WO2024088402A1 - 一种异喹啉酮类化合物的晶型及其制备方法 - Google Patents

一种异喹啉酮类化合物的晶型及其制备方法 Download PDF

Info

Publication number
WO2024088402A1
WO2024088402A1 PCT/CN2023/127230 CN2023127230W WO2024088402A1 WO 2024088402 A1 WO2024088402 A1 WO 2024088402A1 CN 2023127230 W CN2023127230 W CN 2023127230W WO 2024088402 A1 WO2024088402 A1 WO 2024088402A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
characteristic peaks
ray powder
compound
powder diffraction
Prior art date
Application number
PCT/CN2023/127230
Other languages
English (en)
French (fr)
Inventor
尚婷婷
杨俊然
杜振兴
王捷
Original Assignee
江苏恒瑞医药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒瑞医药股份有限公司 filed Critical 江苏恒瑞医药股份有限公司
Publication of WO2024088402A1 publication Critical patent/WO2024088402A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present disclosure relates to a crystal form of an isoquinolinone compound and a preparation method thereof. Specifically, a crystal form of a compound as shown in Formula I and a preparation method thereof are provided.
  • Phosphodiesterase belongs to the superfamily enzyme system, which includes 11 families. Each family participates in different signal transduction and regulates different physiological processes. Among them, PDE3 has the ability to hydrolyze both cAMP and cGMP, but its ability to hydrolyze cAMP is about ten times that of cGMP. PDE3 has two genetic subtypes: PDE3A and PDE3B, which are located on chromosomes 11 and 12 respectively. Due to different start codons, PDE3A can be divided into three subtypes: PDE3A1, PDE3A2 and PDE3A3.
  • PDE3B has only one subtype, PDE3B1, which is mainly distributed in adipocytes, hepatocytes, spermatocytes and pancreas. It is mainly involved in regulating the signal transduction of insulin, insulin-like growth factor and leptin, and plays an important role in metabolic diseases such as obesity and diabetes.
  • the main PDE3 selective inhibitors include cilostazol, cilostazolamide, milrinone, amrinone, enoximone and cyanoguanidine.
  • amrinone can inhibit PDE3 activity, increase the concentration of cAMP in myocardial cells, and increase the concentration of intracellular Ca 2+ , thereby giving full play to the positive inotropic effect.
  • amrinone can directly act on vascular smooth muscle cells, has a good vasodilator effect, increases myocardial contractility, reduces pulmonary artery pressure, and restores cardiopulmonary function. It has important value in the treatment of chronic cor pulmonale combined with heart failure.
  • cilostazol is clinically used for the treatment of anti-platelet aggregation, pulmonary hypertension (PAH), chronic obstructive pulmonary disease (COPD), intermittent claudication, and cerebral microvascular disease.
  • PDE4 is highly specific to cAMP and has four subtypes: PDE4A, PDE4B, PDE4C and PDE4D.
  • PDE4 is involved in promoting monocyte and macrophage activation, neutrophil infiltration, vascular smooth muscle proliferation, vasodilation and myocardial contraction and other related physiological and pathological processes, and has an impact on central nervous system function, cardiovascular function, inflammation/immune system, cell adhesion, etc.
  • PDE4 plays a major regulatory role in the expression of pro-inflammatory and anti-inflammatory mediators, and PDE4 inhibitors can inhibit the release of harmful mediators from inflammatory cells.
  • RPL554 (9,10-Dimethoxy-2-(2,4,6-trimethylphenylimino)-3-(N-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,la]isoquinolin-4-one) is a PDE3/PDE4 dual-target inhibitor, disclosed in WO00/58308.
  • Recent Phase II clinical data showed that it can significantly improve bronchiectasis and symptoms in patients with COPD.
  • the drug is well tolerated and no obvious adverse events occur, such as heart problems, nausea and diarrhea, which are all mild.
  • the safety of the drug and its "limited systemic exposure" are encouraging.
  • Patent application PCT/CN2022/090175 provides a compound as shown in formula I, whose chemical name is 9,10-dimethoxy-2-[[2-(2-oxo-imidazolin-1-yl)-ethyl]-(2,4,6-trimethyl-phenyl)-amino]-6,7-dihydro-pyrimidinyl[6,1-a]isoquinolin-4-one, which has good PDE3 and PDE4 inhibitory activity.
  • the crystal structure of the active ingredient of a drug and its salt not only affects the physical and chemical stability of the drug itself, but also affects the difficulty of the subsequent drug preparation and the production cost.
  • Different crystallization conditions and storage conditions may lead to changes in the crystal structure of the compound and its salt, and sometimes it may be accompanied by the production of other forms of crystals. Therefore, from the perspective of stability, the difficulty of the drug preparation process, and production cost, it is necessary to conduct in-depth research on the crystal form of the compound shown in Formula I.
  • the present disclosure provides a crystalline form of a compound represented by formula (I) and a preparation method thereof, wherein the chemical name of the compound represented by formula (I) is 9,10-dimethoxy-2-[[2-(2-oxo-imidazolin-1-yl)-ethyl]-(2,4,6-trimethyl-phenyl)-amino]-6,7-dihydro-pyrimidinyl[6,1-a]isoquinolin-4-one,
  • the present disclosure provides an amorphous form of a compound represented by formula (I), wherein the diffraction angle 2 ⁇ of the X-ray powder diffraction spectrum thereof has no obvious characteristic peak within the range of 2-45°.
  • the present disclosure further provides a method for preparing an amorphous compound of formula (I), comprising the steps of: mixing the compound of formula (I) with benzyl alcohol, dissolving, and b) volatilizing and crystallizing.
  • the volume ( ⁇ l) of the solvent used in the present disclosure may be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments may be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the amorphous form of the compound represented by (I) described in the present disclosure further comprises a filtering, washing or drying step.
  • the present disclosure provides a crystalline form A of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.6, 11.0, 14.4, 15.5, 17.9, 19.1 and 23.7.
  • the Form A of the compound of Formula (I) has characteristic peaks at 4.6, 6.6, 10.1, 11.0, 14.4, 15.5, 17.9, 19.1, 22.8 and 23.7.
  • the Form A of the compound of Formula (I) has characteristic peaks at 4.6, 6.6, 10.1, 11.0, 13.1, 14.4, 15.5, 17.1, 17.9, 19.1, 22.8, 23.7 and 25.9.
  • the X-ray powder diffraction pattern of Form A of the compound represented by Formula (I) expressed at a diffraction angle of 2 ⁇ is shown in FIG. 2 .
  • the present disclosure provides a B-type crystal of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.6, 11.0, 12.7, 15.5, 19.1, 23.7 and 25.8.
  • the Form B of the compound of Formula (I) has characteristic peaks at 6.6, 10.0, 11.0, 11.7, 12.7, 15.5, 19.1, 23.7, 24.6 and 25.8.
  • the Form B of the compound of Formula (I) has characteristic peaks at 6.6, 8.6, 10.0, 11.0, 11.7, 12.7, 15.5, 17.8, 19.1, 23.7, 24.6, 25.8 and 26.9.
  • the X-ray powder diffraction pattern of Form B of the compound represented by Formula (I) expressed at a diffraction angle of 2 ⁇ is shown in FIG3 .
  • the present disclosure further provides a method for preparing a crystalline form B of the compound represented by formula (I), comprising: a) mixing the compound represented by formula I with dichloromethane and dissolving the mixture; and b) volatilizing and crystallizing the mixture.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the B crystal form of the compound represented by formula (I) described in the present disclosure further comprises the step of Filtration, washing or drying steps.
  • the present disclosure provides a crystal form C of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.6, 7.5, 10.1, 10.9, 15.6, 23.8 and 24.3.
  • Form C of the compound of Formula (I) has characteristic peaks at 6.6, 7.5, 10.1, 10.9, 13.8, 15.6, 20.7, 23.8, 24.3 and 24.7.
  • Form C of the compound of Formula (I) has characteristic peaks at 6.6, 7.5, 10.1, 10.9, 13.8, 15.6, 17.5, 19.3, 20.7, 23.8, 24.3, 24.7 and 27.0.
  • the X-ray powder diffraction pattern of Form C of the compound represented by Formula (I) expressed at a diffraction angle of 2 ⁇ is shown in FIG. 4 .
  • the present disclosure further provides a method for preparing a crystalline form of compound C represented by formula (I), comprising: a) mixing the compound represented by formula I with acetonitrile, methanol or a mixture thereof, and b) volatilizing and crystallizing.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing Form C of the compound of formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides a D-type crystal of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.6, 10.1, 11.0, 15.6, 16.5, 17.5 and 24.2.
  • the D form of the compound of formula (I) has characteristic peaks at 6.6, 10.1, 11.0, 15.6, 16.5, 17.5, 20.3, 24.2, 25.8 and 26.9.
  • the D form of the compound of formula (I) has characteristic peaks at 6.6, 10.1, 11.0, 15.6, 16.5, 17.5, 20.3, 23.3, 24.2, 24.7, 25.1, 25.8 and 26.9.
  • the X-ray powder diffraction pattern of Form D of the compound represented by Formula (I) expressed at a diffraction angle of 2 ⁇ is shown in FIG5 .
  • the present disclosure further provides a method for preparing a crystalline form D of the compound represented by formula (I), comprising:
  • Method 1 a) mixing the compound represented by formula I with solvent II, and dissolving by heating or without heating, wherein solvent II is selected from one or more of propylene glycol methyl ether, 1,2-dichloroethane, ethyl acetate/ethanol, n-propanol, tetrahydrofuran/ethanol, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, ethanol/acetone, ethanol/isopropyl acetate, acetonitrile/methanol/acetone, b) volatilizing and crystallizing;
  • solvent II is selected from one or more of propylene glycol methyl ether, 1,2-dichloroethane, ethyl acetate/ethanol, n-propanol, tetrahydrofuran/ethanol, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, ethanol/acetone, ethanol/isopropy
  • Or method 2 a) mixing the compound represented by formula I with solvent III and dissolving it, wherein the solvent III is selected from one or more of ethanol, N-methylpyrrolidone, dichloromethane or acetonitrile/methanol; b) adding solvent IV to precipitate crystals, wherein the solvent IV is selected from one or more of methyl tert-butyl ether, n-heptane, water, acetone, and isopropyl acetate.
  • solvent III is selected from one or more of ethanol, N-methylpyrrolidone, dichloromethane or acetonitrile/methanol
  • solvent IV is selected from one or more of methyl tert-butyl ether, n-heptane, water, acetone, and isopropyl acetate.
  • Or method 3 a) mixing the compound represented by formula I with a solvent V, wherein the solvent V is selected from one or more of water, acetone, ethyl acetate, isopropyl acetate, methyl tert-butyl ether, 2-butanone, tetrahydrofuran, methyl isobutyl ketone, 1,4-dioxane, isopentanol, water/ethanol, water/isopropanol, water/acetone, methanol/water, ethyl acetate/n-heptane, o-xylene, isopropyl ether, and toluene; b) stirring and crystallizing.
  • the solvent V is selected from one or more of water, acetone, ethyl acetate, isopropyl acetate, methyl tert-butyl ether, 2-butanone, tetrahydrofuran, methyl isobutyl ketone, 1,
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the D-type crystalline compound of formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides Form E of the compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.3, 11.1, 12.8, 14.3, 17.9, 22.9 and 25.6.
  • the E form of the compound represented by formula (I) has characteristic peaks at 6.3, 11.1, 12.8, 14.3, 17.0, 17.9, 18.7, 22.9, 23.8 and 25.6.
  • the E form of the compound represented by formula (I) has characteristic peaks at 6.3, 11.1, 12.8, 14.3, 15.9, 17.0, 17.9, 18.7, 20.1, 22.9, 23.8 and 25.6.
  • the X-ray powder diffraction pattern of Form E of the compound represented by Formula (I) expressed at a diffraction angle of 2 ⁇ is shown in FIG6 .
  • the present disclosure further provides a method for preparing a crystalline form of the compound E represented by formula (I), comprising: a) The compound shown is mixed with N-methylpyrrolidone and dissolved, b) isopropyl acetate is added and crystallized.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the E crystal form of the compound represented by formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides a crystalline form F of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.6, 11.1, 13.6, 15.0, 22.3, 24.2 and 26.1.
  • the F form of the compound represented by formula (I) has characteristic peaks at 6.6, 11.1, 13.6, 15.0, 16.1, 18.6, 22.3, 24.2, 26.1 and 28.2.
  • the F form of the compound represented by formula (I) has characteristic peaks at 6.6, 8.8, 11.1, 12.9, 13.6, 15.0, 16.1, 17.7, 18.6, 22.3, 24.2, 26.1 and 28.2.
  • the X-ray powder diffraction pattern of Form F of the compound represented by Formula (I) expressed in terms of a diffraction angle of 2 ⁇ is shown in FIG. 7 .
  • the present disclosure further provides a method for preparing a crystalline form of compound F represented by formula (I), comprising:
  • Method 1 a) mixing the compound represented by formula I with N-methylpyrrolidone and dissolving them, and b) stirring and crystallizing;
  • method 2 a) mixing the compound represented by formula I with N-methylpyrrolidone and dissolving the mixture; b) adding methyl tert-butyl ether or n-heptane for crystallization.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the F crystal form of the compound represented by formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides a G crystal form of a compound represented by formula (I), wherein the X-ray powder diffraction angle 2 ⁇ is expressed as The radiation pattern has characteristic peaks at 6.1, 12.3, 14.2, 16.9, 19.2, 21.4 and 24.0.
  • the G form of the compound of formula (I) has characteristic peaks at 6.1, 12.3, 13.1, 14.2, 15.2, 16.1, 16.9, 19.2, 21.4 and 24.0.
  • the G form of the compound of formula (I) has characteristic peaks at 6.1, 11.3, 12.3, 13.1, 14.2, 15.2, 16.1, 16.9, 19.2, 21.4, 24.0, 26.6 and 28.8.
  • the X-ray powder diffraction pattern of Form G of the compound represented by Formula (I) expressed at a diffraction angle of 2 ⁇ is shown in FIG8 .
  • the present disclosure further provides a method for preparing a crystalline form of compound G shown in formula (I), comprising: a) mixing the compound shown in formula I with dichloromethane and dissolving, and b) adding isopropyl acetate or methyl tert-butyl ether and crystallizing.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the G crystal form of the compound represented by formula (I) described in the present disclosure further includes the steps of filtering, washing or drying.
  • the present disclosure provides H crystal form of the compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.8, 7.5, 9.7, 13.0, 14.0, 15.1 and 16.1.
  • the H crystalline form of the compound represented by formula (I) has characteristic peaks at 6.8, 7.5, 9.7, 10.2, 10.9, 13.0, 14.0, 15.1, 16.1 and 26.5.
  • the H crystalline form of the compound represented by formula (I) has characteristic peaks at 6.8, 7.5, 9.7, 10.2, 10.9, 13.0, 14.0, 15.1, 16.1, 22.1, 23.1, 25.8 and 26.5.
  • the X-ray powder diffraction pattern of the H crystal form of the compound represented by formula (I) expressed in terms of a diffraction angle of 2 ⁇ is shown in FIG. 9 .
  • the present disclosure further provides a method for preparing the H crystal form of the compound represented by formula (I), comprising:
  • Method 1 a) mixing the crystal form A of the compound represented by formula I with methanol and heating, and b) cooling and crystallizing;
  • Method 2 a) mixing the compound represented by formula I with an acetonitrile/methanol mixture and dissolving it; b) adding methyl tert-butyl ether to precipitate the mixture; crystal.
  • the volume ( ⁇ l) of the solvent used in the present disclosure may be 1-200 times the mass (mg) of the compound of formula I, and in non-limiting embodiments may be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the H crystalline form of the compound of formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides Form I of the compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 5.2, 7.2, 9.6, 10.2, 12.0, 13.3 and 22.1.
  • Form I of the compound of Formula (I) has characteristic peaks at 5.2, 7.2, 9.6, 10.2, 12.0, 13.3, 14.5, 15.0, 19.5 and 22.1.
  • Form I of the compound of Formula (I) has characteristic peaks at 5.2, 7.2, 7.9, 9.6, 10.2, 12.0, 13.3, 14.5, 15.0, 19.5, 21.2, 22.1 and 23.6.
  • the X-ray powder diffraction pattern of Form I of the compound represented by Formula (I) expressed at a diffraction angle of 2 ⁇ is shown in FIG. 10 .
  • the present disclosure further provides a method for preparing a crystalline form of compound I shown in formula (I), comprising: a) mixing the compound shown in formula I with ethanol, dissolving, and heating; and b) cooling and crystallizing.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing Form I of the compound of formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides a J crystal form of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 7.7, 11.7, 13.5, 14.0, 18.6, 21.6 and 24.3.
  • the J crystal form of the compound represented by formula (I) has characteristic peaks at 7.7, 10.1, 11.7, 13.5, 14.0, 18.6, 20.2, 21.6, 23.3 and 24.3.
  • the J form of the compound represented by formula (I) has characteristic peaks at 7.7, 10.1, 10.7, 11.7, 13.5, 14.0, 16.0, 17.3, 18.6, 20.2, 21.6, 23.3 and 24.3.
  • the X-ray powder diffraction pattern of Form J of the compound represented by Formula (I) expressed in terms of a diffraction angle of 2 ⁇ is shown in FIG. 11 .
  • the present disclosure further provides a method for preparing the crystal form J of the compound shown in formula (I), comprising: a) mixing the crystal form A of the compound shown in formula I with isopropanol and heating; and b) cooling and crystallizing.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the J crystal form of the compound represented by formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides a K-type of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.8, 7.4, 13.8, 15.0, 15.8, 20.7 and 22.1.
  • the K crystal form of the compound represented by formula (I) has characteristic peaks at 6.8, 7.4, 9.5, 13.8, 14.2, 15.0, 15.8, 20.7, 22.1 and 27.6.
  • the K crystal form of the compound represented by formula (I) has characteristic peaks at 6.8, 7.4, 9.5, 13.8, 14.2, 15.0, 15.8, 17.9, 18.4, 20.7, 22.1, 26.5 and 27.6.
  • the X-ray powder diffraction pattern of Form K of the compound represented by Formula (I) expressed at a diffraction angle of 2 ⁇ is shown in FIG. 12 .
  • the present disclosure further provides a method for preparing the crystal form K of the compound shown in formula (I), comprising: a) mixing the crystal form A of the compound shown in formula I with acetonitrile and heating; and b) cooling and crystallizing.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the K crystal form of the compound represented by formula (I) described in the present disclosure further includes the steps of filtering, washing or drying.
  • the present disclosure provides an L-crystalline form of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 7.1, 7.6, 12.8, 13.6, 19.5, 21.1 and 25.8.
  • the L-type crystalline compound of formula (I) has characteristic peaks at 7.1, 7.6, 9.2, 12.8, 13.6, 16.1, 19.5, 21.1, 24.6 and 25.8.
  • the L-type crystalline compound of formula (I) has characteristic peaks at 7.1, 7.6, 9.2, 12.8, 13.6, 16.1, 19.5, 21.1, 24.6 and 25.8.
  • the X-ray powder diffraction pattern of the L-type of the compound represented by formula (I) expressed in terms of a diffraction angle of 2 ⁇ is shown in FIG. 13 .
  • the present disclosure further provides a method for preparing the L crystal form of the compound represented by formula (I), comprising: a) mixing the compound represented by formula I with dichloromethane and dissolving, and b) adding methyl tert-butyl ether for crystallization.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the L-crystalline form of the compound represented by formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides a crystal form M of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 6.6, 12.8, 14.8, 19.9, 25.3, 28.1 and 29.9.
  • the M crystalline form of the compound of formula (I) has characteristic peaks at 6.6, 12.8, 14.8, 15.3, 19.9, 24.9, 25.3, 25.9, 28.1 and 29.9.
  • the M crystalline form of the compound of formula (I) has characteristic peaks at 6.6, 10.9, 12.8, 14.8, 15.3, 18.0, 19.9, 24.9, 25.3, 25.9, 27.0, 28.1 and 29.9.
  • the X-ray powder diffraction pattern of the M crystal form of the compound represented by formula (I) expressed in terms of a diffraction angle of 2 ⁇ is shown in FIG. 14 .
  • the present disclosure further provides a method for preparing a crystalline form M of a compound represented by formula (I), comprising: a) mixing and dissolving the compound represented by formula I with dimethyl sulfoxide, and b) volatilizing and crystallizing.
  • the volume ( ⁇ l) of the solvent used in the present disclosure can be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments can be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing the M crystal form of the compound represented by formula (I) described in the present disclosure further comprises the steps of filtering, washing or drying.
  • the present disclosure provides an N-crystalline form of a compound represented by formula (I), and an X-ray powder diffraction pattern represented by a diffraction angle 2 ⁇ , having characteristic peaks at 5.8, 7.6, 16.0, 16.2, 18.6, 22.0 and 22.3.
  • the N crystalline form of the compound represented by formula (I) has characteristic peaks at 5.8, 7.6, 13.5, 16.0, 16.2, 17.9, 18.6, 22.0, 22.3 and 24.0.
  • the N crystalline form of the compound represented by formula (I) has characteristic peaks at 5.8, 7.6, 11.0, 13.5, 16.0, 16.2, 17.9, 18.6, 20.3, 21.2, 22.0, 22.3 and 24.0.
  • the X-ray powder diffraction pattern of the N-type of the compound represented by formula (I) expressed in terms of a diffraction angle of 2 ⁇ is shown in FIG. 15 .
  • the present disclosure further provides a method for preparing the N-type crystal of the compound represented by formula (I), comprising: a) mixing the compound represented by formula I with a phosphoric acid solution and a solvent II, and heating to dissolve, wherein the solvent II is selected from at least one of isopropanol, tetrahydrofuran, and ethanol; and b) cooling and crystallizing.
  • the volume ( ⁇ l) of the solvent used in the present disclosure may be 1-200 times the mass (mg) of the compound of Formula I, and in non-limiting embodiments may be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 200.
  • the method for preparing Form N described in the present disclosure further includes the steps of filtering, washing or drying.
  • the present disclosure also provides a pharmaceutical composition prepared from the crystal form of the compound represented by the aforementioned formula (I).
  • the present disclosure also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the aforementioned crystal form and a pharmaceutically acceptable carrier, a diluent, Agent or excipient.
  • the present disclosure also provides a method for preparing a pharmaceutical composition, comprising the step of mixing the aforementioned crystal form with a pharmaceutically acceptable carrier, diluent or excipient.
  • the present disclosure also provides use of the aforementioned crystal form, or the aforementioned composition, or the composition prepared by the aforementioned method in preparing a medicament for preventing and/or treating PDE-related disorders.
  • the present disclosure also provides the use of the aforementioned crystal form, or the aforementioned composition, or the composition prepared by the aforementioned method in the preparation of a medicament for preventing and/or treating asthma, obstructive pulmonary disease, sepsis, nephritis, diabetes, allergic rhinitis, allergic conjunctivitis, ulcerative enteritis or rheumatism.
  • the "2 ⁇ or 2 ⁇ angle" mentioned in the present disclosure refers to the diffraction angle, ⁇ is the Bragg angle, and the unit is ° or degree; the error range of each characteristic peak 2 ⁇ is ⁇ 0.20 (including the case where the number exceeding 1 decimal place is rounded off), which can be -0.20, -0.19, -0.18, -0.17, -0.16, -0.15, -0.14, -0.13, -0.12, -0.11, -0.10, -0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.03, -0.02, -0.01, 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20.
  • Hygroscopic weight gain due to moisture absorption is less than 15% but not less than 2%;
  • weight gain due to moisture absorption is less than 2% but not less than 0.2%;
  • moisture gain is less than 0.2%.
  • the "differential scanning calorimetry or DSC” described in the present disclosure refers to measuring the temperature difference and heat flow difference between a sample and a reference object during the process of heating or maintaining a constant temperature of the sample to characterize all physical and chemical changes related to thermal effects and obtain phase change information of the sample.
  • the drying temperature in the present disclosure is generally 25° C. to 150° C., preferably 40° C. to 80° C., and the drying can be performed at normal pressure or under reduced pressure.
  • a “pharmaceutical composition” refers to a composition containing one or more compounds of formula (I) or their pharmaceutically acceptable salts described herein and other chemical A mixture of components, as well as other components such as pharmaceutically acceptable carriers and excipients.
  • the purpose of a pharmaceutical composition is to facilitate administration to an organism, facilitate the absorption of the active ingredients, and thus exert biological activity.
  • the crystalline forms disclosed herein include but are not limited to solvates of the compound represented by formula (I), and the solvents include but are not limited to n-heptane, cyclohexane, petroleum ether, dichloromethane, acetonitrile, methanol, propylene glycol methyl ether, 1,2-dichloroethane, ethyl acetate, ethanol, n-propanol, tetrahydrofuran, chloroform, N,N-dimethylformamide, acetone, isopropyl acetate, methyl tert-butyl ether, N-methylpyrrolidone, water, 2-butanone, 1,4-dioxane, isopentanol, o-xylene, isopropyl ether, toluene, isopropanol, dimethyl sulfoxide, and benzyl alcohol.
  • the solvents include but are not limited to n-heptane
  • solvate described in the present disclosure includes, but is not limited to, a complex formed by the combination of the compound of formula (I) and a solvent.
  • Figure 1 XRPD pattern of the amorphous form of the compound represented by formula (I).
  • Figure 8 XRPD spectrum of the crystalline form of compound G represented by formula (I).
  • Figure 11 XRPD spectrum of the crystalline form J of the compound represented by formula (I).
  • Figure 12 XRPD spectrum of the crystalline form K of the compound represented by formula (I).
  • Figure 13 XRPD pattern of the crystalline form L of the compound represented by formula (I).
  • Figure 14 XRPD spectrum of the crystalline form M of the compound represented by formula (I).
  • Figure 15 XRPD spectrum of the crystalline form N of the compound represented by formula (I).
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • NMR shifts ( ⁇ ) are given in units of 10 -6 (ppm).
  • NMR measurements were performed using a Bruker AVANCE-400 NMR spectrometer, with deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated chloroform (CDCl 3 ), deuterated methanol (CD 3 OD) as the measuring solvent, and tetramethylsilane (TMS) as the internal standard.
  • DMSO-d 6 deuterated dimethyl sulfoxide
  • CDCl 3 deuterated chloroform
  • CD 3 OD deuterated methanol
  • TMS tetramethylsilane
  • MS was determined using Agilent 1200/1290 DAD-6110/6120 Quadrupole MS LC-MS (Manufacturer: Agilent, MS model: 6110/6120 Quadrupole MS), Waters ACQuity UPLC-QD/SQD (Manufacturer: Waters, MS model: waters ACQuity Qda Detector/waters SQ Detector), and THERMO Ultimate 3000-Q Exactive (Manufacturer: THERMO, MS model: THERMO Q Exactive).
  • HPLC High performance liquid chromatography
  • Chiral HPLC analysis was performed using an Agilent 1260 DAD high performance liquid chromatograph.
  • the CombiFlash rapid preparation instrument uses Combiflash Rf200 (TELEDYNE ISCO).
  • the thin layer chromatography silica gel plate uses Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plate.
  • the silica gel plate used in thin layer chromatography (TLC) adopts a specification of 0.15mm-0.2mm, and the specification used for thin layer chromatography separation and purification products is 0.4mm-0.5mm.
  • Silica gel column chromatography generally uses Yantai Huanghai Silica Gel 200-300 mesh silica gel as the carrier.
  • the average kinase inhibition rate and IC50 value were determined using NovoStar microplate reader (BMG, Germany).
  • the known starting materials of the present disclosure can be synthesized by methods known in the art, or can be purchased from ABCR GmbH & Co. KG, Acros Organics, Aldrich Chemical Company, Shaoyuan Chemical Technology (Accela ChemBio Inc), Darui Chemicals and other companies.
  • the reactions can be carried out under an argon atmosphere or a nitrogen atmosphere.
  • Argon atmosphere or nitrogen atmosphere means that the reaction bottle is connected to an argon or nitrogen balloon with a capacity of about 1L.
  • Hydrogen atmosphere means that the reaction bottle is connected to a hydrogen balloon with a capacity of about 1L.
  • the pressurized hydrogenation reaction uses a Parr 3916EKX hydrogenator and a Clear Blue QL-500 hydrogen generator or a HC2-SS hydrogenator.
  • the hydrogenation reaction is usually carried out by evacuating the vacuum, filling with hydrogen, and repeating the operation three times.
  • Microwave reactions were performed using a CEM Discover-S 908860 microwave reactor.
  • the solution refers to an aqueous solution.
  • reaction temperature is room temperature, 20°C to 30°C.
  • the reaction progress in the embodiment is monitored by thin layer chromatography (TLC), the developing solvent used in the reaction, the eluent system of column chromatography used for purifying the compound and the developing solvent system of thin layer chromatography include: A: n-hexane/ethyl acetate system, B: dichloromethane/methanol system, the volume ratio of the solvent is adjusted according to the polarity of the compound, and a small amount of alkaline or acidic reagents such as triethylamine and acetic acid can also be added for adjustment.
  • TLC thin layer chromatography
  • intermediate 1d (2.4 g, 8.2 mmol) was suspended in isopropanol (30 ml), 2,4,6-trimethylaniline (4.5 g, 24.6 mmol) was added, the system was heated to 90°C, and stirring was continued until the reaction was completed. The temperature was lowered, the mixture was filtered, and the filter cake was washed with ice water and dried to obtain intermediate 1e (3.0 g, yield 92.1%), MS (ESI) m/z 392.2 [M+H] + .
  • intermediate 1e (0.72 g, 1.8 mmol) was dissolved in tetrahydrofuran (20 ml), and potassium tert-butoxide (0.42 g, 3.6 mmol) was added under nitrogen atmosphere. After the addition, the temperature was raised to 65°C and stirring was continued for 48 h. The temperature was lowered to 25°C and intermediate 1a (0.82 g, 5.5 mmol) was added. After the addition, the temperature was raised to 80°C and stirring was continued until the reaction was completed.
  • the target compound 1 (0.21 g, yield 46.5%) was obtained by silica gel column chromatography (n-heptane/ethyl acetate).
  • Test Example 1 In vitro PDE4B enzyme activity detection experiment: IMAP FP-based analytical method detection
  • the compound was serially diluted 5-fold with DMSO to obtain different concentrations (10000 nM, 2000 nM, 400 nM, 80 nM, 16 nM, 3.2 nM, 0.64 nM, 0.128 nM, 0.0256 nM, 0.005 nM).
  • inhibition rate M/(MM control )*100
  • IC 50 value is calculated based on the concentration and inhibition rate fitting curve.
  • RPL554 was used as a positive control in this experiment.
  • Test Example 2 In vitro PDE3A enzyme activity detection experiment: IMAP FP-based analytical method detection
  • the compound was diluted 5-fold with DMSO to obtain different concentrations (10000nM, 2000nM, 400nM, 80nM, 16nM, 3.2nM, 0.64nM, 0.128nM, 0.0256nM, 0.005nM).
  • inhibition rate M/(MM control )*100; the IC 50 value was calculated based on the concentration and inhibition rate fitting curve. RPL554 was used as a positive control in this experiment.
  • Test Example 3 PK experiment of intratracheal administration
  • ICR mice (Shanghai Slake Laboratory Animal Co., Ltd.), 198, half male and half female.
  • Plasma was collected at 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours.
  • 200 ⁇ L of whole blood was collected and anticoagulated with EDTA-K2.
  • the blood was centrifuged at about 6800 g for 6 minutes at 2-8°C, and the resulting plasma was transferred to an appropriately labeled tube within 1 hour of blood collection/centrifugation and stored at -80°C.
  • compound 1 Compared with RPL-554, compound 1 has a higher in vivo exposure and is maintained in the lungs for a longer time.
  • the relevant data are shown in Tables III and IV.
  • the product was prepared according to Example 1.
  • the product was defined as Form A by X-ray powder diffractometer detection.
  • the XRPD spectrum is shown in FIG2 , and the characteristic peak positions are shown in Table 1.
  • the DSC spectrum shows that the endothermic peaks are 135.93°C and 263.19°C.
  • the TGA spectrum shows that the weight loss is 3.97% at 30°C-275°C.
  • the product was obtained by X-ray powder diffraction.
  • the product was defined as Form B.
  • the XRPD spectrum is shown in Figure 3, and the characteristic peak positions are shown in Table 2.
  • the DSC spectrum shows that the endothermic peaks are 139.31°C and 263.02°C, and the exothermic peak is 153.33°C.
  • the TGA spectrum shows that the weight loss is 7.14% at 30°C-290°C.
  • the product was defined as crystal form D by X-ray powder diffraction detection.
  • the XRPD spectrum is shown in Figure 5, and the positions of its characteristic peaks are shown in Table 4.
  • the DSC spectrum shows that the peak values of the endothermic peaks are 163.12°C and 263.24°C, and the peak value of the exothermic peak is 166.84°C.
  • the TGA spectrum shows that the weight loss is 3.02% at 30°C-165°C.
  • the product was defined as crystal form E by X-ray powder diffraction detection.
  • the XRPD spectrum is shown in Figure 6, and the position of its characteristic peaks is shown in Table 5.
  • the DSC spectrum shows that the peak value of the endothermic peak is 265.03°C.
  • the TGA spectrum shows that the weight loss is 0.33% at 30°C-170°C.
  • the product was defined as crystal form F by X-ray powder diffraction detection.
  • the XRPD spectrum is shown in Figure 7, and the position of its characteristic peaks is shown in Table 6.
  • the DSC spectrum shows that the peak values of the endothermic peaks are 96.91°C, 141.88°C, and 263.70°C.
  • the TGA spectrum shows that the weight loss is 25.77% at 30°C-220°C.
  • the product was defined as Form G by X-ray powder diffraction detection, the XRPD spectrum is shown in Figure 8, and the position of its characteristic peaks is shown in Table 7.
  • the DSC spectrum shows that the peak value of the endothermic peak is 264.37°C.
  • the TGA spectrum shows that the weight loss is 0.24% at 30°C-205°C.
  • the product was defined as crystal form H by X-ray powder diffraction detection.
  • the XRPD spectrum is shown in Figure 9, and the positions of its characteristic peaks are shown in Table 8.
  • the DSC spectrum shows that the peak values of the endothermic peaks are 149.99°C and 264.92°C, and the peak value of the exothermic peak is 158.39°C.
  • the TGA spectrum shows that the weight loss is 2.53% at 30°C-160°C.
  • the product was defined as Form I by X-ray powder diffraction detection.
  • the XRPD spectrum is shown in Figure 10, and the positions of its characteristic peaks are shown in Table 9.
  • the DSC spectrum shows that the peak values of the endothermic peaks are 140.16°C and 264.78°C, and the peak value of the exothermic peak is 159.54°C.
  • the TGA spectrum shows that the weight loss is 6.27% at 30°C-170°C.
  • the product was defined as crystal form K by X-ray powder diffraction detection.
  • the XRPD spectrum is shown in Figure 12, and the positions of its characteristic peaks are shown in Table 11.
  • the DSC spectrum shows that the peak values of the endothermic peaks are 153.65°C, 160.48°C, and 265.14°C, and the peak value of the exothermic peak is 158.85°C.
  • the TGA spectrum shows that the weight loss is 5.27% at 30°C-195°C.
  • the product was defined as crystal form L by X-ray powder diffraction detection, and the XRPD spectrum was shown in Figure 13, and the position of its characteristic peaks was shown in Table 12.
  • the DSC spectrum showed that the peak values of the endothermic peaks were 137.47°C and 264.18°C, and the peak value of the exothermic peak was 159.83°C.
  • the TGA spectrum showed that the weight loss was 9.46% at 30°C-195°C.
  • the product was defined as crystal form M by X-ray powder diffraction detection.
  • the XRPD spectrum is shown in Figure 14, and the position of its characteristic peaks is shown in Table 13.
  • the DSC spectrum shows that the peak values of the endothermic peaks are 161.65°C and 264.86°C.
  • the TGA spectrum shows that the weight loss is 13.41% at 30°C-235°C.
  • the crystal forms D, E, G, H and N of the compound of formula (I) were laid out in an open manner, and the stability of the samples was investigated under high temperature (40°C, 60°C) and high humidity (RH 75%, RH 92.5%) conditions, and the sampling period was 30 days.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本公开涉及一种异喹啉酮类化合物的晶型及其制备方法。具体的,本公开提供了如式(I)所示化合物的晶型及其制备方法。

Description

一种异喹啉酮类化合物的晶型及其制备方法
本申请要求申请日为2022/10/28的中国专利申请2022113360457的优先权。本申请引用上述中国专利申请的全文。
技术领域
本公开涉及一种异喹啉酮类化合物的晶型及其制备方法,具体的,提供了如式I所示化合物的晶型及其制备方法。
背景技术
磷酸二酯酶(PDE)属超家族酶系,包含11个家族,每个家族参与不同的信号传导,调节不同的生理过程。其中,PDE3对cAMP与cGMP均有水解能力,但对于cAMP的水解能力约为cGMP的十倍。PDE3有两种基因亚型:PDE3A与PDE3B,分别位于染色体11与12上,由于起始密码子的不同,PDE3A又可分为PDE3A1、PDE3A2和PDE3A3三种亚型,主要分布于心脏、血小板、血管平滑肌及卵母细胞中,具有调节心肌收缩力、血小板聚集、血管平滑肌收缩、卵母细胞成熟及肾素释放等作用。PDE3B只有一种亚型PDE3B1,主要分布于脂肪细胞、肝细胞、精母细胞以及胰腺中,主要参与调节胰岛素、胰岛素样生长因子以及瘦素的信号传导,在肥胖和糖尿病等代谢性疾病中发挥着重要的作用。PDE3选择性抑制剂主要有西洛他唑、西洛酰胺、米力农、氨力农、依诺昔酮和氰胍佐旦等。
例如,氨力农可抑制PDE3活性,提高心肌细胞内cAMP的浓度,升高细胞内Ca2+浓度,从而充分发挥正性肌力作用。同时氨力农可直接作用于血管平滑肌细胞,具有良好的扩张血管作用,增加心肌收缩力,降低肺动脉压力,恢复心肺功能,在慢性肺心病合并心力衰竭的治疗中具有重要的价值。此外,西洛他唑在临床上用于抗血小板聚集、肺动脉高压(pulmonaryhypertension,PAH)、慢性阻塞性肺疾病(chronicobstructivepulmonarydisease,COPD)、间歇性跛行以及脑微血管疾病的治疗。
另一方面,PDE4对cAMP具有高度特异性,有4种亚型:PDE4A、PDE4B、PDE4C和PDE4D。PDE4参与了促进单核细胞与巨噬细胞活化、中性粒细胞浸润、血管平滑肌的增殖、血管扩张以及心肌收缩等相关生理病理过程,对中枢神经系统功能、心血管功能、炎症/免疫系统、细胞黏附等都有影响。PDE4在促炎介质和抗炎介质的表达中起主要调节作用,PDE4抑制剂能够抑制炎症细胞释放有害介质。
开发兼具PDE3和PDE4抑制活性的新分子将会具有β-肾上腺素受体激动剂的支气管扩张效果(bronchodilation)和吸入糖皮质激素的抗炎功效(anti-inflammatory action),双重靶向功能互补具有比单一靶点更优功效。
例如,RPL554(9,10-Dimethoxy-2-(2,4,6-trimethylphenylimino)-3-(N-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,l-a]isoquinolin-4-one)是一种PDE3/PDE4双靶点抑制剂,公开于WO00/58308。近期II期临床数据显示,可以显著改善慢阻肺患者的支气管扩张和症状,同时该药物耐受性良好,未发生明显不良事件,例如心脏问题、恶心和腹泻都是轻微的。该药物的安全性及其“有限的全身暴露量”是令人鼓舞。
开发兼具PDE3和PDE4抑制活性的新分子将会具有β-肾上腺素受体激动剂的支气管扩张效果(bronchodilation)和吸入糖皮质激素的抗炎功效(anti-inflammatory action),双重靶向功能互补具有比单一靶点更优功效。
专利申请PCT/CN2022/090175提供了一种如式I所示的化合物,其化学名为9,10-二甲氧基-2-[[2-(2-氧代-咪唑啉-1-基)-乙基]-(2,4,6-三甲基-苯基)-氨基]-6,7-二氢-嘧啶基并[6,1-a]异喹啉-4-酮,该化合物具有较好的PDE3和PDE4抑制活性,
通常来说,药物的活性成分及其盐的晶型结构不仅影响到该药物本身的物理和化学稳定性,而且还影响到后期药物制备的难易程度以及生产成本,结晶条件及储存条件的不同有可能导致化合物及其盐的晶型结构的变化,有时还会伴随着产生其他形态的晶型。因此,从稳定性、药物制备工艺的难易程度以及生产成本等角度综合考虑,深入研究式I所示化合物的晶型是必须的。
发明内容
本公开提供了式(I)所示化合物的晶型及其制备方法,其中式I所示化合物的化学名为9,10-二甲氧基-2-[[2-(2-氧代-咪唑啉-1-基)-乙基]-(2,4,6-三甲基-苯基)-氨基]-6,7-二氢-嘧啶基并[6,1-a]异喹啉-4-酮,
本公开提供了式(I)所示化合物的无定形,其X-射线粉末衍射图谱的衍射角2θ在2-45°范围内没有明显特征峰。
本公开进一步提供了制备式(I)所示化合物无定形的方法,包括步骤:式(I)所示化合物与苯甲醇混合,溶解,b)挥发析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、 145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备(I)所示化合物无定形的方法还包括过滤、洗涤或干燥步骤。
本公开提供了式(I)所示化合物的A晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、11.0、14.4、15.5、17.9、19.1和23.7处有特征峰。
在某些实施方案中,式(I)所示化合物的A晶型在4.6、6.6、10.1、11.0、14.4、15.5、17.9、19.1、22.8和23.7处有特征峰。
在某些实施方案中,式(I)所示化合物的A晶型在4.6、6.6、10.1、11.0、13.1、14.4、15.5、17.1、17.9、19.1、22.8、23.7和25.9处有特征峰。
在某些实施方案中,式(I)所示化合物的A晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图2所示。
本公开提供了式(I)所示化合物的B晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、11.0、12.7、15.5、19.1、23.7和25.8处有特征峰。
在某些实施方案中,式(I)所示化合物的B晶型在6.6、10.0、11.0、11.7、12.7、15.5、19.1、23.7、24.6和25.8处有特征峰。
在某些实施方案中,式(I)所示化合物的B晶型在6.6、8.6、10.0、11.0、11.7、12.7、15.5、17.8、19.1、23.7、24.6、25.8和26.9处有特征峰。
在某些实施方案中,式(I)所示化合物的B晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图3所示。
本公开进一步提供了制备式(I)所示化合物B晶型的方法,包括:a)式I所示化合物与二氯甲烷混合,溶解,b)挥发析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的B晶型的方法还包括过 滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的C晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、7.5、10.1、10.9、15.6、23.8和24.3处有特征峰。
在某些实施方案中,式(I)所示化合物的C晶型在6.6、7.5、10.1、10.9、13.8、15.6、20.7、23.8、24.3和24.7处有特征峰。
在某些实施方案中,式(I)所示化合物的C晶型在6.6、7.5、10.1、10.9、13.8、15.6、17.5、19.3、20.7、23.8、24.3、24.7和27.0处有特征峰。
在某些实施方案中,式(I)所示化合物的C晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图4所示。
本公开进一步提供了制备式(I)所示化合物C晶型的方法,包括:包括:a)式I所示化合物与乙腈、甲醇或其混合物混合,b)挥发析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的C晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的D晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、10.1、11.0、15.6、16.5、17.5和24.2处有特征峰。
在某些实施方案中,式(I)所示化合物的D晶型在6.6、10.1、11.0、15.6、16.5、17.5、20.3、24.2、25.8和26.9处有特征峰。
在某些实施方案中,式(I)所示化合物的D晶型在6.6、10.1、11.0、15.6、16.5、17.5、20.3、23.3、24.2、24.7、25.1、25.8和26.9处有特征峰。
在某些实施方案中,式(I)所示化合物的D晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图5所示。
本公开进一步提供了制备式(I)所示化合物D晶型的方法,包括:
方法1:a)式I所示化合物与溶剂II混合,加热或不加热溶解,其中溶剂II选自丙二醇甲醚、1,2-二氯乙烷、乙酸乙酯/乙醇、正丙醇、四氢呋喃/乙醇、三氯甲烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙醇/丙酮、乙醇/乙酸异丙酯、乙腈/甲醇/丙酮中的一种或多种,b)挥发析晶;
或方法2:a)式I所示化合物与溶剂III混合,溶解,其中所述溶剂III选自乙醇、N-甲基吡咯烷酮、二氯甲烷或乙腈/甲醇中的一种或多种,b)加入溶剂IV,晶体析出,所述溶剂IV选自甲基叔丁基醚、正庚烷、水、丙酮、乙酸异丙酯中的一种或多种。
或方法3:a)式I所示化合物与溶剂V混合,其中所述溶剂V选自水、丙酮、乙酸乙酯、乙酸异丙酯、甲基叔丁基醚、2-丁酮、四氢呋喃、甲基异丁基酮、1,4-二氧六环、异戊醇、水/乙醇、水/异丙醇、水/丙酮、甲醇/水、乙酸乙酯/正庚烷、邻二甲苯、异丙醚、甲苯中的一种或多种,b)搅拌析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的D晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的E晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.3、11.1、12.8、14.3、17.9、22.9和25.6处有特征峰。
在某些实施方案中,式(I)所示化合物的E晶型在6.3、11.1、12.8、14.3、17.0、17.9、18.7、22.9、23.8和25.6处有特征峰。
在某些实施方案中,式(I)所示化合物的E晶型在6.3、11.1、12.8、14.3、15.9、17.0、17.9、18.7、20.1、22.9、23.8和25.6处有特征峰。
在某些实施方案中,式(I)所示化合物的E晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图6所示。
本公开进一步提供了制备式(I)所示化合物E晶型的方法,包括:包括:a)式I所 示化合物与N-甲基吡咯烷酮混合,溶解,b)加入乙酸异丙酯,析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的E晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的F晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、11.1、13.6、15.0、22.3、24.2和26.1处有特征峰。
在某些实施方案中,式(I)所示化合物的F晶型在6.6、11.1、13.6、15.0、16.1、18.6、22.3、24.2、26.1和28.2处有特征峰。
在某些实施方案中,式(I)所示化合物的F晶型在6.6、8.8、11.1、12.9、13.6、15.0、16.1、17.7、18.6、22.3、24.2、26.1和28.2处有特征峰。
在某些实施方案中,式(I)所示化合物的F晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图7所示。
本公开进一步提供了制备式(I)所示化合物F晶型的方法,包括:
方法1:a)式I所示化合物与N-甲基吡咯烷酮混合,溶解,b)搅拌析晶;
或者方法2:a)式I所示化合物与N-甲基吡咯烷酮混合,溶解,b)加入甲基叔丁基醚或正庚烷析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的F晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的G晶型,以衍射角2θ角度表示的X-射线粉末衍 射图,在6.1、12.3、14.2、16.9、19.2、21.4和24.0处有特征峰。
在某些实施方案中,式(I)所示化合物的G晶型在6.1、12.3、13.1、14.2、15.2、16.1、16.9、19.2、21.4和24.0处有特征峰。
在某些实施方案中,式(I)所示化合物的G晶型在6.1、11.3、12.3、13.1、14.2、15.2、16.1、16.9、19.2、21.4、24.0、26.6和28.8处有特征峰。
在某些实施方案中,式(I)所示化合物的G晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图8所示。
本公开进一步提供了制备式(I)所示化合物G晶型的方法,包括:a)式I所示化合物与二氯甲烷混合,溶解,b)加入乙酸异丙酯或甲基叔丁基醚,析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的G晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的H晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.8、7.5、9.7、13.0、14.0、15.1和16.1处有特征峰。
在某些实施方案中,式(I)所示化合物的H晶型在6.8、7.5、9.7、10.2、10.9、13.0、14.0、15.1、16.1和26.5处有特征峰。
在某些实施方案中,式(I)所示化合物的H晶型在6.8、7.5、9.7、10.2、10.9、13.0、14.0、15.1、16.1、22.1、23.1、25.8和26.5处有特征峰。
在某些实施方案中,式(I)所示化合物的H晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图9所示。
本公开进一步提供了制备式(I)所示化合物H晶型的方法,包括:
方法1:a)式I所示化合物的A晶型与甲醇混合,加热,b)降温析晶;
方法2:a)式I所示化合物与乙腈/甲醇混合物混合,溶解,b)加入甲基叔丁基醚析 晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。在某些实施方案中,本公开所述的制备式(I)所示化合物的H晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的I晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在5.2、7.2、9.6、10.2、12.0、13.3和22.1处有特征峰。
在某些实施方案中,式(I)所示化合物的I晶型在5.2、7.2、9.6、10.2、12.0、13.3、14.5、15.0、19.5和22.1处有特征峰。
在某些实施方案中,式(I)所示化合物的I晶型在5.2、7.2、7.9、9.6、10.2、12.0、13.3、14.5、15.0、19.5、21.2、22.1和23.6处有特征峰。
在某些实施方案中,式(I)所示化合物的I晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图10所示。
本公开进一步提供了制备式(I)所示化合物I晶型的方法,包括:a)式I所示化合物与乙醇混合,溶解,加热,b)降温析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的I晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的J晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在7.7、11.7、13.5、14.0、18.6、21.6和24.3处有特征峰。
在某些实施方案中,式(I)所示化合物的J晶型在7.7、10.1、11.7、13.5、14.0、18.6、20.2、21.6、23.3和24.3处有特征峰。
在某些实施方案中,式(I)所示化合物的J晶型在7.7、10.1、10.7、11.7、13.5、14.0、16.0、17.3、18.6、20.2、21.6、23.3和24.3处有特征峰。
在某些实施方案中,式(I)所示化合物的J晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图11所示。
本公开进一步提供了制备式(I)所示化合物J晶型的方法,包括:a)式I所示化合物的A晶型与异丙醇混合,加热,b)降温析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的J晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的K晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.8、7.4、13.8、15.0、15.8、20.7和22.1处有特征峰。
在某些实施方案中,式(I)所示化合物的K晶型在6.8、7.4、9.5、13.8、14.2、15.0、15.8、20.7、22.1和27.6处有特征峰。
在某些实施方案中,式(I)所示化合物的K晶型在6.8、7.4、9.5、13.8、14.2、15.0、15.8、17.9、18.4、20.7、22.1、26.5和27.6处有特征峰。
在某些实施方案中,式(I)所示化合物的K晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图12所示。
本公开进一步提供了制备式(I)所示化合物K晶型的方法,包括:a)式I所示化合物的A晶型与乙腈混合,加热,b)降温析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的K晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的L晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在7.1、7.6、12.8、13.6、19.5、21.1和25.8处有特征峰。
在某些实施方案中,式(I)所示化合物的L晶型在7.1、7.6、9.2、12.8、13.6、16.1、19.5、21.1、24.6和25.8处有特征峰。
在某些实施方案中,式(I)所示化合物的L晶型在7.1、7.6、9.2、12.8、13.6、16.1、19.5、21.1、24.6和25.8处有特征峰。
在某些实施方案中,式(I)所示化合物的L晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图13所示。
本公开进一步提供了制备式(I)所示化合物L晶型的方法,包括:a)式I所示化合物与二氯甲烷混合,溶解,b)加入甲基叔丁基醚析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的L晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的M晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、12.8、14.8、19.9、25.3、28.1和29.9处有特征峰。
在某些实施方案中,式(I)所示化合物的M晶型在6.6、12.8、14.8、15.3、19.9、24.9、25.3、25.9、28.1和29.9处有特征峰。
在某些实施方案中,式(I)所示化合物的M晶型在6.6、10.9、12.8、14.8、15.3、18.0、19.9、24.9、25.3、25.9、27.0、28.1和29.9处有特征峰。
在某些实施方案中,式(I)所示化合物的M晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图14所示。
本公开进一步提供了制备式(I)所示化合物M晶型的方法,包括:a)式I所示化合物与二甲基亚砜混合,溶解,b)挥发析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。
在某些实施方案中,本公开所述的制备式(I)所示化合物的M晶型的方法还包括过滤、洗涤或干燥等步骤。
本公开提供了式(I)所示化合物的N晶型,以衍射角2θ角度表示的X-射线粉末衍射图,在5.8、7.6、16.0、16.2、18.6、22.0和22.3处有特征峰。
在某些实施方案中,式(I)所示化合物的N晶型在5.8、7.6、13.5、16.0、16.2、17.9、18.6、22.0、22.3和24.0处有特征峰。
在某些实施方案中,式(I)所示化合物的N晶型在5.8、7.6、11.0、13.5、16.0、16.2、17.9、18.6、20.3、21.2、22.0、22.3和24.0处有特征峰。
在某些实施方案中,式(I)所示化合物的N晶型以衍射角2θ角度表示的X-射线粉末衍射图谱如图15所示。
本公开进一步提供了制备式(I)所示化合物的N晶型的方法,包括:a)式I所示化合物与磷酸溶液、溶剂II混合,加热溶清,其中溶剂II选自异丙醇、四氢呋喃、乙醇中的至少一种,b)降温析晶。
在某些实施方案中,本公开所述溶剂所用体积(μl)可以为式I化合物质量(mg)的1-200倍,在非限制性实施方案中可以为1、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、200。在某些实施方案中,本公开所述的制备的N晶型方法还包括过滤、洗涤或干燥等步骤。
本公开还提供了由前述式(I)所示化合物的晶型制备得到的药物组合物。
本公开还提供了一种药物组合物,含前述晶型和任选自药学上可接受的载体、稀释 剂或赋形剂。
本公开还提供了一种药物组合物的制备方法,包括将前述晶型与药学上可接受的载体、稀释剂或赋形剂混合的步骤。
本公开还提供了前述晶型,或前述组合物,或由前述方法制备得到的组合物在制备用于预防和/或治疗与PDE相关病症的药物中的用途。
本公开还提供了前述晶型,或前述组合物,或由前述方法制备得到的组合物在制备用于预防和/或治疗气喘、阻塞性肺病、败血病、肾炎、糖尿病、变应性鼻炎、变应性结膜炎、溃疡性肠炎或风湿病的药物中的用途。
本公开所述的“2θ或2θ角度”是指衍射角,θ为布拉格角,单位为°或度;每个特征峰2θ的误差范围为±0.20(包括超过1位小数的数字经过四舍五入后的情况),可以为-0.20、-0.19、-0.18、-0.17、-0.16、-0.15、-0.14、-0.13、-0.12、-0.11、-0.10、-0.09、-0.08、-0.07、-0.06、-0.05、-0.04、-0.03、-0.02、-0.01、0.00、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20。
依据《中国药典》2015年版四部中“9103药物引湿性指导原则”中引湿性特征描述与引湿性增重的界定,
潮解:吸收足量水分形成液体;
极具引湿性:引湿增重不小于15%;
有引湿性:引湿增重小于15%但不小于2%;
略有引湿性:引湿增重小于2%但不小于0.2%;
无或几乎无引湿性:引湿增重小于0.2%。
本公开中所述的“差示扫描量热分析或DSC”是指在样品升温或恒温过程中,测量样品与参考物之间的温度差、热流差,以表征所有与热效应有关的物理变化和化学变化,得到样品的相变信息。
本公开中所述干燥温度一般为25℃~150℃,优选40℃~80℃,可以常压干燥,也可以减压干燥。
“药物组合物”表示含有一种或多种本文所述式(I)化合物或其可药用盐与其他化学 组分的混合物,以及其他组分例如药学上接受的载体和赋形剂。药物组合物的目的是促进对生物体的给药,利于活性成分的吸收进而发挥生物活性。
本公开所述的晶型包括但不限于式(I)所示化合物的溶剂合物,所述的溶剂包括但不限于正庚烷、环己烷、石油醚、二氯甲烷、乙腈、甲醇、丙二醇甲醚、1,2-二氯乙烷、乙酸乙酯、乙醇、正丙醇、四氢呋喃、三氯甲烷、N,N-二甲基甲酰胺、丙酮、乙酸异丙酯、甲基叔丁基醚、N-甲基吡咯烷酮、水、2-丁酮、1,4-二氧六环、异戊醇、邻二甲苯、异丙醚、甲苯、异丙醇、二甲基亚砜、苯甲醇。
本公开所述的“溶剂合物”包括但不限于式(I)化合物与溶剂结合形成的络合物。
附图说明
图1:式(I)所示化合物无定形的XRPD图谱。
图2:式(I)所示化合物A晶型的XRPD图谱。
图3:式(I)所示化合物B晶型的XRPD图谱。
图4:式(I)所示化合物C晶型的XRPD图谱。
图5:式(I)所示化合物D晶型的XRPD图谱。
图6:式(I)所示化合物E晶型的XRPD图谱。
图7:式(I)所示化合物F晶型的XRPD图谱。
图8:式(I)所示化合物G晶型的XRPD图谱。
图9:式(I)所示化合物H晶型的XRPD图谱。
图10:式(I)所示化合物I晶型的XRPD图谱。
图11:式(I)所示化合物J晶型的XRPD图谱。
图12:式(I)所示化合物K晶型的XRPD图谱。
图13:式(I)所示化合物L晶型的XRPD图谱。
图14:式(I)所示化合物M晶型的XRPD图谱。
图15:式(I)所示化合物N晶型的XRPD图谱。
具体实施方式
以下将结合实施例或实验例更详细地解释本公开,本公开中的实施例或实验例仅用于说明本公开中的技术方案,并非限定本公开中的实质和范围。
本公开中实施例中未注明具体条件的实验方法,通常按照常规条件,或按照原料或商品制造厂商所建议的条件。未注明具体来源的试剂,为市场购买的常规试剂。
化合物的结构是通过核磁共振(NMR)或/和质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用Bruker AVANCE-400核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6)、氘代氯仿(CDCl3)、氘代甲醇(CD3OD),内标为四甲基硅烷(TMS)。
MS的测定用Agilent 1200/1290 DAD-6110/6120 Quadrupole MS液质联用仪(生产商:Agilent,MS型号:6110/6120 Quadrupole MS)、waters ACQuity UPLC-QD/SQD(生产商:waters,MS型号:waters ACQuity Qda Detector/waters SQ Detector)、THERMO Ultimate 3000-Q Exactive(生产商:THERMO,MS型号:THERMO Q Exactive)。
高效液相色谱法(HPLC)分析使用Agilent HPLC 1200DAD、Agilent HPLC 1200VWD和Waters HPLC e2695-2489高压液相色谱仪。
手性HPLC分析测定使用Agilent 1260 DAD高效液相色谱仪。
高效液相制备使用Waters 2767、Waters 2767-SQ Detecor2、Shimadzu LC-20AP和Gilson-281制备型色谱仪。
手性制备使用Shimadzu LC-20AP制备型色谱仪。
CombiFlash快速制备仪使用Combiflash Rf200(TELEDYNE ISCO)。
薄层层析硅胶板使用烟台黄海HSGF254或青岛GF254硅胶板,薄层色谱法(TLC)使用的硅胶板采用的规格是0.15mm~0.2mm,薄层层析分离纯化产品采用的规格是0.4mm~0.5mm。
硅胶柱色谱法一般使用烟台黄海硅胶200~300目硅胶为载体。
激酶平均抑制率及IC50值的测定用NovoStar酶标仪(德国BMG公司)。
本公开的已知的起始原料可以采用或按照本领域已知的方法来合成,或可购买自ABCR GmbH&Co.KG,Acros Organics,Aldrich Chemical Company,韶远化学科技(Accela  ChemBio Inc)、达瑞化学品等公司。
实施例中无特殊说明,反应能够均在氩气氛或氮气氛下进行。
氩气氛或氮气氛是指反应瓶连接一个约1L容积的氩气或氮气气球。
氢气氛是指反应瓶连接一个约1L容积的氢气气球。
加压氢化反应使用Parr 3916EKX型氢化仪和清蓝QL-500型氢气发生器或HC2-SS型氢化仪。
氢化反应通常抽真空,充入氢气,反复操作3次。
微波反应使用CEM Discover-S 908860型微波反应器。
实施例中无特殊说明,溶液是指水溶液。
实施例中无特殊说明,反应的温度为室温,为20℃~30℃。
实施例中的反应进程的监测采用薄层色谱法(TLC),反应所使用的展开剂,纯化化合物采用的柱层析的洗脱剂的体系和薄层色谱法的展开剂体系包括:A:正己烷/乙酸乙酯体系,B:二氯甲烷/甲醇体系,溶剂的体积比根据化合物的极性不同而进行调节,也可以加入少量的三乙胺和醋酸等碱性或酸性试剂进行调节。
本公开中实验所用仪器的测试条件:
1、差示扫描量热仪(Differential Scanning Calorimeter,DSC)
仪器型号:Mettler Toledo DSC 3+STARe System
吹扫气:氮气;氮气吹扫速度:50mL/min
升温速率:10.0℃/min
温度范围:25-350℃(或25-300℃)
2、X-射线粉末衍射谱(X-ray Powder Diffraction,XRPD)
仪器型号:BRUKER D8DiscoverX-射线粉末衍射仪
射线:单色Cu-Kα射线
扫描方式:θ/2θ,扫描范围(2θ范围):3~45°
电压:40kV,电流:40mA
3、热重分析仪(Thermogravimetric Analysis,TGA)
仪器型号:Mettler Toledo TGA2
吹扫气:氮气;氮气吹扫速度:50mL/min
升温速率:10.0℃/min
温度范围:30-350℃
实施例1:式(I)所示化合物的制备
9,10-二甲氧基-2-[[2-(2-氧代-咪唑啉-1-基)-乙基]-(2,4,6-三甲基-苯基)-氨基]-6,7-二氢-嘧啶基并[6,1-a]异喹啉-4-酮的制备(化合物1)
中间体1a:1-(2-氯乙基)咪唑啉酮的制备
在0℃条件下,向1-(2-羟乙基)咪唑啉酮(3.5g,26.9mmol)中缓慢加入氯化亚砜(5ml),升温至45℃,搅拌至反应完毕,加入饱和氯化钠溶液淬灭反应,用10%NaOH溶液调pH=7,二氯甲烷萃取,饱和氯化钠溶液洗涤,无水硫酸钠干燥,滤液减压浓缩得到中间体1a(3.5g,收率88.4%),MS(ESI)m/z 149.1[M+H]+
中间体1b:1-(3,4-二甲氧基苯乙基)脲的制备
室温下,将2-(3,4-二甲氧基苯基)乙胺盐酸盐(4.3g,19.8mmol)溶于水(25ml)中,升温至50℃,分批加入氰酸钾(1.8g,21.8mmol),继续搅拌至反应完毕,降温至0℃,过滤,滤饼用冰水洗涤,干燥得到中间体1b(4.1g,收率93.8%),MS(ESI)m/z 225.1[M+H]+
中间体1c:1-[2-(3,4-二甲氧基-苯基)-乙基]-嘧啶-2,4,6-三酮的制备
冰浴条件下,向无水乙醇(50ml)中分批加入乙醇钠(3.8g,55.8mmol),加毕后升温至回流,滴加丙二酸二乙酯(5.9g,36.6mmol),加毕后继续搅拌0.25h~0.5h,滴加中间体1b(4.1g,18.3mmol)的乙醇溶液(30ml),搅拌至反应完毕,降温至0℃,滴加5%HCl溶液至pH=6,加入300ml水,过滤,滤饼用冰水洗涤,干燥得到中间体1c(3.9g,收率77.1%),MS(ESI)m/z 293.1[M+H]+
中间体1d:2-氯-9,10-二甲氧基-6,7-二氢嘧啶并[6,1-a]异喹啉-4-酮的制备
常温下,向三氯氧磷(120ml)中加入中间体B2(3.9g,13.4mmol),升温至110℃,搅拌至反应完毕,降温浓缩,将固体倒入到冰水中,滴加饱和NaOH溶液至pH=10,过滤,滤饼用冰水洗涤,干燥得到中间体1d(2.4g,收率62.4%),MS(ESI)m/z 293.1[M+H]+
中间体1e:9,10-二甲氧基-2-(2,4,6-三甲基-苯基亚氨基)-2,3,6,7-四氢嘧啶并[6,1-a]异喹啉-4-酮的制备
常温下,将中间体1d(2.4g,8.2mmol)悬浮于异丙醇(30ml)中,加入2,4,6-三甲基苯胺(4.5g,24.6mmol),体系升温至90℃,继续搅拌至反应完毕,降温,过滤,滤饼用冰水洗涤,干燥得到中间体1e(3.0g,收率92.1%),MS(ESI)m/z 392.2[M+H]+
化合物1:9,10-二甲氧基-2-[[2-(2-氧代-咪唑啉-1-基)-乙基]-(2,4,6-三甲基-苯基)-氨基]-6,7-二氢-嘧啶基并[6,1-a]异喹啉-4-酮的制备
常温下,将中间体1e(0.72g,1.8mmol)溶于四氢呋喃(20ml)中,氮气氛围下加入叔丁醇钾(0.42g,3.6mmol),加毕后升温至65℃,继续搅拌48h,降到25℃并加入中间体1a(0.82g,5.5mmol),加毕后升温至80℃,继续搅拌至反应完毕,加入饱和氯化钠溶液淬灭反应,二氯甲烷萃取,饱和氯化钠溶液洗涤,无水硫酸钠干燥,滤液减压浓缩,再经硅胶柱层析(正庚烷/乙酸乙酯)得到目标化合物1(0.21g,收率46.5%)。
1H NMR(400MHz,CDCl3)δ6.99(s,2H),6.69(s,1H),6.64(s,1H),5.39(s,1H),4.61(s,1H),4.22-4.15(m,2H),4.08-3.99(m,2H),3.93(s,3H),3.77-3.69(m,5H),3.55-3.46(m,2H),3.38-3.42(t,J=6.8Hz,2H),2.88-2.92(t,J=6.4Hz,2H),2.34(s,3H),2.18(s,6H)。
MS(ESI)m/z 504.4[M+H]+
对比例1
以2-(3-乙氧基-4-甲氧基苯基)乙胺盐酸盐为起始物料参照实施例1方法制备中间体3d。
在室温下,将中间体3d(1g)溶于1,2-二氯乙烷(20ml)中,依次加入4-甲基苯磺酸-2-(2-恶唑烷酮-3-基)乙酯(844mg)、碳酸钾(612mg)和碘化钠(443mg),加热80℃,搅拌至反应完全,冷却,过滤,浓缩,加水稀释,用乙酸乙酯萃取,合并有机相,干燥,过滤,浓缩,经柱层析得WX001。MS(ESI)m/z 519.0[M+H]+
生物学评价
以下结合测试例进一步描述解释本公开中,但这些测试例并非意味着限制本公开中的范围。
测试例1体外PDE4B酶活性检测实验:基于IMAP FP的分析方法检测
1、实验材料

2、实验步骤
将化合物用DMSO进行5倍的梯度稀释得到其不同的浓度(10000nM、2000nM、400nM、80nM、16nM、3.2nM、0.64nM、0.128nM、0.0256nM、0.005nM)。取200μL不同浓度的化合物加到384孔板中(n=2),并同时加入2份200μL DMSO到384孔板中(n=2)作为空白对照;接着向384孔板中加入10μL 0.025μg/mL PDE4B1酶溶液(用1mM的5*IMAP反应缓冲液和1mM的DTT配制),及向其中一份空白对照中加入10μL不含PDE4B1酶的空白缓冲液,室温震荡孵育15分钟,接着向其中加入10μL 0.1μM FAM-cAMP溶液(用1mM的5*IMAP反应缓冲液r和1mM的DTT配制),室温震荡孵育30分钟后加入60μL检测溶液(用0.5625mM的5*IMAP进展结合缓冲液A(Progressive Binding buffer A),0.1875mM的5*IMAP进展结合缓冲液B和0.75mM的结合珠(beads)配制),室温震荡孵育60分钟后搜集数据。抑制率计算公式是:抑制率=M/(M-M对照)*100;根据浓度和抑制率拟合曲线计算出IC50值。本实验用RPL554作为阳性对照。
本公开的实施例在体外对PDE4B1酶活性抑制通过以上的试验进行测定,测得的IC50值见表I和表II。
测试例2体外PDE3A酶活性检测实验:基于IMAP FP的分析方法检测
1、实验材料
2、实验步骤
将化合物用DMSO进行5倍的梯度稀释得到其不同的浓度(10000nM、2000nM、400nM、80nM、16nM、3.2nM、0.64nM、0.128nM、0.0256nM、0.005nM)。取200μL不同浓度的化合物加到384孔板中(n=2),并同时加入2份200μL DMSO到384孔板中(n=2)作为空白对照;接着向384孔板中加入10μL 0.025μg/mL PDE4B1酶溶液(用1mM的5*IMAP反应缓冲液和1mM的DTT配制),及向其中一份空白对照中加入10μL不含PDE3A酶的空白buffer,室温震荡孵育15分钟,接着向其中加入10μL 0.1μM FAM-cAMP溶液(用1mM的5*IMAP反应缓冲液和1mM的DTT配制),室温震荡孵育30分钟后加入60μL检测溶液(用0.5625mM的5*IMAP进展结合缓冲液,0.1875mM的5*IMAP进展结合缓冲液B和0.75mM的结合珠配制),室温震荡孵育60分钟后搜集数据。抑制率计算公式是:抑制率=M/(M-M对照)*100;根据浓度和抑制率拟合曲线计算出IC50值。本实验用RPL554作为阳性对照。
本公开的实施例在体外对PDE3A酶活性抑制通过以上的试验进行测定,测得的IC50值见表I和表II。
表I
表II


注:N/A未检测
结论:相比于阳性化合物RPL554,化合物1在体外酶实验中展现出了好的生物活性,且相比化合物WX001,化合物1对PDE3A酶抑制活性提高了7倍,具有好的开发前景。
测试例3:经气管内给药PK实验
1.实验目的
评价供试品经气管内给药后在SD大鼠体内的药代动力学特征以及在肺组织中分布
2.试验方案
2.1试验药品
化合物1和RPL-554
2.2试验动物
ICR小鼠(上海斯莱克实验动物有限责任公司),198只,雌雄各半。
2.3药物配制
1)全溶液:
称取0.5g吐温80,加入50ml pH 2.5的柠檬酸/磷酸氢二钠缓冲盐溶液中溶解,以备用。
称取1.0mg试验药品,溶于适量的吐温溶液中,配制成0.03mg/ml溶液备用。
2)混悬液:
称取0.5g CMC-Na和0.5g吐温20,加入50ml 0.9%生理盐水溶液搅拌均匀,得1%CMC-Na和吐温20的溶液以备用。
称取1.0mg试验药品,分别加入10ml前述溶液中,超声分散、搅拌均匀得混悬液以备用。
2.4给药方案

3.实验操作/过程
3.1小鼠经气管内给药
小鼠经异氟烷气体麻醉后,经气管给药。血浆采集的时间点为:0.25、0.5、1、2、4、8、12和24hr,采集200μL全血后加入EDTA-K2抗凝,2-8℃下以大约6800g的速度离心6分钟,并将所得的血浆在采血/离心1小时内转移到适当标记的试管中,-80℃冷冻保存。肺组织采集的时间点为:0.5、2、8和24hr,采集组织样本后转移到适当标记的试管中,-80℃冷冻保存。
3.2血浆处理和LC-MS/MS分析
取30.0μL血浆样品至1.5mL离心管,加入150μL内标工作溶液,涡流混匀1min,离心5min(13000rpm,4℃),取上清液70.0μL至96孔板,加入70.0μL去离子水摇匀后进样分析,进样2.00μL进行LC-MS/MS分析。
3.3肺组织处理
精密称取肺组织样品适量,置于匀浆管中,加入相当于其重量5倍体积的乙腈混合匀浆,超声5min。取20.0μL肺组织匀浆液样品,加入30.0μL内标工作溶液和200μL乙腈,涡流1min,离心10min(4000rpm,4℃),取上清100μL至96孔板中加入100μL去离子水,摇板混匀(1000rpm,RT),进样1.00μL进行LC-MS/MS分析。
4、药代动力学参数结果
相比于RPL-554,化合物1体内暴露量较高,且在肺部中维持时间较长。相关数据见表III和IV。
表III:混悬溶液处方PK和组织分布实验结果

表IV:全溶液处方PK和组织分布实验结果
实施例2:式(I)所示化合物无定形的制备
式(I)化合物约8mg,加入0.04mL苯甲醇,室温搅拌溶解,室温挥发析晶,得到产物。经X-射线粉末衍射仪检测,该产物为无定形。
实施例3:式(I)所示化合物A晶型的制备
按照实施例1制备得到产物。经X-射线粉末衍射仪检测,将该产物定义为晶型A,XRPD谱图如图2所示,其特征峰位置如表1所示。DSC谱图显示,吸热峰峰值135.93℃,263.19℃。TGA谱图显示,30℃-275℃失重3.97%。
表1

实施例4:式(I)所示化合物B晶型的制备
式(I)化合物约8mg,加入0.16mL的二氯甲烷,室温搅拌溶解,室温挥发析晶,得 到产物。经X-射线粉末衍射检测,将该产物定义为晶型B,XRPD谱图如图3所示,其特征峰位置如表2所示。DSC谱图显示,吸热峰峰值139.31℃,263.02℃,放热峰峰值153.33℃。TGA谱图显示,30℃-290℃失重7.14%。
表2

实施例5:式(I)所示化合物C晶型的制备
式(I)化合物约8mg,加入0.28mL的乙腈/甲醇(1:1),室温搅拌溶解,室温挥发析晶,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型C,XRPD谱图如图4所示,其特征峰位置如表3所示。DSC谱图显示,吸热峰峰值148.77℃,262.90℃。TGA谱图显示,30℃-195℃失重4.36%。
表3

实施例6:式(I)所示化合物D晶型的制备
式(I)化合物约8mg,加入0.8mL丙二醇甲醚,加热,溶清,室温挥发析晶,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型D,XRPD谱图如图5所示,其特征峰位置如表4所示。DSC谱图显示,吸热峰峰值163.12℃,263.24℃,放热峰峰值166.84℃。TGA谱图显示,30℃-165℃失重3.02%。
表4

实施例7:式(I)所示化合物D晶型的制备
式(I)化合物约8mg,加入0.44mL乙酸乙酯/乙醇(1:1),室温搅拌溶解,室温挥发析晶,得到产物。经X-射线粉末衍射检测为晶型D。
实施例8:式(I)所示化合物D晶型的制备
式(I)化合物约8mg,加入0.3mL乙醇,室温搅拌溶解,加入1mL水,固体析出,离心,真空干燥得到产物。经X-射线粉末衍射检测为晶型D。
实施例9:式(I)所示化合物D晶型的制备
式(I)化合物的A晶型约8mg,加入0.8mL的水,室温搅拌析晶,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测为晶型D。
实施例10:式(I)所示化合物D晶型的制备
式(I)化合物的A晶型约8mg,加入0.8ml的丙酮,室温搅拌析晶,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测为晶型D。
实施例11:式(I)所示化合物E晶型的制备
式(I)化合物约8mg,加入0.3mL N-甲基吡咯烷酮搅拌溶解,加入1mL乙酸异丙酯,固体析出,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型E,XRPD谱图如图6所示,其特征峰位置如表5所示。DSC谱图显示,吸热峰峰值265.03℃。TGA谱图显示,30℃-170℃失重0.33%。
表5

实施例12:式(I)所示化合物F晶型的制备
式(I)化合物约8mg,加入0.12ml N-甲基吡咯烷酮搅拌溶解,搅拌析晶,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型F,XRPD谱图如图7所示,其特征峰位置如表6所示。DSC谱图显示,吸热峰峰值96.91℃,141.88℃、263.70℃。TGA谱图显示,30℃-220℃失重25.77%。
表6

实施例13:式(I)所示化合物F晶型的制备
式(I)化合物约8mg,加入0.3mL N-甲基吡咯烷酮搅拌溶解,加入1mL甲基叔丁基醚,固体析出,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物为晶型F。
实施例14:式(I)所示化合物G晶型的制备
式(I)化合物约8mg,加入0.2mL二氯甲烷搅拌溶解,加入1.2mL乙酸异丙酯,固体析出,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型G,XRPD谱图如图8所示,其特征峰位置如表7所示。DSC谱图显示,吸热峰峰值264.37℃。TGA谱图显示,30℃-205℃失重0.24%。
表7

实施例15:式(I)所示化合物H晶型的制备
式(I)化合物的A晶型约8mg,加入0.8ml甲醇,室温搅拌不溶,加热50℃,缓慢降温析出,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型H,XRPD谱图如图9所示,其特征峰位置如表8所示。DSC谱图显示,吸热峰峰值149.99℃,264.92℃,放热峰峰值158.39℃。TGA谱图显示,30℃-160℃失重2.53%。
表8

实施例16:式(I)所示化合物H晶型的制备
式(I)化合物约8mg,加入0.25mL的乙腈/甲醇(1:1)搅拌溶解,加入1.2mL甲基叔丁基醚,固体析出,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物为晶型H。
实施例17:式(I)所示化合物I晶型的制备
式(I)化合物约8mg,加入0.4ml乙醇搅拌溶解,加热50℃,缓慢降温析晶,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型I,XRPD谱图如图10所示,其特征峰位置如表9所示。DSC谱图显示,吸热峰峰值140.16℃,264.78℃,放热峰峰值159.54℃。TGA谱图显示,30℃-170℃失重6.27%。
表9

实施例18:式(I)所示化合物J晶型的制备
式(I)化合物的A晶型约8mg,加入0.8ml的异丙醇,加热50℃,缓慢降温析晶,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型J,XRPD谱图如图11所示,其特征峰位置如表10所示。DSC谱图显示,吸热峰峰值153.46℃,264.58℃。TGA谱图显示,30℃-160℃失重9.46%。
表10


实施例19:式(I)所示化合物K晶型的制备
式(I)化合物的A晶型约8mg,加入0.8mL乙腈,加热50℃,缓慢降温析晶,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型K,XRPD谱图如图12所示,其特征峰位置如表11所示。DSC谱图显示,吸热峰峰值153.65℃,160.48℃,265.14℃,放热峰峰值158.85℃。TGA谱图显示,30℃-195℃失重5.27%。
表11

实施例20:式(I)所示化合物L晶型的制备
式(I)化合物约200mg,加入5mL二氯甲烷搅拌溶解,加入30mL甲基叔丁基醚,固体析出,离心,固体真空干燥,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型L,XRPD谱图如图13所示,其特征峰位置如表12所示。DSC谱图显示,吸热峰峰值137.47℃,264.18℃,放热峰峰值159.83℃。TGA谱图显示,30℃-195℃失重9.46%。
表12

实施例21:式(I)所示化合物M晶型的制备
式(I)化合物约8mg,加入0.48ml二甲基亚砜搅拌溶解,室温挥发析晶,得到产物。经X-射线粉末衍射检测,将该产物定义为晶型M,XRPD谱图如图14所示,其特征峰位置如表13所示。DSC谱图显示,吸热峰峰值161.65℃,264.86℃。TGA谱图显示,30℃-235℃失重13.41%。
表13

实施例22:式(I)所示化合物晶型N的制备
将式(I)所示化合物10mg,加入0.5ml异丙醇,50℃搅拌溶清,加入11μl 2M磷酸水溶液,降温析晶,离心,固体真空干燥,得到产物。经X-射线粉末衍射仪检测,该产物为晶型N。XRPD谱图如图15所示,其特征峰位置如表14所示。DSC谱图显示,吸热峰峰值226.58℃。TGA谱图显示,30℃-235℃失重4.51%。
表14

实施例23:式(I)化合物晶型D的引湿性研究
采用Surface Measurement Systems advantage 2,在25℃,湿度从50%起,考察湿度范围为0%-95%,步进为10%,判断标准为每个梯度质量变化dM/dT小于0.002%,每个湿度梯度运行时间TMAX为360min,循环两圈。
表15
实施例24:式(I)化合物晶型影响因素实验
将式(I)化合物晶型D、晶型E、晶型G、晶型H和N晶型敞口平摊放置,分别考察在高温(40℃、60℃)、高湿(RH 75%、RH 92.5%)条件下样品的稳定性,取样考察期为30天。
表16


结论:影响因素实验表明,式(I)化合物晶型D在高温40℃和60℃、高湿75%和92.5%条件下30天,物理和化学稳定性良好;晶型E、晶型G和晶型H在高湿75%和92.5%条件下30天,物理稳定性较差,化学稳定性良好。
实施例25:式(I)化合物晶型的长期/加速稳定性
将式(I)化合物晶型D、晶型E、晶型G和晶型H,分别放置-20℃、4℃、25℃/60%RH和40℃/75%RH条件考察稳定性。

结论:长期加速实验表明,在25℃/60RH和40℃/75RH条件下6个月,晶型D物理和化学稳定性良好,晶型E、晶型G和晶型H化学稳定性良好,物理稳定性略差。

Claims (19)

  1. 式(I)所示化合物的B晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、11.0、12.7、15.5、19.1、23.7和25.8处有特征峰,优选在6.6、10.0、11.0、11.7、12.7、15.5、19.1、23.7、24.6和25.8处有特征峰,更优选在6.6、8.6、10.0、11.0、11.7、12.7、15.5、17.8、19.1、23.7、24.6、25.8和26.9处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图3所示。
  2. 式(I)所示化合物的C晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、7.5、10.1、10.9、15.6、23.8和24.3处有特征峰,优选在6.6、7.5、10.1、10.9、13.8、15.6、20.7、23.8、24.3和24.7处有特征峰,更优选在6.6、7.5、10.1、10.9、13.8、15.6、17.5、19.3、20.7、23.8、24.3、24.7和27.0处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图4所示。
  3. 式(I)所示化合物的D晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、10.1、11.0、15.6、16.5、17.5和24.2处有特征峰,优选在6.6、10.1、11.0、15.6、16.5、17.5、20.3、24.2、25.8和26.9处有特征峰,更优选在6.6、10.1、11.0、15.6、16.5、17.5、20.3、23.3、24.2、24.7、25.1、25.8和26.9处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图5所示。
  4. 式(I)所示化合物的E晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.3、11.1、12.8、14.3、17.9、22.9和25.6处有特征峰,优选在6.3、11.1、12.8、14.3、17.0、17.9、18.7、22.9、23.8和25.6处有特征峰,更优选在6.3、11.1、12.8、14.3、15.9、17.0、17.9、18.7、20.1、22.9、23.8和25.6处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图6所示。
  5. 式(I)所示化合物的F晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、11.1、13.6、15.0、22.3、24.2和26.1处有特征峰,优选在6.6、11.1、13.6、15.0、16.1、18.6、22.3、24.2、26.1和28.1处有特征峰,更优选在6.6、8.8、11.1、12.9、13.6、15.0、16.1、17.7、18.6、22.3、24.2、26.1和28.2处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图7所示。
  6. 式(I)所示化合物的G晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.1、12.3、14.2、16.9、19.2、21.4和24.0处有特征峰,优选在6.1、12.3、13.1、14.2、15.2、16.1、16.9、19.2、21.4和24.0处有特征峰,更优选在6.1、11.3、12.3、13.1、14.2、15.2、16.1、16.9、19.2、21.4、24.0、26.6和28.8处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图8所示。
  7. 式(I)所示化合物的H晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.8、7.5、9.7、13.0、14.0、15.1和16.1处有特征峰,优选在6.8、7.5、9.7、10.2、10.9、13.0、14.0、15.1、16.1和26.5处有特征峰,更优选在6.8、7.5、9.7、10.2、10.9、13.0、14.0、15.1、16.1、22.1、23.1、25.8和26.5处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图9所示。
  8. 式(I)所示化合物的I晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在5.2、7.2、9.6、10.2、12.0、13.3和22.1处有特征峰,优选在5.2、7.2、9.6、10.2、12.0、13.3、14.5、15.0、19.5和22.1处有特征峰,更优选在5.2、7.2、7.9、9.6、10.2、12.0、13.3、14.5、15.0、19.5、21.2、22.1和23.6处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图10所示。
  9. 式(I)所示化合物的J晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在7.7、11.7、13.5、14.0、18.6、21.6和24.3处有特征峰,优选在7.7、10.1、11.7、13.5、14.0、18.6、20.2、21.6、23.3和24.3处有特征峰,更优选在7.7、10.1、10.7、11.7、13.5、14.0、16.0、17.3、18.6、20.2、21.6、23.3和24.3处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图11所示。
  10. 式(I)所示化合物的K晶型,

    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.8、7.4、13.8、15.0、15.8、20.7和22.1处有特征峰,优选在6.8、7.4、9.5、13.8、14.2、15.0、15.8、20.7、22.1和27.6处有特征峰,更优选在6.8、7.4、9.5、13.8、14.2、15.0、15.8、17.9、18.4、20.7、22.1、26.5和27.6处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图12所示。
  11. 式(I)所示化合物的L晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在7.1、7.6、12.8、13.6、19.5、21.1和25.8处有特征峰,优选在7.1、7.6、9.2、12.8、13.6、16.1、19.5、21.1、24.6和25.8处有特征峰,更优选在7.1、7.6、9.2、12.8、13.6、16.1、19.5、21.1、24.6和25.8处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图13所示。
  12. 式(I)所示化合物的M晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在6.6、12.8、14.8、19.9、25.3、28.1和29.9处有特征峰,优选在6.6、12.8、14.8、15.3、19.9、24.9、25.3、25.9、28.1和29.9处有特征峰,更优选在6.6、10.9、12.8、14.8、15.3、18.0、19.9、24.9、25.3、25.9、27.0、28.1和29.9处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图14所示。
  13. 式(I)所示化合物的N晶型,
    其特征在于,以衍射角2θ角度表示的X-射线粉末衍射图,在5.8、7.6、16.0、16.2、18.6、22.0和22.3处有特征峰,优选在5.8、7.6、13.5、16.0、16.2、17.9、18.6、22.0、22.3和24.0处有特征峰,更优选在5.8、7.6、11.0、13.5、16.0、16.2、17.9、18.6、20.3、21.2、22.0、22.3和24.0处有特征峰,最优选以衍射角2θ角度表示的X-射线粉末衍射图谱如图15所示。
  14. 根据权利要求1-13中任意一项所述的晶型,其特征在于,所述2θ角误差范围为±0.2。
  15. 一种由权利要求1-14中任意一项所述的晶型制备得到的药物组合物。
  16. 一种药物组合物,含有权利要求1-14中任意一项所述的晶型和任选自药学上可接受的载体、稀释剂或赋形剂。
  17. 一种药物组合物的制备方法,包括将1-14中任意一项所述的晶型与药学上可接受的载体、稀释剂或赋形剂混合的步骤。
  18. 权利要求1-14中任意一项所述的晶型,或权利要求15或16所述的药物组合物,或由权利要求17所述方法制备得到的药物组合物在制备用于预防和/或治疗与PDE相关病症的药物中的用途。
  19. 权利要求1-14中任意一项所述的晶型,或权利要求15或16所述的药物组合物,或由权利要求17所述方法制备得到的药物组合物在制备用于预防和/或治疗气喘、阻塞性肺病、败血病、肾炎、糖尿病、变应性鼻炎、变应性结膜炎、溃疡性肠炎或风湿病的药物中的用途。
PCT/CN2023/127230 2022-10-28 2023-10-27 一种异喹啉酮类化合物的晶型及其制备方法 WO2024088402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211336045.7 2022-10-28
CN202211336045 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024088402A1 true WO2024088402A1 (zh) 2024-05-02

Family

ID=90830138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127230 WO2024088402A1 (zh) 2022-10-28 2023-10-27 一种异喹啉酮类化合物的晶型及其制备方法

Country Status (1)

Country Link
WO (1) WO2024088402A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482556A (en) * 1977-05-05 1984-11-13 Hoechst Aktiengesellschaft Pyrimido (6,1-a)isoquinolin-4-one derivatives
CN1348453A (zh) * 1999-03-31 2002-05-08 韦尔纳利斯有限公司 嘧啶并[6,1-a] 异喹啉-4-酮衍生物
US20060178384A1 (en) * 2003-07-08 2006-08-10 Hideyuki Sato Novel chemical compounds
CN114644630A (zh) * 2018-07-13 2022-06-21 正大天晴药业集团股份有限公司 作为pde3/pde4双重抑制剂的三并环类化合物
WO2022228544A1 (zh) * 2021-04-29 2022-11-03 苏州盛迪亚生物医药有限公司 异喹啉酮类化合物及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482556A (en) * 1977-05-05 1984-11-13 Hoechst Aktiengesellschaft Pyrimido (6,1-a)isoquinolin-4-one derivatives
CN1348453A (zh) * 1999-03-31 2002-05-08 韦尔纳利斯有限公司 嘧啶并[6,1-a] 异喹啉-4-酮衍生物
US20060178384A1 (en) * 2003-07-08 2006-08-10 Hideyuki Sato Novel chemical compounds
CN114644630A (zh) * 2018-07-13 2022-06-21 正大天晴药业集团股份有限公司 作为pde3/pde4双重抑制剂的三并环类化合物
WO2022228544A1 (zh) * 2021-04-29 2022-11-03 苏州盛迪亚生物医药有限公司 异喹啉酮类化合物及其用途

Similar Documents

Publication Publication Date Title
JP6240164B2 (ja) ピロール誘導体の結晶及びその製造方法
US10561646B2 (en) EGFR inhibitor and pharmaceutically acceptable salt and polymorph thereof, and use thereof
KR102523564B1 (ko) Jak 저해제를 제조하기 위한 피롤로피리미딘 결정
TWI675839B (zh) 一種jak激酶抑制劑的硫酸氫鹽的結晶形式及其製備方法
WO2020214921A1 (en) Solid forms of modulators of cftr
EP4332102A1 (en) Isoquinolone compound and use thereof
TW202241857A (zh) 化合物之固體形式
WO2018072742A1 (zh) 一种咪唑并异吲哚类衍生物的游离碱的结晶形式及其制备方法
WO2024088402A1 (zh) 一种异喹啉酮类化合物的晶型及其制备方法
US9593117B2 (en) Crystalline form of N,N-dicyclopropyl-4-(1,5-dimethyl-1H-pyrazol-3-ylamino)-6-ethyl-1-methyl-1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridine-7-carboxamide for the treatment of myeloproliferative disorders
JP6651648B2 (ja) Sgrモジュレーターの物理的形態
US9593116B2 (en) Crystalline forms of N,N-dicyclopropyl-4-(1,5-dimethyl-1H-pyrazol-3-ylamino)-6-ethyl-1-methyl-1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridine-7-carboxamide for the treatment of myeloproliferative disorders
US9598413B2 (en) Crystalline form of N,N-dicyclopropyl-4-(1,5-dimethyl-1H-pyrazol-3-ylamino)-6-ethyl-1-methyl-1,6-dihydroimidazo[4,5-D]pyrrolo[2,3-B]pyridine-7-carboxamide for the treatment of myeloproliferative disorders
MX2014001756A (es) Compuesto de sal y polimorfo de pirazolopirimidinona, y composición farmacéutica que lo contiene, método de preparación y uso del mismo.
WO2023222103A1 (zh) 一种三嗪二酮类衍生物的晶型及制备方法
US20100004293A1 (en) Crystalline forms of aryl-substituted pyrazole-amide compounds
WO2024109871A1 (zh) 一种含氮杂环类化合物的可药用盐、晶型及制备方法
CN117946099A (zh) 一种异喹啉酮类化合物的可药用盐、晶型及其制备方法
WO2023093861A1 (zh) Axl激酶抑制剂的单对甲苯磺酸盐及其晶型
WO2020052648A1 (zh) 一种杂芳基并[4,3-c]嘧啶-5-胺类衍生物的晶型及制备方法
WO2007039581A1 (en) Imidazolyl-substituted diazabenzophenone compounds
WO2019086008A1 (zh) 一种苯并三氮唑衍生物的晶型及其制备方法和用途
TW202411227A (zh) 一種芳基取代五員芳雜環化合物的可藥用鹽及晶型形式
TW202313614A (zh) 咪唑啉酮衍生物的晶型
US20070191425A1 (en) Solifenacin-containing composition