WO2024088159A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2024088159A1
WO2024088159A1 PCT/CN2023/125558 CN2023125558W WO2024088159A1 WO 2024088159 A1 WO2024088159 A1 WO 2024088159A1 CN 2023125558 W CN2023125558 W CN 2023125558W WO 2024088159 A1 WO2024088159 A1 WO 2024088159A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant cavity
conductive layer
electronic device
antenna
conductive
Prior art date
Application number
PCT/CN2023/125558
Other languages
English (en)
French (fr)
Inventor
陈少波
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024088159A1 publication Critical patent/WO2024088159A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application belongs to the technical field of electronic equipment, and specifically relates to an electronic equipment.
  • Foldable electronic devices have a novel and fashionable appearance. In daily use, they can be unfolded or folded, providing two completely different user experiences. They have attracted much attention in the market recently. Compared with the antenna system of traditional communication electronic devices, the antenna system and design of foldable communication electronic devices have many differences and challenges. The antenna system needs to take into account both unfolding and folding. In particular, when the electronic device is in the folded state, the metal layer of the display module in the electronic device will form a U-shaped high-loss resonant cavity, which will cause the radiation efficiency of the antenna system at the corresponding resonant frequency to deteriorate seriously, making the antenna system and electronic devices unable to work normally in the corresponding frequency band.
  • the purpose of the embodiments of the present application is to provide an electronic device to solve the problem that when the electronic device is in a folded state, a high-loss resonant cavity formed by a metal layer of a display module easily leads to reduced antenna performance.
  • An embodiment of the present application provides an electronic device, including:
  • a folding bracket wherein the folding bracket has a first conductive portion
  • a display module wherein the display module is disposed on the folding bracket, the display module has a conductive layer, and when the folding bracket is in a folded state, the display module is in a folded state;
  • a first resonant cavity is formed between the conductive layer and the first conductive part
  • a first feeding structure wherein the first feeding structure is used to feed the first resonant cavity, and the first feeding structure and the first resonant cavity constitute a first antenna.
  • the conductivity of the first conductive part is greater than the conductivity of the conductive layer.
  • the conductivity of the first conductive part is greater than the conductivity of the second conductive layer.
  • the conductive layer includes a first conductive layer and a second conductive layer which are stacked, the first conductive layer is arranged close to the folding bracket, and the conductivity of the first conductive layer is greater than the conductivity of the second conductive layer.
  • each first resonant cavity is provided with at least one corresponding first feeding structure.
  • the first resonant cavity has a plurality of excitation parts, each of which corresponds to at least one of the first feeding
  • the structure has a feeding signal frequency of the first feeding structure corresponding to each of the excitation parts being different.
  • the first resonant cavity has a plurality of excitation parts, each of the excitation parts corresponds to at least one of the first feeding structures, and the feeding signal frequencies of the first feeding structures corresponding to each of the excitation parts are the same.
  • the electronic device further comprises:
  • the second feeding structure, the folding bracket has a second conductive part, the second feeding structure feeds the second conductive part, the second conductive part serves as a radiator, and the second feeding structure and the second conductive part constitute a second antenna.
  • the frequencies of the feeding signals of the first feeding structure and the second feeding structure are different.
  • the electronic device further comprises:
  • control module being used to control the first feeding structure to feed power to the first resonant cavity
  • the second conductive portion is arranged along the edge of the folding bracket.
  • the folding bracket has a first area and a second area, the first area and the second area both have the first conductive portion, the display module has a third area and a fourth area, the third area and the fourth area both have the conductive layer;
  • the folding bracket When the folding bracket is in a folded state, the first region and the second region are in a stacked state, and the third region and the fourth region are in a stacked state.
  • One side edge of the conductive layer is electrically connected to one side edge of the first conductive portion, and the conductive layer and the first conductive portion are connected in a U shape.
  • the folding bracket has a first conductive part
  • the display module has a conductive layer
  • the conductive layer and the first conductive part form a first resonant cavity
  • the first feeding structure can feed the first resonant cavity
  • the first feeding structure and the first resonant cavity form a first antenna.
  • the conductive layer in the display module and the folding bracket form a first resonant cavity
  • the conductive layer in the display module in the folded state becomes a part of the first antenna to form a low-loss first resonant cavity.
  • the first feeding structure is used to give excitation in the first resonant cavity to avoid exciting the high-loss resonant cavity formed by the conductive layer, avoid the deterioration of the radiation efficiency of the antenna when the electronic device is in the folded state, improve the antenna performance of the electronic device in the folded state, and improve the user experience of the device in the folded state.
  • FIG. 1a is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • FIG. 1b is a cross-sectional view of FIG. 1a ;
  • FIG1c is a schematic diagram of a structure of an electronic device in an embodiment of the present application.
  • FIG2a is a schematic diagram of a structure of an electronic device in an embodiment of the present application.
  • FIG2b is a relative schematic diagram of the first resonant cavity and the high-loss resonant cavity
  • FIG3a is a schematic structural diagram of an electronic device in another embodiment of the present application.
  • Fig. 3b is a cross-sectional view of Fig. 3a;
  • FIG4a is a schematic structural diagram of an electronic device in another embodiment of the present application.
  • FIG4b is a cross-sectional view of FIG4a
  • FIG5a is a schematic structural diagram of an electronic device in another embodiment of the present application.
  • Fig. 5b is a cross-sectional view of Fig. 5a;
  • FIG. 6 is a curve diagram showing antenna radiation efficiency.
  • folding bracket 10 folding bracket 10; first conductive portion 11; second conductive portion 12; A first area 101; a second area 102; a third area 103; a fourth area 104; Display module 20; conductive layer 21; first conductive layer 211; second conductive layer 212; A first feeding structure 30; A first resonant cavity 40; an excitation unit 41; High loss resonant cavity 50.
  • the electronic device of the embodiment of the present application includes: a folding bracket 10, a display module 20 and a first feeding structure 30, the folding bracket 10 has a first conductive part 11, and the first conductive part 11 can be a metal structure on the folding bracket 10, such as a metal layer or a metal plate.
  • the folding bracket 10 can be a metal bracket, such as a stainless steel bracket or an aluminum alloy bracket.
  • the display module 20 can be arranged on the folding bracket 10, and the display module 20 can be connected to the folding bracket 10. During the folding process of the folding bracket 10, the folding bracket 10 drives the display module 20 to fold; during the unfolding process of the folding bracket 10, the folding bracket 10 drives the display module 20 to unfold.
  • the display module 20 can have a conductive layer 21, and the conductive layer 21 can include an indium tin oxide (Indium tin oxide, ITO) layer or a bracket layer, and the bracket layer is a conductive material piece.
  • the conductive layer 21 can include an indium tin oxide layer and a bracket layer arranged in layers, and the bracket layer can be arranged close to the folding bracket 10. When the folding bracket 10 is in a folded state, the display module 20 is in a folded state.
  • the conductive layer 21 is spaced from the first conductive portion 11, and a first resonant cavity 40 can be formed between the conductive layer 21 and the first conductive portion 11.
  • the first feeding structure 30 can feed the first resonant cavity 40, and the first feeding structure 30 can be used to feed the inside of the first resonant cavity 40, and can be used to feed through the excitation port inside the first resonant cavity 40.
  • the first feeding structure 30 and the first resonant cavity 40 can form a first antenna.
  • the first feeding structure 30 can be used to feed at different positions of the first resonant cavity 40, and the first feeding structure 30 can be used to feed at one or more positions of the first resonant cavity 40.
  • the first feeding structure 30 can be used to feed feeding signals of the same or different frequencies at different positions of the first resonant cavity 40, and can be selected according to actual needs so that the first antenna has different performances.
  • the conductive layer 21 in the display module 20 and the folding bracket 10 can constitute a first resonant cavity 40.
  • the conductive layer 21 in the display module 20 in the folded state can be used as a part of the first antenna to form a low-loss first resonant cavity 40.
  • the first feeding structure 30 is used to give excitation in the first resonant cavity 40.
  • the conductive layer 21 in the display module 20 in the folded state is U-shaped, avoiding excitation of the U-shaped high-loss resonant cavity 50 formed by the conductive layer 21, avoiding deterioration of the radiation efficiency of the antenna when the electronic device is in the folded state, improving the antenna performance of the electronic device in the folded state, and improving the user experience of the device when it is in the folded state.
  • the conductivity of the first conductive portion 11 is greater than the conductivity of the conductive layer 21 .
  • the high conductivity of the first conductive portion 11 is conducive to forming a low-loss first resonant cavity 40 and improving the radiation efficiency of the first antenna.
  • the conductive layer 21 may include a first conductive layer 211 and a second conductive layer 212 which are stacked, the first conductive layer 211 being arranged close to the folding bracket 10, and the conductivity of the first conductive layer 211 being greater than the conductivity of the second conductive layer 212.
  • the conductivity of the first conductive portion 11 is greater than the conductivity of the second conductive layer 212, and the conductivity of the first conductive portion 11 may be similar to the conductivity of the first conductive layer 211.
  • the second conductive layer 212 may be an indium tin oxide layer
  • the first conductive layer 211 may be a stainless steel or aluminum alloy material
  • the first conductive layer 211 has high conductivity, i.e., low conductor loss
  • the first conductive layer 211 has certain strength and hardness, and may have a supporting effect.
  • the first conductive layer 211 may be stainless steel
  • the first conductive portion 11 may be an aluminum alloy material.
  • the first conductive layer 211 and the first conductive portion 11 have high conductivity, which is conducive to forming a low-loss first resonant cavity 40 and improving the radiation efficiency of the first antenna.
  • the conductive layer 21 in the display module 20 is U-shaped, avoiding exciting the U-shaped high-loss resonant cavity 50 surrounded by the second conductive layer 212.
  • the first resonant cavity 40 can be called a low-loss resonant cavity.
  • the first resonant cavity 40 mainly works in a radiation state when resonating, which can achieve the beneficial effect of improving the radiation efficiency of the antenna. Its simplified resonant cavity model can be shown in Figure 2b.
  • the number of the first resonant cavity 40 and the first feeding structure 30 can be multiple, and each first resonant cavity 40 is at least corresponding to one first feeding structure 30.
  • each first resonant cavity 40 is corresponding to one first feeding structure 30, and the first feeding structure 30 can be used to feed the corresponding first resonant cavity 40.
  • the frequencies of the feeding signals fed into the first resonant cavity 40 by each first feeding structure 30 can be the same or different.
  • the frequencies of the feeding signals fed into the multiple first resonant cavities 40 are different, and the specific frequency of the feeding signal can be selected according to actual needs.
  • the first resonant cavity 40 may have a plurality of excitation parts 41, each of which provides an excitation Excitation can form multiple independently working antennas to improve the performance of the antenna.
  • Each excitation part 41 corresponds to at least one first feeding structure 30, and the feeding signal frequency of the first feeding structure 30 corresponding to each excitation part 41 can be different to form antennas with different frequencies.
  • the first resonant cavity 40 has multiple excitation parts 41, each excitation part 41 corresponds to at least one first feeding structure 30, and the feeding signal frequency of the first feeding structure 30 corresponding to each excitation part 41 can be the same.
  • the specific number of excitation parts 41 and the feeding signal frequency can be selected according to actual conditions.
  • excitation parts can be arranged in the edge area or the middle area of the first resonant cavity 40, and multiple excitation parts can be arranged in the edge area and the middle area of the first resonant cavity 40 respectively to form multiple independently working antennas to improve the performance of the antenna.
  • the first resonant cavity 40 can have two excitation parts, and the two excitation parts can be arranged at intervals.
  • One excitation part can be arranged in the middle area of the first resonant cavity 40, and the other excitation part can be arranged in the edge area of the first resonant cavity 40.
  • the first feeding structure 30 can feed feeding signals of different frequencies to different excitation parts.
  • the space of the first resonant cavity 40 can be reused to obtain a multi-antenna design solution, saving antenna space.
  • more antenna units can be realized, which is convenient for using multi-antenna technology to improve the performance of the overall antenna system.
  • Feed ports can be further added at other locations according to the antenna working mode, the overall layout of the circuit board, the performance requirements of the electronic product, etc., to form a richer multi-antenna system.
  • the excitation part 41 of the antenna can be arranged inside the first resonant cavity 40, that is, placed between the conductive layer 21 and the first conductive part 11.
  • the excitation part 41 may include an excitation port, the excitation part 41 is far away from the opening gap of the high-loss resonant cavity 50, and the excitation port and the high-loss resonant cavity 50 are separated by the first conductive layer 211, so as to avoid exciting the high-loss resonant cavity 50 surrounded by the second conductive layer 212, and only excite the first resonant cavity 40.
  • two excitation parts 41 can be arranged in the first resonant cavity 40.
  • the excitation parts 41 can include excitation ports, which can be excited separately to obtain two independently working antennas.
  • the selection of the excitation position can be based on the size of the first resonant cavity 40 formed and the antenna resonance mode, and can be placed at a position where the input impedance is equal to or close to the system characteristic impedance.
  • the two excitation parts can be placed along the long side and the short side of the first resonant cavity 40, respectively, which is equivalent to exciting the two polarizations of the antenna, which is beneficial to achieve better isolation.
  • the first resonant cavity 40 can be fed through the first feeding structure 30 and the excitation port, and the corresponding feeding structure can be set on the mobile phone circuit board or various brackets, such as metal springs, spring pins (Pogo PIN), plastic metallized structural parts, etc.
  • the electronic device may further include: a second feeding structure, the folding bracket 10 may have a second conductive portion 12, the second feeding structure may feed the second conductive portion 12, the second conductive portion 12 may serve as a radiator, and the second feeding structure and the second conductive portion 12 may constitute a second antenna.
  • the second conductive portion 12 may be a metal structure on the folding bracket 10, such as a metal layer, a metal plate, a metal bracket or a metal frame.
  • the second conductive portion 12 may be fed by the second feeding structure, and the second conductive portion 12 may radiate a signal, thereby improving the performance of the antenna.
  • the first antenna and the second antenna may be coupled, and the radiation frequency band and radiation efficiency of the antenna may be improved by the first antenna and the second antenna, thereby improving the performance of the antenna.
  • the frequencies of the feeding signals of the first feeding structure 30 and the second feeding structure are different, so that the first antenna and the second antenna can have a wider radiation frequency band.
  • the electronic device may further include: a control module, which may be used to control the first feeding structure 30 to feed power to the first resonant cavity 40; and the control module may be used to control the second feeding structure to feed power to the second conductive portion 12.
  • the feeding of the feeding structure may be controlled by the control module according to actual needs to meet the needs for antenna performance.
  • the second conductive portion 12 may be disposed along the edge of the folding bracket 10, and the second conductive portion 12 may extend along the edge of the folding bracket 10.
  • the specific shape and size of the second conductive portion 12 may be selected according to actual conditions.
  • the number of the second conductive portions 12 may be one or more, for example, the number of the second conductive portions 12 may be multiple, and adjacent second conductive portions 12 may be insulated or spaced at a certain distance, and the intermediate intervals may be separated by a grounded metal member to achieve isolation between antennas formed by multiple second conductive portions 12, and the second conductive portions 12 may radiate as independent radiators.
  • the low-loss resonant cavity antenna and the second antenna can also be combined with each other to form a complementary antenna design scheme.
  • the concept of antenna cluster can be adopted, that is, based on the specified optimization target, the excitation amplitude and phase of the second antenna and the low-loss resonant cavity antenna are optimized and adjusted to improve the performance of the overall antenna system.
  • the second conductive part 12 can be a lower metal frame, and the low-loss resonant cavity antenna and the second antenna form an antenna cluster.
  • curve a represents the efficiency of the second antenna
  • curve b represents the efficiency of the first antenna
  • curve c represents the efficiency when the first antenna and the second antenna form an antenna cluster.
  • the two antennas will form complementary characteristics on the radiation efficiency curve, and the two can be combined into an antenna cluster.
  • the two antennas input amplitude and phase excitation distribution, a higher radiation efficiency can be obtained in a very wide frequency range.
  • the antenna cluster works at frequencies f1 and f2 , only the second antenna can be excited, and the low-loss resonant cavity is not excited, that is, the excitation of the low-loss resonant cavity is set to 0.
  • the radiation efficiency exhibited by the antenna cluster is the radiation efficiency of the second antenna.
  • the radiation efficiency of the antenna cluster is the radiation efficiency of the low-loss resonant cavity antenna. It can be seen that the antenna cluster has a high radiation efficiency in the frequency range of f1 - f2 .
  • Equation (1) is the scattering parameter matrix of the two antennas, where S12 and S21 are the coupling between the two antennas.
  • Pinc aH ⁇ a (3)
  • P ref b H ⁇ b (4)
  • the key parameter is the radiation efficiency, which is expressed as formula (5):
  • the radiation efficiency ⁇ of the antenna cluster will also change.
  • the antenna cluster technology the low-loss resonant cavity antenna and the second antenna are combined into an antenna cluster, which can obtain higher radiation efficiency in a wider frequency range and make full use of the performance characteristics of various antenna types.
  • the folding bracket 10 may have a first region 101 and a second region 102, and the first region 101 and the second region 102 may both have a first conductive portion 11, and the display module 20 may have a third region 103 and a fourth region 104, and the third region 103 and the fourth region 104 may both have a conductive layer 21.
  • the folding bracket 10 is in a folded state, the first region 101 and the second region 102 are in a stacked state, and the third region 103 and the fourth region 104 are in a stacked state.
  • the first conductive portion 11 of the first region 101 and the first conductive portion 11 of the second region 102 may be spaced apart and insulated or electrically connected, which may be selected according to actual conditions.
  • the conductive layer 21 of the third region 103 and the conductive layer 21 of the fourth region 104 can be formed as one body. When the electronic device is in a folded state, the conductive layer 21 of the third region 103 and the conductive layer 21 of the fourth region 104 can be formed into a U-shaped structure, and the conductive layer 21 of the third region 103 and the conductive layer 21 of the fourth region 104 can be electrically connected. More antennas can be obtained in the electronic device, further improving the space utilization rate and the performance of the overall antenna system.
  • the electronic device in the folded state can form a first resonant cavity 40 in the stacked area, and multiple first antennas can be formed.
  • the excitation ports can be placed inside the upper and lower first resonant cavities 40 to realize a multi-antenna system, wherein the selection and realization of the antenna excitation position can refer to the aforementioned embodiment, which is not repeated here.
  • the number of antenna units required to be realized by different first resonant cavities 40 can be the same or different.
  • the number of antennas realized by each resonant cavity can be either a single antenna or multiple antennas, and the selection of the feeding position is not limited to the symmetrical arrangement along the xoy plane, and can be flexibly configured according to the stacking of the whole system structure, the circuit board layout, the antenna working mode, etc.
  • one side edge of the conductive layer 21 can be electrically connected to one side edge of the first conductive part 11, and the conductive layer 21 and the first conductive part 11 are connected in a U-shape, which is conducive to the radiation of the signal from the opening direction of the U-shaped structure.
  • one side edge of the conductive layer 21 and one side edge of the first conductive part 11 can abut against each other, so that one side edge of the conductive layer 21 and one side edge of the first conductive part 11 can be electrically connected, which is conducive to the radiation of the signal from the opening direction of the U-shaped structure.

Landscapes

  • Support Of Aerials (AREA)

Abstract

本申请公开了一种电子设备,包括:折叠支架(10),折叠支架(10)具有第一导电部(11);显示模组(20)设置于折叠支架(10)上,显示模组(20)具有导电层(21),在折叠支架(10)处于折叠状态的情况下,显示模组(20)处于折叠状态;导电层(21)与第一导电部(11)之间构成第一谐振腔(40);第一馈电结构(30)用于为第一谐振腔(40)馈电,第一馈电结构(30)与第一谐振腔(40)构成第一天线。显示模组(20)中的导电层(21)与折叠支架(10)构成第一谐振腔(40),将折叠状态下显示模组(20)中的导电层(21)成为第一天线的一部分,通过第一馈电结构(30)在第一谐振腔(40)内给予激励,避免激励由导电层(21)包围所形成的高损耗谐振腔,避免电子设备在折叠状态时天线的辐射效率恶化,提升电子设备在折叠状态时的天线性能。

Description

电子设备
相关申请的交叉引用
本申请主张在2022年10月26日在中国提交的中国专利申请No.202211320172.8的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于电子设备技术领域,具体涉及一种电子设备。
背景技术
折叠型电子设备具有新颖时尚的外观形态,在日常使用中,有展开和折叠两种方式,可以同时获得两种截然不同的使用体验,近来备受市场关注。相比传统通讯电子设备的天线系统,折叠型通讯电子设备的天线系统和设计有诸多不同和挑战,天线系统需要同时兼顾展开和折叠两种使用状态,特别是电子设备处于折叠状态时,电子设备中显示模组的金属层会形成一个U型的高损耗谐振腔,导致天线系统在相应谐振频率的辐射效率严重恶化,让天线系统和电子设备在相应频段无法正常工作。
发明内容
本申请实施例的目的是提供一种电子设备,用以解决在电子设备处于折叠状态时,显示模组的金属层形成的高损耗谐振腔易导致天线性能降低的问题。
本申请实施例提供了一种电子设备,包括:
折叠支架,所述折叠支架具有第一导电部;
显示模组,所述显示模组设置于所述折叠支架上,所述显示模组具有导电层,在所述折叠支架处于折叠状态的情况下,所述显示模组处于折叠状态;
所述导电层与所述第一导电部之间构成第一谐振腔;
第一馈电结构,所述第一馈电结构用于为所述第一谐振腔馈电,所述第一馈电结构与所述第一谐振腔构成第一天线。
其中,所述第一导电部的导电率大于所述导电层的导电率。
其中,所述第一导电部的导电率大于所述第二导电层的导电率。
其中,所述导电层包括层叠设置的第一导电层与第二导电层,所述第一导电层靠近所述折叠支架设置,所述第一导电层的导电率大于所述第二导电层的导电率。
其中,所述第一谐振腔与所述第一馈电结构的数量均为多个,每个所述第一谐振腔至少对应设置一个所述第一馈电结构。
其中,所述第一谐振腔具有多个激励部,每个所述激励部对应至少一个所述第一馈电 结构,每个所述激励部对应的第一馈电结构的馈电信号频率不同。
其中,所述第一谐振腔具有多个激励部,每个所述激励部对应至少一个所述第一馈电结构,每个所述激励部对应的第一馈电结构的馈电信号频率相同。
其中,所述电子设备还包括:
第二馈电结构,所述折叠支架具有第二导电部,所述第二馈电结构为所述第二导电部馈电,所述第二导电部作为辐射体,所述第二馈电结构与所述第二导电部构成第二天线。
其中,所述第一馈电结构与所述第二馈电结构的馈电信号的频率不同。
其中,所述电子设备还包括:
控制模组,所述控制模组用于控制所述第一馈电结构向所述第一谐振腔馈电;和/或
用于控制所述第二馈电结构向所述第二导电部馈电。
其中,所述第二导电部沿着所述折叠支架的边沿设置。
其中,所述折叠支架具有第一区域与第二区域,所述第一区域与所述第二区域均具有所述第一导电部,所述显示模组具有第三区域与第四区域,所述第三区域与所述第四区域均具有所述导电层;
在所述折叠支架处于折叠状态的情况下,所述第一区域与所述第二区域处于层叠状态,所述第三区域与所述第四区域处于层叠状态。
其中,所述导电层的一侧边沿与所述第一导电部的一侧边沿电连接,所述导电层与所述第一导电部连接呈U型。
在本申请实施例的电子设备中,所述折叠支架具有第一导电部,所述显示模组具有导电层,在所述折叠支架处于折叠状态的情况下,所述显示模组处于折叠状态,所述导电层与所述第一导电部之间构成第一谐振腔,第一馈电结构可以为所述第一谐振腔馈电,通过所述第一馈电结构与所述第一谐振腔构成第一天线。显示模组中的导电层与折叠支架构成第一谐振腔,将折叠状态下显示模组中的导电层成为第一天线的一部分,形成低损耗的第一谐振腔,通过第一馈电结构在第一谐振腔内给予激励,避免激励由导电层包围所形成的高损耗谐振腔,避免电子设备在折叠状态时天线的辐射效率恶化,提升电子设备在折叠状态时的天线性能,提高设备在折叠状态时用户的使用体验。
附图说明
图1a为本申请一实施例中电子设备的一个结构示意图;
图1b为图1a中的一个剖视图;
图1c为本申请一实施例中电子设备的一个结构示意图;
图2a为本申请一实施例中电子设备的一个结构示意图;
图2b为第一谐振腔与高损耗谐振腔的一个相对示意图;
图3a为本申请另一实施例中电子设备的一个结构示意图;
图3b为图3a中的一个剖视图;
图4a为本申请又一实施例中电子设备的一个结构示意图;
图4b为图4a中的一个剖视图;
图5a为本申请又一实施例中电子设备的一个结构示意图;
图5b为图5a中的一个剖视图;
图6为天线辐射效率的一个曲线示意图。
附图标记
折叠支架10;第一导电部11;第二导电部12;
第一区域101;第二区域102;第三区域103;第四区域104;
显示模组20;导电层21;第一导电层211;第二导电层212;
第一馈电结构30;
第一谐振腔40;激励部41;
高损耗谐振腔50。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图1a至图6所示,通过具体的实施例及其应用场景对本申请实施例提供的电子设备进行详细地说明。
如图1a至图5b所示,本申请实施例的电子设备,包括:折叠支架10、显示模组20和第一馈电结构30,折叠支架10具有第一导电部11,第一导电部11可以为折叠支架10上的金属结构,比如金属层或金属板。折叠支架10可以为金属支架,比如不锈钢支架或铝合金支架。显示模组20可以设置于折叠支架10上,显示模组20可以与折叠支架10连接,在折叠支架10折叠过程中,折叠支架10带动显示模组20折叠;在折叠支架10展开过程中,折叠支架10带动显示模组20展开。显示模组20可以具有导电层21,导电层21可以包括氧化铟锡(Indium tin oxide,ITO)层或支架层,支架层为导电材料件。导电层21可以包括层叠设置的氧化铟锡层和支架层,支架层可以靠近折叠支架10设置。在折叠支架10处于折叠状态的情况下,显示模组20处于折叠状态。
导电层21与第一导电部11之间间隔,导电层21与第一导电部11之间可以构成第一谐振腔40。第一馈电结构30可以为第一谐振腔40馈电,通过第一馈电结构30可以在第一谐振腔40的内部馈电,可以通过第一谐振腔40的内部的激励端口进行馈电,第一馈电结构30与第一谐振腔40可以构成第一天线。通过第一馈电结构30可以在第一谐振腔40的不同位置馈电,通过第一馈电结构30可以在第一谐振腔40的一个或多个位置馈电,通过第一馈电结构30可以在第一谐振腔40的不同位置馈入相同或不同频率的馈电信号,具体可以根据实际需要选择,以使得第一天线具有不同的性能。
在本申请中,显示模组20中的导电层21与折叠支架10可以构成第一谐振腔40,将折叠状态下显示模组20中的导电层21可以作为第一天线的一部分,形成低损耗的第一谐振腔40,通过第一馈电结构30在第一谐振腔40内给予激励,折叠状态下显示模组20中的导电层21成U型,避免激励由导电层21包围所形成的U型高损耗谐振腔50,避免电子设备在折叠状态时天线的辐射效率恶化,提升电子设备在折叠状态时的天线性能,提高设备在折叠状态时用户的使用体验。
在一些实施例中,第一导电部11的导电率大于导电层21的导电率,第一导电部11导电率高,有利于形成低损耗的第一谐振腔40,提高第一天线的辐射效率。
在另一些实施例中,如图1b至图1c、图2a、图3b、图4b和图5b所示,导电层21可以包括层叠设置的第一导电层211与第二导电层212,第一导电层211靠近折叠支架10设置,第一导电层211的导电率大于第二导电层212的导电率。第一导电部11的导电率大于第二导电层212的导电率,第一导电部11的导电率与第一导电层211的导电率可以相近。第二导电层212可以为氧化铟锡层,第一导电层211可以为不锈钢或铝合金材料,第一导电层211具有高电导率,即低导体损耗,第一导电层211具有一定的强度和硬度,可以具有支撑作用。第一导电层211可以为不锈钢,第一导电部11可以为铝合金材料。第一导电层211与第一导电部11的导电率高,有利于形成低损耗的第一谐振腔40,提高第一天线的辐射效率。折叠状态下显示模组20中的导电层21成U型,避免激励由第二导电层212包围所形成的U型高损耗谐振腔50。当第一谐振腔40被激励时,其导体损耗低,第一谐振腔40的损耗明显低于高损耗谐振腔50,第一谐振腔40可以称为低损耗谐振腔,第一谐振腔40在谐振时主要工作于辐射状态,可实现提升天线辐射效率的有益效果,其简化的谐振腔模型可以如图2b所示。
在本申请的实施例中,第一谐振腔40与第一馈电结构30的数量可以均为多个,每个第一谐振腔40至少对应设置一个第一馈电结构30,比如,每个第一谐振腔40对应设置一个第一馈电结构30,通过第一馈电结构30可以为对应的第一谐振腔40进行馈电。每个第一馈电结构30向第一谐振腔40馈入的馈电信号的频率可以相同或不同,比如,多个第一谐振腔40中所馈入的馈电信号的频率不同,可以根据实际需要选择具体的馈电信号的频率。
可选地,如图3b、图4b所示,第一谐振腔40可以具有多个激励部41,分别给予激 励可以形成多个独立工作的天线,提高天线的性能。每个激励部41对应至少一个第一馈电结构30,每个激励部41对应的第一馈电结构30的馈电信号频率可以不同,以形成不同频率的天线。第一谐振腔40具有多个激励部41,每个激励部41对应至少一个第一馈电结构30,每个激励部41对应的第一馈电结构30的馈电信号频率可以相同,激励部41的具体数量以及馈电信号频率可以根据实际选择。多个激励部可以均设置于第一谐振腔40的边缘区域或中间区域,还可以在第一谐振腔40的边缘区域和中间区域分别设置多个激励部,以形成多个独立工作的天线,提高天线的性能。比如,第一谐振腔40可以具有两个激励部,两个激励部可以间隔设置,一个激励部可以设置于第一谐振腔40的中间区域,另一个激励部可以设置于第一谐振腔40的边缘区域,第一馈电结构30可以向不同的激励部馈入不同频率的馈电信号。通过在第一谐振腔40内添加多个激励端口,可以复用第一谐振腔40的空间,得到多天线的设计方案,节省天线占用空间,在相同空间占用的情况下,实现更多天线单元,便于使用多天线技术,以提升整体天线系统的性能。可以依据天线工作模式、电路板整体布局、电子产品整机性能要求等,在其它位置继续增加馈电端口,形成更丰富的多天线系统。
为了有效激励第一谐振腔40,可以将天线的激励部41设置在第一谐振腔40的内部,即放置在导电层21与第一导电部11之间。激励部41可以包括激励端口,激励部41远离高损耗谐振腔50的开口缝隙,并且激励端口与高损耗谐振腔50之间隔着第一导电层211,可避免激励起第二导电层212所包围的高损耗谐振腔50,仅仅激励第一谐振腔40。
如图3a和图3b所示,在第一谐振腔40内可以设置两个激励部41,激励部41可以包括激励端口,可以分别予以激励,可得到两个独立工作的天线,对于激励位置的选取,可以依据所形成的第一谐振腔40的尺寸和天线谐振模式,可以在输入阻抗等于或者接近系统特性阻抗处放置。另外,为了让所形成的两个独立天线之间的隔离尽可能高,可以将两个激励部分别沿着第一谐振腔40的长边和短边放置,相当于激励起天线的两个极化,有益于实现较好的隔离度。可以通过第一馈电结构30和激励端口为第一谐振腔40馈电,可以在手机电路板或者各类支架上设置相应馈电结构,如金属弹片、弹簧针(Pogo PIN)、塑胶金属化结构件等。
在一些实施例中,如图5a和图5b所示,电子设备还可以包括:第二馈电结构,折叠支架10可以具有第二导电部12,第二馈电结构可以为第二导电部12馈电,第二导电部12可以作为辐射体,第二馈电结构与第二导电部12可以构成第二天线。第二导电部12可以为折叠支架10上的金属结构,比如金属层、金属板、金属支架或金属框。通过第二馈电结构为第二导电部12馈电,第二导电部12可以辐射信号,可以提高天线的性能。第一天线与第二天线可以耦合,通过第一天线与第二天线可以提高天线的辐射频段和辐射效率,提高天线的性能。
可选地,第一馈电结构30与第二馈电结构的馈电信号的频率不同,使得第一天线与第二天线可以具有更宽的辐射频段。
可选地,电子设备还可以包括:控制模组,控制模组可以用于控制第一馈电结构30向第一谐振腔40馈电;控制模组可以用于控制第二馈电结构向第二导电部12馈电。在使用过程中,可以根据实际需要通过控制模组控制馈电结构的馈电,以满足对于天线性能的需要。
在一些实施例中,第二导电部12可以沿着折叠支架10的边沿设置,第二导电部12可以沿着折叠支架10的边沿延伸,第二导电部12的具体形状和尺寸可以根据实际选择。第二导电部12的数量可以为一个或多个,比如,第二导电部12的数量可以为多个,相邻第二导电部12之间可以绝缘或者间隔一定距离设置,中间间隔通过接地金属件实现多个第二导电部12所形成天线之间的隔离,第二导电部12可以分别作为独立的辐射体进行辐射。
对于多天线的实施方案,除了激励低损耗谐振腔天线(第一天线)以外,还可以将低损耗谐振腔天线与第二天线相互结合,形成互补的天线设计方案,可以采用天线簇的概念,即基于指定的优化目标,优化调整第二天线和低损耗谐振腔天线的激励幅度和相位,可提升整体天线系统的性能。以图5a和图5b所示的实施方案示意图为例,第二导电部12可以为下金属边框,将低损耗谐振腔天线和第二天线组成一个天线簇。如图6所示,曲线a表示第二天线的效率,曲线b表示第一天线的效率,曲线c表示第一天线与第二天线组成天线簇时的效率。当第二天线工作时,由于会激励起高损耗谐振腔50,其辐射效率曲线(曲线a)在相应的谐振频点f0会出现明显的恶化。而对于低损耗谐振腔,其被导电层21与第一导电部11包围,导体损耗低,且其激励端口位于低损耗谐振腔内,如图1b所示的谐振腔,在相应谐振频点工作时可得到高的辐射效率,由此可见,两只天线在辐射效率曲线上会形成互补的特性,可将二者组成天线簇,通过合理给予两只天线输入幅度、相位激励分布,可以在很宽的频率范围内获得较高的辐射效率,简单地理解,当该天线簇工作在频率f1和f2时,可以只激励第二天线,同时不激励低损耗谐振腔,即将低损耗谐振腔的激励设置为0,此时天线簇表现出的辐射效率即为第二天线的辐射效率,而当天线簇工作在f0时,相应地,此时只激励低损耗谐振腔,而不激励第二天线,则天线簇的辐射效率为低损耗谐振腔天线的辐射效率,由此可见,天线簇在f1-f2的频率范围内,均有很高的辐射效率。考虑到第二天线和低损耗谐振腔天线二者之间的耦合,实际天线簇工作时给予的输入幅度、相位激励分布需要通过优化算法得到,且优化算法会以上述耦合特性作为输入,以天线簇的辐射效率最大化为优化目标,优化计算出天线簇的输入激励分布。具体而言,假定这2只天线的入射波激励为a=[a1,a2]T,反射波为b=[b1,b2]T,则有式(1):
式(1)中的S矩阵为这2只天线的散射参数矩阵,其中S12和S21即为这2只天线之间的耦合。此外,对于多天线系统,从功率守恒的角度,可有式(2):
Pinc=Pref+Ploss+Prad          (2)
其中Pinc、Pref、Ploss、Prad分别为天线系统的输入功率、反射功率、损耗功率和辐射功 率,且有式(3)和式(4):
Pinc=aH·a         (3)
Pref=bH·b           (4)
对于组成的天线簇,关键的参数为辐射效率,其表达式为式(5):
当这2只天线的设计确定的情况下,它们的S参数矩阵也是确定的,而入射波激励a变化的时候,其反射波b和辐射功率Prad也将变化,相应地,天线簇的辐射效率η也会变化,通过选择合适的入射波激励a,可以让辐射效率η最大化,并且在系统所需要的工作频率范围内,各个频点均可优化出所需的入射波激励a=[a1,a2]T,由此实现本实施方式所述天线簇在f1-f2的频率范围内,均有很高的辐射效率。利用天线簇技术,将低损耗谐振腔天线和第二天线组成天线簇,可以在更宽的频率范围内获得较高的辐射效率,充分利用各种天线类型的性能特性。
可选地,如图4a和图4b所示,折叠支架10可以具有第一区域101与第二区域102,第一区域101与第二区域102可以均具有第一导电部11,显示模组20可以具有第三区域103与第四区域104,第三区域103与第四区域104可以均具有导电层21。在折叠支架10处于折叠状态的情况下,第一区域101与第二区域102处于层叠状态,第三区域103与第四区域104处于层叠状态。第一区域101的第一导电部11与第二区域102的第一导电部11之间可以间隔绝缘或电连接,具体可以根据实际选择。第三区域103的导电层21与第四区域104的导电层21可以形成为一体,在电子设备处于折叠状态的情况下,第三区域103的导电层21与第四区域104的导电层21可以形成为U型结构,第三区域103的导电层21与第四区域104的导电层21之间可以电连接。可以在电子设备内得到更多的天线,进一步提升空间利用率,提升整体天线系统的性能。可以使处于折叠状态的电子设备在层叠的区域分别形成第一谐振腔40,可以构成多个第一天线,可以在上下两个第一谐振腔40内部分别放置激励端口,实现多天线系统,其中,天线激励位置的选择和实现均可参考前述实施方式,在此不赘述。不同的第一谐振腔40需要实现的天线单元数量既可相同,也可以不同,同时,各个谐振腔实现的天线数量,既可以是单天线,也可以是多天线,而馈电位置的选择也不限于沿xoy平面对称的排布,可依据整机系统结构堆叠、电路板布局、天线工作模式等灵活配置。
在本申请的实施例中,导电层21的一侧边沿与第一导电部11的一侧边沿可以电连接,导电层21与第一导电部11连接呈U型,有利于信号从U型结构的开口方向进行辐射。在电子设备处于折叠状态的情况下,导电层21的一侧边沿与第一导电部11的一侧边沿可以相互抵接,使得导电层21的一侧边沿与第一导电部11的一侧边沿可以电连接,有利于信号从U型结构的开口方向进行辐射。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在 本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种电子设备,包括:
    折叠支架,所述折叠支架具有第一导电部;
    显示模组,所述显示模组设置于所述折叠支架上,所述显示模组具有导电层,在所述折叠支架处于折叠状态的情况下,所述显示模组处于折叠状态;
    所述导电层与所述第一导电部之间构成第一谐振腔;
    第一馈电结构,所述第一馈电结构用于为所述第一谐振腔馈电,所述第一馈电结构与所述第一谐振腔构成第一天线。
  2. 根据权利要求1所述的电子设备,其中,所述第一导电部的导电率大于所述导电层的导电率。
  3. 根据权利要求1所述的电子设备,其中,所述导电层包括层叠设置的第一导电层与第二导电层,所述第一导电层靠近所述折叠支架设置,所述第一导电层的导电率大于所述第二导电层的导电率。
  4. 根据权利要求3所述的电子设备,其中,所述第一导电部的导电率大于所述第二导电层的导电率。
  5. 根据权利要求1所述的电子设备,其中,所述第一谐振腔与所述第一馈电结构的数量均为多个,每个所述第一谐振腔至少对应设置一个所述第一馈电结构。
  6. 根据权利要求1所述的电子设备,其中,所述第一谐振腔具有多个激励部,每个所述激励部对应至少一个所述第一馈电结构,每个所述激励部对应的第一馈电结构的馈电信号频率不同。
  7. 根据权利要求1所述的电子设备,其中,所述第一谐振腔具有多个激励部,每个所述激励部对应至少一个所述第一馈电结构,每个所述激励部对应的第一馈电结构的馈电信号频率相同。
  8. 根据权利要求1所述的电子设备,其中,所述电子设备还包括:
    第二馈电结构,所述折叠支架具有第二导电部,所述第二馈电结构为所述第二导电部馈电,所述第二导电部作为辐射体,所述第二馈电结构与所述第二导电部构成第二天线。
  9. 根据权利要求8所述的电子设备,其中,所述第一馈电结构与所述第二馈电结构的馈电信号的频率不同。
  10. 根据权利要求8所述的电子设备,其中,所述电子设备还包括:
    控制模组,所述控制模组用于控制所述第一馈电结构向所述第一谐振腔馈电;和/或
    用于控制所述第二馈电结构向所述第二导电部馈电。
  11. 根据权利要求8所述的电子设备,其中,所述第二导电部沿着所述折叠支架的边沿设置。
  12. 根据权利要求1所述的电子设备,其中,所述折叠支架具有第一区域与第二区域, 所述第一区域与所述第二区域均具有所述第一导电部,所述显示模组具有第三区域与第四区域,所述第三区域与所述第四区域均具有所述导电层;
    在所述折叠支架处于折叠状态的情况下,所述第一区域与所述第二区域处于层叠状态,所述第三区域与所述第四区域处于层叠状态。
  13. 根据权利要求1所述的电子设备,其中,所述导电层的一侧边沿与所述第一导电部的一侧边沿电连接,所述导电层与所述第一导电部连接呈U型。
PCT/CN2023/125558 2022-10-26 2023-10-20 电子设备 WO2024088159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211320172.8 2022-10-26
CN202211320172.8A CN115528411A (zh) 2022-10-26 2022-10-26 电子设备

Publications (1)

Publication Number Publication Date
WO2024088159A1 true WO2024088159A1 (zh) 2024-05-02

Family

ID=84704264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125558 WO2024088159A1 (zh) 2022-10-26 2023-10-20 电子设备

Country Status (2)

Country Link
CN (1) CN115528411A (zh)
WO (1) WO2024088159A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115528411A (zh) * 2022-10-26 2022-12-27 维沃移动通信有限公司 电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104299A1 (ja) * 2004-04-26 2005-11-03 Matsushita Electric Industrial Co., Ltd. 折畳式携帯無線機
CN209593488U (zh) * 2018-10-26 2019-11-05 Oppo广东移动通信有限公司 折叠装置及电子设备
CN209626405U (zh) * 2018-10-26 2019-11-12 Oppo广东移动通信有限公司 折叠装置及电子设备
US20200076065A1 (en) * 2018-08-29 2020-03-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device with antenna mechanism
CN114402270A (zh) * 2019-09-11 2022-04-26 三星电子株式会社 包括天线的可折叠电子装置
CN115528411A (zh) * 2022-10-26 2022-12-27 维沃移动通信有限公司 电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104299A1 (ja) * 2004-04-26 2005-11-03 Matsushita Electric Industrial Co., Ltd. 折畳式携帯無線機
US20200076065A1 (en) * 2018-08-29 2020-03-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device with antenna mechanism
CN209593488U (zh) * 2018-10-26 2019-11-05 Oppo广东移动通信有限公司 折叠装置及电子设备
CN209626405U (zh) * 2018-10-26 2019-11-12 Oppo广东移动通信有限公司 折叠装置及电子设备
CN114402270A (zh) * 2019-09-11 2022-04-26 三星电子株式会社 包括天线的可折叠电子装置
CN115528411A (zh) * 2022-10-26 2022-12-27 维沃移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN115528411A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
JP5532847B2 (ja) マルチアンテナ装置および携帯機器
JP4101804B2 (ja) 小型のマルチモードアンテナ及びそれを用いた高周波モジュール
WO2024088159A1 (zh) 电子设备
WO2020228399A1 (zh) 天线装置及移动终端
TWI351789B (en) Multiband antenna
US11962066B2 (en) Terminal device
CN102437418B (zh) 用于移动终端的宽带平面型可重构天线系统
TWM627483U (zh) 雙天線系統
JP2012244188A (ja) マルチバンド対応のマルチアンテナ装置および通信機器
WO2022121776A1 (zh) 天线装置及电子设备
TWM584024U (zh) 天線裝置
US20230048914A1 (en) Antenna Apparatus and Electronic Device
WO2024012026A1 (zh) 一种平面倒f天线对及电子设备
JP5008602B2 (ja) アンテナ
CN110459858A (zh) 一种基于基片集成腔的滤波天线
JP5664322B2 (ja) マルチアンテナ装置および通信機器
CN110931962A (zh) 一种应用于wlan的高隔离度低剖面双极化天线
CN102110870A (zh) 一种平面内置天线
JP3824579B2 (ja) アンテナ装置、携帯無線通信装置及び接続部材
WO2018188012A1 (zh) 多频阵列天线
TWI586031B (zh) 寬頻單極型天線、電子裝置、以及天線模組
CN201994407U (zh) 小型化双频天线及其电子装置
WO2024078158A1 (zh) 电子设备及控制方法
EP4343969A1 (en) Foldable electronic device and antenna system thereof
US20210242580A1 (en) Broadband dual antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881737

Country of ref document: EP

Kind code of ref document: A1