WO2024078158A1 - 电子设备及控制方法 - Google Patents

电子设备及控制方法 Download PDF

Info

Publication number
WO2024078158A1
WO2024078158A1 PCT/CN2023/115206 CN2023115206W WO2024078158A1 WO 2024078158 A1 WO2024078158 A1 WO 2024078158A1 CN 2023115206 W CN2023115206 W CN 2023115206W WO 2024078158 A1 WO2024078158 A1 WO 2024078158A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
main radiator
resonance
electronic device
frequency band
Prior art date
Application number
PCT/CN2023/115206
Other languages
English (en)
French (fr)
Inventor
王泽东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024078158A1 publication Critical patent/WO2024078158A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the present application relates to the field of communication technology, and in particular to an electronic device and a control method.
  • electronic devices such as smart phones can implement folding or sliding operations, so that the electronic devices can have an unfolded form, a folded form, and a sliding form.
  • the electronic devices can include antenna radiators to implement mobile communication services.
  • the present application provides an electronic device and a control method, which can improve the radiation performance of an antenna radiator of the electronic device in a folded or sliding state.
  • the present application provides an electronic device, including:
  • a second body which can be folded or slid relative to the first body, so that the second body and the first body can be in an unfolded state away from each other or in an overlapping state where at least part of the body overlaps;
  • a main radiator which is disposed on the first body and grounded, the main radiator being electrically connected to the feed source, and when in the unfolded state, the main radiator operates at a first resonance under the action of the excitation current and supports the transmission of wireless signals in a first frequency band;
  • the auxiliary radiator is arranged on the second body. When in the overlapping state, the auxiliary radiator is coupled with the main radiator and works together at the second resonance.
  • the electrical length of the auxiliary radiator is equal to or slightly less than half of the wavelength corresponding to the first frequency band.
  • an electronic device including:
  • a second body which can be folded or slid relative to the first body, so that the second body and the first body can be in an unfolded state away from each other or in an overlapping state where at least part of the body overlaps;
  • a main radiator is arranged on the first body and grounded, the main radiator is electrically connected to the feed source, and when in the unfolded state, the main radiator works at a first resonance under the action of the excitation current;
  • the current distribution of the excitation current on the ground system includes a first longitudinal mode current along the extension direction of the main radiator and a first transverse mode current perpendicular to the extension direction of the main radiator;
  • An auxiliary radiator is arranged on the second body. When in an overlapping state, the auxiliary radiator is coupled with the main radiator and works together at a second resonance.
  • the current distribution of the excitation current on the ground system includes a second longitudinal mode current along the extension direction of the auxiliary radiator, a third longitudinal mode current along the extension direction of the main radiator, and a second transverse mode current perpendicular to the extension direction of the main radiator.
  • the present application provides an electronic device, including:
  • a second body which can be folded or slid relative to the first body, so that the second body and the first body can be in an unfolded state away from each other or in an overlapping state where at least part of the body overlaps;
  • a main radiator arranged on the first body and grounded, the main radiator being electrically connected to the feed source; when in an unfolded state, the main radiator is used to operate at a first resonance under the action of the excitation current;
  • a first switch circuit electrically connected to the main radiator, wherein when the main radiator is in the unfolded state and operates at a first resonance, the first switch circuit has a first voltage value
  • the auxiliary radiator is arranged on the second body, and when in an overlapping state, the auxiliary radiator is coupled with the main radiator, and the first switch circuit has a second voltage value, and the second voltage value is less than the first voltage value.
  • the present application provides a control method, which is applied to an electronic device, wherein the electronic device includes a first body, a second body, a feed source, a main radiator, a first switch circuit and an auxiliary radiator; the auxiliary radiator is arranged on the second body, the main radiator is arranged on the first body and grounded, the first switch circuit is electrically connected to the main radiator, and the feed source is electrically connected to the main radiator and is used to provide an excitation current; the control method includes:
  • the second body is controlled to fold or slide relative to the first body so that the second body at least partially overlaps with the first body and is in an overlapping state, the auxiliary radiator is controlled to couple with the main radiator, and the first switch has a second voltage value, which is less than the first voltage value.
  • FIG1 is a schematic diagram of a first structure of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the electronic device shown in FIG. 1 in another form.
  • FIG3 is a second structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the electronic device shown in FIG. 3 in another form.
  • FIG. 5 is a third structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of the electronic device shown in FIG. 5 in another form.
  • FIG. 7 is a schematic diagram showing a comparison of S parameter curves of the electronic device shown in FIG. 2 in an overlapping state with and without an auxiliary radiator.
  • FIG. 8 is a schematic diagram showing a comparison of antenna efficiency curves when the electronic device shown in FIG. 2 is in an overlapping state with and without an auxiliary radiator.
  • FIG. 9 is a schematic diagram of a current mode of the electronic device shown in FIG. 1 operating in a first resonance.
  • FIG. 10 is a schematic diagram of current modes of the electronic device shown in FIG. 2 operating in the first resonance and the second resonance.
  • FIG. 11 is a schematic diagram of the far-field direction of the electronic device shown in FIG. 2 with and without an auxiliary radiator.
  • FIG. 12 is a fourth structural schematic diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 13 is a fifth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 14 is a sixth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 15 is a seventh structural schematic diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 16 is a schematic diagram of the eighth structure of the electronic device provided in an embodiment of the present application.
  • FIG. 17 is a flow chart of a control method provided in an embodiment of the present application.
  • the embodiment of the present application provides an electronic device 10.
  • the electronic device 10 may be a device such as a smart phone, a tablet computer, or a gaming device, an augmented reality (AR) device, an automotive device, a data storage device, an audio playback device, a video playback device, a laptop computer, a desktop computing device, etc.
  • AR augmented reality
  • Figure 1 is a first structural schematic diagram of the electronic device 10 provided in the embodiment of the present application
  • Figure 2 is a structural schematic diagram of the electronic device 10 shown in Figure 1 in another form.
  • the electronic device 10 includes a first body 100, a second body 200, a main radiator 310, an auxiliary radiator 320, and a feed source 330.
  • the first body 100 and the second body 200 can be folded or slid toward each other, so that the second body 200 and the first body 100 can be in an unfolded state away from each other, or the second body 200 and the first body 100 can be in an overlapping state of at least partially overlapping.
  • the main radiator 310 can be provided on the first body 100, for example but not limited to the main radiator 310 can be connected to or formed on the first body 100, and the main radiator 310 can move with the movement of the first body 100.
  • the main radiator 310 can be directly or indirectly electrically connected to the feed source 330, and the feed source 330 can provide an excitation current to the main radiator 310.
  • the main radiator 310 can work in a first resonance under the action of the excitation current, and the first resonance can support the transmission of wireless signals of the first frequency band in free space, and the main radiator 310 can support the first frequency band.
  • the auxiliary radiator 320 may be disposed on the second body 200.
  • the auxiliary radiator 320 may be connected to or formed on the second body 200, and the auxiliary radiator 320 may move with the movement of the second body 200.
  • the auxiliary radiator 320 may be (electromagnetically) coupled with the main radiator 310, and the auxiliary radiator 320 may work together with the main radiator 310 at a second resonance, and the second resonance may support the transmission of wireless signals in a second frequency band in free space, and the auxiliary radiator 320 may support the second frequency band together with the main radiator 310.
  • Figures 1 to 16 of the embodiments of the present application are only used to exemplify the structure of the electronic device 10, and are not used to limit the specific structure of the electronic device 10.
  • Figure 1 illustrates that the auxiliary radiator 320 and the second body 200 are spaced apart. In actual production, the two can be connected as a whole using non-conductive materials, or the auxiliary radiator 320 can be formed using the conductive material of the second body 200.
  • the drawings of the embodiments of the present application are not used to limit the relative positional relationship between the auxiliary radiator 320 and the second body 200. Any structure of the electronic device 10 that can enable the second body 200 to drive the auxiliary radiator 320 to move can be within the protection scope of the embodiments of the present application.
  • first body 100 and the second body 200 may be a thin plate or sheet-like structure, or a hollow frame structure.
  • the first body 100 and the second body 200 may provide support for the electronic devices in the electronic device 10 so as to install the electronic devices in the electronic device 10 together.
  • electronic devices such as a camera, a receiver, a circuit board provided with a radio frequency circuit such as a feed source, and a power supply in the electronic device 10 may be installed on the first body 100 and the second body 200 for fixing.
  • the specific structure of the first body 100 and the second body 200 is not limited in the embodiment of the present application.
  • the first body 100 and the second body 200 can be switched between an overlapping state and an unfolded state.
  • first body 100 and the second body 200 when the first body 100 and the second body 200 are folded, as shown in FIG. 1 , the first body 100 The first body 100 and the second body 200 can move left and right and unfold relatively to the unfolded state; as shown in Figure 2, the first body 100 and the second body 200 can also move left and right and fold to an overlapping state.
  • the folding direction of the first body 100 and the second body 200 during the folding operation is not limited to the left and right folding direction shown in Figures 1 and 2.
  • Figure 3 is a second structural schematic diagram of the electronic device 10 provided in the embodiment of the present application
  • Figure 4 is a structural schematic diagram of the electronic device 10 shown in Figure 3 in another form.
  • the first body 100 and the second body 200 can move up and down and unfold relatively to the unfolded state during the folding operation; in the embodiment of Figure 4, the first body 100 and the second body 200 can move up and down and fold to an overlapping state during the folding operation. Based on this, the embodiment of the present application does not limit the specific folding method of the first body 100 and the second body 200.
  • Figure 5 is a third structural schematic diagram of the electronic device 10 provided in the embodiment of the present application
  • Figure 6 is a structural schematic diagram of the electronic device 10 shown in Figure 5 in another form.
  • the first body 100 and the second body 200 can slide away from each other to an unfolded state; as shown in Figure 6, the first body 100 and the second body 200 can also slide towards each other to an overlapping state.
  • the electronic device 10 may also include, but is not limited to, a connection structure 400 such as a rotating shaft structure and a sliding rail structure, so that the first body 100 and the second body 200 can be folded and slid relative to each other.
  • a connection structure 400 such as a rotating shaft structure and a sliding rail structure
  • the connection structure 400 please refer to the description in the related art, and will not be described in detail here.
  • both the first body 100 and the second body 200 have a certain thickness
  • the first body 100 and the second body 200 can be stacked in the thickness direction.
  • the sizes of the first body 100 and the second body 200 can be the same or different, in the overlapping state, the entire first body 100 can overlap with the entire or part of the second body 200, or a part of the first body 100 can overlap with the entire or part of the second body 200.
  • the embodiment of the present application does not limit the specific structure of the first body 100 and the second body 200 in the overlapping state.
  • the main radiator 310 and the auxiliary radiator 320 can be made of conductive materials and can support the transmission of wireless signals.
  • the main radiator 310 and the auxiliary radiator 320 can support, but are not limited to, the transmission of wireless signals such as Wireless Fidelity (Wi-Fi) signals, Global Positioning System (GPS) signals, third-generation mobile communication technology (3rd-Generation, 3G), fourth-generation mobile communication technology (4th-Generation, 4G), and fifth-generation mobile communication technology (5th-Generation, 5G).
  • Wi-Fi Wireless Fidelity
  • GPS Global Positioning System
  • 3G third-generation mobile communication technology
  • 4th-Generation, 4G fourth-generation mobile communication technology
  • 5th-Generation, 5G fifth-generation mobile communication technology
  • the auxiliary radiator 320 When the auxiliary radiator 320 is electromagnetically coupled with the main radiator 310, the auxiliary radiator 320 can support the wireless signal of the second frequency band together with the main radiator 310.
  • the auxiliary radiator 320 can serve as an
  • the main radiator 310 and the auxiliary radiator 320 are far away from each other and do not overlap, and no electromagnetic coupling is generated between the two.
  • the main radiator 310 can independently generate the first resonance and support the first frequency band under the excitation of the excitation current provided by the feed source 330.
  • the excitation current provided by the feed source 330 can be electromagnetically coupled to the auxiliary radiator 320 via the main radiator 310, so that the main radiator 310 and the auxiliary radiator 320 can be coupled with each other and work together at a second resonance different from the first resonance.
  • the second resonance can support the transmission of wireless signals in the second frequency band. Therefore, the auxiliary radiator 320 can jointly support the wireless signals in the second frequency band with the main radiator 310. At this time, the auxiliary radiator 320 can serve as an auxiliary branch or a parasitic branch of the main radiator 310.
  • the main radiator 310 can be electromagnetically coupled with the auxiliary radiator 320 and jointly support the second resonance.
  • the main radiation branch it supports a resonance such as the third resonance and supports the transmission of wireless signals. That is, when the first body 100 and the second body 200 are in an overlapping state, the main radiator 310 can work at the third resonance or work together with the auxiliary radiator 320 at the second resonance.
  • the excitation mode of the third resonance is the same or similar to that of the first resonance, but since the first resonance is supported by the main radiator 310 in the unfolded state and the third resonance is supported by the main radiator 310 in the overlapping state, there may be a difference between the third resonance and the first resonance, for example, there is a certain frequency deviation between the frequency band of the wireless signal supported by the third resonance and the frequency band of the wireless signal supported by the first resonance.
  • the third resonance may be the resonance mode of the first resonance optimized by the auxiliary radiator 320 in the overlapping state, the frequency band of the wireless signal supported by the third resonance may at least partially overlap with the frequency band of the wireless signal supported by the first resonance, and the third resonance may also support the transmission of the wireless signal in the first frequency band.
  • the third resonance of the embodiment of the present application may also be different from the excitation mode of the first resonance, and the frequency band of the wireless signal supported by the third resonance and the first resonance may also be different.
  • the embodiment of the present application does not specifically limit the third resonance.
  • the electrical length of the auxiliary radiator 320 may be equal to or slightly less than half of the wavelength corresponding to the first frequency band, so that the auxiliary radiator 320 can be coupled with the main radiator 310 in a dipole mode and work together at the second resonance.
  • Figure 7 is a schematic diagram comparing S parameter curves of the electronic device 10 shown in Figure 2 with an auxiliary radiator 320 and without an auxiliary radiator 320 in an overlapping state.
  • Figure 8 is a schematic diagram comparing antenna efficiency curves of the electronic device 10 shown in Figure 2 with an auxiliary radiator 320 and without an auxiliary radiator 320 in an overlapping state.
  • Curve S1 in FIG7 is an S parameter curve when the electronic device 10 of FIG2 is in an overlapping state without the auxiliary radiator 320 (or the electrical length of the auxiliary radiator 320 is 0); Curve S2 is an S parameter curve when the electronic device 10 of FIG2 is in an overlapping state with the auxiliary radiator 320 (the electrical length of the auxiliary radiator 320 is slightly less than half of the wavelength corresponding to the first frequency band).
  • Curves S3 and S4 in FIG8 are radiation efficiency curves and system efficiency curves when the electronic device 10 of FIG2 is in an overlapping state without the auxiliary radiator 320 (or the electrical length of the auxiliary radiator 320 is 0); Curves S5 and S6 are radiation efficiency curves and system efficiency curves when the electronic device 10 of FIG2 is in an overlapping state with the auxiliary radiator 320 (the electrical length of the auxiliary radiator 320 is slightly less than half of the wavelength corresponding to the first frequency band).
  • the main radiator 310 can work alone at the first resonance (for example, the resonance point A1 in Figure 7); when the electronic device 10 is in the overlapping state, the main radiator 310 can work at the third resonance (for example, the resonance point A2 in Figure 7), and the main radiator 310 can also work together with the auxiliary radiator 320 at the second resonance (for example, the resonance point B1 in Figure 7).
  • the center frequency of the second resonance in which the auxiliary radiator 320 and the main radiator 310 work together can be greater than the center frequencies of the first resonance and the third resonance (the frequency of the resonance point B1 on the right side of the curve S2 is greater than the frequencies of the resonance points A1 and A2 on the left side); by comparing curves S3 to S6, it can be seen that the radiation efficiency and system efficiency of the electronic device 10 with the auxiliary radiator 320 can be improved by more than 2.1 dB compared with the system efficiency of the electronic device 10 without the auxiliary radiator 320.
  • the auxiliary radiator 320 serves as an auxiliary branch of the main radiator 310.
  • the second resonance formed by the auxiliary radiator 320 and the main radiator 310 can improve the radiation performance of the first resonance and the third resonance formed by the main radiator 310, and the radiation performance improvement effect of the electronic device 10 is very obvious.
  • the second resonance has a radiation efficiency and system efficiency pit near the 0.9 GHz frequency band.
  • the electrical length of the auxiliary radiator 320 in the embodiment of the present application can be slightly less than half of the first frequency band, so that the frequency of the resonance point B1 of the second resonance of the auxiliary radiator 320 and the main radiator 310 working together can avoid 0.9 GHz and be approximately 0.86 GHz.
  • the second resonance can have a wider bandwidth, and the radiation performance of the third resonance and the second resonance is better.
  • the electrical length of the auxiliary radiator 320 is equal to half of the first frequency band, from the curve It can be seen from lines S5 and S6 that after the auxiliary radiator 320 is provided, the antenna efficiency in the frequency bands covered by the third resonance and the second resonance is still improved, but the antenna efficiency in some frequency bands adjacent to the second resonance frequency band, such as 0.9 GHz, is weak, making the bandwidth of the second resonance narrower.
  • the electrical length may refer to the effective electrical length.
  • the electrical length or effective electrical length of the radiator is often different from the actual physical length of the radiation branch due to the influence of the shape of the radiator, the capacitor, resistor, inductor and other devices electrically connected to the radiator.
  • the electrical length of the auxiliary radiator 320 may be equal to the physical length between the two ends of the auxiliary radiator 320.
  • the electrical length of the auxiliary radiator 320 may be greater than or less than the physical length between the two ends of the auxiliary radiator 320.
  • the shape of the auxiliary radiator 320, the capacitor, inductor, resistor and other devices electrically connected to the auxiliary radiator 320 may be adjusted so that the electrical length of the auxiliary radiator 320 is equal to or slightly less than half of the wavelength corresponding to the first frequency band. The specific debugging method is not described in detail here.
  • the first frequency band can correspond to a frequency band range
  • the first frequency band can be the N28 frequency band
  • its corresponding frequency band range can be 703MHz to 803MHz
  • the center frequency band is about 750MHz.
  • the electrical length of the auxiliary radiator 320 is equal to or slightly less than half of the wavelength corresponding to the first frequency band, which can mean that the electrical length of the auxiliary radiator 320 is equal to or slightly less than one-quarter of the wavelength corresponding to the center frequency band (e.g., 750MHz) of the first frequency band (e.g., the N28 frequency band).
  • the second frequency band supported by the main radiator 310 and the auxiliary radiator 320 may at least partially overlap with the first frequency band supported by the main radiator 310.
  • the first frequency band may be 703 MHz to 788 MHz
  • the second frequency band may be 703 MHz to 870 MHz, and the two may overlap within the frequency band range of 703 MHz to 788 MHz.
  • the first frequency band and the second frequency band can be two frequency bands with different center frequencies within the same frequency band range (for example, both within the low frequency/medium high frequency/high frequency band range), and the first frequency band and the second frequency band can at least partially overlap, so that the main radiator 310 and the auxiliary radiator 320 can jointly support wireless signals, such as supporting wireless signals in the N28 frequency band.
  • the first frequency band and the second frequency band can also be wireless signals within different frequency bands.
  • the embodiment of the present application does not limit the specific ranges of the first frequency band and the second frequency band.
  • the main radiator 310 is arranged on the first body 100.
  • the main radiator 310 can form a first resonance and can support wireless signals in the first frequency band;
  • the auxiliary radiator 320 is arranged on the second body 200.
  • the auxiliary radiator 320 can be coupled with the main radiator 310 and work together in the second resonance, and the electrical length of the auxiliary radiator 320 can be equal to or slightly less than half of the wavelength corresponding to the first frequency band. Based on this, the auxiliary radiator 320 can work together with the main radiator 310 in the dipole mode at the second resonance, and the second resonance can increase the radiation performance of the main radiator 310, and the radiation performance of the main radiator 310 is better.
  • the main radiator 310 when the second body 200 and the first body 100 at least partially overlap and are in an overlapping state, all of the main radiators 310 may overlap with part of the auxiliary radiators 320, and the projection of the main radiator 310 on the second body 200 may be entirely located on the auxiliary radiator 320, and the length of the branches of the auxiliary radiator 320 may be longer than the length of the branches of the main radiator 310. At this time, the main radiator 310 is more easily electromagnetically coupled with the auxiliary radiator 320.
  • the auxiliary radiator 320 may also have other positional relationships with the main radiator 310, for example, but not limited to, in the overlapping state, part of the auxiliary radiator 320 may overlap with the main radiator 310, and another part of the auxiliary radiator 320 may not overlap with the main radiator 310; or, in the overlapping state, all of the auxiliary radiators 320 do not overlap with the main radiator 310, but the ends of the two are close to each other so that the two can be electromagnetically coupled.
  • the specific positional relationship is not limited, and any positional relationship that allows the two to be electromagnetically coupled in an overlapping state is within the protection scope of the embodiments of the present application.
  • the electronic device 10 may further include a ground system 340, and the ground system 340 may be a region or structure with zero electric potential.
  • the main radiator 310 may be electrically connected to the ground system 340 and grounded.
  • the main radiator 310 may include a first end 311 and a second end 312, the first end 311 may be directly or indirectly electrically connected to the ground system 340 to be grounded, the second end 312 may extend in a direction away from the first end 311, and the second end 312 may be a free end of the main radiator 310.
  • the main radiator 310 can work at the first resonance in a quarter mode, and the electrical length of the main radiator 310 can be equal to a quarter of the wavelength corresponding to the first frequency band. At this time, the input impedance on the main radiator 310 presents a pure resistance, which is more conducive to the main radiator 310 forming the first resonance.
  • the main radiator 310 can also work at the first resonance in other modes, and the main radiator 310 can also have an electrical length of other sizes, which is not limited in the embodiment of the present application.
  • the auxiliary radiator 320 may also include two opposite ends, both ends of the auxiliary radiator 320 may be free ends of the auxiliary radiator 320, and the auxiliary radiator 320 may not be grounded but in a "suspended" state.
  • the excitation current coupled to the auxiliary radiator 320 may flow between the two ends of the auxiliary radiator 320, and may excite the auxiliary radiator 320 and the main radiator 310 to work together in the second resonance.
  • FIG. 9 is a current mode schematic diagram of the electronic device 10 shown in FIG. 1 working in the first resonance
  • FIG. 10 is a current mode schematic diagram of the electronic device 10 shown in FIG. 2 working in the first resonance and the second resonance.
  • the main radiator 310 can operate in the first resonance.
  • the current distribution of the excitation current on the ground system 340 includes a first transverse mode current I1 perpendicular to the extension direction of the main radiator 310 and a first longitudinal mode current I2 along the extension direction of the main radiator 310.
  • the main radiator 310 and the radiator 320 can work in the second resonance by electromagnetic coupling.
  • the current distribution of the excitation current on the ground system 340 includes a second transverse mode current I4 perpendicular to the extension direction of the main radiator 310 and a third longitudinal mode current I5 along the extension direction of the main radiator 310.
  • the current distribution of the excitation current on the ground system 340 can also include a second longitudinal mode current I3 along the extension direction of the auxiliary radiator.
  • the second longitudinal mode current I3 can further increase the weight of the resonant mode component of the longitudinal mode current along the extension direction of the main radiator 310 in the entire resonant mode, thereby making the radiation efficiency of the main radiator 310 higher.
  • FIG. 11 is a schematic diagram of the far-field direction of the electronic device 10 shown in FIG. 2 with and without the auxiliary radiator 320
  • curve S7 is a schematic diagram of the far-field direction of the electronic device 10 without the auxiliary radiator 320 when the second body 200 overlaps at least partially with the first body 100
  • curve S8 is a schematic diagram of the far-field direction of the electronic device 10 with the auxiliary radiator 320 when the second body 200 overlaps at least partially with the first body 100.
  • the main radiator 310 when the main radiator 310 is electrically connected to the ground system 340 and grounded, the main radiator 310 can have a grounding branch perpendicular to its extension direction, and the main radiator 310 can be grounded through the grounding branch.
  • the main radiator 310 can be in the form of an inverted F antenna and work in the first resonance of the quarter mode.
  • the excitation current can form a transverse mode current perpendicular to its extension direction and a longitudinal mode current along its extension direction on the ground system 340.
  • the main radiator 310 when the main radiator 310 is in other antenna forms, the main radiator 310 can also only generate a longitudinal mode current or a transverse mode current I1 on the ground system 340.
  • the specific structure of the main radiator 310 is not limited in the application embodiment.
  • the auxiliary radiator 320 when the auxiliary radiator 320 is not grounded and is in a suspended state, the auxiliary radiator 320 is more likely to work with the main radiator 310 in a dipole mode at the second resonance, and the excitation current is more likely to form a second longitudinal mode current I3 along the extension direction of the auxiliary radiator 320 in the ground system 340.
  • the main radiator 310 can be arranged along the first direction H1, and the auxiliary radiator 320 can also extend along the first direction H1.
  • the first direction H1 can be the flow direction of the first longitudinal mode current I2, the second longitudinal mode current I3, and the third longitudinal mode current I5, and the second direction H2 perpendicular to the first direction H1 can be the flow direction of the transverse mode current, such as the first transverse mode current I1 and the second transverse mode current I4. Therefore, the main radiator 310 and the auxiliary radiator 320 extend in the same direction, and the auxiliary radiator 320 can be in the same direction as the main resonant mode of the main radiator 310, and the auxiliary radiator 320 can further improve the antenna performance of the main radiator 310.
  • the second resonance in which the auxiliary radiator 320 and the main radiator 310 work together excites the second longitudinal mode current I3 on the ground system 340, which can increase the weight of the resonant mode component of the longitudinal mode current along the extension direction of the radiator in the entire resonant mode. Therefore, the second resonance can improve the radiation efficiency of the main radiator 310, and the radiation performance of the main radiator 310 is better.
  • FIG12 is a fourth structural diagram of the electronic device 10 provided in the embodiment of the present application.
  • the electronic device 10 may further include a first switch circuit 350 .
  • the first switch circuit 350 may be directly or indirectly electrically connected to the main radiator 310.
  • the first switch circuit 350 may have a first voltage value.
  • the first switch may have a second voltage value, which may be less than the first voltage value, so that the voltage of the first switch circuit 350 may be reduced when the electronic device 10 is in the overlapping state.
  • the first switch circuit 350 can adjust the electrical length of the main radiator 310 so that the first resonance supports wireless signals of different frequency bands in the first frequency band.
  • the first switch circuit 350 includes one or more circuit branches, one end of each circuit branch can be electrically connected to the main radiator 310, and the other end of each circuit branch can be grounded.
  • Each circuit branch can make the main radiator 310 have a corresponding electrical length.
  • the main radiator 310 chooses to switch between different circuit branches, the main radiator 310 can support the transmission of wireless signals of different frequency bands in the first frequency band.
  • the first switch circuit 350 may include one or more capacitors, inductors, switches and other electronic devices connected in series or in parallel, and the embodiment of the present application does not limit the specific structure of the first switch circuit 350. Any structure that can adjust the electrical length of the main radiator 310 is within the protection scope of the embodiment of the present application.
  • the first switch circuit 350 when the first body 100 and the second body 200 are in the unfolded state and the main radiator 310 operates at the first resonance, the first switch circuit 350 has a larger first voltage value, and the loss of the first switch circuit 350 will greatly affect the radiation performance of the main radiator 310; when the first body 100 and the second body 200 are in the overlapping state, the auxiliary radiator 320 can be electromagnetically coupled with the main radiator 310 and operate at the second resonance, the auxiliary radiator 320 can disperse part of the energy transmitted from the feed source 330 to the main radiator 310, the first switch circuit 350 can have a second voltage value less than the first voltage value, and the voltage of the first switch circuit 350 decreases.
  • the electronic device 10 of the embodiment of the present application can reduce the voltage of the first switching circuit 350 by changing the shape of the electronic device 10, and the embodiment of the present application provides an innovative way to reduce the voltage of the switching circuit; on the other hand, when the voltage of the first switching circuit 350 is reduced, the loss caused by the first switching circuit 350 is proportional to the square of the voltage on the switching circuit. When the voltage decreases, the loss of the first switching circuit 350 also decreases, thereby improving the radiation performance of the main radiator 310.
  • the electronic device 10 may further include a second switch circuit 360 .
  • the second switch circuit 360 may be directly or indirectly electrically connected to the auxiliary radiator 320 , and the second switch circuit 360 may adjust the electrical length of the auxiliary radiator 320 so that the second resonance supports wireless signals of different frequency bands within the second frequency band.
  • the second switching circuit 360 includes one or more circuit branches, one end of each circuit branch can be electrically connected to the auxiliary radiator 320, and the other end of each circuit branch can be grounded.
  • Each circuit branch can make the auxiliary radiator 320 have a corresponding electrical length.
  • the second switch circuit 360 can also adjust the electrical length of the auxiliary radiator 320 so that the auxiliary radiator 320 can be electromagnetically coupled with the main radiator 310.
  • the second switch circuit 360 can adjust the electrical length of the auxiliary radiator 320 accordingly so that the auxiliary radiator 320 is more easily electromagnetically coupled with the main radiator 310 and works together at the second resonance.
  • the second switch circuit 360 may include one or more capacitors, inductors, switches and other electronic devices connected in series or in parallel, and the embodiment of the present application does not limit the specific structure of the second switch circuit 360. Any structure that can adjust the electrical length of the auxiliary radiator 320 is within the protection scope of the embodiment of the present application.
  • the electronic device 10 of the embodiment of the present application includes a first switching circuit 350 and a second switching circuit 360.
  • the first switching circuit 350 can adjust the frequency band of the wireless signal supported by the first resonance
  • the second switching circuit 360 can adjust the frequency band of the wireless signal supported by the second resonance. Therefore, the first resonance and the second resonance of the embodiment of the present application can be switched between different frequency bands, and the bandwidth covered by the electronic device 10 is wider.
  • the electronic device 10 may also include a matching circuit 370, which may be connected in series between the feed source 330 and the main radiator 310, and the matching circuit 370 may match the impedance of the feed source 330 when transmitting the excitation current, so that the main radiator 310 can form a first resonance and support the transmission of wireless signals in the first frequency band.
  • a matching circuit 370 which may be connected in series between the feed source 330 and the main radiator 310, and the matching circuit 370 may match the impedance of the feed source 330 when transmitting the excitation current, so that the main radiator 310 can form a first resonance and support the transmission of wireless signals in the first frequency band.
  • the matching circuit 370 may include one or more capacitors, inductors, switches and other electronic devices connected in series or in parallel.
  • the embodiment of the present application does not limit the specific structure of the matching circuit 370. All structures that can adjust the impedance matching of the excitation current are within the protection scope of the embodiment of the present application.
  • the electronic device 10 of the embodiment of the present application is provided with a matching circuit 370 , which can more easily tune the first resonance and the second resonance, and can reduce the tuning difficulty of the electronic device 10 .
  • the electronic device 10 of the embodiment of the present application may include a first body 100, a second body 200, a main radiator 310, an auxiliary radiator 320, a feed source 330 and a ground system 340.
  • the ground system 340 is electrically connected to the main radiator 310 and realizes the grounding of the main radiator 310; the second body 200 can be folded or slid relative to the first body 100, so that the second body 200 and the first body 100 can be in an unfolded state away from each other or in an overlapping state of at least partial overlap; the feed source 330 can be used to provide an excitation current; the main radiator 310 is arranged on the first body 100 and is grounded, the main radiator 310 is electrically connected to the feed source 330, and the main radiator 310 can work in the first resonance under the action of the excitation current, at this time
  • the current distribution of the excitation current on the ground system 340 may include a transverse mode current I1 perpendicular to the extension direction of the main radiator 310 and a first longitudinal mode
  • the auxiliary radiator 320 can be coupled with the main radiator 310 and work together in the second resonance.
  • the current distribution of the excitation current on the ground system 340 includes a second longitudinal mode current I3 along the extension direction of the auxiliary radiator 320, A third longitudinal mode current I5 along the extending direction of the main radiator 310 , and a second transverse mode current I4 perpendicular to the extending direction of the main radiator 310 .
  • the first resonance is used to support the transmission of wireless signals in a first frequency band
  • the second resonance is used to support the transmission of wireless signals in a second frequency band
  • the second frequency band and the first frequency band at least partially overlap.
  • the first resonance is used to support the transmission of wireless signals in the first frequency band
  • the electrical length of the main radiator 310 is equal to one quarter of the wavelength corresponding to the first frequency band.
  • the second resonance is used to support the transmission of wireless signals in the second frequency band
  • the electrical length of the auxiliary radiator 320 is equal to or slightly less than half of the wavelength corresponding to the first frequency band.
  • the electronic device 10 can also include a first switching circuit 350, which can be electrically connected to the main radiator 310.
  • a first switching circuit 350 When the first body 100 and the second body 200 are in an unfolded state and the main radiator 310 operates in a first resonance, the first switching circuit 350 has a first voltage value; when the second body 200 and the first body 100 are in an overlapping state and the auxiliary radiator 320 is coupled with the main radiator 310, the first switching circuit 350 has a second voltage value, and the second voltage value is less than the first voltage value.
  • the first switch circuit 350 is used to adjust the electrical length of the main radiator 310 so that the first resonance supports wireless signals of different frequency bands within the first frequency band.
  • the electronic device 10 further includes a second switching circuit 360, which can be electrically connected to the auxiliary radiator 320, and the second switching circuit 360 can adjust the electrical length of the auxiliary radiator 320 so that the second resonance can support wireless signals of different frequency bands within the second frequency band.
  • a second switching circuit 360 which can be electrically connected to the auxiliary radiator 320, and the second switching circuit 360 can adjust the electrical length of the auxiliary radiator 320 so that the second resonance can support wireless signals of different frequency bands within the second frequency band.
  • the electronic device 10 may further include a matching circuit 370 , which may be connected in series between the feed source 330 and the main radiator 310 , and the matching circuit 370 is used to match the impedance of the feed source 330 when transmitting the excitation current.
  • a matching circuit 370 which may be connected in series between the feed source 330 and the main radiator 310 , and the matching circuit 370 is used to match the impedance of the feed source 330 when transmitting the excitation current.
  • the current distribution of the excitation current on the ground system 340 when the main radiator 310 works in the first resonance, the current distribution of the excitation current on the ground system 340 includes the transverse mode current I1 and the first longitudinal mode current I2, and when the auxiliary radiator 320 and the main radiator 310 work together in the second resonance, the current distribution of the excitation current on the ground system 340 includes the second longitudinal mode current I3, the third longitudinal mode current I5 and the second transverse mode current I4.
  • the second longitudinal mode current I3 can increase the weight of the resonant mode component of the longitudinal mode current along the extension direction of the radiator in the entire resonant mode, so that the second resonance can improve the radiation efficiency of the main radiator 310, and the radiation performance of the main radiator 310 is better.
  • the electronic device 10 may include a first body 100 , a second body 200 , a main radiator 310 , an auxiliary radiator 320 , a feed source 330 , and a first switch circuit 350 .
  • the second body 200 can be folded or slid relative to the first body 100, so that the second body 200 and the first body 100 can be in an unfolded state away from each other or in an overlapping state of at least partial overlap;
  • the feed source 330 can be used to provide an excitation current;
  • the main radiator 310 can be arranged on the first body 100 and grounded, the main radiator 310 can be electrically connected to the feed source 330, when the second body 200 and the first body 100 are in the unfolded state, the main radiator 310 can operate in a first resonance under the action of the excitation current, the first switch circuit 350 can be electrically connected to the main radiator 310, under the first resonance, the first switch circuit 350 has a first voltage value;
  • the auxiliary radiator 320 is arranged on the second body 200, when the second body 200 and the first body 100 are in an overlapping state, the auxiliary radiator 320 can be coupled with the main radiator 310, the first switch circuit 350 has a second voltage value, and the second voltage value is less than the first voltage value.
  • the first resonance can be used to support the transmission of wireless signals in the first frequency band
  • the first switch circuit 350 can be used to adjust the electrical length of the main radiator 310 so that the first resonance supports wireless signals of different frequency bands in the first frequency band.
  • the auxiliary radiator 320 can be coupled with the main radiator 310 and work together at the second resonance, and the second resonance can be used to support the transmission of wireless signals in the second frequency band.
  • the first frequency band and the second frequency band can at least partially overlap.
  • the main radiator 310 can overlap with the first body 100.
  • Some of the auxiliary radiators 320 overlap.
  • the electrical length of the main radiator 310 may be equal to one quarter of the wavelength corresponding to the first frequency band, and the electrical length of the auxiliary radiator 320 may be equal to or slightly less than one half of the wavelength corresponding to the first frequency band.
  • the electronic device 10 may further include a second switching circuit 360, which may be electrically connected to the auxiliary radiator 320, and the second switching circuit 360 is used to adjust the electrical length of the auxiliary radiator 320 so that the second resonance supports wireless signals of different frequency bands within the second frequency band.
  • a second switching circuit 360 which may be electrically connected to the auxiliary radiator 320, and the second switching circuit 360 is used to adjust the electrical length of the auxiliary radiator 320 so that the second resonance supports wireless signals of different frequency bands within the second frequency band.
  • the electronic device 10 may further include a matching circuit 370 connected in series between the feed source 330 and the main radiator 310 .
  • the matching circuit 370 may be used to match the impedance of the feed source 330 when transmitting the excitation current.
  • the first switch circuit 350 when the first body 100 and the second body 200 are in the unfolded state and the main radiator 310 operates at the first resonance, the first switch circuit 350 has a larger first voltage value, and the loss of the first switch circuit 350 will greatly affect the radiation performance of the main radiator 310; when the second body 200 and the first body 100 are in an overlapping state, the auxiliary radiator 320 can be electromagnetically coupled with the main radiator 310, and the auxiliary radiator 320 can disperse part of the energy transmitted from the feed source 330 to the main radiator 310, so that the first switch circuit 350 can have a second voltage value less than the first voltage value, the voltage of the first switch circuit 350 decreases, and the loss of the first switch circuit 350 also decreases, and the radiation performance of the main radiator 310 operating at the first resonance can be greatly improved.
  • the electronic device 10 of the embodiment of the present application provides an innovative way to reduce the voltage of the switching circuit.
  • the voltage of the first switching circuit 350 can be reduced.
  • the loss of the first switching circuit 350 is small, and the radiation performance of the main radiator 310 working at the first resonance can be greatly improved.
  • FIG. 15 is a seventh structural diagram of the electronic device 10 provided in the embodiment of the present application.
  • the first body 100 may further include a first middle frame 110
  • the second body 200 may further include a second middle frame 210 .
  • the first middle frame 110 and the second middle frame 210 can be made of a conductive material and have a certain rigidity.
  • the first middle frame 110 and the second middle frame 210 can provide support for the electronic devices or electronic devices in the electronic device 10.
  • the first middle frame 110 and the second middle frame 210 can be grounded and form a ground system 340.
  • One end of the main radiator 310 can be spaced apart from the first middle frame 110, and the other end of the main radiator 310 can be connected to the first middle frame 110 and grounded.
  • Both ends of the auxiliary radiator 320 can be spaced apart from the second middle frame 210 so that the auxiliary radiator 320 can be in a "suspended state".
  • the first middle frame 110 and the second middle frame 210 form a ground system 340, and the main radiator 310 can be connected to the first middle frame 110 and grounded through the first middle frame 110.
  • This design can ensure the connection stability of the main radiator 310 and can also reduce the wiring during the grounding design.
  • the first middle frame 110 may include a first frame 111 and a first middle plate 112
  • the second middle frame 210 may include a second frame 211 and a second middle plate 212.
  • the first frame 111 and the second frame 211 may form the outer frame of the electronic device 10, and the first middle plate 112 and the second middle plate 212 may provide support for the electronic devices or electronic devices in the electronic device 10.
  • first middle plate 112 and the second middle plate 212 can be grounded and form a ground system 340.
  • a first slit can be provided on the first frame 111 to form a first metal branch 113 on the first frame 111, and the main radiator 310 can include the first metal branch 113, and one end of the first metal branch 113 can be connected to the first middle plate 112 to achieve grounding.
  • a second slit can be provided on the second frame 211 to form a second metal branch 213 on the second frame 211, and the auxiliary radiator 320 can include the second metal branch 213, and the second metal branch 213 can be spaced apart from the second middle plate 212 so that the second metal branch 213 is in a "suspended" state, and the second metal branch 213 may not be grounded.
  • the electronic device 10 can fill the first gap and the second gap with a non-conductive material to increase The structural strength of the first middle frame 110 and the second middle frame 210 .
  • the first frame 111 and the second frame 211 are opened to form the main radiator 310 and the auxiliary radiator 320.
  • the main radiator 310 and the auxiliary radiator 320 do not need to occupy additional space of the electronic device 10, and the electronic device 10 can be miniaturized.
  • the electronic device 10 may further include a flexible display screen 500 , a circuit board 600 and a power supply 700 .
  • the flexible display screen 500 can form a display surface of the electronic device 10 for displaying information such as images and texts.
  • the flexible display screen 500 can include a display screen of a type such as a liquid crystal display (LCD) or an organic light-emitting diode (OLED) display screen.
  • the flexible display screen 500 can be connected to the first body 100 and the second body 200, and can be folded along with the folding of the first body 100 and the second body 200.
  • one end of the flexible display screen 500 may be connected to the first body 100, and the other end of the flexible display screen 500 may be connected to the second body 200.
  • the flexible display screen 500 When the first body 100 and the second body 200 are in the unfolded state, the flexible display screen 500 may be in the same plane as the first body 100 and the second body 200 are unfolded, and the flexible display screen 500 is in the unfolded state.
  • the flexible display screen 500 When the first body 100 and the second body 200 are in an overlapping state, the flexible display screen 500 may also be folded as the first body 100 and the second body 200 are folded, so that the two ends of the flexible display screen 500 can be close to each other or completely close to each other and folded together.
  • the electronic device 10 can be provided with a display screen on one of the first body 100 and the second body 200, and the display screen can be a flexible screen or a non-flexible screen.
  • the display screen in this embodiment may not change its shape as the first body 100 and the second body 200 slide.
  • the circuit board 600 can be installed on the first body 100 or the second body 200, and the circuit board 600 can be the main board of the electronic device 10.
  • a processor can be integrated on the circuit board 600, and one or more functional components such as an earphone interface, an acceleration sensor, a gyroscope, and a motor can also be integrated.
  • the feed source 330, the first switch circuit 350, the second switch circuit 360, and the matching circuit 370 can be set on the circuit board 600 to be controlled by the processor on the circuit board 600.
  • the power supply 700 may be mounted on the first body 100 or the second body 200. At the same time, the power supply 700 may be electrically connected to the circuit board 600 so that the power supply 700 supplies power to the electronic device 10.
  • a power supply 700 management circuit may be provided on the circuit board 600. The power supply 700 management circuit is used to distribute the voltage provided by the power supply 700 to various electronic devices in the electronic device 10.
  • the electronic device 10 of the embodiment of the present application may also include components such as a camera, a sensor, and an acoustic-to-electric conversion device. These components can be found in the description of the relevant technology and will not be repeated here.
  • FIG. 17 is a flow chart of a control method provided in an embodiment of the present application.
  • the control method of the embodiment of the present application can be applied to the electronic device 10, which includes a first body 100, a second body 200, a main radiator 310, an auxiliary radiator 320, a feed source 330 and a first switch circuit 350.
  • the auxiliary radiator 320 is arranged on the second body 200
  • the main radiator 310 is arranged on the first body 100 and is grounded
  • the feed source 330 is electrically connected to the main radiator 310 and can provide an excitation current
  • the first switch circuit 350 is electrically connected to the main radiator 310.
  • the control method of the embodiment of the present application includes:
  • the second body 200 and the first body 100 are controlled to move away from each other and be in an unfolded state, the main radiator 310 is controlled to work at a first resonance under the action of an excitation current, and the first switch circuit 350 has a first voltage value under the first resonance;
  • the first body 100 and the second body 200 can be folded or slid toward each other. During the folding or sliding operation, the first body 100 and the second body 200 can switch between an overlapping state in which they at least partially overlap and an unfolded state in which they are separated from each other.
  • the main radiator 310 and the auxiliary radiator 320 are away from each other and do not overlap, and the two do not generate electromagnetic coupling.
  • the main radiator 310 can generate the first resonance and support the first frequency band under the excitation of the excitation current provided by the feed source 330.
  • the first switch circuit 350 can have a large first voltage value, and the loss of the first switch circuit 350 will greatly affect the radiation performance of the main radiator 310.
  • the second body 200 is controlled to fold or slide relative to the first body 100 so that the second body 200 and the first body 100 at least partially overlap and are in an overlapping state
  • the auxiliary radiator 320 is controlled to couple with the main radiator 310
  • the first switch has a second voltage value, which is less than the first voltage value.
  • the excitation current provided by the feed source 330 can be electromagnetically coupled to the auxiliary radiator 320 via the main radiator 310, so that the auxiliary radiator 320 can disperse part of the energy transmitted from the feed source 330 to the main radiator 310, and the first switching circuit 350 can have a second voltage value less than the first voltage value.
  • the voltage of the first switching circuit 350 decreases, and the loss of the first switching circuit 350 also becomes smaller, so that the radiation of the main radiator 310 working at the first resonance can be greatly improved.
  • the first resonance is used to support the transmission of wireless signals in the first frequency band.
  • Controlling the auxiliary radiator 320 to couple with the main radiator 310 includes: controlling the auxiliary radiator 320 to couple with the main radiator 310 and work together at the second resonance, and the electrical length of the auxiliary radiator 320 is equal to or slightly less than half of the wavelength corresponding to the first frequency band.
  • the electronic device 10 further includes a ground system 340.
  • Controlling the main radiator 310 to operate at a first resonance under the action of the excitation current includes: controlling the main radiator 310 to operate at the first resonance under the action of the excitation current, at which time the current distribution on the excitation current ground system 340 includes a first longitudinal mode current I2 along the extension direction of the main radiator 310 and a first transverse mode current I1 perpendicular to the extension direction of the main radiator 310;
  • controlling the auxiliary radiator 320 to couple with the main radiator 310 includes: controlling the auxiliary radiator 320 to couple with the main radiator 310 and jointly operate at a second resonance, at which time the current distribution of the excitation current on the ground system 340 includes a second longitudinal mode current I3 along the extension direction of the auxiliary radiator 320, a third longitudinal mode current I5 along the extension direction of the main radiator 310, and a second transverse mode current I4 perpendicular to the extension direction of the main radiator 310.
  • the control method of the embodiment of the present application controls the first body 100 and the second body 200 of the electronic device 10 to be in an overlapping state and the auxiliary radiator 320 is electromagnetically coupled with the main radiator 310 so that the first switch circuit 350 can have a smaller second voltage value.
  • the embodiment of the present application can reduce the voltage of the first switch circuit 350 by changing the shape of the electronic device 10.
  • the embodiment of the present application provides an innovative way to reduce the voltage of the switch circuit; on the other hand, when the voltage of the first switch circuit 350 is reduced, the loss of the first switch circuit 350 is small, and the radiation of the main radiator 310 working at the first resonance can be greatly improved.
  • control method of the embodiment of the present application and the electronic device 10 of the aforementioned embodiment belong to different subjects under the same inventive concept.
  • the specific implementation of each operation in the control method can be referred to the previous embodiment, which will not be repeated here.
  • description of each embodiment has its own emphasis. For the part that is not described in detail in a certain embodiment, refer to the relevant description of other embodiments.

Landscapes

  • Transceivers (AREA)
  • Support Of Aerials (AREA)

Abstract

一种电子设备及控制方法,第二本体可相对第一本体折叠或滑动,以使二者处于展开状态或者重叠状态;主辐射体设置于第一本体并在展开状态时工作于第一谐振并支持第一频段的无线信号;辅辐射体设置于第二本体并在重叠状态时与主辐射体耦合并共同工作于第二谐振,辅辐射体的电长度等于或者略小于第一频段对应波长的二分之一。

Description

电子设备及控制方法
本申请要求于2022年10月10日提交中国专利局、申请号为202211236212.0、发明名称为“电子设备及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种电子设备及控制方法。
背景技术
随着通信技术的发展,诸如智能手机等电子设备可以实现折叠或滑动操作,以使得电子设备可以具有展开形态、折叠形态、滑动形态。并且,电子设备可以包括天线辐射体以实现移动通信服务。
发明内容
本申请提供一种电子设备及控制方法,可以提升电子设备的天线辐射体在折叠或滑动形态下的辐射性能。
第一方面,本申请提供了一种电子设备,包括:
第一本体;
第二本体,可相对所述第一本体折叠或滑动,以使所述第二本体和所述第一本体可处于相互远离的展开状态或者可处于至少部分重叠的重叠状态;
馈源,用于提供激励电流;
主辐射体,设置于所述第一本体并接地,所述主辐射体与所述馈源电连接,当处于所述展开状态时,所述主辐射体在所述激励电流的作用下工作于第一谐振并支持第一频段的无线信号的传输;及
辅辐射体,设置于所述第二本体,当处于所述重叠状态时,所述辅辐射体与所述主辐射体耦合并共同工作于第二谐振,所述辅辐射体的电长度等于或者略小于所述第一频段对应波长的二分之一。
第二方面,本申请提供了一种电子设备,包括:
第一本体;
第二本体,可相对所述第一本体折叠或滑动,以使所述第二本体和所述第一本体可处于相互远离的展开状态或者可处于至少部分重叠的重叠状态;
馈源,用于提供激励电流;
主辐射体,设置于所述第一本体并接地,所述主辐射体与所述馈源电连接,当处于所述展开状态时,所述主辐射体在所述激励电流的作用下工作于第一谐振;
地系统,与所述主辐射体电连接并实现所述主辐射体的接地;所述主辐射体支持所述第一谐振时,所述激励电流在所述地系统上的电流分布包括沿所述主辐射体延伸方向的第一纵模电流以及垂直于所述主辐射体延伸方向的第一横模电流;及
辅辐射体,设置于所述第二本体,当处于重叠状态时,所述辅辐射体与所述主辐射体耦合并共同工作于第二谐振,所述激励电流在所述地系统上的电流分布包括沿所述辅辐射体延伸方向的第二纵模电流、沿所述主辐射体延伸方向的第三纵模电流、以及垂直于所述主辐射体延伸方向的第二横模电流。
第三方面,本申请提供一种电子设备,包括:
第一本体;
第二本体,可相对所述第一本体折叠或滑动,以使所述第二本体和所述第一本体可处于相互远离的展开状态或者可处于至少部分重叠的重叠状态;
馈源,用于提供激励电流;
主辐射体,设置于所述第一本体并接地,所述主辐射体与所述馈源电连接;当处于展开状态时,所述主辐射体用于在所述激励电流的作用下工作于第一谐振;
第一开关电路,与所述主辐射体电连接,当处于所述展开状态且所述主辐射体工作于第一谐振时,所述第一开关电路具有第一电压值;及
辅辐射体,设置于所述第二本体,当处于重叠状态时,所述辅辐射体与所述主辐射体耦合,所述第一开关电路具有第二电压值,所述第二电压值小于所述第一电压值。
第四方面,本申请提供一种控制方法,应用于电子设备,所述电子设备包括第一本体、第二本体、馈源、主辐射体、第一开关电路和辅辐射体;所述辅辐射体设置于第二本体,所述主辐射体设置于第一本体并接地,所述第一开关电路与所述主辐射体电连接,所述馈源与所述主辐射体电连接并用于提供激励电流;所述控制方法包括:
控制所述第二本体与所述第一本体相互远离并处于展开状态,控制所述主辐射体在所述激励电流的作用下工作于第一谐振,并使所述第一开关电路具有第一电压值;
控制所述第二本体相对所述第一本体折叠或滑动以使所述第二本体与所述第一本体至少部分重叠并处于重叠状态,控制所述辅辐射体与所述主辐射体耦合,并使所述第一开关具有第二电压值,所述第二电压值小于所述第一电压值。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的第一种结构示意图。
图2为图1所示的电子设备处于另一形态下的结构示意图。
图3为本申请实施例提供的电子设备的第二种结构示意图。
图4为图3所示的电子设备处于另一形态下的结构示意图。
图5为本申请实施例提供的电子设备的第三种结构示意图。
图6为图5所示的电子设备处于另一形态下的结构示意图。
图7为图2所示的电子设备重叠状态下设置辅辐射体与不设置辅辐射体的S参数曲线对比示意图。
图8为图2所示的电子设备重叠状态下设置辅辐射体与不设置辅辐射体的天线效率曲线对比示意图。
图9为图1所示的电子设备工作于第一谐振的电流模态示意图。
图10为图2所示的电子设备工作于第一谐振和第二谐振的电流模态示意图。
图11为图2所示的电子设备设置辅辐射体和不设置辅辐射体的远场方向示意图。
图12为本申请实施例提供的电子设备的第四种结构示意图。
图13为本申请实施例提供的电子设备的第五种结构示意图。
图14为本申请实施例提供的电子设备的第六种结构示意图。
图15为本申请实施例提供的电子设备的第七种结构示意图。
图16为本申请实施例提供的电子设备的第八种结构示意图。
图17为本申请实施例提供的控制方法的一种流程示意图。
具体实施方式
下面将结合本申请实施例中的附图1至附图17,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种电子设备10。电子设备10可以是智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。请参阅图1和图2,图1为本申请实施例提供的电子设备10的第一种结构示意图,图2为图1所示的电子设备10处于另一形态下的结构示意图。电子设备10包括第一本体100、第二本体200、主辐射体310、辅辐射体320和馈源330。
第一本体100和第二本体200可互相朝着对方进行折叠或滑动操作,以使得第二本体200和第一本体100可处于相互远离的展开状态,或者第二本体200和第一本体100可处于至少部分重叠的重叠状态。主辐射体310可以设置于第一本体100,例如但不限于主辐射体310可以连接于或者形成于第一本体100,主辐射体310可随第一本体100的运动而运动。主辐射体310可以与馈源330直接或间接电性连接,馈源330可向主辐射体310提供激励电流,当第一本体100和第二本体200处于展开状态时,主辐射体310可在激励电流的作用下工作于第一谐振,该第一谐振可以支持第一频段的无线信号在自由空间内传输,主辐射体310可支持第一频段。辅辐射体320可设置于第二本体200,例如但不限于辅辐射体320可以连接于或者形成于第二本体200,辅辐射体320可随第二本体200的运动而运动。当第一本体100和第二本体200折叠或滑动后、且第二本体200和第一本体100处于至少部分重叠的重叠状态时,辅辐射体320可与主辐射体310(电磁)耦合,辅辐射体320可与主辐射体310共同工作于第二谐振,该第二谐振可以支持第二频段的无线信号在自由空间内传输,辅辐射体320可与主辐射体310共同支持第二频段。
需要说明的是,本申请实施例的附图1至附图16仅用于示例性说明电子设备10的结构,其并不用于对电子设备10的具体结构的限制。例如图1中示例出辅辐射体320与第二本体200相间隔,实际生产中二者可以利用非导体材料连接为整体,或者,也可以利用第二本体200的导体材料形成辅辐射体320。本申请实施例的附图不用于对辅辐射体320与第二本体200相对位置关系的限制,凡是可使第二本体200带动辅辐射体320运动的电子设备10的结构均可在本申请实施例的保护范围内。
可以理解的是,第一本体100、第二本体200可为薄板状或薄片状的结构,也可以为中空的框体结构。第一本体100、第二本体200可为电子设备10中的电子器件提供支撑作用,以将电子设备10中的电子器件安装到一起。例如,电子设备10中的摄像头、受话器、设置有馈源等射频电路的电路板、电源等电子器件都可以安装到第一本体100、第二本体200上进行固定。本申请实施例对第一本体100、第二本体200的具体结构不进行限定。
其中,在进行折叠或滑动操作的过程中,第一本体100和第二本体200可以在重叠状态和展开状态之间切换。
例如,当第一本体100和第二本体200进行折叠操作时,如图1所示,第一本体100 和第二本体200可以左右移动并相对展开至展开状态;如图2所示,第一本体100和第二本体200也可以左右移动并相互折叠至重叠状态。可以理解的是,第一本体100和第二本体200进行折叠操作时的折叠方向并不限于图1和图2所示的左右折叠的方向,例如,请参考图3和图4,图3为本申请实施例提供的电子设备10的第二种结构示意图,图4为图3所示的电子设备10处于另一形态下的结构示意图,在图3所示的实施例中,第一本体100和第二本体200进行折叠操作时可以上下移动并相对展开至展开状态;在图4的实施例中,第一本体100和第二本体200进行折叠操作时可以上下移动并相互折叠至重叠状态。基于此,本申请实施例对第一本体100和第二本体200的具体折叠方式不进行限定。
再例如,当第一本体100和第二本体200进行滑动操作时,请参考图5和图6,图5为本申请实施例提供的电子设备10的第三种结构示意图,图6为图5所示的电子设备10处于另一形态下的结构示意图。如图5所示,第一本体100和第二本体200可以相对远离滑动至展开状态;如图6所示,第一本体100和第二本体200也可以相向靠近滑动至重叠状态。
可以理解的是,如图1至图6所示,电子设备10还可以但不限于包括转轴结构、滑轨结构等连接结构400,以使得第一本体100和第二本体200可相互折叠和相互滑动。对于转轴结构、滑轨结构等连接结构400的具体结构可以参见相关技术中的说明,在此不在详述。
可以理解的是,由于第一本体100和第二本体200均具有一定的厚度,因此,当第一本体100和第二本体200进行折叠或滑动操作而处于重叠状态时,第一本体100和第二本体200可以在厚度方向上堆叠设置。并且,由于第一本体100和第二本体200的尺寸可以相同也可不相同,因此,重叠状态下,全部的第一本体100可以与全部或者部分的第二本体200重叠,或者,部分的第一本体100可以与全部或者部分的第二本体200重叠。本申请实施例对第一本体100和第二本体200处于重叠状态的具体结构不进行限定。
其中,主辐射体310和辅辐射体320可以由导体材质制备并可支持无线信号的传输。例如,主辐射体310、辅辐射体320可以但不限于支持无线保真(Wireless Fidelity,简称Wi-Fi)信号、全球定位系统(Global Positioning System,简称GPS)信号、第三代移动通信技术(3rd-Generation,简称3G)、第四代移动通信技术(4th-Generation,简称4G)、第五代移动通信技术(5th-Generation,简称5G)等无线信号的传输。当辅辐射体320与主辐射体310电磁耦合时,辅辐射体320可与主辐射体310共同支持第二频段的无线信号,此时,辅辐射体320可以作为主辐射体310的辅助枝节,辅辐射体320可以提升主辐射体310的辐射性能。
如图1、图3、图5所示,当第一本体100和第二本体200处于展开状态时,主辐射体310和辅辐射体320相互远离并不重叠,二者不产生电磁耦合,此时主辐射体310可以在馈源330提供的激励电流的激励下单独产生第一谐振并支持第一频段。
如图2、图4、图6所示,当第一本体100和第二本体200处于重叠状态时,馈源330提供的激励电流可以经主辐射体310电磁耦合至辅辐射体320,以使得主辐射体310可与辅辐射体320相互耦合并共同工作于一区别于第一谐振的第二谐振,该第二谐振可以支持第二频段的无线信号的传输,从而,辅辐射体320可与主辐射体310共同支持第二频段的无线信号,此时,辅辐射体320可以作为主辐射体310的辅助枝节、寄生枝节。
可以理解的是,当第二本体200与第一本体100至少部分重叠并处于重叠状态时,主辐射体310既可以与辅辐射体320电磁耦合并共同支持第二谐振,此时主辐射体310也可 以作为主要辐射枝节支持一谐振例如第三谐振并支持无线信号的传输。也即,当第一本体100和第二本体200处于重叠状态时,主辐射体310既可以工作于第三谐振,也可以与辅辐射体320共同工作于第二谐振。
可以理解的是,由于第三谐振和第一谐振均由主辐射体310支持,因此,第三谐振与第一谐振的激励模态相同或者近似,但由于第一谐振为主辐射体310在展开状态下支持,第三谐振为主辐射体310在重叠状态下支持,因此,第三谐振和第一谐振可能存在区别,例如第三谐振支持的无线信号的频段与第一谐振支持的无线信号的频段之间存在一定的频偏。可以理解的是,第三谐振可以是第一谐振在重叠状态受到辅辐射体320优化后的谐振模态,第三谐振支持的无线信号的频段可与第一谐振支持的无线信号的频段至少部分重叠,第三谐振也可以支持第一频段的无线信号的传输。需要说明的是,本申请实施例的第三谐振也可以与第一谐振的激励模态不同,第三谐振与第一谐振支持的无线信号的频段也可以不同,本申请实施例对第三谐振不进行具体的限定。
其中,辅辐射体320的电长度可以等于或者略小于第一频段对应波长的二分之一,以使得辅辐射体320可以偶极子模态与主辐射体310耦合并共同工作于第二谐振。
示例性的,请结合图1、图2并请参考图7和图8,图7为图2所示的电子设备10重叠状态下设置辅辐射体320与不设置辅辐射体320的S参数曲线对比示意图,图8为图2所示的电子设备10重叠状态下设置辅辐射体320与不设置辅辐射体320的天线效率曲线对比示意图。
图7中曲线S1为图2的电子设备10重叠状态下不设置辅辐射体320(或者辅辐射体320的电长度为0)的S参数曲线;曲线S2为图2的电子设备10重叠状态下设置辅辐射体320(辅辐射体320的电长度略小于第一频段对应波长的二分之一)时的S参数曲线。图8中曲线S3和S4为图2的电子设备10重叠状态下不设置辅辐射体320(或者辅辐射体320的电长度为0)的辐射效率曲线和系统效率曲线;曲线S5和S6为图2的电子设备10重叠状态下设置辅辐射体320(辅辐射体320的电长度略小于第一频段对应波长的二分之一)的辐射效率曲线和系统效率曲线。
对比曲线S1和S2可知,当电子设备10处于展开状态时,主辐射体310可单独工作于第一谐振(例如图7中的谐振点A1);当电子设备10处于重叠状态时,主辐射体310可工作于第三谐振(例如图7中的谐振点A2),主辐射体310也可与辅辐射体320共同工作于第二谐振(例如图7中的谐振点B1)。并且,辅辐射体320与主辐射体310共同工作的第二谐振的中心频率可大于第一谐振、第三谐振的中心频率(曲线S2中右边的谐振点B1的频率大于左边谐振点A1、谐振点A2的频率);对比曲线S3至S6可知,设置辅辐射体320的电子设备10的辐射效率和系统效率相较于不设置辅辐射体320的电子设备10的系统效率可以提升2.1dB以上,辅辐射体320作为主辐射体310的辅助枝节,辅辐射体320与主辐射体310共同形成的第二谐振可以提升主辐射体310形成的第一谐振、第三谐振的辐射性能,电子设备10的辐射性能提升效果非常明显。
可以理解的是,由图8中的曲线S5和S6可知,设置辅辐射体320后,第二谐振在0.9GHz频段附近出现辐射效率和系统效率凹坑,为了避免该效率凹坑影响主辐射体310工作的第一谐振,本申请实施例的辅辐射体320的电长度可以略小于第一频段的二分之一,以使得辅辐射体320和主辐射体310共同工作的第二谐振的谐振点B1的频率可以避开0.9GHz而大约处于0.86GHz,此时第二谐振可以具有较宽的带宽,第三谐振、第二谐振的辐射性能更优。当然,需要注意的是,当辅辐射体320的电长度等于第一频段的二分之一时,由曲 线S5和S6可知,设置辅辐射体320后,第三谐振和第二谐振覆盖的频段的天线效率依然有提升,只是在第二谐振频段临近的部分频段例如0.9GHz天线效率较弱而使得第二谐振的带宽较窄。
可以理解的是,电长度可以是指有效电长度。一般而言,受到辐射体形状、辐射体电连接的电容、电阻、电感等器件的影响,辐射体的电长度或有效电长度往往区别于辐射枝节的实际物理长度。例如,如图1所示,当辅辐射体320上没有设置可改变有效电长度的调谐电路、匹配电路时,辅辐射体320的电长度可等于辅辐射体320两端部之间的物理长度。当辅辐射体320上还设置可改变有效电长度的调谐电路、匹配电路时,此时,辅辐射体320的电长度可大于或小于辅辐射体320两端部之间的物理长度。实际调试中,可以通过调整辅辐射体320的形状、电连接的电容、电感、电阻等器件,使得辅辐射体320的电长度等于或略小于第一频段对应波长的二分之一。其具体的调试方式在此不进行赘述。
可以理解的是,第一频段可以对应一个频段范围,例如,第一频段可以是N28频段,其对应的频段范围可为703MHz至803MHz,中心频段约为750MHz。此时,辅辐射体320的电长度等于或者略小于第一频段对应波长的二分之一,可以是指辅辐射体320的电长度等于或者略小于第一频段(例如N28频段)的中心频段(例如750MHz)对应波长的四分之一。
可以理解的是,当主辐射体310和辅辐射体320随第一本体100、第二本体200折叠或滑动而电磁耦合时,主辐射体310和辅辐射体320共同支持的第二频段与主辐射体310支持的第一频段至少可以部分重叠。例如,第一频段可为703MHz至788MHz,第二频段可为703MHz至870MHz,二者可在703MHz至788MHz频段范围内相重叠。
可以理解的是,第一频段和第二频段可以是同一频段范围内(例如均在低频/中高频/高频频段范围内)中心频率不同的两个频段,第一频段和第二频段可以至少部分重叠,从而,主辐射体310和辅辐射体320可以共同支持无线信号,例如支持N28频段的无线信号。当然,第一频段、第二频段也可以是不同频段范围内的无线信号。本申请实施例对第一频段、第二频段的具体范围不进行限定。
本申请实施例的电子设备10,主辐射体310设置于第一本体100,当第一本体100和第二本体200相互远离并处于展开状态时,主辐射体310可形成第一谐振并可并支持第一频段的无线信号;辅辐射体320设置于第二本体200,当第一本体100和第二本体200相对折叠或滑动以使得第二本体200与第一本体100至少部分重叠而处于重叠状态时,辅辐射体320可以与主辐射体310耦合并共同工作于第二谐振,辅辐射体320的电长度可等于或略小于第一频段对应波长的二分之一。基于此,辅辐射体320可以偶极子模态与主辐射体310共同工作于第二谐振,该第二谐振可以增加主辐射体310的辐射性能,主辐射体310的辐射性能更优。
其中,请再次参考图2,当第二本体200与第一本体100至少部分重叠并处于重叠状态时,全部的主辐射体310可与部分辅辐射体320重叠,主辐射体310在第二本体200上的投影可全部位于辅辐射体320上,辅辐射体320的枝节长度可长于主辐射体310的枝节长度。此时,主辐射体310更容易与辅辐射体320电磁耦合。
当然,辅辐射体320也可以与主辐射体310具有其他的位置关系,例如但不限于重叠状态下部分辅辐射体320可与主辐射体310重叠、另一部分辅辐射体320不与主辐射体310重叠;或者,重叠状态下全部的辅辐射体320不与主辐射体310重叠、但二者的端部距离较近以使得二者可以电磁耦合。本申请实施例对重叠状态下辅辐射体320与主辐射体310 的具体位置关系不进行限定,凡是可使重叠状态下二者能电磁耦合的位置关系,均在本申请实施例的保护范围内。
其中,请再次参考图1,电子设备10还可以包括地系统340,该地系统340可为电势为零的区域或结构。主辐射体310可与地系统340电连接并实现接地。例如,主辐射体310可以包括第一端311和第二端312,该第一端311可以直接或间接与地系统340电连接而实现接地,第二端312可朝向远离第一端311的方向延伸,第二端312可为主辐射体310的自由端。
可以理解的是,主辐射体310可以以四分之一模态工作于第一谐振,主辐射体310的电长度可以等于第一频段对应波长的四分之一,此时主辐射体310上的输入阻抗呈现纯电阻,更利于主辐射体310形成第一谐振。当然,主辐射体310也可以其他模态工作于第一谐振,主辐射体310也可具有其他尺寸的电长度,本申请实施例对此不进行限定。
可以理解的是,辅辐射体320也可包括相对的两端,辅辐射体320的两端均可以为辅辐射体320的自由端,辅辐射体320可以不接地而处于“悬浮”状态。当辅辐射体320处于偶极子模态时,耦合至辅辐射体320上的激励电流可以在辅辐射体320的两端部之间流动,并可激励辅辐射体320与主辐射体310共同工作于第二谐振。
其中,请结合图1、图2并请参考图9和图10,图9为图1所示的电子设备10工作于第一谐振的电流模态示意图,图10为图2所示的电子设备10工作于第一谐振和第二谐振的电流模态示意图。
如图9所示,当第一本体100和第二本体200处于展开状态时,主辐射体310可以工作于第一谐振,此时激励电流在地系统340上的电流分布包括垂直于主辐射体310的延伸方向的第一横模电流I1和沿主辐射体310的延伸方向的第一纵模电流I2。
如图10所示,当第二本体200与第一本体100至少部分重叠而处于重叠状态时,主辐射体310和辐射体320可以电磁耦合工作于第二谐振,此时,如图10左边的图(a)所示,激励电流在地系统340上的电流分布包括垂直于主辐射体310的延伸方向的第二横模电流I4和沿主辐射体310的延伸方向的第三纵模电流I5。由图10右边的图(b)可知,激励电流在地系统340上的电流分布还可以包括沿辅辐射体延伸方向的第二纵模电流I3。由于第一纵模电流I2、第二纵模电流I3、第三纵模电流I5均沿电磁波在地系统340的传播方向流动,第二纵模电流I3可以进一步加重纵模电流在整个谐振模态中的沿主辐射体310延伸方向的谐振模态分量的权重,从而使得主辐射体310的辐射效率更高。
并且,请参考图11,图11为图2所示的电子设备10设置辅辐射体320和不设置辅辐射体320的远场方向示意图,其中曲线S7为第二本体200与第一本体100至少部分重叠时电子设备10不设置辅辐射体320的远场方向示意图,曲线S8为第二本体200与第一本体100至少部分重叠时电子设备10设置辅辐射体320的远场方向示意图。由曲线S7和曲线S8可知,当设置辅辐射体320后,第二谐振的零点方向更沿水平方向,由此可以进一步证明辅辐射体320可以加重纵模电流在整个谐振模态中沿辐射体延伸方向的谐振模态分量的权重,第二谐振可以提升主辐射体310的辐射效率。
可以理解的是,当主辐射体310与地系统340电连接并接地后,主辐射体310可以具有垂直于其延伸方向的接地枝节,主辐射体310可以通过该接地枝节接地,主辐射体310可以为倒F天线形式并工作于四分之一模态的第一谐振,激励电流可以在地系统340上形成垂直于其延伸方向的横模电流和沿其延伸方向的纵模电流。当然,当主辐射体310为其他天线形式时,主辐射体310也可以仅在地系统340上产生纵模电流或者横模电流I1,本 申请实施例对主辐射体310的具体结构不进行限定。
可以理解的是,当辅辐射体320不接地处于悬浮状态时,辅辐射体320更容易以偶极子模态与主辐射体310共同工作于第二谐振,激励电流更容易在地系统340形成沿辅辐射体320延伸方向的第二纵模电流I3。
可以理解的是,主辐射体310可以沿第一方向H1设置,辅辐射体320也可以沿第一方向H1延伸,该第一方向H1可以是第一纵模电流I2、第二纵模电流I3、第三纵模电流I5的流动方向,与该第一方向H1相垂直的第二方向H2可以是横模电流例如第一横模电流I1、第二横模电流I4的流动方向。从而,主辐射体310和辅辐射体320的延伸方向相同,辅辐射体320可与主辐射体310的主要谐振模态的方向相同,辅辐射体320可进一步提升主辐射体310的天线性能。
本申请实施例的电子设备10,辅辐射体320与主辐射体310共同工作的第二谐振在地系统340上激励的第二纵模电流I3,可以加重纵模电流在整个谐振模态中的沿辐射体延伸方向的谐振模态分量的权重,从而,第二谐振可以提升主辐射体310的辐射效率,主辐射体310的辐射性能更优。
其中,请参考图12,图12为本申请实施例提供的电子设备10的第四种结构示意图。电子设备10还可以包括第一开关电路350。
第一开关电路350可以直接或间接与主辐射体310电连接。当第一本体100和第二本体200处于展开状态、且主辐射体310在激励电流的作用下工作于第一谐振时,第一开关电路350可以具有第一电压值。当第二本体200与第一本体100处于重叠状态、且辅辐射体320和主辐射体310耦合并共同工作于第二谐振时,第一开关可以具有第二电压值,该第二电压值可以小于第一电压值,从而,电子设备10处于重叠状态下可以降低第一开关电路350的电压。
可以理解的是,第一开关电路350可以调节主辐射体310的电长度,以使第一谐振支持第一频段内不同频段的无线信号。例如,第一开关电路350内部包括一个或多个电路分支,每一电路分支的一端可以电连接于主辐射体310,每一电路分支的另一端可接地,每一电路分支可使得主辐射体310具有相应的电长度,至少存在两个电路分支可使得主辐射体310的电长度不同,当主辐射体310选择在不同的电路分支之间切换时,主辐射体310可以支持第一频段内不同频段的无线信号的传输。
可以理解的是,第一开关电路350可以包括一个或多个电容、电感、开关等电子器件通过串联或并联等方式形成,本申请实施例对第一开关电路350的具体结构不进行限定。凡是可调节主辐射体310电长度的结构均在本申请实施例的保护范围内。
本申请实施例的电子设备10,当第一本体100和第二本体200处于展开状态且主辐射体310工作于第一谐振时,第一开关电路350具有较大的第一电压值,第一开关电路350的损耗会较大的影响主辐射体310的辐射性能;当第一本体100和第二本体200处于重叠状态时,辅辐射体320可与主辐射体310电磁耦合并工作于第二谐振,辅辐射体320可分散馈源330传入至主辐射体310的部分能量,第一开关电路350可具有小于第一电压值的第二电压值,第一开关电路350的电压下降。基于此,一方面,本申请实施例的电子设备10,通过改变电子设备10的形态,可以降低第一开关电路350的电压,本申请实施例提供了一种降低开关电路电压的创新方式;另一方面,当第一开关电路350的电压降低后,基于第一开关电路350带来的损耗与开关电路上的电压平方呈正比关系,电压变小,则第一开关电路350的损耗也变小,从而主辐射体310的辐射性能会提升。
其中,请结合图12并请参考图13,图13为本申请实施例提供的电子设备10的第五种结构示意图。电子设备10还可以包括第二开关电路360。
第二开关电路360可与辅辐射体320直接或间接电连接,第二开关电路360可以调节辅辐射体320的电长度,以使第二谐振支持第二频段内不同频段的无线信号。
例如,第二开关电路360内部包括一个或多个电路分支,每一电路分支的一端可以电连接于辅辐射体320,每一电路分支的另一端可接地,每一电路分支可使得辅辐射体320具有相应的电长度,至少存在两个电路分支可使得辅辐射体320的电长度不同,当辅辐射体320选择在不同的电路分支之间切换时,辅辐射体320可以支持第二频段内不同频段的无线信号的传输。
可以理解的是,第二开关电路360还可以调节辅辐射体320的电长度,以使得辅辐射体320可与主辐射体310电磁耦合。当主辐射体310在第一开关电路350的作用下具有不同的电长度时,第二开关电路360可以相应调节辅辐射体320的电长度,以使得辅辐射体320更易与主辐射体310电磁耦合而共同工作于第二谐振。
可以理解的是,第二开关电路360可以包括一个或多个电容、电感、开关等电子器件通过串联或并联等方式形成,本申请实施例对第二开关电路360的具体结构不进行限定。凡是可调节辅辐射体320电长度的结构均在本申请实施例的保护范围内。
本申请实施例的电子设备10包括第一开关电路350和第二开关电路360,第一开关电路350可以调节第一谐振支持的无线信号的频段,第二开关电路360可以调节第二谐振支持的无线信号的频段,从而本申请实施例的第一谐振、第二谐振可以在不同频段之间切换,电子设备10覆盖的带宽更广。
其中,请参考图14,图14为本申请实施例提供的电子设备10的第六种结构示意图。电子设备10还可以包括匹配电路370,匹配电路370可以串联在馈源330和主辐射体310之间,匹配电路370可对馈源330传输激励电流时的阻抗进行匹配,以使主辐射体310可以形成第一谐振并支持第一频段的无线信号的传输。
可以理解的是,匹配电路370可以包括一个或多个电容、电感、开关等电子器件通过串联或并联等方式形成。本申请实施例对匹配电路370的具体结构不进行限定。凡是可调节激励电流的阻抗匹配的结构均在本申请实施例的保护范围内。
本申请实施例的电子设备10设置匹配电路370,可以更容易调谐出第一谐振和第二谐振,可以降低电子设备10的调谐难度。
基于上述电子设备10,需要说明的是,本申请实施例的电子设备10在不相冲突的前提下可以任意组合,组合后的电子设备10也在本申请实施例的保护范围内。
示例性的,本申请实施例的电子设备10可以包括第一本体100、第二本体200、主辐射体310、辅辐射体320、馈源330和地系统340。地系统340与主辐射体310电连接并实现主辐射体310的接地;第二本体200可相对第一本体100折叠或滑动,以使第二本体200与第一本体100可处于相互远离的展开状态或者可处于至少部分重叠的重叠状态;馈源330可用于提供激励电流;主辐射体310设置于第一本体100并接地,主辐射体310与馈源330电连接,主辐射体310可在激励电流的作用下工作于第一谐振,此时激励电流在地系统340上的电流分布可以包括垂直于主辐射体310的延伸方向的横模电流I1和沿主辐射体310的延伸方向的第一纵模电流I2;辅辐射体320设置于第二本体200,当第二本体200与第一本体100处于重叠状态时,辅辐射体320可与主辐射体310耦合并共同工作于第二谐振,此时激励电流在地系统340上的电流分布包括沿辅辐射体320延伸方向的第二纵模电流I3、 沿主辐射体310延伸方向的第三纵模电流I5、以及垂直于主辐射体310延伸方向的第二横模电流I4。
可以理解的是,第一谐振用于支持第一频段的无线信号的传输,第二谐振用于支持第二频段的无线信号的传输,第二频段和第一频段至少部分重叠。
可以理解的是,第一谐振用于支持第一频段的无线信号的传输,主辐射体310的电长度等于第一频段对应波长的四分之一。
可以理解的是,第二谐振用于支持第二频段的无线信号的传输,辅辐射体320的电长度等于或者略小于第一频段对应波长的二分之一。
可以理解的是,电子设备10还可以包括第一开关电路350,第一开关电路350可与主辐射体310电连接,当第一本体100和第二本体200处于展开状态、且主辐射体310工作于第一谐振时,第一开关电路350具有第一电压值;当第二本体200与第一本体100处于重叠状态、且辅辐射体320与主辐射体310耦合时,第一开关电路350具有第二电压值,第二电压值小于所述第一电压值。
可以理解的是,第一开关电路350用于调节主辐射体310的电长度,以使第一谐振支持第一频段内不同频段的无线信号。
可以理解的是,电子设备10还包括第二开关电路360,第二开关电路360可与辅辐射体320电连接,第二开关电路360可以调节辅辐射体320的电长度,以使第二谐振可支持第二频段内不同频段的无线信号。
可以理解的是,电子设备10还可以包括匹配电路370,匹配电路370可串联于馈源330和主辐射体310之间,匹配电路370用于对馈源330传输激励电流时的阻抗进行匹配。
本申请实施例的电子设备10,主辐射体310工作于第一谐振时,激励电流在地系统340上的电流分布包括横模电流I1和第一纵模电流I2,辅辐射体320与主辐射体310共同工作于第二谐振时,激励电流在地系统340上的电流分布包括第二纵模电流I3、第三纵模电流I5和第二横模电流I4,该第二纵模电流I3可以加重纵模电流在整个谐振模态中的沿辐射体延伸方向的谐振模态分量的权重,从而,第二谐振可以提升主辐射体310的辐射效率,主辐射体310的辐射性能更优。
再示例性的,本申请实施例的电子设备10可以包括第一本体100、第二本体200、主辐射体310、辅辐射体320、馈源330和第一开关电路350。第二本体200可相对第一本体100折叠或滑动,以使第二本体200与第一本体100可处于相互远离的展开状态或者可处于至少部分重叠的重叠状态;馈源330可用于提供激励电流;主辐射体310可设置于第一本体100并接地,主辐射体310可与馈源330电连接,当第二本体200与第一本体100处于展开状态时,主辐射体310可在激励电流的作用下工作于第一谐振,第一开关电路350可与主辐射体310电连接,在第一谐振下,第一开关电路350具有第一电压值;辅辐射体320设置于第二本体200,当第二本体200与第一本体100处于重叠状态时,辅辐射体320可与主辐射体310耦合,第一开关电路350具有第二电压值,第二电压值小于第一电压值。
可以理解的是,第一谐振可用于支持第一频段的无线信号的传输,第一开关电路350可用于调节主辐射体310的电长度,以使第一谐振支持第一频段内不同频段的无线信号。
可以理解的是,当第二本体200与第一本体100处于重叠状态时,辅辐射体320可与主辐射体310耦合并共同工作于第二谐振,第二谐振可用于支持第二频段的无线信号的传输。第一频段和第二频段可以至少部分重叠。
可以理解的是,当第二本体200与第一本体100处于重叠状态时,主辐射体310可与 部分辅辐射体320重叠。
可以理解的是,主辐射体310的电长度可以等于第一频段对应波长的四分之一。辅辐射体320的电长度可以等于或者略小于第一频段对应波长的二分之一。
可以理解的是,电子设备10还可以包括第二开关电路360,第二开关电路360可与辅辐射体320电连接,第二开关电路360用于调节辅辐射体320的电长度,以使第二谐振支持第二频段内不同频段的无线信号。
可以理解的是,电子设备10还可以包括匹配电路370,串联于馈源330和主辐射体310之间,匹配电路370可用于对馈源330传输激励电流时的阻抗进行匹配。
本申请实施例的电子设备10,当第一本体100和第二本体200处于展开状态且主辐射体310工作于第一谐振时,第一开关电路350具有较大的第一电压值,第一开关电路350的损耗会较大的影响主辐射体310的辐射性能;当第二本体200与第一本体100处于重叠状态时,辅辐射体320可与主辐射体310电磁耦合,辅辐射体320可分散馈源330传入至主辐射体310的部分能量,从而第一开关电路350可具有小于第一电压值的第二电压值,第一开关电路350的电压下降,第一开关电路350的损耗也变小,主辐射体310工作于第一谐振的辐射性能可以大幅提升。从而本申请实施例的电子设备10,提供了一种降低开关电路电压的创新方式,通过改变电子设备10的形态,可以降低第一开关电路350的电压;同时,降低第一开关电路350的电压后,第一开关电路350的损耗较小,主辐射体310工作于第一谐振的辐射性可以大幅提升。
其中,基于上述电子设备10的结构,请参考图15,图15为本申请实施例提供的电子设备10的第七种结构示意图。第一本体100还可以包括第一中框110、第二本体200还可以包括第二中框210。
第一中框110和第二中框210可以由导体材质制备并具有一定的刚度,第一中框110和第二中框210可为电子设备10中的电子器件或电子器件提供支撑作用。第一中框110和第二中框210可以接地并形成地系统340。主辐射体310的一端可与第一中框110间隔设置,主辐射体310的另一端可与第一中框110连接并实现接地。辅辐射体320的两端均可与第二中框210间隔设置,以使得辅辐射体320可处于“悬浮状态”。
本申请实施例中第一中框110和第二中框210形成地系统340,主辐射体310可以与第一中框110连接并通过第一中框110接地,这样设计可以保证主辐射体310的连接稳定性,也可以减少接地设计时的布线。
其中,基于上述电子设备10的结构,请参考图16,图16为本申请实施例提供的电子设备10的第八种结构示意图。第一中框110可以包括第一边框111和第一中板112,第二中框210可以包括第二边框211和第二中板212,该第一边框111和第二边框211可以形成电子设备10的外边框,该第一中板112和第二中板212可为电子设备10中的电子器件或电子器件提供支撑作用。
可以理解的是,第一中板112和第二中板212可以接地并形成地系统340。第一边框111上可以开设第一缝隙以在第一边框111上形成第一金属枝节113,主辐射体310可以包括第一金属枝节113,第一金属枝节113的一端可与第一中板112连接而实现接地。第二边框211上可以开设第二缝隙以在第二边框211上形成第二金属枝节213,辅辐射体320可以包括第二金属枝节213,第二金属枝节213可以与第二中板212间隔设置而使得第二金属枝节213处于“悬浮”状态,第二金属枝节213可不接地。
可以理解的是,电子设备10可以在第一缝隙和第二缝隙之间填充非导体材料,以增加 第一中框110和第二中框210的结构强度。
本申请实施例的电子设备10,第一边框111和第二边框211通过开缝形成主辐射体310和辅辐射体320,主辐射体310和辅辐射体320不需要额外占用电子设备10的空间,电子设备10可以实现小型化设计。
其中,请再次参考图15和图16,电子设备10还可以包括柔性显示屏500、电路板600和电源700。
柔性显示屏500可以形成电子设备10的显示面,用于显示图像、文本等信息。其中,柔性显示屏500可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏等类型的显示屏。柔性显示屏500可以连接于第一本体100和第二本体200,并可以随第一本体100、第二本体200的折叠而折叠。
例如,柔性显示屏500的一端可连接于第一本体100,柔性显示屏500的另一端可连接于第二本体200。当第一本体100和第二本体200处于展开状态时,柔性显示屏500可随着第一本体100和第二本体200的展开而使柔性显示屏500的两端可处于同一平面,柔性显示屏500处于展开状态。当第一本体100和第二本体200处于重叠状态时,柔性显示屏500可随着第一本体100和第二本体200的折叠而也折叠,使得柔性显示屏500的两端可以相互靠近或者完全相互靠近折叠在一起。可以理解的是,在图5和图6所示的实施例中,电子设备10可以在第一本体100和第二本体200中的一个上设置显示屏,该显示屏可以是柔性屏也可以是非柔性屏。该实施例中的显示屏可不随第一本体100和第二本体200的滑动而发生形态变化。
电路板600可以安装在第一本体100或者第二本体200上,电路板600可以为电子设备10的主板。电路板600上可以集成有处理器,此外还可以集成耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。其中,馈源330、第一开关电路350、第二开关电路360、匹配电路370可以设置在电路板600,以通过电路板600上的处理器对其进行控制。
电源700可以安装在第一本体100或者第二本体200上。同时,电源700可电连接至电路板600,以实现电源700为电子设备10供电。电路板600上可以设置有电源700管理电路。电源700管理电路用于将电源700提供的电压分配到电子设备10中的各个电子器件。
可以理解的是,以上仅为电子设备10的示例性举例,本申请实施例的电子设备10还可以包括摄像头、传感器、声电转换装置等部件,这些部件可以参见相关技术中的描述,在此不再赘述。
需要理解的是,在本申请的描述中,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
基于上述电子设备10的结构,请参考图17,图17为本申请实施例提供的控制方法的一种流程示意图。本申请实施例的控制方法可以应用于电子设备10,电子设备10包括第一本体100、第二本体200、主辐射体310、辅辐射体320、馈源330和第一开关电路350。辅辐射体320设置于第二本体200,主辐射体310设置于第一本体100并接地,馈源330与主辐射体310电连接并可提供激励电流,第一开关电路350与主辐射体310电连接。本申请实施例的控制方法包括:
在101中,控制第二本体200与第一本体100相互远离并处于展开状态,控制主辐射体310在激励电流的作用下工作于第一谐振,第一开关电路350在第一谐振下具有第一电压值;
第一本体100和第二本体200可互相朝着对方进行折叠或滑动操作,在进行折叠或滑动操作的过程中,第一本体100和第二本体200可以在至少部分重叠的重叠状态和相互远离的展开状态之间切换。
当第一本体100和第二本体200处于展开状态时,主辐射体310和辅辐射体320相互远离并不重叠,二者不产生电磁耦合,此时主辐射体310可以在馈源330提供的激励电流的激励下单独产生第一谐振并支持第一频段。同时,第一开关电路350可以具有较大的第一电压值,第一开关电路350的损耗会较大的影响主辐射体310的辐射性能。
在102中,控制第二本体200相对第一本体100折叠或滑动以使第二本体200与第一本体100至少部分重叠并处于重叠状态,控制辅辐射体320与主辐射体310耦合,第一开关具有第二电压值,第二电压值小于第一电压值。
当第一本体100和第二本体200处于重叠状态时,馈源330提供的激励电流可以经主辐射体310电磁耦合至辅辐射体320,从而辅辐射体320可以分散馈源330传入至主辐射体310的部分能量,第一开关电路350可具有小于第一电压值的第二电压值,第一开关电路350的电压下降,第一开关电路350的损耗也变小,从而主辐射体310工作于第一谐振的辐射性可以大幅提升。
在一些实施例中,第一谐振用于支持第一频段的无线信号的传输。控制辅辐射体320与主辐射体310耦合,包括:控制辅辐射体320与主辐射体310耦合并共同工作于第二谐振,辅辐射体320的电长度等于或者略小于第一频段对应波长的二分之一。
在一些实施例中,电子设备10还包括地系统340。控制主辐射体310在激励电流的作用下工作于第一谐振,包括:控制主辐射体310在激励电流的作用下工作于第一谐振,此时激励电流地系统340上的电流分布包括沿主辐射体310延伸方向的第一纵模电流I2以及垂直于主辐射体310延伸方向的第一横模电流I1;控制辅辐射体320与主辐射体310耦合,包括:控制辅辐射体320与主辐射体310耦合并共同工作于第二谐振,此时激励电流在地系统340上的电流分布包括沿辅辐射体320延伸方向的第二纵模电流I3、沿主辐射体310延伸方向的第三纵模电流I5、以及垂直于主辐射体310延伸方向的第二横模电流I4。
本申请实施例的控制方法,通过控制电子设备10的第一本体100和第二本体200处于重叠状态且辅辐射体320与主辐射体310电磁耦合,以使得第一开关电路350可以具有较小的第二电压值,一方面,本申请实施例通过改变电子设备10的形态,可以降低第一开关电路350的电压,本申请实施例提供了一种降低开关电路电压的创新方式;另一方面,当第一开关电路350的电压降低后,第一开关电路350的损耗较小,主辐射体310工作于第一谐振的辐射性可以大幅提升。
需要说明的是,本申请实施例的控制方法与前述实施例的电子设备10属于同一发明构思下的不同主题。控制方法中的各个操作的具体实施可参见前面的实施例,此处不再赘述。并且,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例提供的电子设备及控制方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种电子设备,包括:
    第一本体;
    第二本体,可相对所述第一本体折叠或滑动,以使所述第二本体和所述第一本体可处于相互远离的展开状态或者可处于至少部分重叠的重叠状态;
    馈源,用于提供激励电流;
    主辐射体,设置于所述第一本体并接地,所述主辐射体与所述馈源电连接,当处于所述展开状态时,所述主辐射体在所述激励电流的作用下工作于第一谐振并支持第一频段的无线信号的传输;及
    辅辐射体,设置于所述第二本体,当处于所述重叠状态时,所述辅辐射体与所述主辐射体耦合并共同工作于第二谐振,所述辅辐射体的电长度等于或者略小于所述第一频段对应波长的二分之一。
  2. 根据权利要求1所述的电子设备,其中,所述第二谐振用于支持第二频段的无线信号的传输,所述第二频段和所述第一频段至少部分重叠。
  3. 根据权利要求1所述的电子设备,其中,当处于所述重叠状态时,所述主辐射体与部分所述辅辐射体重叠。
  4. 根据权利要求1所述的电子设备,其中,所述主辐射体的电长度等于所述第一频段对应波长的四分之一。
  5. 根据权利要求1所述的电子设备,其中,所述电子设备还包括地系统,所述主辐射体与所述地系统电连接并实现接地;
    所述主辐射体支持所述第一谐振时,所述激励电流在所述地系统上的电流分布包括沿所述主辐射体延伸方向的第一纵模电流以及垂直于所述主辐射体延伸方向的第一横模电流;
    所述主辐射体与所述辅辐射体共同支持所述第二谐振时,所述激励电流在所述地系统上的电流分布包括沿所述辅辐射体延伸方向的第二纵模电流、沿所述主辐射体延伸方向的第三纵模电流、以及垂直于所述主辐射体延伸方向的第二横模电流。
  6. 根据权利要求1所述的电子设备,其中,还包括:
    第一开关电路,与所述主辐射体电连接;其中,
    当处于所述展开状态且所述主辐射体工作于第一谐振时,所述第一开关电路具有第一电压值;
    当处于所述重叠状态且所述辅辐射体与所述主辐射体耦合时,所述第一开关电路具有第二电压值,所述第二电压值小于所述第一电压值。
  7. 根据权利要求6所述的电子设备,其中,所述第一开关电路用于调节所述主辐射体的电长度,以使所述第一谐振支持所述第一频段内不同频段的无线信号。
  8. 根据权利要求7所述的电子设备,其中,还包括:
    第二开关电路,与所述辅辐射体电连接,所述第二开关电路用于调节所述辅辐射体的电长度,以使所述第二谐振支持第二频段内不同频段的无线信号。
  9. 根据权利要求1所述的电子设备,其中,还包括:
    匹配电路,串联于所述馈源和所述主辐射体之间,所述匹配电路用于对所述馈源传输所述激励电流时的阻抗进行匹配。
  10. 一种电子设备,包括:
    第一本体;
    第二本体,可相对所述第一本体折叠或滑动,以使所述第二本体和所述第一本体可处于相互远离的展开状态或者可处于至少部分重叠的重叠状态;
    馈源,用于提供激励电流;
    主辐射体,设置于所述第一本体并接地,所述主辐射体与所述馈源电连接,当处于所述展开状态时,所述主辐射体在所述激励电流的作用下工作于第一谐振;
    地系统,与所述主辐射体电连接并实现所述主辐射体的接地;所述主辐射体支持所述第一谐振时,所述激励电流在所述地系统上的电流分布包括沿所述主辐射体延伸方向的第一纵模电流以及垂直于所述主辐射体延伸方向的第一横模电流;及
    辅辐射体,设置于所述第二本体,当处于重叠状态时,所述辅辐射体与所述主辐射体耦合并共同工作于第二谐振,所述激励电流在所述地系统上的电流分布包括沿所述辅辐射体延伸方向的第二纵模电流、沿所述主辐射体延伸方向的第三纵模电流、以及垂直于所述主辐射体延伸方向的第二横模电流。
  11. 根据权利要求10所述的电子设备,其中,所述第一谐振用于支持第一频段的无线信号的传输,所述第二谐振用于支持第二频段的无线信号的传输,所述第二频段和所述第一频段至少部分重叠。
  12. 根据权利要求10所述的电子设备,其中,所述第一谐振用于支持第一频段的无线信号的传输,所述主辐射体的电长度等于所述第一频段对应波长的四分之一;
    所述第二谐振用于支持第二频段的无线信号的传输,所述辅辐射体的电长度等于或者略小于所述第一频段对应波长的二分之一。
  13. 根据权利要求10所述的电子设备,其中,还包括:
    第一开关电路,与所述主辐射体电连接;其中,
    当处于所述展开状态且所述主辐射体工作于第一谐振时,所述第一开关电路具有第一电压值;
    当处于所述重叠状态且所述辅辐射体与所述主辐射体耦合时,所述第一开关电路具有第二电压值,所述第二电压值小于所述第一电压值。
  14. 一种电子设备,包括:
    第一本体;
    第二本体,可相对所述第一本体折叠或滑动,以使所述第二本体和所述第一本体可处于相互远离的展开状态或者可处于至少部分重叠的重叠状态;
    馈源,用于提供激励电流;
    主辐射体,设置于所述第一本体并接地,所述主辐射体与所述馈源电连接;当处于展开状态时,所述主辐射体用于在所述激励电流的作用下工作于第一谐振;
    第一开关电路,与所述主辐射体电连接,当处于所述展开状态且所述主辐射体工作于第一谐振时,所述第一开关电路具有第一电压值;及
    辅辐射体,设置于所述第二本体,当处于重叠状态时,所述辅辐射体与所述主辐射体耦合,所述第一开关电路具有第二电压值,所述第二电压值小于所述第一电压值。
  15. 根据权利要求14所述的电子设备,其中,所述第一谐振用于支持第一频段的无线信号的传输,所述第一开关电路用于调节所述主辐射体的电长度,以使所述第一谐振支持所述第一频段内不同频段的无线信号。
  16. 根据权利要求14所述的电子设备,其中,当处于重叠状态时,所述辅辐射体与所述主辐射体耦合并共同工作于第二谐振,所述第二谐振用于支持第二频段的无线信号的传 输。
  17. 根据权利要求16所述的电子设备,其中,所述第一谐振用于支持第一频段的无线信号的传输,所述主辐射体的电长度等于所述第一频段对应波长的四分之一,所述辅辐射体的电长度等于或者略小于所述第一频段对应波长的二分之一。
  18. 一种控制方法,应用于电子设备,所述电子设备包括第一本体、第二本体、馈源、主辐射体、第一开关电路和辅辐射体;所述辅辐射体设置于第二本体,所述主辐射体设置于第一本体并接地,所述第一开关电路与所述主辐射体电连接,所述馈源与所述主辐射体电连接并用于提供激励电流;所述控制方法包括:
    控制所述第二本体与所述第一本体相互远离并处于展开状态,控制所述主辐射体在所述激励电流的作用下工作于第一谐振,并使所述第一开关电路具有第一电压值;
    控制所述第二本体相对所述第一本体折叠或滑动以使所述第二本体与所述第一本体至少部分重叠并处于重叠状态,控制所述辅辐射体与所述主辐射体耦合,并使所述第一开关具有第二电压值,所述第二电压值小于所述第一电压值。
  19. 根据权利要求18所述的控制方法,其中,所述第一谐振用于支持第一频段的无线信号的传输;所述控制所述辅辐射体与所述主辐射体耦合,包括:
    控制所述辅辐射体与所述主辐射体耦合并共同工作于第二谐振,所述辅辐射体的电长度等于或者略小于所述第一频段对应波长的二分之一。
  20. 根据权利要求18所述的控制方法,其中,所述电子设备还包括地系统;所述控制所述主辐射体在所述激励电流的作用下工作于第一谐振,包括:
    控制所述主辐射体在所述激励电流的作用下工作于第一谐振,并使所述激励电流在所述地系统上的电流分布包括沿所述主辐射体延伸方向的第一纵模电流以及垂直于所述主辐射体延伸方向的第一横模电流;
    所述控制所述辅辐射体与所述主辐射体耦合,包括:
    控制所述辅辐射体与所述主辐射体耦合并共同工作于第二谐振,并使所述激励电流在所述地系统上的电流分布包括沿所述辅辐射体延伸方向的第二纵模电流、沿所述主辐射体延伸方向的第三纵模电流、以及垂直于所述主辐射体延伸方向的第二横模电流。
PCT/CN2023/115206 2022-10-10 2023-08-28 电子设备及控制方法 WO2024078158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211236212.0 2022-10-10
CN202211236212.0A CN117913508A (zh) 2022-10-10 2022-10-10 电子设备及控制方法

Publications (1)

Publication Number Publication Date
WO2024078158A1 true WO2024078158A1 (zh) 2024-04-18

Family

ID=90668720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115206 WO2024078158A1 (zh) 2022-10-10 2023-08-28 电子设备及控制方法

Country Status (2)

Country Link
CN (1) CN117913508A (zh)
WO (1) WO2024078158A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171916A1 (en) * 2013-12-13 2015-06-18 Motorola Mobility Llc Mobile device with antenna and capacitance sensing system with slotted metal bezel
CN108292796A (zh) * 2015-12-07 2018-07-17 三星电子株式会社 包括天线的电子设备
CN109361062A (zh) * 2018-11-12 2019-02-19 维沃移动通信有限公司 移动终端
CN109494477A (zh) * 2017-09-12 2019-03-19 中兴通讯股份有限公司 设备天线及可折叠设备
CN112151960A (zh) * 2019-06-28 2020-12-29 华为技术有限公司 可折叠的移动终端和天线控制方法
CN215911582U (zh) * 2021-06-23 2022-02-25 华为技术有限公司 折叠终端
CN116231273A (zh) * 2021-12-06 2023-06-06 Oppo广东移动通信有限公司 电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171916A1 (en) * 2013-12-13 2015-06-18 Motorola Mobility Llc Mobile device with antenna and capacitance sensing system with slotted metal bezel
CN108292796A (zh) * 2015-12-07 2018-07-17 三星电子株式会社 包括天线的电子设备
CN109494477A (zh) * 2017-09-12 2019-03-19 中兴通讯股份有限公司 设备天线及可折叠设备
CN109361062A (zh) * 2018-11-12 2019-02-19 维沃移动通信有限公司 移动终端
CN112151960A (zh) * 2019-06-28 2020-12-29 华为技术有限公司 可折叠的移动终端和天线控制方法
CN215911582U (zh) * 2021-06-23 2022-02-25 华为技术有限公司 折叠终端
CN116231273A (zh) * 2021-12-06 2023-06-06 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN117913508A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
JP4636456B2 (ja) 無線装置
WO2022142659A1 (zh) 天线装置及电子设备
JP5516681B2 (ja) マルチモードアンテナ及びその製造方法並びに同アンテナを用いた携帯無線端末
JP4063729B2 (ja) アンテナ及び無線端末
US10186769B1 (en) Electronic device with shared control and power lines for antenna tuning circuits
US10559882B2 (en) Mobile device
US8022881B2 (en) Multiband antenna
WO2023216600A1 (zh) 电子设备
WO2024001069A1 (zh) 天线组件、中框组件以及电子设备
WO2023103545A1 (zh) 电子设备
WO2022116290A1 (zh) 天线模组及移动终端
WO2024078158A1 (zh) 电子设备及控制方法
JP2005229161A (ja) アンテナ及び当該アンテナを有する無線通信機器
EP4366081A1 (en) Foldable electronic device
WO2023093213A1 (zh) 一种终端天线
CN110212316A (zh) 一种基于复合左右手传输线的多频段天线
US20230291102A1 (en) Antenna and mobile terminal
WO2023103604A1 (zh) 电子设备
JP3838971B2 (ja) 無線装置
JP4923129B2 (ja) 無線装置
WO2023116022A1 (zh) 可折叠电子设备及其天线系统
TWI823597B (zh) 耦合式多支路天線系統
WO2024078167A1 (zh) 天线组件、中框组件以及电子设备
WO2024078168A1 (zh) 天线组件、中框组件以及电子设备
US20230344132A1 (en) Antenna Structure and Electronic Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876363

Country of ref document: EP

Kind code of ref document: A1