WO2024088284A1 - 一种燃料电池用膜电极及其应用 - Google Patents

一种燃料电池用膜电极及其应用 Download PDF

Info

Publication number
WO2024088284A1
WO2024088284A1 PCT/CN2023/126351 CN2023126351W WO2024088284A1 WO 2024088284 A1 WO2024088284 A1 WO 2024088284A1 CN 2023126351 W CN2023126351 W CN 2023126351W WO 2024088284 A1 WO2024088284 A1 WO 2024088284A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
catalyst layer
fuel cell
membrane electrode
cathode
Prior art date
Application number
PCT/CN2023/126351
Other languages
English (en)
French (fr)
Inventor
班哈姆达斯汀·威廉
彭晔
白金勇
崔自然
Original Assignee
广东泰极动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东泰极动力科技有限公司 filed Critical 广东泰极动力科技有限公司
Publication of WO2024088284A1 publication Critical patent/WO2024088284A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of fuel cells, and in particular relates to a membrane electrode for fuel cells and applications thereof.
  • PEMFCs Proton exchange membrane fuel cells
  • the core of PEMFCs lies in the fuel cell membrane electrode (MEA), which generally includes an anode gas diffusion layer, an anode catalyst layer, a proton exchange membrane, a cathode catalyst layer, and a cathode gas diffusion layer in sequence.
  • MEA fuel cell membrane electrode
  • the catalyst layer has the greatest impact on the performance of the fuel cell.
  • Catalyst particles are distributed in the catalyst layer.
  • the catalyst is nano-Pt or its alloy particles dispersed on a carbon support.
  • the catalyst is used for the anode and cathode to catalyze the hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR), respectively.
  • HOR hydrogen oxidation reaction
  • ORR oxygen reduction reaction
  • the carbon supports are highly graphitized and have low porosity. When loaded with platinum, the platinum is mainly located on the outer surface of the carbon particles. The mass activity of these catalysts is generally low due to the adsorption of ionomers. However, good performance is observed at medium to high current densities due to the direct contact of the ionomer with the platinum surface, which allows for fast proton conductivity.
  • Carbon supports have high porosity and high specific surface area. When platinum is loaded, it is mainly located in the pores of the carbon support, and these catalysts usually show higher mass activity; because the ionomer cannot penetrate these relatively narrow pores, the ionomer will not cover or contact the platinum, and will be transport-restricted at high current density, resulting in severe H + transport restriction.
  • Carbon supports have mesopores with pore sizes between 2-80 nm that are difficult for ionomers to enter, while Pt can be deposited in the pores without direct contact with the ionomer, resulting in very high specific activity (A/ cm2 ).
  • A/ cm2 specific activity
  • the object of the present invention is to overcome at least one disadvantage of the prior art and to provide a membrane electrode for a fuel cell and its application.
  • the first aspect of the present invention provides:
  • a membrane electrode for a fuel cell comprises, in sequence, an anode gas diffusion layer, an anode catalyst layer, a proton exchange membrane, a cathode catalyst layer and a cathode gas diffusion layer, wherein the cathode catalyst layer is a double-layer structure, wherein in the first cathode catalyst layer close to the proton exchange membrane, the catalyst structure is that precious metals and/or precious metal alloy nanoparticles are loaded in the pores of a mesoporous carbon carrier; in the second cathode catalyst layer close to the cathode gas diffusion layer, the catalyst structure is that precious metals and/or precious metal alloy nanoparticles are loaded on the surface of a carbon carrier.
  • the thickness of the first cathode catalyst layer is 1 to 20 ⁇ m.
  • the loading amount of the noble metal and/or noble metal alloy of the catalyst is 0.05 to 0.5 mg/cm 2 .
  • the thickness of the first cathode catalyst layer is 1 to 20 ⁇ m, and the loading amount of the noble metal and/or noble metal alloy of the catalyst is 0.05 to 0.5 mg/cm 2 .
  • the second cathode catalyst layer has a thickness of 1 to 20 ⁇ m.
  • the loading amount of the noble metal and/or noble metal alloy of the catalyst is 0.05 to 0.5 mg/cm 2 .
  • the thickness of the second cathode catalyst layer is 1 to 20 ⁇ m, and the loading amount of the noble metal and/or noble metal alloy of the catalyst is 0.05 to 0.5 mg/cm 2 .
  • the first cathode catalyst layer has a thickness of 1 to 20 ⁇ m
  • the second cathode catalyst layer has a thickness of 1 to 20 ⁇ m
  • the first cathode catalyst layer has a catalyst noble metal and/or noble metal alloy loading of 0.05-0.5 mg/cm 2
  • the second cathode catalyst layer has a catalyst noble metal and/or noble metal alloy loading of 0.05-0.5 mg/cm 2 .
  • the total loading amount of the noble metal and/or noble metal alloy of the catalyst in the cathode catalyst layer is 0.1 to 1 mg/cm 2 .
  • the carbon support of the second cathode catalyst layer is a solid carbon support and/or a mesoporous carbon support.
  • the noble metal is Pt
  • the noble metal alloy is a Pt alloy
  • the Pt alloy is selected from at least one of PtCo and PtNi alloys.
  • the mesoporous carbon support has a pore size of 2 to 80 nm and/or a porosity of 10% to 80%.
  • the pore depth of the mesoporous carbon support is 5 to 300 nm.
  • the pore size of the mesoporous carbon support is 2 to 80 nm and/or the porosity is 10% to 80%, and the pore depth of the mesoporous carbon support is 5 to 300 nm.
  • the second aspect of the present invention provides:
  • a fuel cell comprises the membrane electrode for fuel cell according to the first aspect of the present invention.
  • the membrane electrode of some examples of the present invention maximizes the benefits of different catalyst structures by using a layered cathode catalyst design.
  • a catalyst having a structure in which a catalytically active noble metal and/or noble metal alloy (such as Pt, Pt alloy) is distributed in the pores of a carbon support is located near the proton exchange membrane, while a catalyst having a structure in which a noble metal and/or noble metal alloy (such as Pt, Pt alloy) is distributed on the surface of solid carbon or mesoporous carbon is deposited near the GDL.
  • a catalytically active noble metal and/or noble metal alloy such as Pt, Pt alloy
  • Figure 1 shows the air polarization curves of MEAs with different structures at different RH.
  • Figure 2 is the roughness factor curve of MEA with different structures at different RH.
  • the first aspect of the present invention provides:
  • a membrane electrode for a fuel cell comprises an anode gas diffusion layer, an anode catalyst layer, a proton exchange membrane, a cathode catalyst layer and a cathode gas diffusion layer in sequence, wherein the cathode catalyst layer is a double-layer structure, wherein in the first cathode catalyst layer close to the proton exchange membrane, the catalyst structure is a noble metal and/or noble metal alloy nanoparticles loaded in the pores of a mesoporous carbon carrier; in the second cathode catalyst layer close to the cathode gas diffusion layer, the catalyst structure is a noble metal and/or noble metal alloy nanoparticles loaded on the surface of a carbon carrier.
  • the thickness of the first cathode catalyst layer and the second cathode catalyst layer can be adjusted accordingly as needed. Generally speaking, a low thickness is conducive to mass transfer, but it is easy to be flooded during use; as the thickness increases, the internal resistance increases, affecting mass transfer, and too low or too high thickness is not conducive to obtaining a high-performance membrane electrode.
  • the thickness of the first cathode catalyst layer is 1 to 20 ⁇ m, 1 to 15 ⁇ m, or 3 to 15 ⁇ m.
  • the thickness of the second cathode catalyst layer is 1 to 20 ⁇ m, 1 to 15 ⁇ m, or 3 to 15 ⁇ m.
  • the thickness of the first cathode catalyst layer is 1 to 20 ⁇ m, 1 to 15 ⁇ m, or 3 to 15 ⁇ m
  • the thickness of the second cathode catalyst layer is 1 to 20 ⁇ m, 1 to 15 ⁇ m, or 3 to 15 ⁇ m.
  • the catalyst loading of the cathode catalyst layer can be adjusted accordingly according to different applications.
  • the loading amount of the noble metal and/or noble metal alloy of the catalyst is 0.05 to 0.5 mg/cm 2 .
  • the thickness of the first cathode catalyst layer is 1 to 20 ⁇ m, and the loading amount of the noble metal and/or noble metal alloy of the catalyst is 0.05 to 0.5 mg/cm 2 .
  • the loading amount of the noble metal and/or noble metal alloy of the catalyst in the second cathode catalyst layer is 0.05 to 0.5 mg/cm 2 .
  • the thickness of the second cathode catalyst layer is 1 to 20 ⁇ m, and the loading amount of the noble metal and/or noble metal alloy of the catalyst is 0.05 to 0.5 mg/cm 2 .
  • the first cathode catalyst layer has a catalyst noble metal and/or noble metal loading of 0.05-0.5 mg/cm 2
  • the second cathode catalyst layer has a catalyst noble metal and/or noble metal alloy loading of 0.05-0.5 mg/cm 2 .
  • the total loading amount of the noble metal and/or noble metal alloy of the catalyst in the cathode catalyst layer is 0.1 to 1 mg/cm 2 .
  • the carbon carrier in the second cathode catalyst layer is a solid carbon carrier and/or a mesoporous carbon carrier.
  • the pore size of the mesoporous carbon carrier can be loaded with nanocatalysts and facilitate the entry of ionomers, and the porosity can be adjusted accordingly according to the amount of loaded catalysts and the requirements of battery performance.
  • the pore size of the mesoporous carbon carrier is 2 to 80 nm and/or the porosity is 10% to 80%.
  • the pore depth of the mesoporous carbon carrier can be adjusted accordingly as needed. Generally speaking, deeper pores can accommodate more catalyst particles, and it is more difficult for ionomers to enter and directly contact the catalyst particles, but it is relatively unfavorable for mass transfer. In some examples of membrane electrodes for fuel cells, the pore depth of the mesoporous carbon carrier is 5 to 300 nm.
  • the pore size of the mesoporous carbon support is 2 to 80 nm and/or the porosity is 10% to 80%, and the pore depth of the mesoporous carbon support is 5 to 300 nm.
  • the catalyst in the cathode catalyst layer is set to be a commonly used catalyst.
  • the catalyst in the cathode catalyst layer is Pt or Pt alloy nanoparticles.
  • the Pt alloy is selected from at least one of PtCo and PtNi alloys.
  • the second aspect of the present invention provides:
  • a fuel cell comprises the membrane electrode for fuel cell according to the first aspect of the present invention.
  • the mesoporous carbon can also be commercially available mesoporous carbon of models such as EC600.
  • the above preparation scheme only provides two typical model catalysts for the design of membrane electrode, which are used to verify the invention content in the example. Of course, other methods can also be used to prepare catalysts with similar structures, or commercial catalysts of this type can be purchased.
  • the carrier carbon can also be commercially available carbon carriers of models such as EC300, EC600, and XC72.
  • Pt@C-in was used as the catalyst layer close to the proton exchange membrane, and Pt@C-out was used as the catalyst layer close to the GDL.
  • 0.400 g of Pt@C-in or Pt@C-out catalyst was added to 8.0 g of ethanol-water solution (1:1 volume ratio). Then 1.68 mL of ionomer solution (D2020 perfluorosulfonic acid from Chemours, concentration of 10 wt.%) was added. Ultrasonic dispersion was performed for 30 min to obtain a uniform Pt@C-in or Pt@C-out cathode ink.
  • the Pt@C-in ink was sprayed on a commercial proton exchange membrane on a heated vacuum table at 80 °C, and the Pt loading was 0.15 mg/cm 2 detected by X-ray fluorescence spectrometer (XRF). Then Pt@C-out ink was sprayed on the Pt@C-in catalyst layer until the total Pt loading reached 0.3 mg/cm 2 .
  • the anode ink uses commercial catalysts and is sprayed on the other side of the proton exchange membrane, controlling the constant platinum loading of the anode to 0.1 mg/cm 2.
  • the obtained catalyst coated membrane (CCM) is hot pressed together with the frame, and then the cathode and anode gas diffusion layers are added on both sides to obtain a membrane electrode with an active area of 4 cm 2 , named design L1.
  • Pt@C-out was used as the catalyst layer close to the PEM, and Pt@C-in was used as the catalyst layer close to the GDL.
  • the cathode ink for Pt@C-in or Pt@C-out was the same as that for Design L1.
  • the Pt@C-out ink was first sprayed on a commercial PEM to achieve a Pt content of 0.15 mg/ cm2 .
  • the Pt@C-in ink was then sprayed on the Pt@C-out catalyst layer until the total Pt loading reached 0.3 mg/ cm2 .
  • the subsequent steps were the same as those for Design L1, and were named Design L2.
  • Non-layered design, Pt@C-in and Pt@C-out are mixed together.
  • 0.200 g Pt@C-in and 0.200 g Pt@C-out catalysts were added to 8.0 g ethanol-water solution (1:1 volume ratio).
  • 1.68 mL of ionomer solution (D2020 perfluorosulfonic acid from Chemours, concentration of 10 wt.%) was added.
  • the mixture was ultrasonically dispersed for 30 min to obtain a uniform cathode mixed ink. This ink was sprayed on a commercial proton exchange membrane to achieve a Pt loading of 0.3 mg/ cm2 .
  • the subsequent steps were the same as design L1 to obtain a conventional design.
  • the MEAs were run at 100%RH, 136 kPa-a (-a represents absolute pressure), 75°C in air/ H2 for 15 h.
  • Each MEA was conditioned identically and fully activated to provide consistent MEA performance, and the accessibility of Pt at different cathode relative humidities was investigated by cyclic voltammetry.
  • Figure 1 shows the air polarization curves obtained for different MEA designs at 60% and 100% relative humidity.
  • Design L1 shows improved performance, especially at low relative humidity where proton transport becomes more difficult.
  • L2 has the worst performance due to the increased resistance to proton transport within the layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

一种燃料电池用膜电极及其应用,其中阴极催化剂层使用分层设计,使其与质子交换膜和GDL接触的阴极催化层具有不同类型的催化剂,通过这种多层设计,保留了不同结构的催化剂的优点,使得燃料电池在多种工况下均具有良好的性能。

Description

一种燃料电池用膜电极及其应用 技术领域
本发明属于燃料电池领域,具体涉及一种燃料电池用膜电极及其应用。
背景技术
随着经济社会的高速发展,能源危机和环境问题日益凸显。传统的化石能源存在环境污染以及能量利用效率较低等问题,开发绿色清洁、高效的新型能源(例如:太阳能、氢能、风能等)已经迫在眉睫。质子交换膜燃料电池(Proton exchange membrane fuel cells,PEMFCs)是一种直接将化学能转化为电能的新型能源装置,具有能量转化效率高、工作温度较低、清洁绿色、启动迅速等优点。
技术问题
PEMFCs的核心在于燃料电池膜电极(MEA),MEA一般依次包括阳极气体扩散层、阳极催化剂层、质子交换膜、阴极催化剂层和阴极气体扩散层。在MEA中,催化剂层对于燃料电池性能的影响最大。催化剂层中分布有催化剂颗粒,一般而言,催化剂为纳米Pt或其合金粒子分散在碳载体上。催化剂用于阳极和阴极,分别催化氢氧化反应(HOR)和氧还原反应(ORR)。阴极催化剂中的铂纳米颗粒在碳载体中的空间分布对其性能有很大影响。当铂主要沉积在碳载体的外表面时,其质量活性(A/mg)较低,但在高电流密度下表现出较高的性能。这是因为催化剂层中的离聚物可以直接吸附在铂表面,导致催化剂失活,但反应物/产物能够在反应位点快速转移,在高电流密度条件下优势明显。相反,在碳结构的孔隙中沉积的铂具有高质量活性(因为离聚物(ionomer)不会吸附在铂表面),但由于传输限制,在高电流密度下性能较差。
现有技术中,主要有3种类型的Pt/C催化剂:
碳载体高度石墨化,孔隙率低。当负载铂时,铂主要位于碳颗粒的外表面。由于离聚物的吸附,这些催化剂的质量活性通常较低。然而,由于离聚体与铂表面直接接触,可以实现快速的质子导电性,因此在中高电流密度下可以观察到良好的性能。
碳载体具有高孔隙率、高比表面积。当负载铂时,铂主要位于碳载体的孔内,这些催化剂通常表现出较高的质量活性;因为离聚物不能穿透这些相对狭窄的孔,离聚物不会覆盖或接触铂,在高电流密度下会受到传输限制,导致严重的H +传输限制。
碳载体具有介孔,其孔径在2-80nm之间,离聚物难以进入,而铂可以沉积在孔隙中,并且不与离聚物直接接触,从而产生非常高的比活性(A/cm 2)。然而,尽管调节孔径已被证明是很容易实现的,但铂沉积到孔中的深度相对不受控制。因此,这些催化剂在高电流密度下表现出较差的性能,因为H +和O 2难以接触到进入深埋在孔内的Pt颗粒。扩大孔径使离聚物穿透有助于将传输损失降低,但随着铂表面再次受到离聚物的毒害,比活性(A/cm 2)的改善也随之消失。
解决方案
本发明的目的在于克服现有技术的至少一个不足,提供一种燃料电池用膜电极及其应用。
本发明所采取的技术方案是:
本发明的第一个方面,提供:
一种燃料电池用膜电极,依次包括阳极气体扩散层、阳极催化剂层、质子交换膜、阴极催化剂层和阴极气体扩散层,所述阴极催化剂层为双层结构,其中,靠近质子交换膜的第一阴极催化剂层中,催化剂结构为贵金属和/或贵金属合金纳米粒子负载在介孔碳载体的孔内;靠近阴极气体扩散层的第二阴极催化剂层中,催化剂结构为贵金属和/或贵金属合金纳米粒子负载在碳载体表面。
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层厚度为 1~20 μm。
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层厚度为 1~20 μm,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第二阴极催化剂层厚度为 1~20 μm。
在一些燃料电池用膜电极的实例中,所述第二阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第二阴极催化剂层厚度为 1~20 μm,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层厚度为 1~20 μm,所述第二阴极催化剂层厚度为1~20 μm。
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2,所述第二阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述阴极催化剂层中的催化剂的贵金属和/或贵金属合金总负载量为0.1~1 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第二阴极催化剂层的碳载体为实心碳载体和/或介孔碳载体。
在一些燃料电池用膜电极的实例中,所述贵金属为Pt,所述贵金属合金为Pt合金。
在一些燃料电池用膜电极的实例中,所述Pt合金选自中PtCo、PtNi合金的至少一种。
在一些燃料电池用膜电极的实例中,所述介孔碳载体的孔径为2~80 nm和/或孔隙率为10%~80%。
在一些燃料电池用膜电极的实例中,所述介孔碳载体的孔深为5~300 nm。
在一些燃料电池用膜电极的实例中,所述介孔碳载体的孔径为2~80 nm和/或孔隙率为10%~80%,所述介孔碳载体的孔深为5~300 nm。
在不冲突的情况下,上述特征可以任意组合。
本发明的第二个方面,提供:
一种燃料电池,具有本发明第一个方面所述的燃料电池用膜电极。
本发明的有益效果是:
本发明一些实例的膜电极,通过使用分层阴极催化剂设计,使不同催化剂结构的效益最大化。具体来说,具有催化活性的贵金属和/或贵金属合金(如Pt、Pt合金)分布在碳载体孔内的这种结构的催化剂位于质子交换膜附近,而贵金属和/或贵金属合金(如Pt、Pt合金)分布在固体碳或介孔碳表面上的这种结构的催化剂沉积在GDL附近。由于传统阴极层中的大部分电流主要在靠近膜的催化剂层的前几微米处产生,因此在靠近质子交换膜的催化剂层中具有高活性的催化剂(Pt分布在介孔内)有助于使该催化剂的效益最大化。当达到更高的电流密度时,催化剂层内的传输限制变得越来越严重。在GDL附近放置表面负载型贵金属和/或贵金属合金(如Pt、Pt合金)/碳催化剂有助于最大限度地减少反应物和产物的传质损失。因此,通过这种多层设计,可以充分利用贵金属和/或贵金属合金(如Pt、Pt合金)在碳载体上不同空间分布的性能优势,使得燃料电池在多种工况下均具有良好的性能。
附图说明
图1是不同结构MEA在不同RH下的空气极化曲线。
图2是不同结构MEA在不同RH下的粗糙因子曲线。
本发明的实施方式
本发明的第一个方面,提供:
一种燃料电池用膜电极,依次包括阳极气体扩散层、阳极催化剂层、质子交换膜、阴极催化剂层和阴极气体扩散层,所述阴极催化剂层为双层结构,所述阴极催化剂层为双层结构,其中,靠近质子交换膜的第一阴极催化剂层中,催化剂结构为贵金属和/或贵金属合金纳米粒子负载在介孔碳载体的孔内;靠近阴极气体扩散层的第二阴极催化剂层中,催化剂结构为贵金属和/或贵金属合金纳米粒子负载在碳载体表面。第一阴极催化剂层和第二阴极催化剂层的厚度可以根据需要进行相应的调整,一般而言,厚度低有利于传质,但在使用过程中容易被水淹;而厚度增加,内阻会增加,影响传质,过低或过高均不利于得到高性能的膜电极。
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层厚度为 1~20 μm、1~15μm、3~15μm。
在一些燃料电池用膜电极的实例中,所述第二阴极催化剂层厚度为 1~20 μm、1~15μm、3~15μm。
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层厚度为 1~20 μm、1~15μm、3~15μm,所述第二阴极催化剂层厚度为1~20 μm、1~15μm、3~15μm。
阴极催化剂层的催化剂负载量可以根据不同的应用进行相应的调整。
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层厚度为 1~20 μm,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第二阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第二阴极催化剂层厚度为 1~20 μm,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述第一阴极催化剂层中,催化剂的贵金属和/或贵金属负载量为 0.05~0.5 mg/cm 2,所述第二阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
在一些燃料电池用膜电极的实例中,所述阴极催化剂层中的催化剂的贵金属和/或贵金属合金总负载量为0.1~1 mg/cm 2
第二阴极催化剂层中的碳载体没有特殊要求,可以是本领域常用的碳载体。在一些燃料电池用膜电极的实例中,所述第二阴极催化剂层的碳载体为实心碳载体和/或介孔碳载体。
介孔碳载体的孔径以可以负载纳米催化剂且利于离聚物进入即可,孔隙率可以根据负载催化剂的量和电池性能的需要进行相应的调整。在一些燃料电池用膜电极的实例中,所述介孔碳载体的孔径为2~80 nm和/或孔隙率为10%~80%。
介孔碳载体的孔深可以根据需要进行相应的调整,一般而言,更深的孔可以容纳更多的催化剂颗粒,离聚物更难以进入与催化剂颗粒直接接触,但是相对而言不利于传质。在一些燃料电池用膜电极的实例中,所述介孔碳载体的孔深为5~300 nm。
在一些燃料电池用膜电极的实例中,所述介孔碳载体的孔径为2~80 nm和/或孔隙率为10%~80%,所述介孔碳载体的孔深为5~300 nm。
阴极催化剂层中的催化剂设为常用的催化剂,在一些燃料电池用膜电极的实例中,所述阴极催化剂层中的催化剂为Pt或Pt合金纳米颗粒。在一些燃料电池用膜电极的实例中,所述Pt合金选自中PtCo、PtNi合金的至少一种。
本发明的第二个方面,提供:
一种燃料电池,具有本发明第一个方面所述的燃料电池用膜电极。
下面结合实例,进一步说明本发明的技术方案。以下实例仅为示例性说明,不用于限定本发明。
铂/介孔碳的制备(铂沉积在碳的孔隙中,命名为Pt@C-in):
S1) 2.70 g氯铂酸水合物溶于10 mL丙酮;
S2) 在搅拌过程中,将氯铂酸溶液加入到1g介孔碳(EC300)中,搅拌均匀;
S3) 混合物在烤箱中干燥,然后研磨。粉末在200-400℃的氢气气氛炉中煅烧1-2小时。冷却后,用去离子水清洗,然后放入真空烘箱干燥,得到最终产品Pt@C-in。
当然,也可以使用其他方法制备得到类似结构的催化剂,也可以购买商品化的该类型催化剂。介孔碳还可以是市售的EC600等型号的介孔碳。
铂/固体碳的制备(铂沉积在碳的表面,命名为Pt@C-out):
S1) 2.70 g氯铂酸水合物溶于250 mL乙二醇;
S2) 加入500 mL乙二醇(0.1M)氢氧化钠搅拌0.5 h,120-140℃加热3-5 h,冷却至室温后,加入500 mL含1 g碳(XC72)的乙二醇和异丙醇溶液搅拌2天;
S3) 加入1 M盐酸,调整pH=1-3,过滤;
S4) 样品用去离子水洗涤后,真空干燥,得到最终产品Pt@C-out。
上述制备方案仅为膜电极的设计提供两种典型的模型催化剂,用于实例中验证发明内容。当然,也可以使用其他方法制备得到类似结构的催化剂,也可以购买商品化的该类型催化剂。载体碳还可以是市售EC300、EC600、XC72等型号的碳载体。
膜电极的制备
设计L1:
Pt@C-in作为靠近质子交换膜的催化剂层,Pt@C-out作为靠近GDL的催化剂层。在8.0 g乙醇水溶液(1:1体积比)中加入0.400 g Pt@C-in或Pt@C-out催化剂。然后加入1.68 mL离聚体溶液(来自Chemours的D2020全氟磺酸,浓度为10 wt.%)。超声分散30 min,得到均匀的Pt@C-in或Pt@C-out阴极墨水。在80℃加热真空台上,将Pt@C-in墨水喷涂在商用质子交换膜上,用x射线荧光光谱仪(XRF)检测Pt的负载为0.15 mg/cm 2。然后在Pt@C-in催化剂层上喷涂Pt@C-out墨水,直到Pt总负载量达到0.3 mg/cm 2。阳极墨水采用商用催化剂,喷涂在质子交换膜的另一侧,控制阳极恒定铂载量为0.1 mg/cm 2。在120℃、3765 bs、100 s的条件下,将得到的催化剂包覆膜(CCM)与边框一起热压后,再在两侧分别加上阴极和阳极气体扩散层,得到活性面积为4 cm 2的膜电极,命名为设计L1。
设计L2:
Pt@C-out作为靠近质子交换膜的催化剂层,Pt@C-in作为靠近GDL的催化剂层。Pt@C-in或Pt@C-out的阴极墨水与设计L1相同。但首先将Pt@C-out墨水喷涂在商用质子交换膜上,以达到0.15 mg/cm 2的铂含量。然后在Pt@C-out催化剂层上喷涂Pt@C-in墨水,直到Pt总负载量达到0.3 mg/cm 2。后续步骤与设计L1相同,命名为设计L2。
常规设计(Conventional):
非分层设计,Pt@C-in和Pt@C-out混合在一起。将0.200 g Pt@C-in和0.200 g Pt@C-out催化剂加入8.0 g乙醇水溶液(1:1体积比)中。然后加入1.68 mL离聚体溶液(来自Chemours的D2020全氟磺酸,浓度为10 wt.%)。将混合液超声分散30 min,得到均匀的阴极混合墨水。将这种墨水喷涂在商用质子交换膜上,使Pt的负载达到0.3 mg/cm 2。后续步骤与设计L1相同,得到常规设计。
MEA性能测试:
测试前,MEAs在100%RH, 136 kPa-a (-a表示绝对压力),75℃的空气/H 2条件下运行15小时。每个MEA经过相同条件的调节,并完全激活,以提供一致的MEA性能,并通过循环伏安法研究了Pt在不同阴极相对湿度下的可及性。
图1是不同MEA设计在60%和100%相对湿度下获得的空气极化曲线。设计L1显示了改进的性能,特别是在质子传输变得更加困难的低相对湿度下。相比之下,由于层内质子传输阻力增加,L2的性能最差。
还通过循环伏安法(CV)研究了铂在不同RH下的可及性。如图2所示,随着相对湿度的降低,所有三种设计在粗糙系数(roughness factor)(cm 2 Pt/cm 2 MEA)方面都呈现出类似的趋势。这与图1中的结果不同,图1显示了相对湿度不同时的性能差异。这些设计之间的观测差异是由于极化曲线(图1)是在相对较高的电流下获得的,而图2中的数据是从低电流CV获得的。因此,对于图1中的数据而言,传输效应要严重得多,这导致三种设计的性能分离。相反,图2中CV使用的低电流导致最小的传输效应,因此设计中没有明显差异。总体而言,图1和图2表明,分层设计的积极作用是减少运输损失,同时最大限度地提高催化剂活性。

Claims (10)

  1. 一种燃料电池用膜电极,依次包括阳极气体扩散层、阳极催化剂层、质子交换膜、阴极催化剂层和阴极气体扩散层,其特征在于,所述阴极催化剂层为双层结构,其中,靠近质子交换膜的第一阴极催化剂层中,催化剂结构为贵金属和/或贵金属合金纳米粒子负载在介孔碳载体的孔内;靠近阴极气体扩散层的第二阴极催化剂层中,催化剂结构为贵金属和/或贵金属合金纳米粒子负载在碳载体表面。
  2. 根据权利要求1所述的燃料电池用膜电极,其特征在于,所述第一阴极催化剂层厚度为1~20 μm和/或所述第二阴极催化剂层厚度为 1~20 μm。
  3. 根据权利要求1所述的燃料电池用膜电极,其特征在于,所述第一阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2和/或所述第二阴极催化剂层中,催化剂的贵金属和/或贵金属合金负载量为 0.05~0.5 mg/cm 2
  4. 根据权利要求1所述的燃料电池用膜电极,其特征在于,所述第二阴极催化剂层的碳载体为实心碳载体和/或介孔碳载体。
  5. 根据权利要求1所述的燃料电池用膜电极,其特征在于,所述贵金属为Pt,所述贵金属合金为Pt合金。
  6. 根据权利要求5所述的燃料电池用膜电极,其特征在于,所述Pt合金选自中PtCo、PtNi合金的至少一种。
  7. 根据权利要求1~6任一项所述的燃料电池用膜电极,其特征在于,所述介孔碳载体的孔径为2~80 nm和/或孔隙率为10%~80%。
  8. 根据权利要求1~6任一项所述的燃料电池用膜电极,其特征在于,所述介孔碳载体的孔深为5~300 nm。
  9. 根据权利要求1~6任一项所述的燃料电池用膜电极,其特征在于,所述阴极催化剂层中催化剂的贵金属和贵金属合金总负载量为0.1~1 mg/cm 2
  10. 一种燃料电池,其特征在于,具有权利要求1~9任一项所述的燃料电池用膜电极。
PCT/CN2023/126351 2022-10-26 2023-10-25 一种燃料电池用膜电极及其应用 WO2024088284A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211320045.8 2022-10-26
CN202211320045.8A CN115602896B (zh) 2022-10-26 2022-10-26 一种燃料电池用膜电极及其应用

Publications (1)

Publication Number Publication Date
WO2024088284A1 true WO2024088284A1 (zh) 2024-05-02

Family

ID=84849982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126351 WO2024088284A1 (zh) 2022-10-26 2023-10-25 一种燃料电池用膜电极及其应用

Country Status (2)

Country Link
CN (1) CN115602896B (zh)
WO (1) WO2024088284A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602896B (zh) * 2022-10-26 2023-10-10 广东泰极动力科技有限公司 一种燃料电池用膜电极及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250274A (ja) * 2006-03-14 2007-09-27 Cataler Corp 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
CN107078307A (zh) * 2014-10-29 2017-08-18 日产自动车株式会社 燃料电池用电极催化剂、燃料电池用电极催化剂层、其制造方法以及使用该催化剂层的膜电极接合体及燃料电池
CN111313061A (zh) * 2020-02-28 2020-06-19 先进储能材料国家工程研究中心有限责任公司 燃料电池膜电极及其制备方法
CN112103543A (zh) * 2020-10-16 2020-12-18 大连理工大学 一种用于质子交换膜燃料电池的梯度化膜电极及其制备方法
CN112786905A (zh) * 2021-01-27 2021-05-11 浙江高成绿能科技有限公司 一种燃料电池用催化层、膜电极及其制备方法
CN115064710A (zh) * 2022-06-28 2022-09-16 浙江锋源氢能科技有限公司 膜电极ccm及其制备方法、以及膜电极组件mea、燃料电池
CN115602896A (zh) * 2022-10-26 2023-01-13 广东泰极动力科技有限公司(Cn) 一种燃料电池用膜电极及其应用
CN116799233A (zh) * 2022-03-15 2023-09-22 中自环保科技股份有限公司 一种复合催化层、催化膜电极、燃料电池及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250274A (ja) * 2006-03-14 2007-09-27 Cataler Corp 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
CN107078307A (zh) * 2014-10-29 2017-08-18 日产自动车株式会社 燃料电池用电极催化剂、燃料电池用电极催化剂层、其制造方法以及使用该催化剂层的膜电极接合体及燃料电池
CN111313061A (zh) * 2020-02-28 2020-06-19 先进储能材料国家工程研究中心有限责任公司 燃料电池膜电极及其制备方法
CN112103543A (zh) * 2020-10-16 2020-12-18 大连理工大学 一种用于质子交换膜燃料电池的梯度化膜电极及其制备方法
CN112786905A (zh) * 2021-01-27 2021-05-11 浙江高成绿能科技有限公司 一种燃料电池用催化层、膜电极及其制备方法
CN116799233A (zh) * 2022-03-15 2023-09-22 中自环保科技股份有限公司 一种复合催化层、催化膜电极、燃料电池及应用
CN115064710A (zh) * 2022-06-28 2022-09-16 浙江锋源氢能科技有限公司 膜电极ccm及其制备方法、以及膜电极组件mea、燃料电池
CN115602896A (zh) * 2022-10-26 2023-01-13 广东泰极动力科技有限公司(Cn) 一种燃料电池用膜电极及其应用

Also Published As

Publication number Publication date
CN115602896A (zh) 2023-01-13
CN115602896B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
EP3053648B1 (en) Use of carbon powder in fuel cell catalyst, fuel cell catalyst with carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
Liu et al. Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells
EP2990104B1 (en) Catalyst, method for producing same, and electrode catalyst layer using said catalyst
CN108258218B (zh) 一种碳点掺杂的碳化钛水凝胶复合材料的制备方法和应用
JP4204272B2 (ja) 燃料電池用電極触媒及び燃料電池
KR100868756B1 (ko) 백금/루테늄 합금 담지 촉매, 그 제조방법 및 이를 이용한연료전지
CA2920832C (en) Catalyst particle, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using the same
CN112186207B (zh) 低铂/非铂复合催化剂及其制备方法
JP2007250274A (ja) 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
JP2001325964A (ja) 固体高分子電解質型燃料電池用電極触媒
WO2024088284A1 (zh) 一种燃料电池用膜电极及其应用
EP3429003B1 (en) Carbon powder for fuel cells, catalyst using said carbon powder for fuel cells, electrode catalyst layer, membrane electrode assembly and fuel cell
WO2014175101A1 (ja) 触媒の製造方法ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
CN108448138B (zh) 一种催化层全有序结构燃料电池电极和膜电极的制备方法
CN112382767B (zh) 一种基于双层有序结构微孔层的燃料电池电极原位制备方法
JP2004363056A (ja) 固体高分子型燃料電池用触媒担持電極とその製造方法
US20090068546A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
CN110707331A (zh) 铜基纳米催化剂及其制备方法和应用
Zhu et al. Space Confinement to Regulate Ultrafine CoPt Nanoalloy for Reliable Oxygen Reduction Reaction Catalyst in PEMFC
CN109873174B (zh) 一种低温燃料电池用三维载体担载铂钯钴合金结构催化剂的制备方法
JP3648988B2 (ja) 燃料電池用電極およびその製造方法
JP5326585B2 (ja) 金属触媒担持カーボン粉末の製造方法
CN115347202A (zh) 一种燃料电池阴极铂基催化剂及其制备方法
CN115064717A (zh) 一种锌空气电池正极用orr-oer催化剂及其制备方法
CN111740122B (zh) 一种有序化膜电极及其制备方法