WO2024088334A1 - 丙酮加氢制电子级异丙醇的方法和系统 - Google Patents

丙酮加氢制电子级异丙醇的方法和系统 Download PDF

Info

Publication number
WO2024088334A1
WO2024088334A1 PCT/CN2023/126700 CN2023126700W WO2024088334A1 WO 2024088334 A1 WO2024088334 A1 WO 2024088334A1 CN 2023126700 W CN2023126700 W CN 2023126700W WO 2024088334 A1 WO2024088334 A1 WO 2024088334A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetone
isopropanol
alkyl
raw material
present
Prior art date
Application number
PCT/CN2023/126700
Other languages
English (en)
French (fr)
Inventor
宗弘元
余强
刘旭
王艳红
曹君
陈亮
刘晓曦
秦磊
白雪
Original Assignee
中国石油化工股份有限公司
中石化(上海)石油化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化(上海)石油化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024088334A1 publication Critical patent/WO2024088334A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/10Monohydroxylic acyclic alcohols containing three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic
    • C07C35/06Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic
    • C07C35/08Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/79Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/85Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/08Acetone

Definitions

  • the invention relates to the technical field of chemical raw material preparation, and in particular to a method and system for preparing electronic-grade isopropanol by hydrogenating acetone.
  • Ultra-high purity reagents are key basic functional chemicals in the IC manufacturing process, mainly used for chip cleaning and etching. Their purity and cleanliness have a very important impact on the yield and reliability of integrated circuits, and the narrower the integrated circuit line width, the higher the required weight requirement.
  • 8-inch wafer production uses G3-G4 grade wet electronic chemicals. Due to changes in the processing method of 12-inch wafers, the amount of wet electronic chemicals used has increased significantly, and higher requirements have been placed on the grade of wet electronic chemicals, generally requiring G4-G5 grades.
  • Isopropyl alcohol is the most widely used organic solvent in wet electronic chemicals, mainly used for cleaning and drying. Isopropyl alcohol for integrated circuits has strict requirements on trace organic impurity content, metal cation impurity content, particle size and number, anion impurity content, etc. With the continuous breakthroughs in advanced process nodes of integrated circuits, the demand for G4-G5 high-grade isopropyl alcohol has gradually increased.
  • CN111675598A discloses a production system for preparing electronic-grade isopropanol by hydrogenating acetone, wherein the electronic-grade isopropanol product is obtained by an acetone hydrogenation unit, a pressure swing adsorption unit, a distillation unit and an adsorption-filtration unit.
  • the pressure swing adsorption separation process is complicated, and the organic impurities in the obtained isopropanol product are not effectively removed, which cannot meet the needs of high-end wafer manufacturing (line width ⁇ 90nm).
  • CN102898275A discloses a method for preparing high-purity isopropyl alcohol, which is prepared by molecular sieve dehydration, resin dehydration, reverse osmosis, high-temperature distillation, ion exchange, and cyclic adsorption-filtration.
  • this method also does not consider the removal of organic impurities, and cannot meet the cleanliness requirements of wet electronic chemicals for high-end wafer manufacturing (line width ⁇ 90nm).
  • One of the purposes of the present invention is therefore to overcome the organic reduction in the produced isopropanol Abstract:
  • a method and system for preparing electronic-grade isopropyl alcohol by hydrogenating acetone are provided.
  • the organic impurity content in the isopropyl alcohol product obtained by the method can be as low as below 5ppm, and the anion and cation content, particle content, water content, etc. can all meet the requirements of high-end wafer manufacturing (line width ⁇ 90nm).
  • the inventors conducted extensive research. During the research, the inventors unexpectedly found that for some specific raw materials including acetone raw materials for the production of electronic grade isopropyl acetone, especially when they contain specific impurities, such as reducing impurities, specific metal oxygen-containing complexes can be used as pre-oxidants to pre-treat the raw materials, which is particularly beneficial to reduce the content of organic impurities in the desired product and meet the requirements of anions and cations, particle content, water content, etc.
  • specific metal oxygen-containing complexes can be used as pre-oxidants to pre-treat the raw materials, which is particularly beneficial to reduce the content of organic impurities in the desired product and meet the requirements of anions and cations, particle content, water content, etc.
  • the present invention provides a method for preparing isopropanol by hydrogenating acetone, characterized in that the method comprises the following steps:
  • step (2) introducing an acetone feed into an acetone hydrogenation reactor for hydrogenation reaction to obtain a crude isopropanol product; wherein the acetone feed is the preoxidized acetone raw material obtained from step (1), or the preoxidized acetone raw material is optionally subjected to intermediate treatment (1-2) to obtain a refined acetone raw material.
  • Another aspect of the present invention provides a system for preparing electronic-grade isopropanol by hydrogenating acetone, the system comprising:
  • An acetone preoxidation processor for implementing step (1) of the method of the present invention to obtain a preoxidized acetone raw material
  • an acetone hydrogenation unit for carrying out step (2) of the process of the present invention to obtain a crude isopropanol product
  • An acetone dehydration device and an acetone refining device for carrying out the intermediate treatment (1-2) of the method according to any one of the preceding claims.
  • the present invention has at least the following beneficial effects:
  • the content of organic reducing impurities in the isopropanol product obtained by the present invention can be as low as 5 ppm or less, and the anion and cation, particle content, water content, etc. can meet the requirements of high-end wafer manufacturing (line width ⁇ 90 nm);
  • the raw material used in the present invention can be cheap and easily available acetone, and an electronic grade isopropanol product is obtained through an acetone purification unit, an acetone hydrogenation unit and an isopropanol purification unit.
  • the overall process is simple and the process added value is high;
  • the acetone purification unit used in the present invention has mild reaction conditions and good oxidation effect. It can completely remove reducing impurities with almost no loss of raw material acetone and produces few by-products;
  • the present invention is cleverly designed to remove organic impurities that are difficult to separate from isopropanol in the acetone purification unit, thereby avoiding the difficulty of separating from isopropanol in the later stage and high energy consumption.
  • FIG1 is a system for producing electronic-grade isopropanol by hydrogenating acetone according to a preferred embodiment of the present invention.
  • the "acetone raw material” of the present invention comprises the target material (acetone) and impurities.
  • the target material acetone
  • impurities For the purpose of further processing or application, it is necessary to perform appropriate treatment, such as purification, so that the purity of the target material is improved and/or it is conducive to the further processing or application of the target material.
  • the acetone raw material particularly refers to the acetone raw material used for hydrogenation to produce isopropanol (especially electronic grade isopropanol).
  • One aspect of the present invention provides a method for preparing isopropanol by hydrogenating acetone, characterized in that the method comprises:
  • step (2) introducing an acetone feed into an acetone hydrogenation reactor for hydrogenation reaction to obtain a crude isopropanol product; wherein the acetone feed is the preoxidized acetone raw material obtained from step (1), or the preoxidized acetone raw material is optionally subjected to intermediate treatment (1-2) to obtain a refined acetone raw material.
  • the intermediate treatment (1-2) is performed between the steps (1) and (2), and the intermediate treatment (1-2) comprises: introducing the pre-oxidized acetone raw material into an acetone dehydration device and an acetone refining device in sequence to dehydrate the acetone and purify the acetone to obtain a refined acetone raw material.
  • the method of the present invention further comprises the step (3) of post-treating the crude isopropanol product: the crude isopropanol product is sequentially passed through an isopropanol dehydration device, an isopropanol refining device and an adsorption-filtration device to perform isopropanol dehydration, isopropanol refining and at least one isopropanol adsorption-filtration to obtain electronic grade isopropanol.
  • the present invention provides a method for preparing electronic-grade isopropanol by hydrogenating acetone, the method comprising:
  • the crude isopropyl alcohol product is sequentially passed through an isopropyl alcohol dehydration device, an isopropyl alcohol refining device and an adsorption-filtration device to perform isopropyl alcohol dehydration, isopropyl alcohol refining, and at least one isopropyl alcohol adsorption-filtration to obtain electronic grade isopropyl alcohol.
  • the acetone raw material which is cheap and easily available is pre-oxidized, the acetone is dehydrated, and the acetone is refined to obtain the refined acetone raw material, and the refined acetone raw material is used for hydrogenation reaction to obtain the crude isopropanol product.
  • the subsequent crude isopropanol product only needs simple dehydration, refining, and at least one adsorption-filtration to obtain the isopropanol product with an organic reducing impurity content as low as 5ppm or less, and anions, cations, particle content, water content, etc. can meet the requirements of high-end wafer manufacturing (line width ⁇ 90nm).
  • the organic impurities which are difficult to separate from the isopropanol are separated. The quality is removed in the acetone raw material, avoiding the defects of difficult separation from isopropanol and high energy consumption in the later stage.
  • the pre-oxidation method is not limited.
  • the pre-oxidation is carried out by contacting the acetone raw material with a pre-oxidant.
  • the above embodiment can effectively remove the reducing impurities in the acetone.
  • the pre-oxidation conditions are not limited.
  • the pre-oxidation conditions include: adding a pre-oxidant in an amount of 0.01-0.1% by weight of the acetone raw material, such as 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.08% or 0.1%.
  • the above embodiment can remove reducing impurities in the acetone raw material.
  • the pre-oxidation conditions include: normal temperature and normal pressure.
  • the reaction conditions of pre-oxidation are mild, the oxidation effect is good, and the reducing impurities can be completely removed with almost no loss of raw material acetone, and there are few by-products.
  • normal temperature refers to a temperature of 10-30°C.
  • the type of the preoxidant is not limited.
  • the preoxidant includes a metal oxygen complex; further preferably, the metal oxygen complex has a transition metal element as a central atom and an oxygen-containing heterocyclic organic compound containing a substituent as a ligand.
  • the above-mentioned embodiment can effectively remove the reducing impurities in acetone, reducing the generation of excessive impurities in the subsequent preparation process of isopropanol.
  • the type of the transition metal element is not limited.
  • the transition metal element is selected from one or more of chromium, molybdenum, tungsten, iron, cobalt, nickel, ruthenium, rhodium, palladium, platinum, manganese, technetium and rhenium, preferably one or more of manganese, cobalt and molybdenum.
  • the ligand is a compound having a structure shown in formula (I),
  • n is an integer of 0-5 (e.g., 0, 1, 2, 3, 4 or 5), A is -CH(R 5 )-; R 1 , R 2 , R 3 , R 4 and R 5 are each independently selected from H, C1-C8 alkyl, phenyl, C1-C8 alkyl and C1-C8 alkylphenyl.
  • R1 , R2 , R3 , R4 and R5 are each independently selected from H, C1-C5 alkyl, phenyl C1-C5 alkyl and C1-C5 alkyl substituted phenyl, preferably each independently selected from H, C1-C4 alkyl, benzyl, C1-C3 alkyl substituted phenyl.
  • organic impurities that are difficult to separate from isopropanol can be removed in the acetone raw material, thereby avoiding the defects of difficulty in separating from isopropanol and high energy consumption in the later stage.
  • R 1 is methyl
  • R 2 is methyl
  • R 3 is H
  • R 4 is H
  • the ligand is 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol
  • n 1, R 1 is methyl, R 2 is H, R 3 is H, R 4 is H, and R 5 is methyl, the ligand is 2,2-dimethyl-1,3-dioxane-4,6-dimethanol;
  • R1 is ethyl
  • R2 is ethyl
  • R3 is H
  • R4 is H
  • the ligand is 2,2-diethyl-1,3-dioxolane-4,5-dimethanol.
  • compounds of formula (I) useful in the present invention also include 2,2-dimethyl-1,3-dioxolane-4,5-di-1-ethanol, 2,2-dimethyl-1,3-dioxolane-4,5-dibenzyl alcohol, and 2,2-dimethyl-1,3-dioxolane-4,5-di-p-methylbenzyl alcohol.
  • the preparation method of the metal oxygen complex is not limited, and it can be obtained by selecting a ligand solution containing the ligand of the present invention and a metal salt solution containing the transition metal of the present invention for coordination reaction as needed.
  • the conditions required for the coordination reaction are not limited and can be selected as needed.
  • the preparation method of the metal oxygen-containing complex comprises: adding ligand solution and metal salt solution in anhydrous, oxygen-free, nitrogen atmosphere according to equimolar ligand and transition metal, stirring at room temperature for 1-10 hours to carry out complex reaction; in some optional embodiments, the solvent is evaporated after the complex reaction.
  • the ligand solution refers to a solution formed by dissolving the ligand in a solvent, generally dissolved in an organic solvent
  • the metal salt solution refers to a solution formed by dissolving a metal salt in a solvent, generally dissolved in water.
  • the present invention has no special limitations on this and will not be elaborated herein.
  • the ligand can be obtained by commercial purchase or preparation according to needs and for ligands of different specific structures.
  • n is 0, R1 is methyl, R2 is methyl, R3 is H, and R4 is H
  • the ligand at this time is 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol.
  • the preparation method of the ligand comprises: adding 2,2-dimethoxypropane, 2,3-dihydroxysuccinic acid dimethyl ester, p-toluenesulfonic acid and anhydrous dichloromethane in an anhydrous and oxygen-free nitrogen atmosphere, reacting at 20-100° C.
  • the present invention does not elaborate on the source of the ligand.
  • the ligand in the present invention can be prepared according to the needs and for ligands with different specific structures through commercially available or similar preparation methods of 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol, including changing the raw materials, 2-dimethoxypropane, 2,3-dihydroxysuccinic acid dimethyl ester, selecting the preparation raw materials of the required ligand, reacting them under the action of p-toluenesulfonic acid, and then performing a reduction reaction.
  • the pre-oxidant in step (1), is oxidized using an oxidant before pre-oxidation.
  • the oxidant is selected from one or more of oxygen, hydrogen peroxide, cumene peroxide, peracetic acid, perchlorate, permanganate and dichromate.
  • the pre-oxidant can be oxidized by directly adding an oxidant to the pre-oxidant after the coordination reaction of preparing the metal oxygen-containing complex is completed.
  • the ligand solution and the metal salt solution are added in anhydrous, oxygen-free, nitrogen atmosphere according to equimolar ligand and transition metal, stirred at room temperature for 1-10 hours for coordination reaction, and then an appropriate amount of oxidant is added and stirred for 1-10 hours to obtain the oxidation treatment, and the solvent is evaporated to obtain the oxidation treatment.
  • Pre-oxidant is oxidized by directly adding an oxidant to the pre-oxidant after the coordination reaction of preparing the metal oxygen-containing complex is completed.
  • the ligand solution and the metal salt solution are added in anhydrous, oxygen-free, nitrogen atmosphere according to equimolar ligand and transition metal, stirred at room temperature for 1-10 hours for coordination reaction, and then an appropriate amount of oxidant is added and stirred for 1-10 hours to obtain the oxidation treatment, and the solvent is evaporated
  • the pre-oxidant can be oxidized by subjecting the metal oxygen-containing complex to an oxidation reaction with an oxidant under oxidizing conditions in the presence of a solvent, and then evaporating the solvent to obtain the oxidized pre-oxidant.
  • the type of the reducing impurities is not limited.
  • the reducing impurities include at least one of alcohols, aldehydes, ketones, esters, ethers and olefins.
  • the reducing impurities that can be treated by the method of the present invention are selected from saturated or unsaturated C1-C4 primary or secondary alcohols, such as methanol, ethanol, isopropanol, propenol, propargyl alcohol; C1-C4 aldehydes, such as formaldehyde, acetaldehyde, propionaldehyde; C1-C4 alkyl formate, such as methyl formate, ethyl formate; C2-C4 olefins or alkynes, such as ethylene and propylene; aniline optionally substituted with C1-C4 alkyl and phenol optionally substituted with C1-C4 alkyl, such as aniline, phenol and alkyl substituents thereof.
  • C1-C4 primary or secondary alcohols such as methanol, ethanol, isopropanol, propenol, propargyl alcohol
  • C1-C4 aldehydes such as formaldehyde,
  • the pre-oxidation of the present invention can efficiently remove reducing impurities such as alcohols, aldehydes, ketones, esters, ethers and olefins, and finally obtain isopropanol whose anion and cation content, particle content, water content and the like can meet the requirements of high-end wafer manufacturing (line width ⁇ 90nm).
  • the source of the acetone raw material is not limited.
  • the acetone raw material includes one or more of industrial grade acetone, analytical grade acetone and electronic grade acetone.
  • the purity of industrial grade acetone is 95-99.5%
  • the purity of analytical grade acetone is 99.5-99.9%
  • the purity of electronic grade acetone is above 99.9%.
  • purity and content refer to weight content.
  • the dehydration materials used each include one or more of molecular sieves, silica gel, membranes, resins, and salts that can form crystalline hydrates.
  • the water content of the finally obtained isopropyl alcohol product can meet the requirements of ultra-high purity isopropyl alcohol for the integrated circuit industry.
  • the dehydration material can be selected as needed, and the types of the dehydration material will not be described in detail herein.
  • step (1-2) the acetone is purified in a plate distillation tower or a packed distillation tower.
  • the conditions for refining acetone are not limited.
  • the refining conditions for acetone include: an operating reflux ratio of 0.5-10; in some embodiments, the refining conditions for acetone include: an operating pressure of -0.5 to 10 bar; in some embodiments, the refining conditions for acetone include: a tower top operating temperature of 30-70°C;
  • the refining conditions of acetone include: an operating reflux ratio of 0.5-5; in some preferred embodiments, the refining conditions of acetone include: an operating pressure of 0.5-1 bar; in some preferred embodiments, the refining conditions of acetone include: a tower top operating temperature of 35-65° C.
  • the mode and conditions of the hydrogenation reaction are not limited.
  • the hydrogenation catalyst used in the hydrogenation reaction includes one or more of Cu-based, Ni-based and Mn-based catalysts.
  • Cu-based refers to a hydrogenation catalyst in which Cu is loaded on a carrier as an active component
  • Mn-based refers to a hydrogenation catalyst in which Mn is loaded on a carrier as an active component
  • the type of carrier can be selected as needed, for example including but not limited to SiO2 carrier, molecular sieve carrier or Al2O3 carrier.
  • the conditions of the hydrogenation reaction are not limited.
  • the conditions of the hydrogenation reaction include: a reaction inlet temperature of 70-140°C (e.g., 70°C, 80°C, 90°C, 110°C, 120°C, 130°C, or 140°C); in some embodiments, the conditions of the hydrogenation reaction include: a reaction pressure of 2-8MPaG (e.g., 2MPaG, 4MPaG, 5MPaG, 7MPaG, or 8MPaG); in some embodiments, the conditions of the hydrogenation reaction include: a molar ratio of hydrogen to acetone of 4-40:1 (e.g., 4:1, 8:1, 12:1, 16:1, 20:1, 21:1, 23:1, 30:1, 32:1, 35:1, or 40:1); in some embodiments, the conditions of the hydrogenation reaction include: an acetone space velocity of 0.6-3h -1 (e.g., 0.6h -1
  • the light impurity removal separation is carried out in a plate distillation tower or a packed distillation tower to separate the light impurity components, and the conditions for the light impurity removal separation include: an operating reflux ratio of 2-20 (e.g., 2, 4, 5, 8, 10, 12, 15 or 20), preferably 5-15.
  • the conditions for light separation include: the operating pressure is -0.5 to 10 bar (e.g., -0.5 bar, 0.25 bar, 1 bar, 1.5 bar, 2.0 bar, 5.0bar, 8.0bar or 10bar), preferably 0.25-1.0bar.
  • the operating pressure is -0.5 to 10 bar (e.g., -0.5 bar, 0.25 bar, 1 bar, 1.5 bar, 2.0 bar, 5.0bar, 8.0bar or 10bar), preferably 0.25-1.0bar.
  • the conditions for light separation include: the bottom operating temperature is 40-95°C (e.g., 40°C, 50°C, 60°C, 75°C, 85°C or 95°C), preferably 50-85°C.
  • the de-weighting separation is carried out in a plate distillation tower or a packed distillation tower to separate the heavy impurity components, and the conditions for the de-weighting separation include: an operating reflux ratio of 1-10 (e.g., 1, 2, 4, 6, 8 or 10), preferably 2-8.
  • the conditions for weight removal separation include: an operating pressure of -0.5 to 10 bar (e.g., -0.5 bar, 0.5 bar, 1.0 bar, 2.0 bar, 4.0 bar, 6.0 bar or 10 bar), preferably 0.5-1 bar.
  • the conditions for weight removal separation include: the top operating temperature is 50-90°C (e.g., 50°C, 60°C, 65°C, 75°C, 85°C or 90°C), preferably 65-85°C.
  • At least one isopropyl alcohol adsorption-filtration means that the adsorption-filtration operation can be performed once or repeatedly performed multiple times as needed.
  • the adsorption material used includes one or more of anion exchange resin and cation exchange resin.
  • anion exchange resin or cation exchange resin as adsorption material alone as needed, or may select a mixed resin of anion exchange resin and cation exchange resin as adsorption material as needed, which will not be elaborated in detail in the present invention.
  • the filter material used includes one or more of a polymer membrane, a ceramic membrane and a metal membrane.
  • Another aspect of the present invention provides a system for preparing electronic-grade isopropanol by hydrogenating acetone, the system comprising:
  • An acetone purification unit is used to purify the acetone raw material to obtain acetone material
  • An acetone hydrogenation unit is used to hydrogenate the acetone material to obtain a crude isopropanol product
  • Isopropanol purification unit is used to purify the crude isopropanol product to obtain electronic grade isopropanol.
  • the acetone purification unit comprises an acetone pre-oxidation processor, an acetone dehydration device, and an acetone refining device which are connected in sequence;
  • the acetone hydrogenation unit comprises an acetone hydrogenation reactor;
  • the isopropanol purification unit comprises an isopropanol dehydration device, an isopropanol refining device, and an adsorption-filtration device which are connected in sequence.
  • the acetone pre-oxidation processor can select a tubular reactor or a kettle reactor as needed, and the specific structures of the tubular reactor, the kettle reactor, and the acetone hydrogenation reactor are commonly used structures in the art.
  • organic impurities that are difficult to separate from isopropanol are removed in an acetone purification unit, thereby avoiding the defects of difficulty in separating from isopropanol and high energy consumption in the later stage.
  • the acetone dehydration device comprises an acetone dehydration tower.
  • the acetone refining device comprises an acetone refining tower.
  • the isopropyl alcohol dehydration device comprises an isopropyl alcohol dehydration tower.
  • the isopropanol refining device includes an isopropanol light-removing tower for removing light impurity components with a lower boiling point than isopropanol and an isopropanol heavy-removing tower for removing heavy impurity components with a higher boiling point than isopropanol, which are connected in sequence.
  • the isopropyl alcohol light-removing tower is a plate distillation tower or a packed distillation tower
  • the isopropyl alcohol heavy-removing tower is a plate distillation tower or a packed distillation tower.
  • the structures of the acetone dehydration tower, the plate distillation tower and the packed distillation tower are commonly used in the art and will not be elaborated herein.
  • the adsorption-filtration device comprises an adsorption-filtration apparatus.
  • a raw material pump as well as inlets and outlets for raw materials and products, etc. can be provided as required.
  • the acetone raw material 1 is pressurized by the raw material pump and enters the acetone preoxidation treatment device R1 filled with the oxidized preoxidant for preoxidation to obtain preoxidized acetone 2;
  • Acetone 2 is dehydrated by an acetone dehydration tower C1 filled with a dehydrating material to obtain dehydrated acetone 3;
  • the dehydrated acetone 3 enters an acetone refining tower T1 for refining to obtain a refined acetone material 4, and a heavy component 5 is extracted;
  • the refined acetone material 4 enters an acetone hydrogenation reactor R2 filled with a hydrogenation catalyst for hydrogenation reaction to obtain a crude isopropanol product 6;
  • the crude isopropanol product 6 is dehydrated by an isopropanol dehydration tower C2 filled with a dehydrating material to obtain dehydrated isopropanol 7;
  • the dehydrated isopropanol 7 enters an isopropanol light removal tower T2 for
  • the water content was determined by Karl Fischer titrator
  • the number of particles ( ⁇ 50 nm) was determined by an online particle size analyzer
  • Oxidation treatment of the pre-oxidant take equimolar 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol and manganese chloride salt, add 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol solution containing 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol and manganese chloride solution containing manganese chloride under anhydrous and oxygen-free nitrogen atmosphere, stir at room temperature for 6 hours, add potassium permanganate to react for 3 hours, and then evaporate the solvent to obtain an oxidized pre-oxidant;
  • acetone raw material 1 (industrial grade acetone, purity 98%) is pressurized by a raw material pump and enters an acetone preoxidation processor R1 filled with an oxidized preoxidant at a flow rate of 0.6 mL/min for preoxidation to obtain preoxidized acetone 2; the preoxidized acetone 2 is dehydrated by an acetone dehydration tower C1 filled with a dehydrating material (4A molecular sieve) to obtain dehydrated acetone 3; the dehydrated acetone 3 enters an acetone refining tower T1 (plate distillation tower) for refining to obtain a refined acetone material 4, and the heavy component 5 is extracted; the refined acetone material 4 enters an acetone hydrogenation reactor R2 filled with a hydrogenation catalyst (5 wt% Cu/ SiO2 catalyst) for The crude isopropanol product 6 is subjected to hydrogenation reaction to obtain a crude isopropanol product 6; the crude isopropanol
  • the pre-oxidation conditions include: normal temperature and pressure, and the amount of pre-oxidant added is 0.03% of the weight of the acetone raw material;
  • the refining conditions of acetone include: operating reflux ratio of 0.5, operating pressure of 1 bar; controlling the operating temperature of the tower top to 56°C;
  • the conditions of the hydrogenation reaction include: a reaction inlet temperature of 100°C, a reaction pressure of 4 MPa, a molar ratio of hydrogen to acetone of 8:1, and an acetone space velocity of 1.0 h -1 ;
  • the conditions for light separation include: operating reflux ratio of 5, operating pressure of 0.75 bar, and controlling the operating temperature of the tower bottom to 75°C;
  • the conditions for de-weighting separation include: operating reflux ratio of 5, operating pressure of 1 bar, and controlling the tower top operating temperature to be 82°C;
  • the adsorption-filtration device C3 is filled with a cation exchange resin-anion exchange resin mixed resin and a polymer filter membrane.
  • Example 1 The method according to Example 1 is different in that:
  • Oxidation treatment of the pre-oxidant taking equimolar amounts of 2,2-dimethyl-1,3-dioxane-4,6-dimethanol and cobalt acetate, adding a 2,2-dimethyl-1,3-dioxane-4,6-dimethanol solution containing 2,2-dimethyl-1,3-dioxane-4,6-dimethanol and a cobalt acetate solution containing cobalt acetate under anhydrous, oxygen-free, nitrogen atmosphere, stirring at room temperature for 6 hours, adding potassium permanganate to react for 3 hours, and then evaporating the solvent to obtain an oxidized pre-oxidant;
  • Example 1 The method according to Example 1 is different in that:
  • Oxidation treatment of the pre-oxidant taking equimolar amounts of 2,2-dimethyl-1,3-dioxane-4,6-dimethanol and cobalt acetate, adding a 2,2-dimethyl-1,3-dioxane-4,6-dimethanol solution containing 2,2-dimethyl-1,3-dioxane-4,6-dimethanol and a cobalt acetate solution containing cobalt acetate under anhydrous, oxygen-free, nitrogen atmosphere, stirring at room temperature for 6 hours, adding potassium permanganate to react for 3 hours, and then evaporating the solvent to obtain an oxidized pre-oxidant;
  • Dehydration material (4A molecular sieve and anhydrous potassium carbonate composite bed, volume ratio of 50%-50%)
  • Acetone refining tower T1 packed distillation tower
  • the refining conditions of acetone include: operating reflux ratio of 2, operating pressure of 1.5 bar; controlling the operating temperature of the tower top to 64°C;
  • the conditions of the hydrogenation reaction include: a reaction inlet temperature of 90°C, a reaction pressure of 4 MPa, a hydrogen/acetone molar ratio of 8:1, and an acetone space velocity of 1.0 h -1 ;
  • the conditions for light separation include: operating reflux ratio of 5, operating pressure of 0.5 bar, and controlling the operating temperature of the tower bottom to 65°C;
  • the conditions for weight removal separation include: operating reflux ratio of 5, operating pressure of 1.5 bar, and controlling the tower top operating temperature to 90°C;
  • Example 1 The method according to Example 1 is different in that:
  • Oxidation treatment of the pre-oxidant take equimolar 2,2-diethyl-1,3-dioxolane-4,5-dimethanol and manganese chloride, add 2,2-diethyl-1,3-dioxolane-4,5-dimethanol and manganese chloride solution containing manganese chloride under anhydrous and oxygen-free nitrogen atmosphere, stir at room temperature for 6 hours, add potassium permanganate to react for 3 hours, and then evaporate the solvent to obtain an oxidized pre-oxidant;
  • the conditions of the hydrogenation reaction include: a reaction inlet temperature of 70°C, a reaction pressure of 2 MPaG, a hydrogen to acetone molar ratio of 4:1, and an acetone space velocity of 0.8 h -1 ;
  • the conditions for light separation include: operating reflux ratio of 15, operating pressure of 1 bar, and controlling the operating temperature of the tower bottom to 85°C;
  • the conditions for weight removal separation include: operating reflux ratio of 7, operating pressure of 1 bar, and controlling the tower top operating temperature to 85°C;
  • the adsorption-filtration device C3 is filled with mixed resin and ceramic filter membrane.
  • Example 3 The method of Example 3 is different in that:
  • the refining conditions of acetone include: operating reflux ratio of 2, operating pressure of 0.5 bar; controlling the operating temperature of the tower top to 47°C;
  • the conditions for light separation include: operating reflux ratio of 5, operating pressure of 1.5 bar, and controlling the operating temperature of the tower bottom to 90°C;
  • the conditions for weight removal separation include: an operating reflux ratio of 5, an operating pressure of 0.5 bar, and a control tower top operating temperature of 65°C.
  • Example 3 The method of Example 3 is different in that:
  • Oxidation treatment of the pre-oxidant Take equimolar 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol and molybdenum chloride, add 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol solution containing 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol and molybdenum chloride solution containing molybdenum chloride in anhydrous, oxygen-free, nitrogen atmosphere, stir at room temperature for 6 hours, add potassium permanganate to react for 3 hours, and then evaporate the solvent to obtain the oxidized pre-oxidant.
  • Example 1 The method according to Example 1 is different in that:
  • the oxidant is pretreated by adding equimolar 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol and cupric chloride in anhydrous, oxygen-free, nitrogen atmosphere to a 2,2-dimethyl-1,3-dioxolane-4,5-dimethanol solution and a solution containing cupric chloride.
  • the cupric chloride solution was stirred at room temperature for 6 hours, potassium permanganate was added and reacted for 3 hours, and then the solvent was evaporated to obtain the oxidized pre-oxidant.
  • Example 1 The method according to Example 1 is different in that:
  • the oxidatively treated pre-oxidant was replaced by an oxidizing metal salt, KMnO 4 .
  • Example 1 The method according to Example 1 is different in that:
  • the oxidized pre-oxidant was replaced by a 10 wt% Co oxide/ SiO2 supported catalyst.
  • Example 1 The method according to Example 1 is different in that:
  • Oxidation treatment of the pre-oxidant Take equimolar amounts of 2,2-dimethyl-1,3-dioxolane-4,5-di-1-ethanol and manganese chloride salt, add 2,2-dimethyl-1,3-dioxolane-4,5-di-1-ethanol solution containing 2,2-dimethyl-1,3-dioxolane-4,5-di-1-ethanol and manganese chloride solution containing manganese chloride under anhydrous, oxygen-free, nitrogen atmosphere, stir at room temperature for 6 hours, add potassium permanganate to react for 3 hours, and then evaporate the solvent to obtain the oxidized pre-oxidant.
  • Example 1 The method according to Example 1 is different in that:
  • Oxidation treatment with preoxidant Take equimolar 2,2-dimethyl-1,3-dioxolane-4,5-dibenzyl alcohol and manganese chloride salt, add 2,2-dimethyl-1,3-dioxolane-4,5-dibenzyl alcohol solution and 2,2-dimethyl-1,3-dioxolane-4,5-dibenzyl alcohol solution in anhydrous, oxygen-free, nitrogen atmosphere.
  • the manganese chloride solution was stirred at room temperature for 6 hours, potassium permanganate was added and reacted for 3 hours, and then the solvent was evaporated to obtain the pre-oxidant for oxidation treatment.
  • Example 1 The method according to Example 1 is different in that:
  • Oxidation treatment of the pre-oxidant Take equimolar 2,2-dimethyl-1,3-dioxolane-4,5-di-p-methylbenzyl alcohol and manganese chloride salt, add 2,2-dimethyl-1,3-dioxolane-4,5-di-p-methylbenzyl alcohol solution containing 2,2-dimethyl-1,3-dioxolane-4,5-di-p-methylbenzyl alcohol and manganese chloride solution containing manganese chloride under anhydrous and oxygen-free nitrogen atmosphere, stir at room temperature for 6 hours, add potassium permanganate to react for 3 hours, and then evaporate the solvent to obtain the oxidized pre-oxidant.
  • Example 1 The method according to Example 1 is different in that:
  • Oxidation treatment of the pre-oxidant take equimolar 2,2-diphenyl-1,3-dioxolane-4,5-dimethanol and manganese chloride salt, add 2,2-diphenyl-1,3-dioxolane-4,5-dimethanol solution and manganese chloride solution containing manganese chloride under anhydrous and oxygen-free nitrogen atmosphere, stir at room temperature for 6 hours, add potassium permanganate to react for 3 hours, and then evaporate the solvent to obtain the oxidized pre-oxidant;
  • Example 1 The method according to Example 1 is different in that:
  • the acetone raw material 1 is not subjected to pre-oxidation treatment, that is, the acetone raw material 1 is directly pressurized by the raw material pump and enters the acetone dehydration tower C1 filled with dehydration material to remove water to obtain dehydrated acetone 3, and the dehydration of acetone 3 is carried out according to the subsequent process of Example 1 until isopropanol is obtained.
  • Example 2 The method according to Example 2 is different in that:
  • the preoxidized acetone 2 does not pass through the acetone dehydration tower C1 filled with a dehydrating material (4A molecular sieve) to remove water, that is, the preoxidized acetone 2 directly enters the acetone refining tower T1 (plate distillation tower) to be refined to obtain the refined acetone material 4, and the acetone material 4 is processed according to the subsequent process of Example 1 until isopropanol is obtained.
  • a dehydrating material (4A molecular sieve)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

本发明提供一种丙酮加氢制异丙醇的方法,其特征在于,该方法包括:(1)将丙酮原料引入丙酮预氧化处理器中对杂质进行预氧化,得到预氧化丙酮原料;和(2)将预氧化处理后、并任选进行中间处理的丙酮原料引入丙酮加氢反应器中进行加氢反应,得到粗异丙醇产物。

Description

丙酮加氢制电子级异丙醇的方法和系统 技术领域
本发明涉及化工原料制备技术领域,具体涉及一种丙酮加氢制电子级异丙醇的方法和系统。
背景技术
随着21世纪以来半导体行业第三次产业转移的进程加快,我国集成电路市场规模正逐年增长,超高纯试剂(湿电子化学品)是IC制造过程中的关键性基础功能化学品,主要用于芯片的清洗和蚀刻,其纯度和洁净度对集成电路的良品率及可靠性有十分重要的影响,且集成电路线宽越窄,所需重量要求越高。目前,8英寸晶圆生产使用的是G3-G4等级湿电子化学品,12英寸晶圆由于加工方式的改变,对湿电子化学品用量大幅增加,并对湿电子化学品的等级提出更高的要求,普遍需要G4-G5等级。
异丙醇是湿电子化学品中用量最大的有机溶剂,主要用于清洗和干燥。集成电路用异丙醇对其中微量有机杂质含量、金属阳离子杂质含量、颗粒粒径和数量、阴离子杂质含量等方面有严格要求。随着集成电路先进制程节点的不断突破,G4-G5高等级异丙醇需求占比也逐渐升高。
CN111675598A公开了一种丙酮加氢制备电子级异丙醇的生产系统,通过丙酮加氢单元、变压吸附单元、精馏单元和吸附-过滤单元得到电子级异丙醇产品。但该方法采用变压吸附分离工艺流程复杂,且得到的异丙醇产品中衡量有机杂质未得到有效脱除,尚不能满足高端晶圆制造(线宽≤90nm)的需求。
CN102898275A公开了一种高纯异丙醇的制备方法,通过分子筛脱水、树脂脱水、反渗透、高温精馏、离子交换、循环吸附-过滤的步骤制备高纯异丙醇。但该方法同样未考虑有机衡量杂质的脱除,尚不能满足高端晶圆制造(线宽≤90nm)对湿电子化学品洁净度的需求。
发明内容
本发明的目的之一因而是为了克服生产得到的异丙醇中有机还原 性杂质未得到有效脱除,不能满足高端晶圆制造(线宽≤90nm)需求的问题,提供一种丙酮加氢制电子级异丙醇的方法与系统,该方法得到的异丙醇产品中有机杂质含量可低至5ppm以下,且阴阳离子、颗粒含量、水含量等均可满足高端晶圆制造(线宽≤90nm)要求。
为此目的,发明人进行了广泛研究。在研究过程中,发明人出人意料地发现,对于包括用于电子级异丙醇丙酮生产的丙酮原料在内的一些特定原料,尤其是当其包含特定的杂质,例如还原性杂质时,可以使用特定的金属含氧配合物作为预氧化剂,从而对所述原料进行预处理,其尤其有利于降低所需产品中的有机杂质含量,并满足阴阳离子、颗粒含量、水含量等多方面要求。
为了实现上述目的,本发明一方面提供了一种丙酮加氢制异丙醇的方法,其特征在于,该方法包括以下步骤:
(1)将丙酮原料引入丙酮预氧化处理器中对还原性杂质进行预氧化,得到预氧化丙酮原料;
(2)将丙酮进料引入丙酮加氢反应器中进行加氢反应,得到粗异丙醇产物;其中所述丙酮进料为得自步骤(1)的预氧化丙酮原料,或者该预氧化丙酮原料任选进行中间处理(1-2)得到的精制丙酮原料。
本发明另一方面提供一种丙酮加氢制电子级异丙醇的系统,该系统包括:
丙酮预氧化处理器,用于实施本发明所述方法的步骤(1),以得到预氧化丙酮原料;和
丙酮加氢单元,用于实施本发明所述方法的步骤(2),以得到粗异丙醇产物;以及任选地
丙酮脱水装置和丙酮精制装置,用于实施前述权利要求中任一项所述方法的中间处理(1-2)。
与现有技术相比,本发明至少具有如下有益效果:
(1)本发明得到的异丙醇产品中有机还原性杂质含量可低至5ppm以下,且阴阳离子、颗粒含量、水含量等均可满足高端晶圆制造(线宽≤90nm)要求;
(1-2)本发明采用的原料可为廉价易得的丙酮,通过丙酮纯化单元、丙酮加氢单元和异丙醇纯化单元得到电子级异丙醇产品,整体流程简单,工艺附加值高;
(2)本发明采用的丙酮纯化单元反应条件温和,氧化效果好,在原料丙酮几乎不损失的情况下,可完全脱除还原性杂质,且副产物少;
(3)本发明设计巧妙,将与异丙醇难分离的有机杂质在丙酮纯化单元脱除,避免后段与异丙醇分离困难、能耗高。
附图说明
图1是根据本发明的一种优选实施方式的丙酮加氢制电子级异丙醇的系统。
附图标记说明
R1丙酮预氧化处理器          C1丙酮脱水塔
T1丙酮精制塔                R2丙酮加氢反应器
C2异丙醇脱水塔              T2异丙醇脱轻塔
T3异丙醇脱重塔              C3吸附-过滤设备
①丙酮原料                  ②预氧化丙酮
③脱水丙酮                  ④精制后的丙酮物料
⑤重组分                    ⑥粗异丙醇产物
⑦脱水异丙醇                ⑧轻杂质组分
⑨脱轻异丙醇产品            ⑩初级异丙醇产品
重杂质组分                电子级异丙醇
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明所述“丙酮原料”包含目标材料(丙酮)和杂质。出于进一步加工或应用的目的,需要对其进行适当的处理,例如纯化,从而是的目标材料纯度提高,和/或有利于目标材料的进一步加工或应用。对于本发明来说,所述丙酮原料尤其是指用于加氢制异丙醇(特别是电子级异丙醇)的丙酮原料。
本发明一方面提供一种丙酮加氢制异丙醇的方法,其特征在于,该方法包括:
(1)将丙酮原料引入丙酮预氧化处理器中对还原性杂质进行预氧化,得到预氧化丙酮原料;
(2)将丙酮进料引入丙酮加氢反应器中进行加氢反应,得到粗异丙醇产物;其中所述丙酮进料为得自步骤(1)的预氧化丙酮原料,或者该预氧化丙酮原料任选进行中间处理(1-2)得到的精制丙酮原料。
根据本发明的一个例示实施方案,在所述步骤(1)和(2)之间进行所述中间处理(1-2),该中间处理(1-2)包括:将所述预氧化丙酮原料依次引入丙酮脱水装置和丙酮精制装置中进行丙酮的脱水、丙酮的精制,得到精制丙酮原料。
根据本发明的一个例示实施方案,本发明所述方法还包括对所述粗异丙醇产物进行后处理的步骤(3):将粗异丙醇产物依次经过异丙醇脱水装置、异丙醇精制装置和吸附-过滤装置进行异丙醇的脱水、异丙醇的精制、至少一次异丙醇吸附-过滤,得到电子级异丙醇。
由此,例如,如图1所示,本发明一方面提供一种丙酮加氢制电子级异丙醇的方法,该方法包括:
(1)将丙酮原料引入丙酮预氧化处理器R1中对还原性杂质进行预氧化,得到预氧化丙酮原料;
(1-2)将所述预氧化丙酮依次引入丙酮脱水装置和丙酮精制装置中进行丙酮的脱水、丙酮的精制,得到精制丙酮原料;
(2)将所述精制丙酮原料作为丙酮进料引入丙酮加氢反应器R2中进行加氢反应,得到粗异丙醇产物;
(3)将粗异丙醇产物依次经过异丙醇脱水装置、异丙醇精制装置和吸附-过滤装置进行异丙醇的脱水、异丙醇的精制、至少一次异丙醇吸附-过滤,得到电子级异丙醇。
根据本发明中能够通过对廉价易得的丙酮原料进行预氧化、丙酮的脱水、丙酮的精制,得到精制丙酮原料并利用精制丙酮原料进行加氢反应,得到粗异丙醇产物,后续的粗异丙醇产物仅需要简单的脱水、精制、至少一次吸附-过滤就能够得到有机还原性杂质含量可低至5ppm以下,且阴阳离子、颗粒含量、水含量等均可满足高端晶圆制造(线宽≤90nm)要求的异丙醇产品,本发明中将与异丙醇难分离的有机杂 质在丙酮原料中进行脱除,避免后段与异丙醇分离困难、能耗高的缺陷。
根据本发明,只要能实现本发明的目的,所述预氧化的方式没有限制,在一些优选的实施方式中,在步骤(1)中,通过预氧化剂与丙酮原料接触进行预氧化。采用前述实施方式,能有效的脱出丙酮中的还原性杂质。
根据本发明,只要能实现本发明的目的,所述预氧化的条件没有限制,在一些实施方式中,在步骤(1)中,预氧化条件包括:加入预氧化剂的量为丙酮原料重量的0.01-0.1%,例如0.01%、0.02%、0.03%、0.04%、0.05%、0.08%或0.1%。采用前述实施方式,能够除去丙酮原料中的还原性杂质。
根据本发明,在一些实施方式中,预氧化的条件包括:常温、常压。采用前述实施方式,预氧化的反应条件温和,氧化效果好,在原料丙酮几乎不损失的情况下,可完全脱除还原性杂质,且副产物少。
在本发明中,常温指温度为10-30℃。
根据本发明,只要能实现本发明的目的,所述预氧化剂的种类没有限制,在一些优选的实施方式中,所述预氧化剂包括金属含氧配合物;进一步优选地,所述金属含氧配合物以过渡金属元素为中心原子、以含取代基的含氧杂环有机化合物作为配体。采用前述实施方式,能够有效的脱除丙酮中的还原性杂质,降低了后续异丙醇制备过程中过多的杂质产生。
根据本发明,只要能实现本发明的目的,所述过渡金属元素的种类没有限制,在一些实施方式中,所述过渡金属元素选自铬、钼、钨、铁、钴、镍、钌、铑、钯、铂、锰、锝和铼中的一种或多种,优选用锰、钴和钼中的一种或多种。
根据本发明,在一些优选的实施方式中,所述配体为具有式(I)所示结构的化合物,
式(I)中,n为0-5的整数(例如0、1、2、3、4或5),A为-CH(R5)-; R1、R2、R3、R4和R5各自独立地选自H、C1-C8烷基、苯基C1-C8烷基和C1-C8烷基苯基。
根据本发明的一个优选实施方案,R1、R2、R3、R4和R5在每次出现时各自独立地选自H、C1-C5烷基、苯基C1-C5烷基和C1-C5烷基取代的苯基,优选各自独立地选自H、C1-C4烷基、苄基、C1-C3烷基取代的苯基。
采用前述优选的实施方式,能够将与异丙醇难分离的有机杂质在丙酮原料中得以脱除,避免后段与异丙醇分离困难、能耗高的缺陷。
根据本发明,可以理解的是,当n为0,此时没有A存在,则式(I)为五元环结构;当n为1时,则式(I)为六元环结构,此时R5选自H、C1-C8烷基、苯基C1-C8烷基和C1-C8烷基苯基,或优选选自H、C1-C5烷基、苄基、C1-C3烷基取代的苯基;当n为2时,此时A=-CH(R5)-CH(R5),式(I)为七元环结构,每个出现的R5各自独立地选自H、C1-C8烷基、苯基C1-C8烷基和C1-C8烷基苯基,或优选选自H、C1-C5烷基、苄基、C1-C3烷基取代的苯基。类似地,例如:
当n为0、R1为甲基、R2为甲基、R3为H、R4为H时,此时的配体为2,2-二甲基-1,3-二氧戊环-4,5-二甲醇;
当n为1、R1为甲基、R2为H、R3为H、R4为H、R5为甲基时,此时的配体为2,2-二甲基-1,3-二氧己环-4,6-二甲醇;
当n为0、R1为乙基、R2为乙基、R3为H、R4为H时,此时的配体为2,2-二乙基-1,3-二氧戊环-4,5-二甲醇。
类似地,本发明可用的式(I)化合物还包括2,2-二甲基-1,3-二氧戊环-4,5-二-1-乙醇、2,2-二甲基-1,3-二氧戊环-4,5-二苄醇、和2,2-二甲基-1,3-二氧戊环-4,5-二对甲基苄醇。
根据本发明,在一些优选的实施方式中,式(I)中,n为0-3的整数;在一些优选的实施方式中,R1、R2、R3、R4各自独立地选自H、C1-C3烷基、苄基、甲基取代的苯基;在一些优选的实施方式中,A=CH(R5),R5为H或C1-C3烷基。
根据本发明,只要能实现本发明的目的,所述金属含氧配合物的制备方法没有限制,可根据需要选择含本发明所述配体的配体溶液与含本发明所述过渡金属的金属盐溶液进行配合反应后得到,其配合反应所需的条件没有限制,可以根据需要进行选择。在一些实施方式中, 所述金属含氧配合物的制备方法包括:按等摩尔的配体与过渡金属,在无水无氧、氮气氛围下加入配体溶液与金属盐溶液室温搅拌1-10小时进行配合反应;在一些可选地实施方式中,在配合反应后蒸除溶剂。
根据本发明,可以理解的是,配体溶液指配体溶解在溶剂中形成的溶液,一般溶解在有机溶剂中;金属盐溶液指金属盐溶解在溶剂中形成的溶液,一般溶解在水中,本发明对此无特殊限制,在此不多加赘述。
根据本发明,所述配体可根据需要、并针对不同具体结构的配体通过市售或制备得到,例如,当式(I)中,当n为0、R1为甲基、R2为甲基、R3为H、R4为H时,此时的配体为2,2-二甲基-1,3-二氧戊环-4,5-二甲醇,该配体的制备方法包括:在无水无氧、氮气氛围下先后加入2,2-二甲氧基丙烷、2,3-二羟基丁二酸二甲酯、对甲苯磺酸和无水二氯甲烷,20-100℃反应2-10小时,自然降温后蒸除溶剂;氮气氛围下加入无水甲醇,加入硼氢化钠,室温搅拌5-24小时;加水稀释后蒸除有机溶剂,残余液萃取后干燥,过滤后蒸除有机溶剂,残余物经重结晶得到配体。
本发明对配体的来源不做过多赘述,本发明中的配体均可根据需要、并针对不同具体结构的配体通过市售或类似于2,2-二甲基-1,3-二氧戊环-4,5-二甲醇的制备方法制备得到,包括改变原料,2-二甲氧基丙烷、2,3-二羟基丁二酸二甲酯,选择所需配体的制备原料在对甲苯磺酸作用下反应后再进行还原反应。
根据本发明,为了增加金属含氧配合物的活性,在一些实施方式中,在步骤(1)中,所述预氧化剂在进行预氧化之前,使用氧化剂对预氧化剂进行氧化处理。
根据本发明,在一些优选的实施方式中,所述氧化剂选自氧气、双氧水、过氧化异丙苯、过氧乙酸、高氯酸盐、高锰酸盐和重铬酸盐中的一种或多种。
根据本发明,对预氧化剂进行氧化处理可在制备所述金属含氧配合物的配合反应结束后直接加入氧化剂进行氧化反应。例如,在一些实施方式中,按等摩尔的配体与过渡金属,在无水无氧、氮气氛围下加入配体溶液与金属盐溶液室温搅拌1-10小时进行配合反应后,加入适量氧化剂搅拌1-10小时得氧化处理后、蒸除溶剂后即得氧化处理后的 预氧化剂。
根据本发明,在另一些实施方式中,对预氧化剂进行氧化处理可在溶剂的存在下,将金属含氧配合物与氧化剂在氧化条件下进行氧化反应,然后蒸除溶剂即得氧化处理后的预氧化剂。
根据本发明,本领域的技术人员可根据氧化剂的种类选择合适的氧化处理的条件,本发明对此不做过多赘述。
根据本发明,只要能实现本发明的目的,所述还原性杂质的种类没有限定,在一些实施方式中,所述还原性杂质包括醇、醛、酮、酯、醚和烯烃中的至少一种。一般来说,可以通过本发明方法处理的还原性杂质选自饱和或不饱和的C1-C4伯醇或仲醇,例如甲醇、乙醇、异丙醇、丙烯醇、炔丙醇;C1-C4醛,例如甲醛、乙醛、丙醛;甲酸C1-C4烷基酯,例如甲酸甲酯、甲酸乙酯;C2-C4烯烃或炔烃,例如乙烯、丙烯;任选被C1-C4烷基取代的苯胺和任选被C1-C4烷基取代的苯酚,例如苯胺、苯酚及其烷基取代物。
通过本发明的预氧化能够高效的脱出醇、醛、酮、酯、醚和烯烃等还原性杂质,最后得到阴阳离子、颗粒含量、水含量等均可满足高端晶圆制造(线宽≤90nm)要求的异丙醇。
根据本发明,只要能实现本发明的目的,丙酮原料的来源没有限定,在一些实施方式中,丙酮原料包括工业级丙酮、分析级丙酮和电子级丙酮中的一种或多种。
根据本发明,按照本领域标准,工业级丙酮的纯度为95-99.5%、分析级丙酮的纯度为99.5-99.9%、电子级丙酮的纯度为99.9%以上。
在本发明中,如无特别说明,纯度、含量均指重量含量。
根据本发明,在一些实施方式中,在步骤(1-2)中丙酮的脱水和步骤(3)中异丙醇的脱水中,使用的脱水材料各自包括分子筛、硅胶、膜、树脂和可形成结晶水合物的盐中的一种或多种。采用前述实施方式,能够使最后得到的异丙醇产品的含水量满足集成电路行业用超高纯异丙醇要求。
根据本发明,可以根据需要选择脱水材料,在此不多加赘述脱水材料的种类。
根据本发明,在一些实施方式中,在步骤(1-2)中,所述丙酮的精制在板式精馏塔或填料精馏塔中进行精制。
根据本发明,只要能实现本发明的目的,所述丙酮精制的条件没有限制,在一些实施方式中,所述丙酮的精制条件包括:操作回流比为0.5-10;在一些实施方式中,所述丙酮的精制条件包括:操作压力为-0.5~10bar,在一些实施方式中,所述丙酮的精制条件包括:塔顶操作温度为30-70℃;
根据本发明,在一些优选的实施方式中,所述丙酮的精制条件包括:操作回流比为0.5-5;在一些优选的实施方式中,所述丙酮的精制条件包括:操作压力为0.5-1bar;在一些优选的实施方式中,所述丙酮的精制条件包括:塔顶操作温度为35-65℃。采用前述实施方式,能够脱出丙酮中一些高沸点杂质。
根据本发明,只要能实现本发明的目的,加氢反应的方式和条件没有限制,在一些实施方式中,所述加氢反应使用的加氢催化剂包括Cu基、Ni基和Mn基催化剂中的一种或多种。
根据本发明,其中,Cu基指Cu作为活性组分负载到载体上的加氢催化剂;Mn基指Mn作为活性组分负载到载体上的加氢催化剂;载体的种类可以根据需要进行选择,例如包括但不限于SiO2载体、分子筛载体或Al2O3载体。
根据本发明,只要能实现本发明的目的,所述加氢反应的条件没有限定,在一些实施方式中,所述加氢反应的条件包括:反应入口温度为70-140℃(例如70℃、80℃、90℃、110℃、120℃、130℃或140℃);在一些实施方式中,所述加氢反应的条件包括:反应压力为2-8MPaG(例如2MPaG、4MPaG、5MPaG、7MPaG或8MPaG);在一些实施方式中,所述加氢反应的条件包括:氢气与丙酮的摩尔比为4-40:1(例如4:1、8:1、12:1、16:1、20:1、21:1、23:1、30:1、32:1、35:1或40:1);在一些实施方式中,所述加氢反应的条件包括:丙酮空速为0.6-3h-1(例如0.6h-1、1h-1、1.6h-1、2h-1、2.5h-1或3h-1、)。
根据本发明,为了能更有效地脱出异丙醇中的轻杂质组分和重杂质组分,在一些实施方式中,所述脱轻分离在板式精馏塔或填料精馏塔中进行脱轻分离轻杂质组分,所述脱轻分离的条件包括:操作回流比为2-20(例如2、4、5、8、10、12、15或20),优选为5-15。
根据本发明,在一些实施方式中,所述脱轻分离的条件包括:所述操作压力为-0.5~10bar(例如-0.5bar、0.25bar、1bar、1.5bar、2.0bar、 5.0bar、8.0bar或10bar),优选为0.25-1.0bar。
根据本发明,在一些实施方式中,所述脱轻分离的条件包括:塔釜操作温度为40-95℃(例如40℃、50℃、60℃、75℃、85℃或95℃),优选为50-85℃。
根据本发明,在一些实施方式中,所述脱重分离在板式精馏塔或填料精馏塔中进行脱重分离重杂质组分,所述脱重分离的条件包括:操作回流比为1-10(例如1、2、4、6、8或10),优选为2-8。
根据本发明,在一些实施方式中,所述脱重分离的条件包括:操作压力为-0.5~10bar(例如-0.5bar、0.5bar、1.0bar、2.0bar、4.0bar、6.0bar或10bar),优选为0.5-1bar。
根据本发明,在一些实施方式中,所述脱重分离的条件包括:塔顶操作温度为50-90℃(例如50℃、60℃、65℃、75℃、85℃或90℃),优选为65-85℃。
根据本发明|,“至少一次异丙醇吸附-过滤”指可根据需要进行一次或重复进行多次吸附-过滤操作。
根据本发明,为了脱除异丙醇中的阴阳离子,在一些实施方式中,在异丙醇吸附-过滤中,使用的吸附材料包括阴离子交换树脂和阳离子交换树脂中的一种或多种。
根据本发明,本领域的技术人员可根据需要单独存在阴离子交换树脂或阳离子交换树脂作为吸附材料,也可以根据需要选择阴离子交换树脂和阳离子交换树脂混合的混合树脂作为吸附材料,本发明对此不做过多赘述。
根据本发明,为了脱除异丙醇中的颗粒,在一些实施方式中,在异丙醇吸附-过滤中,使用的过滤材料包括聚合物膜、陶瓷膜和金属膜中的一种或多种。
采用前述实施方式,能够避免前序工段内构件材质可能存在的金属离子和颗粒溶出对异丙醇纯度的影响。
本发明另一方面提供一种丙酮加氢制电子级异丙醇的系统,该系统包括:
丙酮纯化单元,用于对丙酮原料进行纯化,以得到丙酮物料;
丙酮加氢单元,用于对丙酮物料进行加氢,以得到粗异丙醇产物;
异丙醇纯化单元,用于对粗异丙醇产物进行纯化,以得到电子级异 丙醇;
其中,所述丙酮纯化单元包括依次连接的丙酮预氧化处理器、丙酮脱水装置、丙酮精制装置;所述丙酮加氢单元包括丙酮加氢反应器;所异丙醇纯化单元包括依次连接的异丙醇脱水装置、异丙醇精制装置、吸附-过滤装置。
在本发明中,所示丙酮预氧化处理器可以根据需要选择管式反应器或是釜式反应器,管式反应器、釜式反应器、丙酮加氢反应器的具体结构为本领域常用的结构。
根据本发明,本发明将与异丙醇难分离的有机杂质在丙酮纯化单元脱除,避免后段与异丙醇分离困难、能耗高的缺陷。
根据本发明,在一些实施方式中,所述丙酮脱水装置包括丙酮脱水塔。
根据本发明,在一些实施方式中,所述丙酮精制装置包括丙酮精制塔。
根据本发明,在一些实施方式中,所述异丙醇脱水装置包括异丙醇脱水塔。
根据本发明,在一些实施方式中,所述异丙醇精制装置包括依次连接的用于比异丙醇沸点低的轻杂质组分的异丙醇脱轻塔和用于脱除比异丙醇沸点高的重杂质组分的异丙醇脱重塔。
根据本发明,在一些实施方式中,所述异丙醇脱轻塔为板式精馏塔或填料精馏塔,所述异丙醇脱重塔为板式精馏塔或填料精馏塔。
在本发明中,丙酮脱水塔、板式精馏塔和填料精馏塔的结构为本领域常用的结构,在此不多加赘述。
根据本发明,在一些实施方式中,所述吸附-过滤装置包括吸附-过滤设备。
在本发明所述的系统中,可以根据需要设置原料泵、以及原料、产物的进出料口等。
以下结合图1对本发明所述的方法和系统的优选的实施方式进行描述。
如图1所示,
以丙酮原料①经原料泵增压后进入填装有经过氧化处理的预氧化剂的丙酮预氧化处理器R1中进行预氧化,得到预氧化丙酮②;预氧化 丙酮②经装填有脱水材料的丙酮脱水塔C1脱除水后得到脱水丙酮③;脱水丙酮③进入丙酮精制塔T1中精制得到精制后的丙酮物料④,重组分⑤采出;精制后的丙酮物料④进入装填有加氢催化剂的丙酮加氢反应器R2中进行加氢反应,得到粗异丙醇产物⑥;粗异丙醇产物⑥经装填有脱水材料的异丙醇脱水塔C2脱水后得到脱水异丙醇⑦;脱水异丙醇⑦进入异丙醇脱轻塔T2进行脱轻分离以脱除轻杂质组分⑧后得到脱轻异丙醇产品⑨;脱轻异丙醇产品⑨经过异丙醇脱重塔T3进行脱重分离以脱除重杂质组分得到初级异丙醇产品⑩;初级异丙醇产品⑩再经吸附-过滤设备C3脱除阴阳离子和颗粒后得到电子级异丙醇
实施例
以下将通过实施例对本发明进行详细描述。以下实施例和对比例中,
含水量通过卡尔费休水分测定仪测定;
单个金属阳离子浓度通过ICP-MS测定;
阴离子浓度通过离子色谱仪测定;
颗粒(≥50nm)数目通过在线粒度分析仪测定;
除专门指出之外,各种材料可市售获得。
实施例1
预氧化剂的氧化处理:取等摩尔的2,2-二甲基-1,3-二氧戊环-4,5-二甲醇与氯化锰盐,在无水无氧、氮气氛围下加入含2,2-二甲基-1,3-二氧戊环-4,5-二甲醇的2,2-二甲基-1,3-二氧戊环-4,5-二甲醇溶液与含氯化锰的氯化锰溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得氧化处理的预氧化剂;
如图1所示,丙酮原料①(工业级丙酮,纯度为98%)经原料泵增压后以流量为0.6mL/min的流量进入填装有经过氧化后的预氧化剂的丙酮预氧化处理器R1中进行预氧化,得到预氧化丙酮②;预氧化丙酮②经装填有脱水材料(4A分子筛)的丙酮脱水塔C1脱除水后得到脱水丙酮③;脱水丙酮③进入丙酮精制塔T1(板式精馏塔)中精制得到精制后的丙酮物料④,重组分⑤采出;精制后的丙酮物料④进入装填有加氢催化剂(5重量%Cu/SiO2催化剂)的丙酮加氢反应器R2中进 行加氢反应,得到粗异丙醇产物⑥;粗异丙醇产物⑥经装填有脱水材料(4A分子筛)的异丙醇脱水塔C2脱水后得到脱水异丙醇⑦;脱水异丙醇⑦进入异丙醇脱轻塔T2(填料塔)进行脱轻分离以脱除轻杂质组分⑧后得到脱轻异丙醇产品⑨;脱轻异丙醇产品⑨经过异丙醇脱重塔T3(填料塔)进行脱重分离以脱除重杂质组分得到初级异丙醇产品⑩;初级异丙醇产品⑩再经吸附-过滤设备C3脱除阴阳离子和颗粒后得到电子级异丙醇
预氧化条件包括:常温常压、加入预氧化剂的量为丙酮原料重量的0.03%;
丙酮的精制条件包括:操作回流比为0.5,操作压力为1bar;控制塔顶的操作温度为56℃;
加氢反应的条件包括:反应入口温度为100℃,反应压力为4MPa,氢气与丙酮的摩尔比为8:1,丙酮空速为1.0h-1
脱轻分离的条件包括:操作回流比为5,操作压力为0.75bar,控制塔釜操作温度为75℃;
脱重分离的条件包括:操作回流比为5、操作压力为1bar,控制塔顶操作温度为为82℃;
吸附-过滤设备C3中填有阳离子交换树脂-阴离子交换树脂混合树脂和聚合物过滤膜。
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例2
按照实施例1的方法,不同之处在于:
预氧化剂的氧化处理:取等摩尔的2,2-二甲基-1,3-二氧己环-4,6-二甲醇与醋酸钴,在无水无氧、氮气氛围下加入含2,2-二甲基-1,3-二氧己环-4,6-二甲醇的2,2-二甲基-1,3-二氧己环-4,6-二甲醇溶液与含醋酸钴的醋酸钴溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得经过氧化处理的预氧化剂;
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例3
按照实施例1的方法,不同之处在于:
预氧化剂的氧化处理:取等摩尔的2,2-二甲基-1,3-二氧己环-4,6-二甲醇与醋酸钴,在无水无氧、氮气氛围下加入含2,2-二甲基-1,3-二氧己环-4,6-二甲醇的2,2-二甲基-1,3-二氧己环-4,6-二甲醇溶液与含醋酸钴的醋酸钴溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得经过氧化处理的预氧化剂;
脱水材料(4A分子筛和无水碳酸钾复合床层,体积比为50%-50%);
丙酮精制塔T1(填料精馏塔);
加氢催化剂(Ni/SiO2催化剂);
其中,丙酮的精制条件包括:操作回流比为2,操作压力为1.5bar;控制塔顶的操作温度为64℃;
加氢反应的条件包括:反应入口温度为90℃,反应压力为4MPa,氢/丙酮摩尔比为8:1,丙酮空速为1.0h-1
脱轻分离的条件包括:操作回流比为5,操作压力为0.5bar,控制塔釜操作温度为65℃;
脱重分离的条件包括:操作回流比为5、操作压力为1.5bar,控制塔顶操作温度为90℃;
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例4
按照实施例1的方法,不同之处在于:
预氧化剂的氧化处理:取等摩尔的2,2-二乙基-1,3-二氧戊环-4,5-二甲醇与氯化锰,在无水无氧、氮气氛围下加入含2,2-二乙基-1,3-二氧戊环-4,5-二甲醇的2,2-二乙基-1,3-二氧戊环-4,5-二甲醇与含氯化锰的氯化锰溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得经过氧化处理的预氧化剂;
加氢反应的条件包括:反应入口温度为70℃,反应压力为2MPaG,氢气与丙酮摩尔比为4:1,丙酮空速为0.8h-1
脱轻分离的条件包括:操作回流比为15,操作压力为1bar,控制塔釜操作温度为85℃;
脱重分离的条件包括:操作回流比为7、操作压力为1bar,控制塔顶操作温度为85℃;
吸附-过滤设备C3中填有混合树脂和陶瓷过滤膜。
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例5
按照实施例3的方法,不同之处在于:
其中,丙酮的精制条件包括:操作回流比为2,操作压力为0.5bar;控制塔顶的操作温度为47℃;
脱轻分离的条件包括:操作回流比为5,操作压力为1.5bar,控制塔釜操作温度为90℃;
脱重分离的条件包括:操作回流比为5、操作压力为0.5bar,控制塔顶操作温度为65℃。
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例6
按照实施例3的方法,不同之处在于:
预氧化剂的氧化处理:取等摩尔的2,2-二甲基-1,3-二氧戊环-4,5-二甲醇与氯化钼,在无水无氧、氮气氛围下加入含2,2-二甲基-1,3-二氧戊环-4,5-二甲醇的2,2-二甲基-1,3-二氧戊环-4,5-二甲醇溶液与含氯化钼的氯化钼溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得经过氧化处理的预氧化剂。
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例7
按照实施例1的方法,不同之处在于:
氧化剂的预处理,将等摩尔的按2,2-二甲基-1,3-二氧戊环-4,5-二甲醇与氯化铜,在无水无氧、氮气氛围下加入含2,2-二甲基-1,3-二氧戊环-4,5-二甲醇的2,2-二甲基-1,3-二氧戊环-4,5-二甲醇溶液与含氯化铜的 氯化铜溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得经过氧化处理的预氧化剂。
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例8
按照实施例1的方法,不同之处在于:
使用氧化性金属盐KMnO4替换经过氧化处理的预氧化剂。
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例9
按照实施例1的方法,不同之处在于:
使用10wt%Co氧化物/SiO2负载型催化剂替换经过氧化处理的预氧化剂。
电子级异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
实施例10
按照实施例1的方法,不同之处在于:
预氧化剂的氧化处理:取等摩尔的2,2-二甲基-1,3-二氧戊环-4,5-二-1-乙醇与氯化锰盐,在无水无氧、氮气氛围下加入含2,2-二甲基-1,3-二氧戊环-4,5-二-1-乙醇的2,2-二甲基-1,3-二氧戊环-4,5-二-1-乙醇溶液与含氯化锰的氯化锰溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得氧化处理的预氧化剂。
结果如表1所示。
实施例11
按照实施例1的方法,不同之处在于:
预氧化剂的氧化处理:取等摩尔的2,2-二甲基-1,3-二氧戊环-4,5-二苄醇与氯化锰盐,在无水无氧、氮气氛围下加入含2,2-二甲基-1,3-二氧戊环-4,5-二苄醇的2,2-二甲基-1,3-二氧戊环-4,5-二苄醇溶液与含 氯化锰的氯化锰溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得氧化处理的预氧化剂。
结果如表1所示。
实施例12
按照实施例1的方法,不同之处在于:
预氧化剂的氧化处理:取等摩尔的2,2-二甲基-1,3-二氧戊环-4,5-二对甲基苄醇与氯化锰盐,在无水无氧、氮气氛围下加入含2,2-二甲基-1,3-二氧戊环-4,5-二对甲基苄醇的2,2-二甲基-1,3-二氧戊环-4,5-二对甲基苄醇溶液与含氯化锰的氯化锰溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得氧化处理的预氧化剂。
结果如表1所示。
实施例13
按照实施例1的方法,不同之处在于:
预氧化剂的氧化处理:取等摩尔的2,2-二苯基-1,3-二氧戊环-4,5-二甲醇与氯化锰盐,在无水无氧、氮气氛围下加入含2,2-二苯基-1,3-二氧戊环-4,5-二甲醇的2,2-二苯基-1,3-二氧戊环-4,5-二甲醇溶液与含氯化锰的氯化锰溶液室温搅拌6小时,加入高锰酸钾反应3小时后蒸除溶剂即得氧化处理的预氧化剂;
结果如表1所示。
对比例1
按照实施例1的方法,不同之处在于:
丙酮原料①不经过预氧化处理,即丙酮原料①经原料泵增压直接进入装填有脱水材料的丙酮脱水塔C1脱除水后得到脱水丙酮③,脱水丙酮③按实施例1后续的流程进行直至得到异丙醇。
异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
对比例2
按照实施例2的方法,不同之处在于:
预氧化丙酮②不经过装有装填有脱水材料(4A分子筛)的丙酮脱水塔C1脱除水,即预氧化丙酮②直接进入丙酮精制塔T1(板式精馏塔)中精制得到精制后的丙酮物料④,丙酮物料④按照实施例1后续的流程进行直至得到异丙醇。
异丙醇的纯度、含水量、单个金属阳离子浓度、阴离子浓度、颗粒(≥50nm)数目如表1所示。
表1
通过表1的结果可以看出,采用本发明中丙酮原料引入丙酮预氧化处理器中对杂质进行预氧化,得到预氧化丙酮结合丙酮的脱水、丙酮的精制、异丙醇的脱水、异丙醇的精制和至少一次异丙醇吸附-过滤的方法的实施例1-13的整体流程简单,工艺附加值高,并且得到的异丙醇产品中有机杂质含量可低至5ppm以下,且阴阳离子、颗粒含量、水 含量等均可满足高端晶圆制造(线宽≤90nm)要求。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (16)

  1. 一种丙酮原料加氢制异丙醇的方法,其包括:
    (1)将丙酮原料引入丙酮预氧化处理器中对还原性杂质进行预氧化,得到预氧化丙酮原料;和
    (2)将丙酮进料引入丙酮加氢反应器中进行加氢反应,得到粗异丙醇产物;其中所述丙酮进料为得自步骤(1)的预氧化丙酮原料,或者该预氧化丙酮原料任选进行中间处理(1-2)得到的精制丙酮原料。
  2. 根据权利要求1所述的方法,其中,在所述步骤(1)和(2)之间进行所述中间处理(1-2),该中间处理(1-2)包括:将所述预氧化丙酮原料依次引入丙酮脱水装置和丙酮精制装置中进行丙酮的脱水、丙酮的精制,得到精制丙酮原料。
  3. 根据权利要求1或2所述的方法,还包括对所述粗异丙醇产物进行后处理的步骤(3):将粗异丙醇产物依次经过异丙醇脱水装置、异丙醇精制装置和吸附-过滤装置进行异丙醇的脱水、异丙醇的精制、至少一次异丙醇吸附-过滤,得到电子级异丙醇。
  4. 根据权利要求1-3中任一项所述的方法,其中,在步骤(1)中,预氧化条件包括:
    加入预氧化剂的量为丙酮原料重量的0.01-0.1%;和
    常温、常压。
  5. 根据权利要求1-4中任一项所述的方法,其中,使用金属含氧配合物作为预氧化剂来进行所述预氧化;其中所述金属含氧配合物以过渡金属元素为中心原子、以含取代基的含氧杂环有机化合物作为配体;所述配体为具有式(I)所示结构的化合物,
    式(I)中,n为0-5的整数,A为-CH(R5)-;
    R1、R2、R3、R4和R5各自独立地选自H、C1-C8烷基、苯基C1-C8烷基和C1-C8烷基苯基。
  6. 根据权利要求5所述的方法,其中式(I)中,R1、R2、R3、R4 和R5在每次出现时各自独立地选自H、C1-C5烷基、苯基C1-C5烷基和C1-C5烷基取代的苯基,优选各自独立地选自H、C1-C4烷基、苄基和C1-C3烷基取代的苯基。
  7. 根据权利要求5所述的方法,其中所述过渡金属元素选自铬、钼、钨、铁、钴、镍、钌、铑、钯、铂、锰、锝和铼中的一种或多种。
  8. 根据权利要求5-7中任一项所述的方法,其中,
    式(I)中,n为0-3的整数;
    R1、R2、R3、R4各自独立地选自H、C1-C3烷基、苄基、甲基取代的苯基;和
    A为-CH(R5)-,R5为H或C1-C3烷基;
    优选地,式(I)中,n为0-3的整数;和/或
    R1和R2各自独立地选自H、C1-C3烷基,R3和R4各自独立地选自H、C1-C3烷基、苄基和甲基取代的苯基;和/或
    R5为H或C1-C3烷基;
    还优选地,式(I)中,n为0或1;和
    R1和R2各自独立地选自C1-C3烷基,R3和R4各自独立地选自H、C1-C3烷基、苄基和甲基取代的苯基,R5为H。
  9. 根据权利要求5-8中任一项所述的方法,其中所述金属含氧配合物通过以下方法制备方法:按等摩尔的配体与过渡金属,在无水无氧、氮气氛围下加入配体溶液与金属盐溶液室温搅拌1-10小时进行配合反应,可选地在配合反应后蒸除溶剂。
  10. 根据权利要求1-9中任一项所述的方法,其中,
    在步骤(1)中,所述预氧化剂在进行预氧化之前,使用氧化剂对预氧化剂进行氧化处理;
    优选地,所述氧化剂选自氧气、双氧水、过氧化异丙苯、过氧乙酸、高氯酸盐、高锰酸盐和重铬酸盐中的一种或多种;和/或
    在步骤(1)中,所述丙酮原料包括工业级丙酮、分析级丙酮和电子级丙酮中的一种或多种。
  11. 根据权利要求2或3所述的方法,其中,
    在步骤(1-2)中丙酮的脱水和步骤(3)中异丙醇的脱水中,使用的脱水材料各自独立地包括分子筛、硅胶、膜、树脂和可形成结晶水合物的盐中的一种或多种。
  12. 根据权利要求1-11中任一项所述的方法,其中,
    在步骤(2)中,所述加氢反应使用的加氢催化剂包括Cu基、Ni基和Mn基催化剂中的一种或多种。
  13. 根据权利要求3所述的方法,其中,在步骤(3)中,异丙醇的精制包括:
    脱轻分离,以脱除比异丙醇沸点低的轻杂质组分,和
    脱重分离,以脱除比异丙醇沸点高的重杂质组分。
  14. 根据权利要求1-13中任一项所述的方法,其中所述还原性杂质选自醇、醛、酮、酯、醚和烯烃;优选地,所述还原性杂质选自饱和或不饱和的C1-C4伯醇或仲醇、C1-C4醛、甲酸C1-C4烷基酯、C2-C4烯烃、任选被C1-C4烷基取代的苯胺和任选被C1-C4烷基取代的苯酚。
  15. 一种用于实施前述权利要求中任一项所述方法的丙酮加氢制电子级异丙醇的系统,其特征在于,该系统包括:
    丙酮预氧化处理器,用于实施前述权利要求中任一项所述方法的步骤(1),以得到预氧化丙酮原料;和
    丙酮加氢单元,用于实施前述权利要求中任一项所述方法的步骤(2),以得到粗异丙醇产物;以及任选地
    丙酮脱水装置和丙酮精制装置,用于实施前述权利要求中任一项所述方法的中间处理(1-2)。
  16. 根据权利要求15所述的系统,还包括:
    异丙醇纯化单元,用于对所述粗异丙醇产物进行纯化,以得到电子级异丙醇;
    优选地,所异丙醇纯化单元包括依次连接的异丙醇脱水装置、异丙醇精制装置、吸附-过滤装置。
PCT/CN2023/126700 2022-10-26 2023-10-26 丙酮加氢制电子级异丙醇的方法和系统 WO2024088334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211316426.9 2022-10-26
CN202211316426.9A CN117924023A (zh) 2022-10-26 2022-10-26 一种丙酮加氢制电子级异丙醇的方法与系统

Publications (1)

Publication Number Publication Date
WO2024088334A1 true WO2024088334A1 (zh) 2024-05-02

Family

ID=90767192

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/126697 WO2024088333A1 (zh) 2022-10-26 2023-10-26 一种金属含氧配合物及其作为预氧化剂的应用
PCT/CN2023/126700 WO2024088334A1 (zh) 2022-10-26 2023-10-26 丙酮加氢制电子级异丙醇的方法和系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126697 WO2024088333A1 (zh) 2022-10-26 2023-10-26 一种金属含氧配合物及其作为预氧化剂的应用

Country Status (3)

Country Link
CN (1) CN117924023A (zh)
TW (2) TW202417406A (zh)
WO (2) WO2024088333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118724678A (zh) * 2024-08-30 2024-10-01 浙江绍兴万德福生物技术有限公司 一种含盐异丙醇水废液回收精制无水异丙醇的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399776A (en) * 1993-11-24 1995-03-21 The Dow Chemical Company Purification of acetone
WO2001053242A1 (en) * 2000-01-19 2001-07-26 Sunoco, Inc. (R & M) Method for purification of acetone
US20110094872A1 (en) * 2009-09-16 2011-04-28 Zhan Jiarong Method for producing of ultra-clean and high-purity electronic grade reagents
CN107324984A (zh) * 2017-08-29 2017-11-07 湖北工程学院 色谱纯丙酮及其制备方法、生产系统
CN109206298A (zh) * 2017-07-07 2019-01-15 西安慧泽知识产权运营管理有限公司 一种超纯电子级盐酸和异丙醇的生产方法
CN110981712A (zh) * 2019-10-29 2020-04-10 天津康科德医药化工有限公司 一种色谱纯丙酮的纯化方法
CN111675598A (zh) * 2020-05-22 2020-09-18 浙江建业化工股份有限公司 一种丙酮加氢制备电子级异丙醇的生产系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464476B2 (ja) * 1999-02-19 2010-05-19 ダイセル化学工業株式会社 酸化方法
CN102408305B (zh) * 2010-09-21 2014-04-02 中国石油化工股份有限公司 酮与醇间催化转化的方法
CN102746114B (zh) * 2011-04-20 2014-05-28 中国石油化工股份有限公司 制备异丙醇的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399776A (en) * 1993-11-24 1995-03-21 The Dow Chemical Company Purification of acetone
WO2001053242A1 (en) * 2000-01-19 2001-07-26 Sunoco, Inc. (R & M) Method for purification of acetone
US20110094872A1 (en) * 2009-09-16 2011-04-28 Zhan Jiarong Method for producing of ultra-clean and high-purity electronic grade reagents
CN109206298A (zh) * 2017-07-07 2019-01-15 西安慧泽知识产权运营管理有限公司 一种超纯电子级盐酸和异丙醇的生产方法
CN107324984A (zh) * 2017-08-29 2017-11-07 湖北工程学院 色谱纯丙酮及其制备方法、生产系统
CN110981712A (zh) * 2019-10-29 2020-04-10 天津康科德医药化工有限公司 一种色谱纯丙酮的纯化方法
CN111675598A (zh) * 2020-05-22 2020-09-18 浙江建业化工股份有限公司 一种丙酮加氢制备电子级异丙醇的生产系统

Also Published As

Publication number Publication date
CN117924023A (zh) 2024-04-26
TW202417406A (zh) 2024-05-01
WO2024088333A1 (zh) 2024-05-02
TW202417420A (zh) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2024088334A1 (zh) 丙酮加氢制电子级异丙醇的方法和系统
CN108473453A (zh) 烯烃的环氧化方法
TW202302548A (zh) 用於製造苯乙烯和環氧丙烷之整合的方法和設備
TW593130B (en) Direct synthesis of hydrogen peroxide in a new multicomponent solvent system
CN109970684B (zh) 一种氧化法去除环氧丙烷中醛类杂质的方法
CN111135842B (zh) 一种用于催化转化八氟环丁烷中杂质的催化剂及其制备方法和应用
CN104230635B (zh) 苯乙酮加氢制乙苯的方法
CN103237784B (zh) 用于生产具有低杂质含量的乙酸乙烯酯组合物的方法
JP4754058B2 (ja) イソプロピルアルコールの製造方法
CN114618573B (zh) 一种嵌入式Ni基催化剂、制备方法及应用
WO2020010765A1 (zh) 一种特布他林中间体的合成方法
JPS604139A (ja) 選択的水素添加方法
CN110483244B (zh) 一种叔丁醇的制备方法
CN110041292B (zh) 一种改性树脂脱除环氧丙烷中醛酮类杂质的方法
CN111790452B (zh) 一种甲醇羰基化催化剂及其制备方法、应用
CN109575019B (zh) 一种5-溴-7-氮杂吲哚的制备方法
CN103450028B (zh) 一种硝基苯一步催化加氢制备环己胺和二环己胺的方法
WO2005030683A1 (ja) クメンの製造方法およびその製造方法を含むプロピレンオキサイドの製造方法
CN117964472A (zh) 丙酮及其纯化方法与应用
JPH06107412A (ja) アンモニアの精製方法
JP7284692B2 (ja) 芳香族アルコール類の製造方法
WO2021140820A1 (ja) ビス(2-ヒドロキシ-2-プロピル)ベンゼンの製造方法
CN116730793A (zh) 一种聚合级乙烯净化剂及其制备方法和净化应用
CN113527134B (zh) 1-羟氨基蒽醌的合成方法
CN113512014B (zh) 一种含醛类杂质的环氧丙烷纯化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881910

Country of ref document: EP

Kind code of ref document: A1