係る電力変換装置100では、第1MOSFET6A及びダイオード63の直列回路と、第2MOSFET7A及びダイオード73の直列回路とが、逆並列接続されている。
 制御装置50の動作は、例えば、実施形態1の制御装置50の動作と同様である。
 (5.5)変形例5
 変形例5に係る電力変換装置100について、図17を参照して説明する。変形例5に係る電力変換装置100に関し、実施形態1に係る電力変換装置100(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例5に係る電力変換装置100では、複数のスイッチ8の各々は、1つのMOSFET80と、MOSFET80に逆並列接続されているダイオード83と、MOSFET80に逆並列に接続されている、2つのダイオード84、85の直列回路と、MOSFET80に逆並列に接続されている、2つのダイオード86、87の直列回路と、を有する。複数のスイッチ8の各々では、スイッチ8におけるダイオード84とダイオード85との接続点(スイッチ8の第1端81)が、複数のスイッチング回路10のうち対応するスイッチング回路10の接続点3に接続され、ダイオード86とダイオード87との接続点(スイッチ8の第2端82)が、共通接続点25に接続されている。スイッチ8の各々では、MOSFET80がオン状態のときにスイッチ8がオン状態であり、MOSFET80がオフ状態のときにスイッチ8がオフ状態である。
 複数のスイッチ8のMOSFET80は、制御装置50によって制御される。制御装置50は、スイッチ8UのMOSFET80のオンオフを制御する制御信号SU8と、スイッチ8VのMOSFET80のオンオフを制御する制御信号SV8と、スイッチ8WのMOSFET80のオンオフを制御する制御信号SW8と、を出力する。
 スイッチ8では、MOSFET80がオン状態のときに共振用インダクタL1と共振用コンデンサ9とを含む共振回路による共振電流が流れる。電力変換装置100では、共振電流を含む充電電流は、複数のスイッチ8のうち1つのスイッチ8がオン状態のとき、回生用コンデンサ15-共振用インダクタL1-ダイオード86-MOSFET80-ダイオード85-共振用コンデンサ9の経路で流れる。また、電力変換装置100では、共振電流を含む放電電流は、複数のスイッチ8のうち1つのスイッチ8がオン状態のとき、共振用コンデンサ9-ダイオード84-MOSFET80-ダイオード87-共振用インダクタL1-回生用コンデンサ15の経路で流れる。
 変形例5に係る電力変換装置100では、複数のMOSFET80の各々は、IGBTに置換されていてもよい。また、変形例5に係る電力変換装置100では、複数のスイッチ8の各々は、MOSFET80の代わりに、例えば、バイポーラトランジスタ又はGaN系GIT(Gate Injection Transistor)を有していてもよい。
 制御装置50の動作は、例えば、実施形態1の制御装置50の動作と同様である。
 (5.6)変形例6
 変形例6に係る電力変換装置100について、図18を参照して説明する。変形例6に係る電力変換装置100に関し、実施形態1に係る電力変換装置100(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例6に係る電力変換装置100では、複数のスイッチ8の各々は、第1ソース端子、第1ゲート端子、第2ゲート端子及び第2ソース端子を有するデュアルゲート型のGaN系GITである。変形例6に係る電力変換装置100では、スイッチ8Uを構成するデュアルゲート型のGaN系GITの第1ゲート端子・第1ソース端子間に制御信号SU6が与えられ、第2ゲート端子・第2ソース端子間に制御信号SU7が与えられる。また、スイッチ8Vを構成するデュアルゲート型のGaN系GITの第1ゲート端子・第1ソース端子間に制御信号SV6が与えられ、第2ゲート端子・第2ソース端子間に制御信号SV7が与えられる。また、スイッチ8Wを構成するデュアルゲート型のGaN系GITの第1ゲート端子・第1ソース端子間に制御信号SW6が与えられ、第2ゲート端子・第2ソース端子間に制御信号SW7が与えられる。
 制御装置50の動作は、例えば、実施形態1の制御装置50の動作と同様である。
 (実施形態2)
 実施形態2に係る電力変換装置100Aについて、図19を参照して説明する。実施形態2に係る電力変換装置100Aに関し、実施形態1に係る電力変換装置100(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
 電力変換装置100Aは、複数(図示例では、3つ)の共振用インダクタL1を備え、複数(3つ)の共振用インダクタL1と複数(3つ)のスイッチ8とが一対一に対応している。複数の共振用インダクタL1の各々の第3端は、複数のスイッチ8のうち対応するスイッチ8の第2端82に接続されている。複数の共振用インダクタL1の第4端は、回生用コンデンサ15の第6端154に接続されている。複数の共振用インダクタL1のインダクタンスは、互いに同じである。つまり、3つの共振用インダクタL1のインダクタンスは、互いに同じである。「3つの共振用インダクタL1のインダクタンスは、互いに同じである」とは、3つの共振用インダクタL1のうち2つの共振用インダクタL1の各々のインダクタンスが残りの1つの共振用インダクタL1のインダクタンスに完全に一致する場合だけに限らず、上記2つの共振用インダクタL1の各々のインダクタンスが上記残りの1つの共振用インダクタL1のインダクタンスの95%以上105%以下の範囲内であればよい。
 実施形態2に係る電力変換装置100Aでは、実施形態1に係る電力変換装置100と同様、制御装置50が、電力変換装置100Aの起動時の動作として充電制御動作を行う。また、制御装置50は、充電制御動作の後で、インバータ制御動作を行う。
 実施形態2に係る電力変換装置100Aは、実施形態1に係る電力変換装置100と同様、回生用コンデンサ15の数を1つにできるので、小型化を図ることが可能となる。
 (その他の変形例)
 上記の実施形態1、2等は、本開示の様々な実施形態の一つに過ぎない。上記の実施形態1、2等は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
 例えば、制御装置50は、第1制御動作では、複数の第1スイッチング素子1のうち少なくとも1つの第1スイッチング素子1(例えば、第1スイッチング素子1U)をオンさせて、第1直流端子31と上記少なくとも1つの第1スイッチング素子1を通る経路で、複数の共振用コンデンサ9のうち上記少なくとも1つの第1スイッチング素子1に対応する少なくとも1つの共振用コンデンサ9(例えば、共振用コンデンサ9U)を充電させればよい。
 また、制御装置50は、第2制御動作では、複数のスイッチ8のうち上記少なくとも1つの第1スイッチング素子1に対応するスイッチ8(例えば、スイッチ8U)をオンさせて上記少なくとも1つの共振用コンデンサ9から回生用コンデンサ15を充電させればよい。
 また、制御装置50は、第2制御動作では、上記少なくとも1つの第1スイッチング素子1と上記少なくとも1つの第1スイッチング素子1に一対一に対応する少なくとも1つの第2スイッチング素子2(例えば、第2スイッチング素子2U)との両方をオフとするデッドタイム期間Tdに、複数のスイッチ8のうち上記少なくとも1つの第1スイッチング素子1に対応するスイッチ8をオンさせればよい。
 一例として、制御装置50は、第1制御動作では、第1スイッチング素子1Uをオンさせて、第1直流端子31と第1スイッチング素子1Uを通る経路で、共振用コンデンサ9Uを充電させればよい。この場合、制御装置50は、第2制御動作では、スイッチ8Uをオンさせて共振用コンデンサ9Uから回生用コンデンサ15を充電させればよい。この場合、制御装置50は、第2制御動作では、第1スイッチング素子1Uと第2スイッチング素子2Uとの両方をオフとするデッドタイム期間Tdに、スイッチ8Uをオンさせればよい。
 また、制御装置50において、「2相の共振電流が同時に流れると判断する」動作については、実施形態1で説明した時間差が閾値未満のときに「2相の共振電流が同時に流れると判断する」動作等に限らない。
 例えば、制御装置50は、U相の負荷電流iUとV相の負荷電流iVとの電流差、V相の負荷電流iVとW相の負荷電流iWとの電流差、W相の負荷電流iWとU相の負荷電流iUとの電流差、のいずれか1つが電流差閾値未満のときに2相の共振電流が同時に流れると判断してもよい。
 また、制御装置50は、モータの回転数を検出するためのセンサ装置(例えば、エンコーダ又はレゾルバ)から出力されるセンサ情報から演算により求めた電気角、又は推定した電気角が第1回転角範囲(例えば、55度以上65度以下)内又は第2回転角範囲(例えば、115度以上125度以下)内又は第3回転角範囲(例えば、175度以上185度以下)又は第4回転角度範囲(例えば、235度以上245度以下)内又は第5回転角度範囲(295度以上305度以下)内又は第6回転角範囲(例えば、355度以上365度以下)内のいずれかのときに「2相の共振電流が同時に流れる」と判断してもよい。
 また、複数の第1スイッチング素子1及び複数の第2スイッチング素子2の各々は、IGBTに限らず、MOSFETでもよい。この場合、複数の第1ダイオード4の各々は、対応する第1スイッチング素子1を構成するMOSFETの寄生ダイオード等で代用されてもよい。また、複数の第2ダイオード5の各々は、対応する第2スイッチング素子2を構成するMOSFETの寄生ダイオード等で代用されてもよい。MOSFETは、例えば、Si系MOSFET又はSiC系MOSFETである。複数の第1スイッチング素子1及び複数の第2スイッチング素子2の各々は、例えば、バイポーラトランジスタ又はGaN系GITであってもよい。
 また、電力変換装置100、100Aでは、複数の共振用コンデンサ9の各々の容量が比較的小さい場合、複数の共振用コンデンサ9を外付けする代わりに、複数の第2スイッチング素子2の両端間の寄生容量が、複数の共振用コンデンサ9を兼ねていてもよい。
 また、デッドタイム期間Tdの長さは、共振半周期と同じになるように設定されている場合に限らず、共振半周期と異なる長さに設定されていてもよい。ただし、いずれの場合もデッドタイム期間Tdの終点は、共振半周期の終点と一致することが好ましい。
 デッドタイム期間Tdは、制御装置50とは別に設けられたゲートドライバIC(Integrated Circuit)等の有するデッドタイム生成回路により設定されてもよい。また、制御装置50がゲートドライバICを含んでいて、ゲートドライバICの有するデッドタイム生成回路が、デッドタイム期間Tdを設定してもよい。
 また、電力変換装置100、100Aは、3相交流を出力する構成に限らず、3相以上の多相交流を出力する構成であればよい。
 (態様)
 本明細書には以下の態様が開示されている。
 第1の態様に係る電力変換装置(100;100A)は、第1直流端子(31)及び第2直流端子(32)と、電力変換回路(11)と、複数の交流端子(41)と、複数のスイッチ(8)と、複数の共振用コンデンサ(9)と、少なくとも1つの共振用インダクタ(L1)と、回生用コンデンサ(15)と、制御装置(50)と、を備える。電力変換回路(11)は、複数の第1スイッチング素子(1)及び複数の第2スイッチング素子(2)を有する。電力変換回路(11)では、複数の第1スイッチング素子(1)と複数の第2スイッチング素子(2)とを一対一に直列接続した複数のスイッチング回路(10)が互いに並列接続されている。電力変換回路(11)では、複数の第1スイッチング素子(1)が第1直流端子(31)に接続されており、複数の第2スイッチング素子(2)が第2直流端子(32)に接続されている。複数の交流端子(41)は、複数のスイッチング回路(10)に一対一に対応する。複数の交流端子(41)の各々は、複数のスイッチング回路(10)のうち対応するスイッチング回路(10)における第1スイッチング素子(1)及び第2スイッチング素子(2)の接続点(3)に接続されている。複数のスイッチ(8)は、複数のスイッチング回路(10)に一対一に対応する。複数のスイッチ(8)の各々は、複数のスイッチング回路(10)のうち対応するスイッチング回路(10)における第1スイッチング素子(1)及び第2スイッチング素子(2)の接続点(3)に第1端(81)と第2端(82)とのうち第1端(81)が接続されている。複数の共振用コンデンサ(9)は、複数のスイッチ(8)に一対一に対応する。複数の共振用コンデンサ(9)の各々は、複数のスイッチ(8)のうち対応するスイッチ(8)の第1端(81)と第2直流端子(32)との間に接続されている。少なくとも1つの共振用インダクタ(L1)は、第3端及び第4端を有する。少なくとも1つの共振用インダクタ(L1)では、第3端が複数のスイッチ(8)のうち対応するスイッチ(8)の第2端(82)に接続されている。回生用コンデンサ(15)は、第5端(153)及び第6端(154)を有する。回生用コンデンサ(15)では、第5端(153)が第2直流端子(32)に接続されており、第6端(154)が少なくとも1つの共振用インダクタ(L1)の第4端に接続されている。制御装置(50)は、複数の第1スイッチング素子(1)、複数の第2スイッチング素子(2)及び複数のスイッチ(8)それぞれをオンオフ制御する。制御装置(50)は、起動時動作として回生用コンデンサ(15)を充電させる充電制御動作と、複数の交流端子(41)それぞれに出力電流(iU、iV、iW)を流させるインバータ制御動作と、を行う。充電制御動作では、第1制御動作と、第2制御動作と、を交互に行う。第1制御動作では、複数の第1スイッチング素子(1)のうち少なくとも1つの第1スイッチング素子(1)をオンさせて、第1直流端子(31)と上記少なくとも1つの第1スイッチング素子(1)を通る経路で、複数の共振用コンデンサ(9)のうち上記少なくとも1つの第1スイッチング素子(1)に対応する少なくとも1つの共振用コンデンサ(9)を充電させる。第2制御動作では、複数のスイッチ(8)のうち上記少なくとも1つの第1スイッチング素子(1)に対応するスイッチ(8)をオンさせて上記少なくとも1つの共振用コンデンサ(9)から回生用コンデンサ(15)を充電させる。
 この態様によれば、小型化を図ることが可能となる。
 第2の態様に係る電力変換装置(100;100A)は、第1の態様に基づく。制御装置(50)は、充電制御動作では、回生用コンデンサ(15)の両端電圧(V15)が閾値(Vth)以上となるまで回生用コンデンサ(15)を充電させる。
 この態様によれば、回生用コンデンサ(15)の両端電圧(V15)を、より短時間で閾値(Vth)以上とすることができる。
 第3の態様に係る電力変換装置(100;100A)では、第2の態様において、制御装置(50)は、回生用コンデンサ(15)の両端電圧(V15)が閾値(Vth)以上になってから、インバータ制御動作を行う。
 この態様によれば、インバータ制御動作を行っているときに、複数の第1スイッチング素子(1)及び複数の第2スイッチング素子(2)それぞれがハードスイッチングされることを抑制することが可能となる。
 第4の態様に係る電力変換装置(100;100A)は、第1~3の態様のいずれか一つに基づく。制御装置(50)は、第1制御動作では、少なくとも1つの第1スイッチング素子(1)と、複数の第2スイッチング素子(2)のうち上記少なくとも1つの第1スイッチング素子(1)に対応する少なくとも1つの第2スイッチング素子(2)と、を相補的にオンオフさせる。第2制御動作では、上記少なくとも1つの第1スイッチング素子(1)と上記少なくとも1つの第2スイッチング素子(2)との両方をオフとするデッドタイム期間(Td)に、複数のスイッチ(8)のうち上記少なくとも1つの第1スイッチング素子(1)に対応するスイッチ(8)をオンさせる。
 第5の態様に係る電力変換装置(100;100A)は、第1~4の態様のいずれか一つに基づく。制御装置(50)は、第1制御動作では、複数の第1スイッチング素子(1)をオンさせる。
 この態様によれば、回生用コンデンサ(15)の両端電圧(V15)を、より短時間で上昇させることが可能となる。
 第6の態様に係る電力変換装置(100)では、第1~5の態様のいずれか一つにおいて、少なくとも1つの共振用インダクタ(L1)は、1つの共振用インダクタ(L1)であり、複数のスイッチ(8)の第2端(82)が1つの共振用インダクタ(L1)に共通接続されている。
 この態様によれば、共振用インダクタ(L1)の数を1つにできるので、更なる小型化を図ることが可能となる。
 1 第1スイッチング素子
 2 第2スイッチング素子
 3 接続点
 8 スイッチ
 81 第1端
 82 第2端
 9 共振用コンデンサ
 10 スイッチング回路
 11 電力変換回路
 15 回生用コンデンサ
 153 第5端
 154 第6端
 31 第1直流端子
 32 第2直流端子
 41 交流端子
 50 制御装置
 100、100A 電力変換装置
 iU、iV、iW 出力電流(負荷電流)
 L1 共振用インダクタ
 RA1 交流負荷
 SU1、SU2、SU6、SU7 制御信号
 SV1、SV2、SV6、SV7 制御信号
 SW1、SW2、SW6、SW7 制御信号
 Td デッドタイム期間
 V15 両端電圧
 Vth 閾値

Claims (6)

  1.  第1直流端子及び第2直流端子と、
     複数の第1スイッチング素子及び複数の第2スイッチング素子を有し、前記複数の第1スイッチング素子と前記複数の第2スイッチング素子とを一対一に直列接続した複数のスイッチング回路が互いに並列接続されており、前記複数の第1スイッチング素子が前記第1直流端子に接続されており、前記複数の第2スイッチング素子が前記第2直流端子に接続されている電力変換回路と、
     前記複数のスイッチング回路に一対一に対応し、各々が対応するスイッチング回路における前記第1スイッチング素子及び前記第2スイッチング素子の接続点に接続されている、複数の交流端子と、
     前記複数のスイッチング回路に一対一に対応し、各々が対応するスイッチング回路における前記第1スイッチング素子及び前記第2スイッチング素子の前記接続点に第1端と第2端とのうち前記第1端が接続されている、複数のスイッチと、
     前記複数のスイッチに一対一に対応し、各々が対応するスイッチの前記第1端と前記第2直流端子との間に接続されている、複数の共振用コンデンサと、
     第3端及び第4端を有し、前記第3端が前記複数のスイッチのうち対応するスイッチの前記第2端に接続されている少なくとも1つの共振用インダクタと、
     第5端及び第6端を有し、前記第5端が前記第2直流端子に接続されており、前記第6端が前記少なくとも1つの共振用インダクタの前記第4端に接続されている回生用コンデンサと、
     前記複数の第1スイッチング素子、前記複数の第2スイッチング素子及び前記複数のスイッチそれぞれをオンオフ制御する制御装置と、を備え、
     前記制御装置は、
      起動時動作として前記回生用コンデンサを充電させる充電制御動作と、
      前記複数の交流端子それぞれに出力電流を流させるインバータ制御動作と、を行い、
     前記充電制御動作では、
      前記複数の第1スイッチング素子のうち少なくとも1つの第1スイッチング素子をオンさせて、前記第1直流端子と前記少なくとも1つの第1スイッチング素子を通る経路で、前記複数の共振用コンデンサのうち前記少なくとも1つの第1スイッチング素子に対応する少なくとも1つの共振用コンデンサを充電させる第1制御動作と、
      前記複数のスイッチのうち前記少なくとも1つの第1スイッチング素子に対応するスイッチをオンさせて前記少なくとも1つの共振用コンデンサから前記回生用コンデンサを充電させる第2制御動作と、を交互に行う、
     電力変換装置。
  2.  前記制御装置は、
      前記充電制御動作では、前記回生用コンデンサの両端電圧が閾値以上となるまで前記回生用コンデンサを充電させる、
     請求項1に記載の電力変換装置。
  3.  前記制御装置は、前記回生用コンデンサの前記両端電圧が前記閾値以上になってから、前記インバータ制御動作を行う、
     請求項2に記載の電力変換装置。
  4.  前記制御装置は、
      前記第1制御動作では、
       前記少なくとも1つの第1スイッチング素子と、前記複数の第2スイッチング素子のうち前記少なくとも1つの第1スイッチング素子に対応する少なくとも1つの第2スイッチング素子と、を相補的にオンオフさせ、
      前記第2制御動作では、
       前記少なくとも1つの第1スイッチング素子と前記少なくとも1つの第2スイッチング素子との両方をオフとするデッドタイム期間に、前記複数のスイッチのうち前記少なくとも1つの第1スイッチング素子に対応するスイッチをオンさせる、
     請求項1~3のいずれか一項に記載の電力変換装置。
  5.  前記制御装置は、
      前記第1制御動作では、前記複数の第1スイッチング素子をオンさせる、
     請求項1~4のいずれか一項に記載の電力変換装置。
  6.  前記少なくとも1つの共振用インダクタは、1つの共振用インダクタであり、
     前記複数のスイッチの前記第2端が前記1つの共振用インダクタに共通接続されている、
     請求項1~5のいずれか一項に記載の電力変換装置。
PCT/JP2023/037991 2022-10-27 2023-10-20 電力変換装置 WO2024090345A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022172610 2022-10-27
JP2022-172610 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090345A1 true WO2024090345A1 (ja) 2024-05-02

Family

ID=90830843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037991 WO2024090345A1 (ja) 2022-10-27 2023-10-20 電力変換装置

Country Status (1)

Country Link
WO (1) WO2024090345A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032775A (ja) * 1998-05-08 2000-01-28 Denso Corp 共振形電力変換装置
JP2002325464A (ja) * 2001-04-26 2002-11-08 Honda Motor Co Ltd 共振形インバータ回路
JP2004023881A (ja) * 2002-06-14 2004-01-22 Honda Motor Co Ltd 共振形インバータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032775A (ja) * 1998-05-08 2000-01-28 Denso Corp 共振形電力変換装置
JP2002325464A (ja) * 2001-04-26 2002-11-08 Honda Motor Co Ltd 共振形インバータ回路
JP2004023881A (ja) * 2002-06-14 2004-01-22 Honda Motor Co Ltd 共振形インバータ

Similar Documents

Publication Publication Date Title
JP6390959B2 (ja) 駆動装置、電力変換装置
JP6369808B2 (ja) 駆動装置、電力変換装置
JP6471895B2 (ja) 駆動装置、電力変換装置
KR101198566B1 (ko) 다상 인버터 및 그 제어 방법, 및 송풍기 및 다상 전류출력 시스템
WO2023074636A1 (ja) 電力変換装置及び制御方法
JP2018121473A (ja) 電力変換装置
JP2000116120A (ja) 電力変換装置
JP6984727B2 (ja) 電力変換装置および電動機システム
JP2011229011A (ja) スイッチングトランジスタの制御回路およびそれを用いた電力変換装置
WO2024090345A1 (ja) 電力変換装置
JP2018183018A (ja) マトリクスコンバータ及び交流電動機の定数決定方法
WO2024162204A1 (ja) 電力変換装置
WO2024106284A1 (ja) 電力変換装置
WO2024162289A1 (ja) 電力変換装置
WO2024106290A1 (ja) 電力変換装置
CN110063009B (zh) 电力变换装置以及使用该装置的电动机驱动装置
JP2020054071A (ja) マルチレベル電力変換装置
WO2024043125A1 (ja) 電力変換装置
JPWO2018203422A1 (ja) 半導体素子の駆動装置および電力変換装置
JP5106924B2 (ja) 電力変換回路の駆動装置及び電力変換システム
WO2024009827A1 (ja) 電力変換装置
WO2024043124A1 (ja) 電力変換装置
JP5734120B2 (ja) 電力変換装置
WO2023149193A1 (ja) 電力変換装置
JP2012110121A (ja) 電力変換回路の駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882550

Country of ref document: EP

Kind code of ref document: A1