WO2023103545A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2023103545A1
WO2023103545A1 PCT/CN2022/121784 CN2022121784W WO2023103545A1 WO 2023103545 A1 WO2023103545 A1 WO 2023103545A1 CN 2022121784 W CN2022121784 W CN 2022121784W WO 2023103545 A1 WO2023103545 A1 WO 2023103545A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
parasitic
electronic device
free end
frequency band
Prior art date
Application number
PCT/CN2022/121784
Other languages
English (en)
French (fr)
Inventor
王泽东
胡兴邦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023103545A1 publication Critical patent/WO2023103545A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • the present application relates to the technical field of communications, and in particular to an electronic device.
  • the electronic device such as smart phones can be folded or slid, so that the electronic devices can have unfolded, folded, and slidable shapes.
  • the electronic device may include an antenna radiator to implement mobile communication services.
  • the present application provides an electronic device, which can improve the radiation performance of the electronic device in a folded or sliding state.
  • the present application provides an electronic device, including:
  • the second body can be folded or slid relative to the first body, so that at least part of the second body overlaps with the first body;
  • the main radiation branch is arranged on the first body, the main radiation branch is electrically connected to the feed source, and the main radiation branch is used to support the first frequency band under the action of the excitation signal;
  • a parasitic branch is arranged on the second body, and when at least part of the second body overlaps with the first body, the parasitic branch is coupled with the main radiation branch and supports a second frequency band together;
  • the electrical length of the parasitic branch is smaller than that of the first A frequency band corresponds to a quarter of a wavelength.
  • an electronic device including:
  • the second body can be folded or slid relative to the first body, so that at least part of the second body overlaps with the first body;
  • the main radiation branch is arranged on the first body, the main radiation branch is electrically connected to the feed source, and the main radiation branch is used to support the first frequency band under the action of the excitation signal;
  • a parasitic branch is arranged on the second body, and when at least part of the second body overlaps with the first body, the parasitic branch is coupled with the main radiation branch and supports a second frequency band together;
  • the electrical length of the parasitic branch is greater than that of the first A frequency band corresponds to a quarter of a wavelength.
  • FIG. 1 is a schematic diagram of a first structure of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the electronic device shown in FIG. 1 in another form.
  • FIG. 3 is a schematic diagram of a second structure of an electronic device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the electronic device shown in FIG. 3 in another form.
  • FIG. 5 is a schematic diagram of a third structure of an electronic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of the electronic device shown in FIG. 5 in another form.
  • FIG. 7 is a schematic diagram of a fourth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of the electronic device shown in FIG. 7 in another form.
  • FIG. 9 is a schematic diagram of a fifth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of the electronic device shown in FIG. 9 in another form.
  • FIG. 11 is a schematic diagram of a sixth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of the electronic device shown in FIG. 11 in another form.
  • FIG. 13 is a schematic diagram comparing S-parameter curves with and without parasitic branches in the overlapped state of the electronic devices shown in FIG. 2 .
  • FIG. 14 is a schematic diagram showing comparisons of antenna efficiency curves with and without parasitic stubs in the overlapping state of the electronic devices shown in FIG. 2 .
  • FIG. 15 is a schematic diagram of S-parameter curves when parasitic stubs with different electrical lengths are set in the overlapping state of the electronic devices shown in FIG. 4 .
  • FIG. 16 is a schematic diagram of antenna efficiency curves when parasitic stubs with different electrical lengths are set in the overlapping state of the electronic devices shown in FIG. 4 .
  • FIG. 17 is a schematic diagram of an S-parameter curve when a parasitic stub with an electrical length greater than one quarter of the wavelength corresponding to the first frequency band is set in the overlapping state of the electronic devices shown in FIG. 2 .
  • FIG. 18 is a schematic diagram of the antenna efficiency curve when a parasitic stub with an electrical length greater than one quarter of the wavelength corresponding to the first frequency band is set in the overlapping state of the electronic devices shown in FIG. 2 .
  • FIG. 19 is a schematic diagram of an S-parameter curve when a parasitic stub whose electrical length is less than a quarter of the wavelength corresponding to the first frequency band is set in the overlapping state of the electronic devices shown in FIG. 4 .
  • FIG. 20 is a schematic diagram of an antenna efficiency curve when a parasitic stub whose electrical length is less than one quarter of the wavelength corresponding to the first frequency band is set in the overlapping state of the electronic devices shown in FIG. 4 .
  • FIG. 21 is a schematic diagram of a seventh structure of an electronic device provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of a current flow of the electronic device shown in FIG. 2 .
  • FIG. 23 is a schematic diagram of an eighth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a ninth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of a tenth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 26 is a schematic diagram of an eleventh structure of an electronic device provided by an embodiment of the present application.
  • FIG. 27 is a schematic diagram of a twelfth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 28 is a schematic diagram of a thirteenth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 29 is a schematic diagram of a fourteenth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 30 is a schematic diagram of a fifteenth structure of an electronic device provided by an embodiment of the present application.
  • An embodiment of the present application provides an electronic device 100 .
  • the electronic device 100 may be devices such as smart phones and tablet computers, and may also be game devices, augmented reality (Augmented Reality, AR) devices, automotive devices, data storage devices, audio playback devices, video playback devices, notebook computers, desktop computing devices, etc. equipment etc.
  • FIG. 1 and FIG. 2 FIG. 1 is a schematic structural diagram of the first electronic device 100 provided by the embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the electronic device 100 shown in FIG. 1 in another form.
  • the electronic device 100 includes a first body 10 , a second body 20 , a main radiation stub 30 , a parasitic stub 40 and a feed source 61 .
  • the first body 10 and the second body 20 can be folded or slid toward each other, so that at least part of the second body 20 and the first body 10 can overlap.
  • the main radiation branch 30 can be arranged on the first body 10, the main radiation branch 30 can be electrically connected with the feed source 61, the feed source 61 can provide an excitation signal to the main radiation branch 30, and the main radiation branch 30 can be formed under the action of the excitation signal.
  • the first resonance, the first resonance can propagate the wireless signal of the first frequency band in free space, and the main radiation branch 30 can support the first frequency band under the action of the excitation signal.
  • the parasitic branch 40 can be arranged on the second body 20.
  • the parasitic branch 40 can be electromagnetically coupled with the main radiation branch 30, and the parasitic branch 40 and the main radiation branch 30 can jointly generate a second resonance, and the second resonance can propagate the wireless signal of the second frequency band in free space, and the parasitic branch 40 It can support the second frequency band together with the main radiation branch 30 .
  • the orientation of the free end of the parasitic branch 40 when at least part of the second body 20 overlaps the first body 10, the orientation of the free end of the parasitic branch 40, such as the first free end 41, may be the same as that of the free end of the main radial branch 30, such as The orientation of the second free end 31 is in the same direction.
  • the electrical length of the parasitic branch 40 may be less than a quarter of the wavelength corresponding to the first frequency band.
  • FIG. 3 is a schematic diagram of the second structure of the electronic device 100 provided by the embodiment of the present application
  • FIG. 4 is a schematic diagram of the electronic device 100 shown in FIG. Structural schematic diagram of the form, when at least part of the second body 20 overlaps with the first body 10, the orientation of the free end of the parasitic branch 40 such as the first free end 41 can be the same as that of the free end of the main radial branch 30 such as the second free end 31 In this case, the electrical length of the parasitic branch 40 may be greater than a quarter of the wavelength corresponding to the first frequency band.
  • the free end of the parasitic branch 40 may be the ungrounded end thereof, and the orientation of the free end of the parasitic branch 40 may be the extending direction of the parasitic branch 40 .
  • the free end of the main radiation stub 30 may be its ungrounded end, and the direction of the free end of the main radiation stub 30 may be the extending direction of the main radiation stub 30 .
  • the direction of the free end of the parasitic branch 40 is in the same direction as the direction of the free end of the main radial branch 30 , which may mean that the directions of the free ends of the two are within the same area.
  • the orientation of the free end of the parasitic branch 40 can be exactly the same as that of the free end of the main radial branch 30.
  • the free ends of the parasitic branch 40 and the main radial branch 30 can be vertically upward extend.
  • the orientation direction of the free end of the parasitic branch 40 may also form a certain angle with the orientation direction of the free end of the main radial branch 30 and be within the same area.
  • the extension directions of the free ends of the two may intersect and A small included angle is formed, and the included angle may be greater than 0 degrees and less than 90 degrees.
  • the direction of the free end of the parasitic branch 40 is different from the direction of the free end of the main radial branch 30, which may mean that the direction of the free end of the two is not in the same area.
  • the orientation direction of the free end of the parasitic branch 40 and the orientation direction of the free end of the main radial branch 30 may form a certain angle and be in different ranges, and the extension directions of the free ends of the two may intersect and form a relatively large angle.
  • the included angle can be greater than or equal to 90 degrees and less than or equal to 180 degrees. For example, in Fig. 3 and Fig.
  • the free end of the parasitic branch 40 can extend vertically upwards, the free end of the main radial branch 30 can extend to the right, the extension directions of the free ends of the two intersect and can be 90 degrees, the two The orientation of the free ends is different.
  • the free end of the parasitic branch 40 can extend vertically upwards, and the free end of the main radial branch 30 can extend downward, and the extension directions of the free ends of the two intersect and can form 180 degrees.
  • the orientation of the free end of the holder is different.
  • the first body 10 and the second body 20 may be in the shape of a thin plate or sheet, or may be a hollow frame structure.
  • the first body 10 and the second body 20 can provide support for the electronic devices in the electronic device 100 , so as to install the electronic devices in the electronic device 100 together.
  • electronic components such as a camera, a receiver, a circuit board provided with radio frequency circuits such as the feed source 61 , and a power supply in the electronic device 100 can be installed on the first body 10 and the second body 20 for fixing.
  • the first body 10 and the second body 20 can be switched between the overlapped state and the unfolded state.
  • first body 10 and the second body 20 when the first body 10 and the second body 20 are folded, as shown in Figures 1 and 3, the first body 10 and the second body 20 can move left and right and relatively unfolded to the unfolded state; 4, the first body 10 and the second body 20 can also move left and right and be folded to overlap each other.
  • first body 10 and the second body 20 when the first body 10 and the second body 20 are in the overlapped state, as shown in FIG. 31 may be in the same direction; as shown in FIG. 4 , the orientation of the free end of the parasitic branch 40 such as the first free end 41 may be different from the direction of the free end of the main radial branch 30 such as the second free end 31 .
  • FIG. 5 is a third structural schematic diagram of the electronic device 100 provided by the embodiment of the present application
  • FIG. 6 is a structural schematic diagram of the electronic device 100 shown in FIG. 5 in another form
  • FIG. 7 is a schematic diagram of a fourth structure of the electronic device 100 provided by the embodiment of the present application
  • FIG. 8 is a schematic diagram of the structure of the electronic device 100 shown in FIG. 7 in another form.
  • the first body 10 and the second body 20 can move up and down and relatively unfolded to the unfolded state during the folding operation; in the embodiment of Fig. 6 and Fig. 8, the first body 10 and the second body 20 can move up and down and fold each other to an overlapping state during the folding operation. And, when the first body 10 and the second body 20 are in the overlapped state, as shown in FIG. 31 may be in the same direction; as shown in FIG. 8 , the orientation of the free end of the parasitic branch 40 such as the first free end 41 may be different from the direction of the free end of the main radial branch 30 such as the second free end 31 . Based on this, the embodiment of the present application does not limit the specific folding manner of the first body 10 and the second body 20 .
  • FIG. 11 is a schematic view of the sixth structure of the electronic device 100 provided by the embodiment of the present application
  • FIG. 12 is a schematic view of the electronic device 100 shown in FIG. 11 in another form Schematic diagram of the structure.
  • the first body 10 and the second body 20 can slide relatively away from each other to the unfolded state; as shown in Figures 10 and 12, the first body 10 and the second body 20 can also slide toward each other until overlapping state.
  • the first body 10 and the second body 20 are in the overlapped state, as shown in FIG.
  • the orientation of the free end of the parasitic branch 40 such as the first free end 41 may be different from the direction of the free end of the main radial branch 30 such as the second free end 31 .
  • the embodiment of the present application does not limit the specific sliding manner of the first body 10 and the second body 20 .
  • the electronic device 100 may also include, but is not limited to, a connecting structure 50 such as a rotating shaft structure and a slide rail structure, so that the first body 10 and the second body 20 can be folded and connected to each other. slide.
  • a connecting structure 50 such as a rotating shaft structure and a slide rail structure
  • both the first body 10 and the second body 20 have a certain thickness, when the first body 10 and the second body 20 are folded or slid to be in an overlapping state, the first body 10 and the second body 20
  • the two bodies 20 can be stacked in the thickness direction.
  • the size of the first body 10 and the second body 20 can be the same or different, therefore, in the overlapping state, all the first body 10 can overlap with the second body 20, or part of the first body 10 can overlap with the second body 20.
  • the second body 20 overlaps.
  • the embodiment of the present application does not limit the specific structure of the overlapping state of the first body 10 and the second body 20 .
  • the main radiation branch 30 and the parasitic branch 40 can be made of conductive material and can radiate wireless signals.
  • Global Positioning System Global Positioning System, referred to as GPS
  • 3G third-generation mobile communication technology
  • 4G fourth-generation mobile communication technology
  • 5G fifth-generation mobile communication technology
  • the parasitic branch 40 can be used as the auxiliary radiation branch of the main radiation branch 30. 40 can improve the radiation performance of the antenna system formed by the main radiation branch 30 and the parasitic branch 40 .
  • the main radiation branch 30 and the parasitic branch 40 are far away from each other and do not overlap.
  • the two do not generate electromagnetic coupling.
  • the main radiation branch 30 can independently generate the first resonance and support the first frequency band under the excitation of the excitation signal provided by the feed source 61 .
  • the electronic device 100 may further include a matching circuit 62, and the matching circuit 62 may be connected in series between the feed source 61 and the main radiation branch 30, and the matching circuit 62 may match the impedance of the feed source 61 when transmitting the excitation signal, so as to
  • the main radiation branch 30 can form the first resonance and support the first wireless signal in the first frequency band.
  • the parasitic branch 40 when the first body 10 and the second body 20 are in an overlapping state, at least part of the parasitic branch 40 can overlap with the main radial branch 30, at least The projection of part of the parasitic branch 40 on the first body 10 may be located on the main radiating branch 30, the parasitic branch 40 may be electromagnetically coupled with the main radiating branch 30, and the parasitic branch 40 and the main radiating branch 30 may jointly generate a resonance different from the first resonance.
  • the parasitic stub 40 and the main radiation stub 30 can jointly support the wireless signal of the second frequency band.
  • the parasitic stub 40 can serve as the auxiliary radiation stub of the main radiation stub 30 .
  • the parasitic branch 40 when at least part of the second body 20 overlaps with the first body 10 and the direction of the free end of the parasitic branch 40 is in the same direction as the direction of the free end of the main radial branch 30 , the parasitic branch The electrical length of 40 may be less than a quarter of the corresponding wavelength of the first frequency band supported by the main radiation branch 30, and the center frequency of the second frequency band jointly supported by the parasitic branch 40 and the main radiation branch 30 may be greater than the center frequency of the first frequency band.
  • the branch 40 is an auxiliary branch of the main radiation branch 30 , and the second resonance formed by the parasitic branch 40 and the main radiation branch 30 can improve the radiation performance of the first resonance formed by the main radiation branch 30 .
  • FIG. 13 is a schematic diagram comparing the S-parameter curves of the electronic device 100 shown in FIG.
  • FIG. 14 is a schematic diagram showing the comparison of the antenna efficiency curves between the parasitic stub 40 and the parasitic stub 40 without the parasitic stub 40 in the overlapping state of the electronic device 100 shown in FIG. 2 .
  • Curve S11 in Fig. 13 is the S parameter curve of not setting parasitic branch 40 (or the electric length of parasitic branch 40 is 0) under the overlapping state of electronic equipment 100 of Fig.
  • the S parameter curve when the branch 40 (the electrical length of the parasitic branch 40 is less than a quarter of the corresponding wavelength of the first frequency band); the curve S13 in Fig. 14 is that the electronic equipment 100 in Fig.
  • the electrical length of the branch 40 is the system efficiency curve of 0), and the curve S14 is the system in which the parasitic branch 40 is set under the overlapping state of the electronic equipment 100 in FIG. efficiency curve.
  • the other two solid lines in FIG. 14 are the radiation efficiency curves corresponding to the curve S13 and the curve S14, which will not be described in detail here.
  • the parasitic branch 40 when at least part of the second body 20 overlaps with the first body 10 and the direction of the free end of the parasitic branch 40 is different from the direction of the free end of the main radial branch 30 , the parasitic branch The electrical length of 40 may be greater than a quarter of the wavelength corresponding to the first frequency band supported by the main radiation branch 30, and the center frequency of the second frequency band jointly supported by the parasitic branch 40 and the main radiation branch 30 may be smaller than the center frequency of the first frequency band.
  • the branch 40 is an auxiliary branch of the main radiation branch 30 , and the second resonance formed by the parasitic branch 40 and the main radiation branch 30 can improve the radiation performance of the first resonance formed by the main radiation branch 30 .
  • FIG. 15 is a schematic diagram comparing S-parameter curves of parasitic stubs 40 with different electrical lengths in the overlapping state of the electronic device 100 shown in FIG. 4
  • FIG. 16 It is a schematic diagram of comparing antenna efficiency curves of parasitic stubs 40 with different electrical lengths in an overlapping state of electronic devices 100 as shown in FIG. 4 .
  • the curve S1 is the S-parameter curve of the electronic device 100 when the electrical length of the parasitic branch 40 is 0 when the first body 10 and the second body 20 overlap, that is, the curve S1 is the first body 10 and the second body 20.
  • the curve S4 is the system efficiency curve of the electronic device 100 when the electrical length of the parasitic branch 40 is 0 (that is, no parasitic branch 40 is provided) in the overlapping state of the first body 10 and the second body 20;
  • curve S5 The system efficiency curve of the electronic device 100 when the parasitic stub 40 of the first electrical length is set for the overlapping state of the first body 10 and the second body 20;
  • the curve S6 is for the overlapping state of the first body 10 and the second body 20.
  • the system efficiency curve of the electronic device 100 when the parasitic stub 40 is present. It should be noted that the three dotted lines in FIG. 8 are radiation efficiency curves corresponding to the curves S4 to S6 , which will not be described in detail here.
  • the center frequency of the second frequency band supported by the parasitic branch 40 and the main radiation branch 30 can be smaller than the center frequency of the first frequency band (the resonance on the left side in the curve S2 and the curve S3 The frequency of the point is less than the frequency of the resonance point on the right).
  • the electrical length of the parasitic branch 40 is larger, the center frequency of the second frequency band jointly supported by the parasitic branch 40 and the main radiation branch 30 is lower, and the second frequency band can be shifted to a lower frequency.
  • the system efficiency of the electronic device 100 with the parasitic stub 40 is improved to a certain extent compared with the system efficiency of the electronic device 100 without the parasitic stub 40 .
  • the electrical length of the parasitic stub 40 is greater, the system efficiency of the antenna system formed by the main radiation stub 30 and the parasitic stub 40 is greater, and the radiation performance of the electronic device 100 is better.
  • the parasitic branch 40 serves as the auxiliary branch of the main radiation branch 30, and the second resonance formed by the parasitic branch 40 and the main radiation branch 30 can improve the radiation performance of the first resonance formed by the main radiation branch 30, The radiation performance improvement effect of the electronic device 100 is very obvious.
  • the first frequency band may correspond to a frequency range
  • the first frequency band may be a GSM900 frequency band
  • the corresponding frequency range may be 890 MHz to 960 MHz
  • the center frequency band may be 900 MHz.
  • the electrical length of the parasitic branch 40 is greater than or less than a quarter of the corresponding wavelength of the first frequency band, which may refer to that the electrical length of the parasitic branch 40 is greater than or less than the central frequency band (such as 900MHz) of the first frequency band (such as the GSM900 frequency band).
  • the electrical length of the parasitic branch 40 is greater than or less than a quarter of the wavelength corresponding to the minimum frequency (eg 890 MHz) in the first frequency band (eg GSM900 frequency band).
  • the electrical length may refer to an effective electrical length.
  • the electrical length or effective electrical length of the radiation stub is often different from the actual physical length of the radiation stub due to the influence of the shape of the radiation stub and the capacitance, resistance, and inductance of the radiation stub electrical connection.
  • the electrical length of the parasitic branch 40 can be equal to the difference between the two ends (the ground end and the free end) of the parasitic branch 40. The physical length between.
  • the electrical length of the parasitic branch 40 can be greater or smaller than the physical length between the two ends of the parasitic branch 40 .
  • the electrical length of the parasitic stub 40 can be made larger or smaller than a quarter of the wavelength corresponding to the first frequency band by adjusting the shape of the parasitic stub 40 , capacitors, inductors, resistors and other components electrically connected. Its specific debugging method will not be repeated here.
  • the electrical length of the parasitic branch 40 needs to be less than the corresponding wavelength of the first frequency band.
  • the parasitic branch 40 cannot work with the main radiation branch 30 to improve the radiation performance when the main radiation branch 30 forms the first resonance.
  • FIG. 17 is a schematic diagram of the S-parameter curve when the electronic device 100 shown in FIG.
  • FIG. 18 is a schematic diagram of the antenna efficiency curve when the electronic devices 100 shown in FIG. 2 are overlapped and a parasitic stub 40 with an electrical length greater than one quarter of the wavelength corresponding to the first frequency band is set.
  • the curve S15 is the S parameter curve of the electronic device 100 when the electrical length of the parasitic branch 40 is 0 (no parasitic branch 40 is provided) in the overlapping state of the first body 10 and the second body 20, and the curve S16 is the first The S-parameter curve of the electronic device 100 when a parasitic branch 40 of a third electrical length is set in an overlapping state with the first body 10 and the second body 20, and the free end of the parasitic branch 40 is oriented in the same direction as the free end of the main radiation branch 30, wherein the third electrical length The length is greater than a quarter of the wavelength corresponding to the first frequency band. As shown in FIG.
  • the curve S17 is the system efficiency curve of the electronic device 100 when the electrical length of the parasitic branch 40 is 0 (without setting the parasitic branch 40 ) in the overlapping state of the first body 10 and the second body 20;
  • the curve S18 is the first The system efficiency curve of the electronic device 100 when the first body 10 and the second body 20 are overlapped with a parasitic branch 40 of a third electrical length and the free end of the parasitic branch 40 is facing the same direction as the free end of the main radiation branch 30 .
  • another solid line in FIG. 18 is the radiation efficiency curve of the electronic device 100 corresponding to the curve S18 , which will not be described in detail here.
  • the electrical length of the parasitic branch 40 needs to be smaller than the wavelength corresponding to the first frequency band a quarter of.
  • the electrical length of the parasitic branch 40 in the embodiment of the present application needs to be greater than that of the main radiating branch 30 .
  • the first frequency band supported by the radiation branch 30 corresponds to a quarter of the wavelength. If the electrical length of the parasitic branch 40 is less than a quarter of the wavelength corresponding to the first frequency band, the parasitic branch 40 cannot work with the main radiation branch 30 to elevate the main radiation branch. 30 Radiation performance when forming the first resonance.
  • FIG. 19 is a schematic diagram of the S-parameter curve when the electronic device 100 shown in FIG.
  • FIG. 20 is a schematic diagram of the antenna efficiency curve when the electronic device 100 shown in FIG. 4 is overlapped and a parasitic stub 40 whose electrical length is less than a quarter of the wavelength corresponding to the first frequency band is set. As shown in FIG. 19 and FIG. 20.
  • the curve S7 is the S parameter curve of the electronic device 100 when the electrical length of the parasitic branch 40 is 0 (when the parasitic branch 40 is not provided) in the overlapping state of the first body 10 and the second body 20, and the curve S8 is The first body 10 and the second body 20 are overlapped to set a parasitic branch 40 with a third electrical length, and the direction of the free end of the parasitic branch 40 is different from the direction of the free end of the main radiation branch 30.
  • the S parameter curve of the electronic device 100 wherein the first The trielectric length is less than a quarter of the wavelength corresponding to the first frequency band. As shown in FIG.
  • the curve S9 is the system efficiency curve of the electronic device 100 when the electric length of the parasitic branch 40 is 0 (without setting the parasitic branch 40 ) in the overlapping state of the first body 10 and the second body 20;
  • the curve S10 is the first The first body 10 and the second body 20 are overlapped to set a parasitic branch 40 with a third electrical length, and the orientation of the free end of the parasitic branch 40 is different from the orientation of the free end of the main radiation branch 30 , which is the system efficiency curve of the electronic device 100 .
  • another dotted line and a solid line in FIG. 10 are radiation efficiency curves corresponding to curves S9 and S10 , which will not be described in detail here.
  • the electrical length of the parasitic branch 40 in the embodiment of the present application needs to be greater than
  • the first frequency band supported by the main radiation branch 30 corresponds to a quarter of the wavelength.
  • the second frequency band supported by the main radiation branch 30 and the parasitic branch 40 and the main radiation branch may at least partially overlap.
  • the first frequency band may be 890MHz to 960MHz
  • the second frequency band may be 680MHz to 910MHz, and the two may overlap within the frequency range of 890MHz to 910MHz.
  • the first frequency band and the second frequency band may be two frequency bands with different central frequency bands within the same frequency range (for example, both within the GSM900 frequency range), and the first frequency band and the second frequency band may at least partially overlap, thereby, the main
  • the radiation stub 30 and the parasitic stub 40 can jointly support wireless signals, for example, wireless signals in the GSM900 frequency band.
  • the main radiation branch 30 can form the first resonance and support the wireless signal of the first frequency band
  • the main radiation branch 30 is arranged on the first body 10
  • the parasitic branch 40 is arranged on the second body Two bodies 20, when the first body 10 and the second body 20 are folded or slid relative to each other so that at least part of the second body 20 overlaps the first body 10, at least part of the parasitic branches 40 can overlap with the main radiation branch 30 and overlap with the main radiation.
  • the branch 30 is coupled, and the parasitic branch 40 and the main radiation branch 30 can jointly form a second resonance and jointly support the second frequency band.
  • the electrical length of the parasitic branch 40 is less than a quarter of the wavelength corresponding to the first frequency band
  • the electrical length of the parasitic branch 40 can be greater than the corresponding wavelength of the first frequency band a quarter. Based on this, the parasitic stub 40 can reduce the loss caused by the matching circuit when the main radiation stub 30 supports the first wireless signal. The system efficiency of the formed antenna system makes the radiation performance of the electronic device 100 better.
  • the first body 10 may include a first side 12 and a second side 13 that are bent and connected, and the first side 12 and the second side 13 are not collinear and intersect.
  • the second body 20 may include a third side 22, and the third side 22 may be disposed opposite to the first side 12, for example, the third side 22 and the first side 12 have the same orientation, and the third side 22 may be parallel to the first side 12. .
  • the parasitic stub 40 may include a first free end 41 and a first ground end 42 oppositely disposed, the first ground end 42 may be grounded, and the first free end 41 may not be grounded. At least part of the parasitic branch 40 may be disposed on the third side 22, and the main radiating branch 30 may include a second free end 31 and a second grounding end 32 oppositely disposed, the second grounding end 32 may be grounded, and the second free end 31 may not be grounded set up. At least part of the main radiating branches 30 may be disposed on the first side 12 .
  • all parasitic branches 40 can be arranged on the third side 22, and all main radiation branches 30 can be arranged on the first side 12, and the free ends of the main radiation branches 30, such as the second free end 31, can be connected with the parasitic branches.
  • the main radiation branch 30 can be arranged on the first side 12 and the second side 13, the parasitic branch 40 can be arranged on the third side 22, and the free end of the main radiation branch 30, such as the second free end 31, can face away from Extending in the direction of the first side 12, the free end of the parasitic branch 40, such as the first free end 41, can extend toward a direction away from the second side 13, so that the free end of the parasitic branch 40, such as the first free end 41, can be directed in the same direction as the main Free ends of the radiating branches 30 such as the second free ends 31 are oriented in different directions.
  • the user holds the electronic device 100 , it is difficult to hold all the main radiation branches 30 , which can reduce the influence of the user's hand on the radiation performance of the main radiation branches 30 .
  • the free end of the main radial branch 30 and the free end of the parasitic branch 40 are not limited to the way shown in FIG.
  • the side 13 and its second free end 31 extend away from the second side 13 so as to have the same orientation as the free end of the parasitic branch 40 .
  • the orientation of the free end of the main radiation branch 30 and the free end of the parasitic branch 40 is not limited to that shown in FIG. 3 .
  • the main radial branch may be disposed on the first side 12 and its second free end 31 may extend toward the direction of the second side 13 so as to be different from the free end of the parasitic branch 40 . Based on this, the embodiment of the present application does not limit the specific structures of the main radial branch 30 and the parasitic branch 40 .
  • the second body 20 when at least part of the second body 20 overlaps with the first body 10 and the direction of the free end of the parasitic branch 40 is in the same direction as the direction of the free end of the main radial branch 30, at least part of the first free end 41 is in the
  • the projection on the second free end 31 may be located on the second free end 31 , and at least part of the first free end 41 may overlap the second free end 31 .
  • the second body 20 overlaps the first body 10 and the direction of the free end of the parasitic branch 40 is different from the direction of the free end of the main radial branch 30 , at least part of the first free end 41 is in the
  • the projection on the second free end 31 can also be located on the second free end 31 , and at least part of the first free end 41 can overlap with the second free end 31 .
  • the parasitic branch 40 and the main radial branch 30 can be designed , so that at least part of the first free end 41 can overlap the second free end 31 .
  • the current can flow from the ground end of the main radiation branch 30 and the parasitic branch 40 to The free end flows, and the current at the free end is larger.
  • the first free end 41 and the second free end 31 overlap with the movement of the first body 10 and the second body 20, the current on the second free end 31 is more easily coupled to the first free end 41, thereby making it easier to excite The parasitic stub 40 produces the second resonance.
  • the first free end of the embodiment of the present application may also not overlap the second free end 31 , as shown for example in FIGS. 3 and 4 .
  • the embodiment of the present application does not limit the specific structures of the parasitic branch 40 and the main radial branch 30 .
  • FIG. 22 is a schematic diagram of a current flow of the electronic device 100 shown in FIG. 2 .
  • the first current I1 flowing on the main radiation branch 30 can be grounded from the second The end 32 flows to the second free end 31, and the second current I2 flowing on the parasitic branch 40 can flow from the first ground end 42 to the first free end 41, so that the first current I1 and the second current I2 flow in the same direction,
  • the direction of the magnetic field generated by the main radiation branch 30 and the direction of the magnetic field generated by the parasitic branch 40 can be in the same direction, and the two can be superimposed, so that the parasitic branch 40 can further improve the radiation performance of the antenna system formed by the main radiation branch 30 and the parasitic branch 40 .
  • the electrical length of the main radiation branch 30 can be equal to a quarter of the wavelength corresponding to the first frequency band
  • the input impedance on the main radiation branch 30 presents pure resistance, which is more conducive to the formation of the first resonance by the main radiation branch 30 .
  • the electrical length of the main radiation branch 30 may also be less than or greater than a quarter of the wavelength corresponding to the first frequency band, and in this case the resonance of the main radiation branch 30 may be adjusted through the matching circuit 62 .
  • the electrical length of the parasitic branch 40 can be greater than that of the first In addition to a quarter of the frequency band, it can also be less than or equal to one-third of the first frequency band.
  • the electrical length of the parasitic branch 40 is greater than one-third of the first frequency band, the center frequency of the second frequency band shifts farther towards the low frequency band, and the contribution of the parasitic branch 40 to the radiation efficiency of the main radiation branch 30 is relatively small. Small.
  • the effective electrical length of the parasitic branch 40 in the embodiment of the present application is between a quarter wavelength and a third wavelength. On the one hand, the parasitic branch 40 can better improve the radiation efficiency of the main radiation branch 30. On the other hand, it can also The cost of the parasitic stub 40 can be saved.
  • FIG. 23 is a schematic diagram of the eighth structure of the electronic device 100 provided by the embodiment of the present application
  • FIG. 24 is a schematic diagram of the ninth structure of the electronic device 100 provided by the embodiment of the present application.
  • the main radiation branch 30 can also form a third resonance under the action of the excitation signal provided by the feed source 61, and the third resonance can propagate the third resonance in free space.
  • the main radiation branch 30 may support a third frequency band, and at this time, the electronic device 100 may further include a control circuit 63 .
  • the control circuit 63 can be electrically connected with the parasitic stub 40 , and the control circuit 63 can change the shape of the parasitic stub 40 , or can change the electrical length of the parasitic stub 40 to control whether the parasitic stub 40 is electromagnetically coupled with the main radiation stub 30 .
  • the control circuit 63 can control the parasitic stub 40 not to couple with the main radiation stub 30 when the main radiation stub 30 supports the third frequency band and at least part of the second body 20 overlaps with the first body 10, and the parasitic stub 40 and the main radiation stub 30 Decoupling.
  • the control circuit 63 may also control the electromagnetic coupling between the parasitic stub 40 and the main radiation stub 30 when the main radiation stub 30 forms the first resonance and at least part of the second body 20 overlaps the first body 10 .
  • control circuit 63 may, but is not limited to, include a circuit structure formed by one or more switches, resistors, capacitors, and inductors.
  • the control circuit 63 may include a switch element, which may be connected in series between the first ground terminal 42 and the ground plane. The switch element may control whether the parasitic branch 40 is connected to the third resonance by controlling whether the first ground terminal 42 is grounded.
  • the main radiation branch 30 is electromagnetically coupled.
  • the control circuit 63 may include a short circuit or an open circuit connected in series between the first ground terminal 42 and the first free end 41 of the parasitic branch 40, and the control circuit 63 may change the electric current of the parasitic branch 40 through the short circuit or the open circuit. The length is such that the parasitic branch 40 cannot electromagnetically couple with the main radiation branch 30 generating the third resonance under the electrical length.
  • control circuit 63 is not limited to the above example, and other structures that can control the electromagnetic coupling or decoupling of the parasitic branch 40 and the main radiation branch 30 are within the protection scope of the embodiment of the present application. The example does not specifically limit this.
  • the main radiation branch 30 can generate the first resonance or the third resonance, the main radiation branch 30 can support the first frequency band and the second frequency band, the main radiation branch 30 realizes multiplexing, and the electronic device 100 can realize miniaturization design .
  • the control circuit 63 can control the parasitic stub 40 not to electromagnetically couple with the main radiation stub 30 generating the third resonance, and the parasitic stub 40 will not adversely affect the main radiation stub 30 generating the third resonance, which can ensure that the main radiation stub 30 Radiation performance at the third resonance.
  • FIG. 25 is a tenth structure schematic diagram of the electronic device 100 provided by the embodiment of the present application
  • FIG. 26 is an eleventh structure schematic diagram of the electronic device 100 provided by the embodiment of the present application.
  • Electronic device 100 may also include regulation circuitry 64 .
  • the adjustment circuit 64 can be electrically connected to the parasitic branch 40, and the adjustment circuit 64 can adjust the electrical length of the parasitic branch 40 when the main radiation branch 30 supports the third frequency band and at least part of the second body 20 overlaps the first body 10 so that the parasitic branch 40 40 can be coupled with the main radiation branch 30 and jointly generate the fourth resonance, and the parasitic branch 40 and the main radiation branch 30 can jointly support the fourth frequency band.
  • the electric current of the parasitic branch 40 may be less than a quarter of the wavelength corresponding to the third frequency band.
  • the parasitic branch 40 can improve the radiation efficiency when the main radiation branch 30 generates the third resonance, so that the electronic device 100 has better radiation performance.
  • the electric current of the parasitic branch 40 may be greater than a quarter of the wavelength corresponding to the second frequency band.
  • the parasitic branch 40 can improve the radiation efficiency when the main radiation branch 30 generates the third resonance, so that the electronic device 100 has better radiation performance.
  • the adjustment circuit 64 may, but is not limited to, include a circuit structure formed by one or more switches, resistors, capacitors, and inductors, and the adjustment circuit 64 may also adjust the resistance value of the resistor, the capacitance value of the capacitor, and the inductance value of the inductor. set up.
  • the adjustment circuit 64 can change the electrical length of the parasitic branch 40, so that for each resonance of the main radiation branch 30 (each supported frequency band), the parasitic branch 40 can have a corresponding electrical length so that the parasitic branch 40 can be resonant with the resonance
  • the electromagnetic coupling of the main radiation branch 30 under (this frequency band) can also ensure that the electrical length of the parasitic branch 40 at this time is greater than or less than a quarter of the wavelength of the wireless signal formed by the main radiation branch 30 under the resonance (this frequency band) .
  • the adjustment circuit 64 can include N adjustment branches, and the adjustment circuit 64 can control a certain adjustment branch when the main radiation branch 30 forms a certain resonance (a certain frequency band). Electrically connected with the parasitic branch 40, so that the parasitic branch 40 is electromagnetically coupled with the main radiation branch 30 and the electrical length of the parasitic branch 40 at this time is greater than or less than a quarter of the wavelength of the wireless signal formed by the current resonance (current frequency band) of the main radiation branch 30 one.
  • the main radiation branch 30 can form multiple resonances and support multiple frequency bands
  • the parasitic branch 40 can be electromagnetically coupled with the main radiation branch 30 that generates the corresponding resonance or the corresponding frequency band under the action of the regulating circuit 64 ,
  • the parasitic branch 40 can improve the radiation efficiency of the main radiation branch 30 in each resonance or frequency band, so that both the main radiation branch 30 and the parasitic branch 40 can be multiplexed, and the electronic device 100 can not only improve the radiation performance, but also realize a miniaturized design.
  • FIG. 27 is a schematic diagram of the twelfth structure of the electronic device 100 provided by the embodiment of the present application
  • FIG. 28 is a schematic diagram of the thirteenth structure of the electronic device 100 provided by the embodiment of the present application.
  • the first body 10 may further include a first middle frame 11
  • the second body 20 may further include a second middle frame 21 .
  • the first middle frame 11 and the second middle frame 21 can be made of conductive material and have a certain rigidity.
  • the first middle frame 11 and the second middle frame 21 can provide support for electronic devices or electronic devices in the electronic device 100 .
  • first middle frame 11 may include the first side 12 and the second side 13 in the foregoing embodiments
  • second middle frame 21 may include the third side 22 in the foregoing embodiments.
  • the main radiation branch 30 can be arranged on the first middle frame 11, the main radiation branch 30 can be formed on the first middle frame 11, for example, be formed on at least one of the first side 12 and the second side 13, and the main radiation branch 30 can also be connected to
  • the first middle frame 11 is, for example, connected to at least one of the first side 12 and the second side 13, the main radiation branches 30 can also be spaced apart from the first middle frame 11, and the projection of the main radiation branches 30 can be located in the first middle frame 11 For example, on at least one of the first side 12 and the second side 13 .
  • the parasitic branch 40 can be arranged on the second middle frame 21 , for example but not limited to at least part of the parasitic branch 40 can be formed on or connected to the third side 22 of the second middle frame 21 , or the parasitic branch 40 can be connected to the third side 22 The intervals are arranged and projected on the third side 22 .
  • first middle frame 11 and the second middle frame 21 can be grounded and form a ground plane.
  • One end of the main radiating branch 30 such as the second free end 31 may be spaced apart from the first middle frame 11
  • the other end of the main radiating branch 30 such as the second grounding end 32 may be connected to the first middle frame 11 and grounded.
  • the first free end 41 of the parasitic branch 40 can be spaced apart from the first middle frame 11
  • the first ground end 42 of the parasitic branch 40 can be spaced apart from the second middle frame 21 .
  • the first middle frame 11 and the second middle frame 21 form a ground plane
  • the main radiation branch 30 and the parasitic branch 40 can be connected with the first middle frame 11 and the second middle frame 21 and pass through the first middle frame 11,
  • the second middle frame 21 is grounded.
  • FIG. 29 is a schematic diagram of the thirteenth structure of the electronic device 100 provided by the embodiment of the present application
  • FIG. 30 is a schematic diagram of the structure of the fourteenth electronic device 100 provided in the embodiment of the present application.
  • a first slit 101 can be opened on the first middle frame 11 to form a first metal branch 111 on the first middle frame 11, and the main radiation branch 30 can include a first metal branch 111, and the first metal branch 111 and the first middle frame 11 One end connected may be the second ground end 32 of the main radiating branch 30 , and the end of the first metal branch 111 not connected to other parts of the first middle frame 11 may be the second free end 31 of the main radiating branch 30 .
  • a second slit 102 may be opened on the second middle frame to form a second metal branch 211 on the second middle frame 21
  • the parasitic branch 40 may include a second metal branch 211
  • the second metal branch 211 is connected to the second middle frame 21
  • One end of the second metal branch 211 may be the first grounding end 42 of the parasitic branch 40
  • the end of the second metal branch 211 not connected to other parts of the second middle frame 21 may be the first free end 41 of the parasitic branch 40 .
  • the electronic device 100 can fill the gap between the first gap 101 and the second gap 102 with a non-conductive material, so as to increase the structural strength of the first middle frame 11 and the second middle frame 21 .
  • the first middle frame 11 and the second middle frame 21 form the main radiation branch 30 and the parasitic branch 40 through slits, and the main radiation branch 30 and the parasitic branch 40 do not need to occupy additional space of the electronic device 100 , the electronic device 100 can achieve a miniaturized design.
  • the electronic device 100 may further include a flexible display 70 , a circuit board 80 and a power supply 90 .
  • the flexible display screen 70 can form a display surface of the electronic device 100 for displaying information such as images and texts.
  • the flexible display 70 may include a liquid crystal display (Liquid Crystal Display, LCD) or an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display and other types of display.
  • the flexible display screen 70 can be connected to the first body 10 and the second body 20 , and can be folded along with the folding of the first body 10 and the second body 20 .
  • a first end of the flexible display 70 can be connected to the first body 10
  • a second end of the flexible display 70 can be connected to the second body 20 .
  • the flexible display screen 70 can make the first end and the second end of the flexible display screen 70 be at the same position as the first body 10 and the second body 20 are unfolded. Plane, the flexible display screen 70 is in an unfolded state.
  • the flexible display 70 can also be folded along with the folding of the first body 10 and the second body 20, so that the first end and the second end of the flexible display 70 Can be folded close to each other or completely close to each other.
  • the electronic device 100 can have a display screen on one of the first body 10 and the second body 20 , and the display screen can be a flexible screen or a non-flexible screen. Flexible screen.
  • the display screen in this embodiment does not change in form with the sliding of the first body 10 and the second body 20 .
  • the circuit board 80 can be installed on the first body 10 or the second body 20 , and the circuit board 80 can be the main board of the electronic device 100 .
  • a processor may be integrated on the circuit board 80 , and one or more functional components such as an earphone jack, an acceleration sensor, a gyroscope, and a motor may also be integrated.
  • the flexible display screen 70 , the feed source 61 , the matching circuit 62 , the control circuit 63 , and the adjustment circuit 64 can be arranged on the circuit board 80 to be controlled by a processor on the circuit board 80 .
  • the power supply 90 may be installed on the first body 10 or the second body 20 . Meanwhile, the power supply 90 can be electrically connected to the circuit board 80 so that the power supply 90 can supply power to the electronic device 100 .
  • a power management circuit may be disposed on the circuit board 80 . The power management circuit is used to distribute the voltage provided by the power supply 90 to various electronic devices in the electronic device 100 .
  • the electronic device 100 in the embodiment of the present application may also include components such as a camera, a sensor, and an acoustic-electric conversion device.
  • components such as a camera, a sensor, and an acoustic-electric conversion device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)

Abstract

一种电子设备,包括第一本体、第二本体、设置于第一本体的主辐射枝节和设置于第二本体的寄生枝节,主辐射枝节支持第一频段,寄生枝节可与主辐射枝节耦合;当寄生枝节与主辐射枝节的自由端朝向同向时,寄生枝节电长度小于第一频段对应波长的四分之一;当二者的朝向不同向时,寄生枝节电长度大于第一频段对应波长的四分之一。

Description

电子设备
本申请要求于2021年12月06日提交中国专利局、申请号为202111481019.9、发明名称为“电子设备”的中国专利申请,以及2022年06月14日提交中国专利局、申请号为202210672886.9、发明名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备可以实现折叠或滑动操作,以使得电子设备可以具有展开形态、折叠形态、滑动形态。并且,电子设备可以包括天线辐射体以实现移动通信服务。
发明内容
本申请提供一种电子设备,可以提升电子设备在折叠或滑动形态下的辐射性能。
第一方面,本申请提供了一种电子设备,包括:
第一本体;
第二本体,可相对所述第一本体折叠或滑动,以使至少部分所述第二本体与所述第一本体重叠;
馈源,用于提供激励信号;
主辐射枝节,设置于所述第一本体,所述主辐射枝节与所述馈源电连接,所述主辐射枝节用于在所述激励信号的作用下支持第一频段;及
寄生枝节,设置于所述第二本体,当至少部分所述第二本体与所述第一本体重叠时,所述寄生枝节与所述主辐射枝节耦合并共同支持第二频段;其中,
当至少部分所述第二本体与所述第一本体重叠且所述寄生枝节的自由端的朝向与所述主辐射枝节的自由端的朝向同向时,所述寄生枝节的电长度小于所述第一频段对应波长的四分之一。
第二方面,本申请提供了一种电子设备,包括:
第一本体;
第二本体,可相对所述第一本体折叠或滑动,以使至少部分所述第二本体与所述第一本体重叠;
馈源,用于提供激励信号;
主辐射枝节,设置于所述第一本体,所述主辐射枝节与所述馈源电连接,所述主辐射枝节用于在所述激励信号的作用下支持第一频段;及
寄生枝节,设置于所述第二本体,当至少部分所述第二本体与所述第一本体重叠时,所述寄生枝节与所述主辐射枝节耦合并共同支持第二频段;其中,
当至少部分所述第二本体与所述第一本体重叠且所述寄生枝节的自由端的朝向与所述主辐射枝节的自由端的朝向不同向时,所述寄生枝节的电长度大于所述第一频段对应波长的四分之一。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的第一种结构示意图。
图2为图1所示的电子设备处于另一形态下的结构示意图。
图3为本申请实施例提供的电子设备的第二种结构示意图。
图4为图3所示的电子设备处于另一形态下的结构示意图。
图5为本申请实施例提供的电子设备的第三种结构示意图。
图6为图5所示的电子设备处于另一形态下的结构示意图。
图7为本申请实施例提供的电子设备的第四种结构示意图。
图8为图7所示的电子设备处于另一形态下的结构示意图。
图9为本申请实施例提供的电子设备的第五种结构示意图。
图10为图9所示的电子设备处于另一形态下的结构示意图。
图11为本申请实施例提供的电子设备的第六种结构示意图。
图12为图11所示的电子设备处于另一形态下的结构示意图。
图13为图2所示的电子设备重叠状态下设置寄生枝节与不设置寄生枝节的S参数曲线对比示意图。
图14为图2所示的电子设备重叠状态下设置寄生枝节与不设置寄生枝节的天线效率曲线对比示意图。
图15为图4所示的电子设备重叠状态下设置不同电长度的寄生枝节时的S参数曲线示意图。
图16为图4所示的电子设备重叠状态下设置不同电长度的寄生枝节时的天线效率曲线示意图。
图17为图2所示的电子设备重叠状态下设置电长度大于第一频段对应波长的四分之一的寄生枝节时的S参数曲线示意图。
图18为图2所示的电子设备重叠状态下设置电长度大于第一频段对应波长的四分之一的寄生枝节时的天线效率曲线示意图。
图19为图4所示的电子设备重叠状态下设置电长度小于第一频段对应波长的四分之一的寄生枝节时的S参数曲线示意图。
图20为图4所示的电子设备重叠状态下设置电长度小于第一频段对应波长的四分之一的寄生枝节时的天线效率曲线示意图。
图21为本申请实施例提供的电子设备的第七种结构示意图。
图22为图2所示的电子设备的一种电流流向示意图。
图23为本申请实施例提供的电子设备的第八种结构示意图。
图24为本申请实施例提供的电子设备的第九种结构示意图。
图25为本申请实施例提供的电子设备的第十种结构示意图。
图26为本申请实施例提供的电子设备的第十一种结构示意图。
图27为本申请实施例提供的电子设备的第十二种结构示意图。
图28为本申请实施例提供的电子设备的第十三种结构示意图。
图29为本申请实施例提供的电子设备的第十四种结构示意图。
图30为本申请实施例提供的电子设备的第十五种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图1至附图30,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种电子设备100。电子设备100可以是智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。请参阅图1和图2,图1为本申请实施例提供的电子设备100的第一种结构示意图,图2为图1所示的电子设备100处于另一形态下的结构示意图。电子设备100包括第一本体10、第二本体20、主辐射枝节30、寄生枝节40和馈源61。
第一本体10和第二本体20可互相朝着对方进行折叠或滑动操作,以使得至少部分第二本体20和第一本体10可以重叠。主辐射枝节30可设置于第一本体10,主辐射枝节30可以与馈源61电性连接,馈源61可向主辐射枝节30提供激励信号,主辐射枝节30可在激励信号的作用下形成第一谐振,该第一谐振可以在自由空间内传播第一频段的无线信号,主辐射枝节30可在激励信号的作用下支持第一频段。寄生枝节40可设置于第二本体20,当第一本体10和第二本体20折叠或滑动后且至少部分第二本体20和第一本体10重叠时,至少部分寄生枝节40可与主辐射枝节30重叠,寄生枝节40可与主辐射枝节30电磁耦合,寄生枝节40可与主辐射枝节30共同产生第二谐振,该第二谐振可以在自由空间内传播第二频段的无线信号,寄生枝节40可与主辐射枝节30共同支持第二频段。
其中,如图1和图2所示,当至少部分第二本体20与第一本体10重叠时,寄生枝节40的自由端例如第一自由端41的朝向可以与主辐射枝节30的自由端例如第二自由端31的朝向同向,此时,寄生枝节40的电长度可以小于第一频段对应波长的四分之一。
其中,结合图1和图2并请参考图3和图4,图3为本申请实施例提供的电子设备100的第二种结构示意图,图4为图3所示的电子设备100处于另一形态下的结构示意图,当至少部分第二本体20与第一本体10重叠时,寄生枝节40的自由端例如第一自由端41的朝向可以与主辐射枝节30的自由端例如第二自由端31的朝向不同向,此时,寄生枝节40的电长度可以大于第一频段对应波长的四分之一。
可以理解的是,寄生枝节40的自由端可以是其未接地的一端端部,寄生枝节40的自由端的朝向可以是寄生枝节40的延伸方向。同理,主辐射枝节30的自由端可以是其未接地的一端端部,主辐射枝节30的自由端的朝向可以是主辐射枝节30的延伸方向。
可以理解的是,寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向,可以是指二者的自由端的朝向处于同一区域范围内。示例性的,寄生枝节40的自由端的朝向方位可以与主辐射枝节30的自由端的朝向方位完全相同,例如图1、图2中,寄生枝节40和主辐射枝节30的自由端均可以竖直向上延伸。再示例性的,寄生枝节40的自由端的朝向方向也可以与主辐射枝节30的自由端的朝向方向呈一定夹角且处于同一区域范围内,例如但不限于二者的自由端的延伸方向可以相交并呈一较小的夹角,该夹角可以大于0度小于90度。
可以理解的是,寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向,可以是指二 者的自由端的朝向不处于同一区域范围内。寄生枝节40的自由端的朝向方向可以与主辐射枝节30的自由端的朝向方向呈一定夹角并处于不同的区域范围内,二者的自由端的延伸方向可以相交并呈一较大的夹角,该夹角可以大于等于90度并小于等于180度。例如,在图3和图4中,寄生枝节40的自由端可以竖直向上延伸,主辐射枝节30的自由端可以向右延伸,二者的自由端的延伸方向相交并可呈90度,二者的自由端的朝向不同向。再例如,在后文的图21中,寄生枝节40的自由端可以竖直向上延伸,主辐射枝节30的自由端可以向下延伸,二者的自由端的延伸方向相交并可呈180度,二者的自由端的朝向不同向。
其中,第一本体10、第二本体20可为薄板状或薄片状的结构,也可以为中空的框体结构。第一本体10、第二本体20可为电子设备100中的电子器件提供支撑作用,以将电子设备100中的电子器件安装到一起。例如,电子设备100中的摄像头、受话器、设置有馈源61等射频电路的电路板、电源等电子器件都可以安装到第一本体10、第二本体20上进行固定。
其中,在进行折叠或滑动操作的过程中,第一本体10和第二本体20可以在重叠状态和展开状态之间切换。
例如,当第一本体10和第二本体20进行折叠操作时,如图1和图3所示,第一本体10和第二本体20可以左右移动并相对展开至展开状态;如图2和图4所示,第一本体10和第二本体20也可以左右移动并相互折叠至重叠状态。并且,当第一本体10和第二本体20处于重叠状态时,如图2所示,寄生枝节40的自由端例如第一自由端41的朝向与主辐射枝节30的自由端例如第二自由端31的朝向可以同向;如图4所示,寄生枝节40的自由端例如第一自由端41的朝向与主辐射枝节30的自由端例如第二自由端31的朝向可以不同向。
可以理解的是,第一本体10和第二本体20进行折叠操作时的折叠方向并不限于图1和图2所示的左右折叠的方向。示例性的,请参考图5至图8,图5为本申请实施例提供的电子设备100的第三种结构示意图,图6为图5所示的电子设备100处于另一形态下的结构示意图,图7为本申请实施例提供的电子设备100的第四种结构示意图,图8为图7所示的电子设备100处于另一形态下的结构示意图。在图5和图7所示的实施例中,第一本体10和第二本体20进行折叠操作时可以上下移动并相对展开至展开状态;在图6和图8的实施例中,第一本体10和第二本体20进行折叠操作时可以上下移动并相互折叠至重叠状态。并且,当第一本体10和第二本体20处于重叠状态时,如图6所示,寄生枝节40的自由端例如第一自由端41的朝向与主辐射枝节30的自由端例如第二自由端31的朝向可以同向;如图8所示,寄生枝节40的自由端例如第一自由端41的朝向与主辐射枝节30的自由端例如第二自由端31的朝向可以不同向。基于此,本申请实施例对第一本体10和第二本体20的具体折叠方式不进行限定。
再例如,当第一本体10和第二本体20进行滑动操作时,请参考图9至图12,图9为本申请实施例提供的电子设备100的第五种结构示意图,图10为图9所示的电子设备100处于另一形态下的结构示意图,图11为本申请实施例提供的电子设备100的第六种结构示意图,图12为图11所示的电子设备100处于另一形态下的结构示意图。如图9和图11所示,第一本体10和第二本体20可以相对远离滑动至展开状态;如图10和图12所示,第一本体10和第二本体20也可以相向靠近滑动至重叠状态。并且,当第一本体10和第二本体20处于重叠状态时,如图10所示,寄生枝节40的自由端例如第一自由端41的朝向与主辐射枝节30的自由端例如第二自由端31的朝向可以同向;如图12所示,寄生枝节40的自由端例如第一自由端41的朝向与主辐射枝节30的自由端例如第二自由端31的朝向可以不同向。本申请实施例对第一本体10和第二本体20的具体滑动方式不进行限定。
可以理解的是,如图1至图12所示,电子设备100还可以但不限于包括转轴结构、滑轨结构等连接结构50,以使得第一本体10和第二本体20可相互折叠和相互滑动。对于转轴结构、滑轨结构等连接结构50的具体结构可以参见相关技术中的说明,在此不在详述。
可以理解的是,由于第一本体10和第二本体20均具有一定的厚度,因此,当第一本体10和第二本体20进行折叠或滑动操作而处于重叠状态时,第一本体10和第二本体20可以在厚度方向上堆叠设置。并且,由于第一本体10和第二本体20的尺寸可以相同也可不相同,因此,重叠状态下,全部的第一本体10可以与第二本体20重叠,或者,部分的第一本体10可以与第二本体20重叠。本申请实施例对第一本体10和第二本体20处于重叠状态的具体结构不进行限定。
其中,主辐射枝节30和寄生枝节40可以由导体材质制备并可辐射无线信号,例如,主辐射枝节30、寄生枝节40可以但不限于支持无线保真(Wireless Fidelity,简称Wi-Fi)信号、全球定位系统(Global Positioning System,简称GPS)信号、第三代移动通信技术(3rd-Generation,简称3G)、第四代移动通信技术(4th-Generation,简称4G)、第五代移动通信技术(5th-Generation,简称5G)。当寄生枝节40与主辐射枝节30电磁耦合时,寄生枝节40可与主辐射枝节30共同支持第二频段的无线信号,此时,寄生枝节40可以作为主辐射枝节30的辅辐射枝节,寄生枝节40可以提升主辐射枝节30和寄生枝节40形成的天线系统的辐射性能。
如图1、图3、图5、图7、图9、图11所示,当第一本体10和第二本体20处于展开状态时,主辐射枝节30和寄生枝节40相互远离并不重叠,二者不产生电磁耦合,此时主辐射枝节30可以在馈源61提供的激励信号的激励下单独产生第一谐振并支持第一频段。可以理解的是,电子设备100还可以包括匹配电路62,匹配电路62可以串联在馈源61和主辐射枝节30之间,匹配电路62可对馈源61传输激励信号时的阻抗进行匹配,以使主辐射枝节30可以形成第一谐振并支持第一频段的第一无线信号。
如图2、图4、图6、图8、图10、图12所示,当第一本体10和第二本体20处于重叠状态时,至少部分寄生枝节40可与主辐射枝节30重叠,至少部分寄生枝节40在第一本体10上的投影可位于主辐射枝节30上,寄生枝节40可与主辐射枝节30电磁耦合,寄生枝节40可与主辐射枝节30共同产生一区别于第一谐振的第二谐振,寄生枝节40可与主辐射枝节30共同支持第二频段的无线信号,此时,寄生枝节40可以作为主辐射枝节30的辅辐射枝节。
其中,如图2、图6和图10所示,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向时,寄生枝节40的电长度可以小于主辐射枝节30支持的第一频段对应波长的四分之一,寄生枝节40与主辐射枝节30共同支持的第二频段的中心频率可大于第一频段的中心频率,寄生枝节40作为主辐射枝节30的辅助枝节,寄生枝节40与主辐射枝节30共同形成的第二谐振可以提升主辐射枝节30形成的第一谐振的辐射性能。
示例性的,请结合图1、图2并请参考图13和图14,图13为图2所示的电子设备100重叠状态下设置寄生枝节40与不设置寄生枝节40的S参数曲线对比示意图,图14为图2所示的电子设备100重叠状态下设置寄生枝节40与不设置寄生枝节40的天线效率曲线对比示意图。图13中曲线S11为图2的电子设备100重叠状态下不设置寄生枝节40(或者寄生枝节40的电长度为0)的S参数曲线,曲线S12为图2的电子设备100重叠状态下设置寄生枝节40(寄生枝节40的电长度小于第一频段对应波长的四分之一)时的S参数曲线;图14中曲线S13为图2的电子设备100重叠状态下不设置寄生枝节40(或者寄生枝节40的电长度为0)的系统效率曲线,曲线S14为图2的电子设备100重叠状态下设置寄生枝节40(寄生枝节40的电长度小于第一频段对应波长的四分之一)的系统效率曲线。需要说明的是,图14中另外两条实线为曲线S13和曲线S14对应的辐射效率曲线,在此不再详述。
当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向且寄生枝节40的电长度小于主辐射枝节30支持的第一频段对应波长的四分之一时,对比曲线S11和S12可知,寄生枝节40与主辐射枝节30共同支持的第二频段的中心频率可大于第一频段的中心频率(曲线S12中右边的谐振点的频率大于左边谐振点的频率);对比曲线S13和S14可知,设置寄生枝节40的电子设备100的系统效率相较于不设置寄生枝节40的电子设备100的系统效率可以提升2dB以上,寄生枝节40作为主辐射枝节30的辅助枝节,寄生枝节40与主辐射枝节30共同形成的第二谐振可以提升主辐射枝节30形成的第一谐振的辐射性能,电子设备100的辐射性能提升效果非常明显。
其中,如图4、图8和图12所示,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时,寄生枝节40的电长度可以大于主辐射枝节30支持的第一频段对应波长的四分之一,寄生枝节40与主辐射枝节30共同支持的第二频段的中心频率可小于第一频段的中心频率,寄生枝节40作为主辐射枝节30的辅助枝节,寄生枝节40与主辐射枝节30共同形成的第二谐振可以提升主辐射枝节30形成的第一谐振的辐射性能。
示例性的,请结合图3、图4并参考图15和图16,图15为图4所示的电子设备100重叠状态下设置不同电长度的寄生枝节40的S参数曲线对比示意图,图16为图4所示的电子设备100重叠状态下设置不同电长度的寄生枝节40的天线效率曲线对比示意图。如图15所示,曲线S1为第一本体10和第二本体20重叠状态下寄生枝节40的电长度为0时的电子设备100的S参数曲线,也即,曲线S1为第一本体10和第二本体20重叠状态下不设置寄生枝节40时的主辐射枝节30的S参数曲线;曲线S2为第一本体10和第二本体20重叠状态设置第一电长度的寄生枝节40时电子设备100的S参数曲线;曲线S3为第一本体10和第二本体20重叠状态设置第二电长度的寄生枝节40时电子设备100的S参数曲线,其中,第一电长度小于第二电长度,第一电长度和第二电长度均大于第一频段的四分之一。如图16所示,曲线S4为第一本体10和第二本体20重叠状态下寄生枝节40的电长度为0时(也即不设置寄生枝节40)的电子设备100的系统效率曲线;曲线S5为第一本体10和第二本体20重叠状态设置第一电长度的寄生枝节40时电子设备100的系统效率曲线;曲线S6为第一本体10和第二本体20重叠状态设置第二电长度的寄生枝节40时电子设备100的系统效率曲线。需要说明的是,图8中三条虚线为与曲线S4至S6相对应的辐射效率曲线,在此不再详述。
当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向且寄生枝节40的电长度大于主辐射枝节30支持的第一频段对应波长的四分之一时,对比曲线S1至S3可知,寄生枝节40与主辐射枝节30共同支持的第二频段的中心频率可小于第一频段的中心频率(曲线S2、曲线S3中左边的谐振点的频率小于右边谐振点的频率)。并且,当寄生枝节40的 电长度越大时,寄生枝节40和主辐射枝节30共同支持的第二频段的中心频率越低,第二频段可向低频偏移。
相应的,对比曲线S4至S6,设置寄生枝节40的电子设备100的系统效率相较于不设置寄生枝节40的电子设备100的系统效率具有一定幅度的提升。并且,当寄生枝节40的电长度越大时,主辐射枝节30和寄生枝节40形成的天线系统的系统效率越大,电子设备100的辐射性能越优。例如,对比曲线S4和S6,相较于不设置寄生枝节40的方案而言,设置较长的第二电长度寄生枝节40的电子设备100,主辐射枝节30和寄生枝节40形成的天线系统的系统效率提升了1.7dB左右,电子设备100的辐射性能的提升效果非常明显。本申请实施例的电子设备100,寄生枝节40作为主辐射枝节30的辅助枝节,寄生枝节40与主辐射枝节30共同形成的第二谐振可以提升主辐射枝节30形成的第一谐振的辐射性能,电子设备100的辐射性能提升效果非常明显。
可以理解的是,第一频段可以对应一个频段范围,例如,第一频段可以是GSM900频段,其对应的频段范围可为890MHz至960MHz,中心频段可为900MHz。此时,寄生枝节40的电长度大于或小于第一频段对应波长的四分之一,可以是指寄生枝节40的电长度大于或小于第一频段(例如GSM900频段)的中心频段(例如900MHz)对应波长的四分之一;也可以是指寄生枝节40的电长度大于或小于第一频段(例如GSM900频段)中最小频率(例如890MHz)对应波长的四分之一。
可以理解的是,电长度可以是指有效电长度。一般而言,受到辐射枝节形状、辐射枝节电连接的电容、电阻、电感等器件的影响,辐射枝节的电长度或有效电长度往往区别于辐射枝节的实际物理长度。例如,如图1所示,当寄生枝节40上没有设置可改变有效电长度的调谐电路、匹配电路时,寄生枝节40的电长度可等于寄生枝节40两端部(接地端与自由端)之间的物理长度。当寄生枝节40上还设置可改变有效电长度的调谐电路、匹配电路时,此时,寄生枝节40的电长度可大于或小于寄生枝节40两端部之间的物理长度。实际调试中,可以通过调整寄生枝节40的形状、电连接的电容、电感、电阻等器件,使得寄生枝节40的电长度大于或小于第一频段对应波长的四分之一。其具体的调试方式在此不进行赘述。
其中,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向时,寄生枝节40的电长度需要小于第一频段对应波长的四分之一,如果寄生枝节40的电长度大于第一频段对应波长的四分之一,寄生枝节40反而不能和主辐射枝节30一起提升主辐射枝节30形成第一谐振时的辐射性能。
示例的,请参考图17和图18,图17为图2所示的电子设备100重叠状态下设置电长度大于第一频段对应波长的四分之一的寄生枝节40时的S参数曲线示意图,图18为图2所示的电子设备100重叠状态下设置电长度大于第一频段对应波长的四分之一的寄生枝节40时的天线效率曲线示意图。如图17所示,曲线S15为第一本体10和第二本体20重叠状态下寄生枝节40的电长度为0时(不设置寄生枝节40)的电子设备100的S参数曲线,曲线S16为第一本体10和第二本体20重叠状态设置第三电长度的寄生枝节40且寄生枝节40的自由端朝向与主辐射枝节30的自由端朝向相同时电子设备100的S参数曲线,其中第三电长度大于第一频段对应波长的四分之一。如图18所示,曲线S17为第一本体10和第二本体20重叠状态下寄生枝节40的电长度为0时(不设置寄生枝节40)的电子设备100的系统效率曲线;曲线S18为第一本体10和第二本体20重叠状态下设置第三电长度的寄生枝节40且寄生枝节40的自由端朝向与主辐射枝节30的自由端朝向相同时电子设备100的系统效率曲线。需要说明的是,图18中另一条实线为曲线S18对应的电子设备100的辐射效率曲线,在此不再详述。
对比曲线S15和S16可知,当寄生枝节40的电长度越大时,寄生枝节40和主辐射枝节30支持的第二频段的中心频率越低,第二频段可向低频偏移(曲线S16中左边的谐振点的频率低于右边的谐振点的频率)。相应的,对比曲线S17和S18,当寄生枝节40的电长度大于第一频段对应波长的四分之一时,主辐射枝节30和寄生枝节40形成的天线系统在GSM900频率处(第一频段处)会形成效率凹槽(曲线S16在GSM900频率处向下凹),天线系统在0.9GHz频率下(第一频段下)的系统效率降低3dB左右,电子设备100的辐射性能反而会恶化。基于此,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向时,寄生枝节40的电长度需要小于第一频段对应波长的四分之一。
其中,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时,本申请实施例的寄生枝节40的电长度需要大于主辐射枝节30支持的第一频段对应波长的四分之一,如果寄生枝节40的电长度小于第一频段对应波长的四分之一,寄生枝节40反而不能和主辐射枝节30一起提升主辐射枝节30形成第一谐振时的辐射性能。
示例性的,请参考图19和图20,图19为图4所示的电子设备100重叠状态下设置电长度小于第一频段对应波长的四分之一的寄生枝节40时的S参数曲线示意图,图20为图4所示的电子设备100重叠状态下设置电长度小于第一频段对应波长的四分之一的寄生枝节40时的天线效率曲线示意图。如图19 所示,曲线S7为第一本体10和第二本体20重叠状态下寄生枝节40的电长度为0时(不设置寄生枝节40时)的电子设备100的S参数曲线,曲线S8为第一本体10和第二本体20重叠状态设置第三电长度的寄生枝节40且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时电子设备100的S参数曲线,其中第三电长度小于第一频段对应波长的四分之一。如图20所示,曲线S9为第一本体10和第二本体20重叠状态下寄生枝节40的电长度为0时(不设置寄生枝节40)的电子设备100的系统效率曲线;曲线S10为第一本体10和第二本体20重叠状态设置第三电长度的寄生枝节40且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时电子设备100的系统效率曲线。需要说明的是,图10中另外的一条虚线以及一条实线为与曲线S9和S10相对应的辐射效率曲线,在此不再详述。
对比曲线S7和S8可知,当寄生枝节40的电长度越小时,寄生枝节40和主辐射枝节30支持的第二频段的中心频率越高,第二频段可向高频偏移。相应的,对比曲线S9和S10,当寄生枝节40的电长度小于第一频段对应波长的四分之一时,主辐射枝节30和寄生枝节40形成的天线系统在GSM900频率处会形成效率凹槽,天线系统在0.9GHz频率下的系统效率降低3dB左右,电子设备100的辐射性能反而会恶化。基于此,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时,本申请实施例的寄生枝节40的电长度需要大于主辐射枝节30支持的第一频段对应波长的四分之一。
可以理解的是,当主辐射枝节30和寄生枝节40随第一本体10、第二本体20折叠或滑动而产生电磁耦合时,主辐射枝节30和寄生枝节40共同支持的第二频段和主辐射枝节30支持的第一频段至少可以部分重叠。例如,第一频段可为890MHz至960MHz,第二频段可为680MHz至910MHz,二者可在890MHz至910MHz频段范围内相重叠。
可以理解的是,第一频段和第二频段可以是同一频段范围内(例如均在GSM900频段范围内)中心频段不同的两个频段,第一频段和第二频段可以至少部分重叠,从而,主辐射枝节30和寄生枝节40可以共同支持无线信号,例如支持GSM900频段的无线信号。
由此可知,本申请实施例的电子设备100,主辐射枝节30可形成第一谐振并可并支持第一频段的无线信号,主辐射枝节30设置于第一本体10、寄生枝节40设置于第二本体20,当第一本体10和第二本体20相对折叠或滑动以使得至少部分第二本体20与第一本体10重叠时,至少部分寄生枝节40可与主辐射枝节30重叠并与主辐射枝节30耦合,寄生枝节40可与主辐射枝节30共同形成第二谐振并共同支持第二频段。当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向时,寄生枝节40的电长度小于第一频段对应波长的四分之一;当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时,寄生枝节40的电长度可大于第一频段对应波长的四分之一。基于此,寄生枝节40可减少主辐射枝节30支持第一无线信号时匹配电路带来的损耗,寄生枝节40可和主辐射枝节30共同支持第一无线信号并提高主辐射枝节30和寄生枝节40形成的天线系统的系统效率,从而使得电子设备100的辐射性能更优。
其中,请再次参考图1至图4,第一本体10可以包括弯折连接的第一边12和第二边13,该第一边12和第二边13不共线且二者相交。第二本体20可以包括第三边22,该第三边22可以与第一边12相对设置,例如第三边22和第一边12的朝向相同,第三边22可平行于第一边12。
寄生枝节40可以包括相对设置的第一自由端41和第一接地端42,第一接地端42可接地设置,第一自由端41可不接地设置。至少部分寄生枝节40可以设置于第三边22,主辐射枝节30可以包括相对设置的第二自由端31和第二接地端32,第二接地端32可以接地设置,第二自由端31可不接地设置。至少部分主辐射枝节30可以设置于第一边12。
如图1所示,全部的寄生枝节40可以设置于第三边22,全部的主辐射枝节30可以设置于第一边12,主辐射枝节30的自由端例如第二自由端31可与寄生枝节40的自由端例如第一自由端41均朝向远离第二边13的方向延伸(图1至图4中可以朝上延伸),从而寄生枝节40的自由端的朝向可与主辐射枝节30的自由端的朝向同向。
如图3所示,主辐射枝节30可以设置于第一边12和第二边13,寄生枝节40可以设置于第三边22,主辐射枝节30的自由端例如第二自由端31可以朝向远离第一边12的方向延伸,寄生枝节40的自由端例如第一自由端41可以朝向远离第二边13的方向延伸,以使得寄生枝节40的自由端例如第一自由端41的朝向可以与主辐射枝节30的自由端例如第二自由端31的朝向不同向。此时,用户握持电子设备100时,不易握持全部的主辐射枝节30,可以减少用户手握对主辐射枝节30的辐射性能影响。
需要说明的是,主辐射枝节30的自由端与寄生枝节40的自由端朝向同向的方式不局限于图1所示,例如但不限于主辐射枝节30可以设置于第一边12和第二边13且其第二自由端31朝向远离第二边13的方向延伸以与寄生枝节40的自由端朝向相同。同理,主辐射枝节30的自由端与寄生枝节40的自由端朝向不同向的方式也不局限于图3所示,例如但不限于请参考图21,图21为本申请实施例提供的电 子设备100的第七种结构示意图。主辐射枝节可以设置于第一边12且其第二自由端31可以朝向第二边13所在的方向延伸以与寄生枝节40的自由端朝向不同向。基于此,本申请实施例对主辐射枝节30与寄生枝节40的具体结构不进行限定。
其中,如图1所示,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向时,至少部分第一自由端41在第二自由端31上的投影可位于第二自由端31上,至少部分第一自由端41可与第二自由端31重叠。
当然,如图21所示,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时,至少部分第一自由端41在第二自由端31上的投影也可位于第二自由端31上,至少部分第一自由端41可与第二自由端31重叠。基于此,本申请实施例的电子设备100,重叠状态下寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向或者不同向时,可以对寄生枝节40和主辐射枝节30进行设计,以使得至少部分第一自由端41可与第二自由端31重叠。
本申请实施例的电子设备100,当主辐射枝节30形成第一谐振时、以及主辐射枝节30与寄生枝节40共同形成第二谐振时,电流可从主辐射枝节30、寄生枝节40的接地端向自由端流动,自由端的电流较大。当第一自由端41、第二自由端31随第一本体10和第二本体20的运动而重叠时,第二自由端31上的电流更容易耦合至第一自由端41,从而更容易激励寄生枝节40产生第二谐振。
需要说明的是,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向或者不同向时,本申请实施例的第一自由端41也可不与第二自由端31重叠,例如图3和图4所示。本申请实施例对寄生枝节40和主辐射枝节30的具体结构不进行限定。
其中,请结合图1、图2并请参考图22,图22为图2所示的电子设备100的一种电流流向示意图。当至少部分第二本体20与第一本体10重叠且第一自由端41的朝向与第二自由端31的朝向同向时,在主辐射枝节30上流动的第一电流I1可从第二接地端32向第二自由端31流动,在寄生枝节40上流动的第二电流I2可从第一接地端42向第一自由端41流动,从而第一电流I1和第二电流I2的流向相同,主辐射枝节30产生的磁场方向可与寄生枝节40产生的磁场方向同向,二者可以叠加,从而寄生枝节40可以进一步提升主辐射枝节30和寄生枝节40形成的天线系统的辐射性能。
可以理解的是,当主辐射枝节30在馈源61提供的激励信号的作用形成第一谐振并支持第一频段的无线信号时,主辐射枝节30的电长度可以等于第一频段对应波长的四分之一,此时主辐射枝节30上的输入阻抗呈现纯电阻,更利于主辐射枝节30形成第一谐振。当然,主辐射枝节30的电长度也可以小于或大于第一频段对应波长的四分之一,此时可以通过匹配电路62来调节主辐射枝节30的谐振。
可以理解的是,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时,寄生枝节40的电长度除了可以大于第一频段的四分之一外,还可以小于或等于第一频段的三分之一。当寄生枝节40的电长度大于第一频段的三分之一时,第二频段的中心频率朝着低频频段偏移的距离较大,寄生枝节40对提升主辐射枝节30的辐射效率的贡献较小。本申请实施例寄生枝节40的有效电长度在四分之一波长和三分之一波长之间,一方面,寄生枝节40可以更好地提升主辐射枝节30的辐射效率,另一方面,也可以节约寄生枝节40的成本。
其中,请参考图23和图24,图23为本申请实施例提供的电子设备100的第八种结构示意图,图24为本申请实施例提供的电子设备100的第九种结构示意图。当馈源61向主辐射枝节30提供其他的激励信号时,主辐射枝节30还可以在馈源61提供的激励信号的作用下形成第三谐振,该第三谐振可以在自由空间内传播第三频段的无线信号,主辐射枝节30可以支持第三频段,此时,电子设备100还可以包括控制电路63。
控制电路63可以与寄生枝节40电连接,控制电路63可以改变寄生枝节40的形态,或者可以改变寄生枝节40的电长度,以控制寄生枝节40是否与主辐射枝节30的电磁耦合。例如,控制电路63可以在主辐射枝节30支持第三频段且至少部分第二本体20与第一本体10重叠时,控制寄生枝节40不与主辐射枝节30耦合,寄生枝节40与主辐射枝节30解耦。控制电路63也可以在主辐射枝节30形成第一谐振且至少部分第二本体20与第一本体10重叠时,控制寄生枝节40与主辐射枝节30电磁耦合。
可以理解的是,控制电路63可以但不限于包括一个或多个开关、电阻、电容、电感形成的电路结构。例如,控制电路63可以包括开关元件,该开关元件可以串联在第一接地端42和接地平面之间,开关元件可以通过控制第一接地端42是否接地来控制寄生枝节40是否与产生第三谐振的主辐射枝节30电磁耦合。再例如,控制电路63可以包括串联在寄生枝节40的第一接地端42和第一自由端41之间的短路电路或断路电路,控制电路63可以通过短路电路或断路电路改变寄生枝节40的电长度,使得在该电长度下寄生枝节40不能与产生第三谐振的主辐射枝节30电磁耦合。
需要说明的是,控制电路63的具体结构并不局限于上述举例,其他能控制寄生枝节40与主辐射枝节30电磁耦合或解耦的结构均在本申请实施例的保护范围内,本申请实施例对此不进行具体的限定。
本申请实施例中,主辐射枝节30可以产生第一谐振或第三谐振,主辐射枝节30可以支持第一频段 和第二频段,主辐射枝节30实现复用,电子设备100可以实现小型化设计。同时,控制电路63可以控制寄生枝节40不与产生第三谐振的主辐射枝节30电磁耦合,寄生枝节40不会对产生第三谐振的主辐射枝节30产生不利的影响,可以保证主辐射枝节30产生第三谐振时的辐射性能。
其中,请参考图25和图26,图25为本申请实施例提供的电子设备100的第十种结构示意图,图26为本申请实施例提供的电子设备100的第十一种结构示意图。电子设备100还可以包括调节电路64。
调节电路64可与寄生枝节40电连接,调节电路64可以在主辐射枝节30支持第三频段且至少部分第二本体20与第一本体10重叠时,调整寄生枝节40的电长度以使寄生枝节40可与主辐射枝节30耦合并共同产生第四谐振,寄生枝节40可与主辐射枝节30共同支持第四频段。
可以理解的是,如图25所示,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向同向时,寄生枝节40的电长度可以小于第三频段对应波长的四分之一。此时,寄生枝节40可以提升主辐射枝节30产生第三谐振时的辐射效率,使得电子设备100具有较优的辐射性能。
可以理解的是,如图26所示,当至少部分第二本体20与第一本体10重叠且寄生枝节40的自由端的朝向与主辐射枝节30的自由端的朝向不同向时,寄生枝节40的电长度可以大于第二频段对应波长的四分之一。此时,寄生枝节40可以提升主辐射枝节30产生第三谐振时的辐射效率,使得电子设备100具有较优的辐射性能。
可以理解的是,调节电路64可以但不限于包括一个或多个开关、电阻、电容、电感形成的电路结构,调节电路64也可以对电阻的电阻值、电容的电容值、电感的电感值进行设定。调节电路64可以改变寄生枝节40的电长度,使得针对主辐射枝节30的每一种谐振(支持的每一种频段),寄生枝节40可以具有对应的电长度使得寄生枝节40既可以与该谐振(该频段)下的主辐射枝节30电磁耦合,也可以保证寄生枝节40此时的电长度大于或小于该谐振(该频段)下的主辐射枝节30形成的无线信号的波长的四分之一。
例如,当主辐射枝节30可以形成N种谐振时,调节电路64可以包括N路调节支路,调节电路64可以在主辐射枝节30形成某一谐振(某一频段)时,控制某一调节支路与寄生枝节40电连接,以使得寄生枝节40与主辐射枝节30电磁耦合且寄生枝节40此时的电长度大于或者小于主辐射枝节30当前谐振(当前频段)形成的无线信号的波长的四分之一。
本申请实施例的电子设备100,主辐射枝节30可以形成多种谐振并支持多种频段,寄生枝节40在调节电路64的作用下可以与产生相应谐振或相应频段的主辐射枝节30电磁耦合,寄生枝节40可以提升每一谐振或频段下的主辐射枝节30的辐射效率,从而主辐射枝节30和寄生枝节40均实现复用,电子设备100既可以提升辐射性能,也可以实现小型化设计。
其中,请参考27和图28,图27为本申请实施例提供的电子设备100的第十二种结构示意图,图28为本申请实施例提供的电子设备100的第十三种结构示意图。第一本体10还可以包括第一中框11、第二本体20还可以包括第二中框21。
第一中框11和第二中框21可以由导体材质制备并具有一定的刚度,第一中框11和第二中框21可为电子设备100中的电子器件或电子器件提供支撑作用。
可以理解的是,该第一中框11可以包括前述实施例中的第一边12和第二边13,该第二中框21可以包括前述实施例中的第三边22。主辐射枝节30可以设置于第一中框11,主辐射枝节30可以形成于第一中框11例如形成于第一边12、第二边13中的至少一个,主辐射枝节30也可以连接于第一中框11例如连接于第一边12、第二边13中的至少一个,主辐射枝节30还可以与第一中框11间隔设置且主辐射枝节30的投影可位于第一中框11上例如第一边12、第二边13中的至少一个上。寄生枝节40可以设置于第二中框21,例如但不限于至少部分寄生枝节40可以形成于或者连接于第二中框21的第三边22,又或者,寄生枝节40可以与第三边22间隔设置并投影与第三边22上。
可以理解的是,第一中框11和第二中框21可以接地并形成接地平面。主辐射枝节30的一端例如第二自由端31可与第一中框11间隔设置,主辐射枝节30的另一端例如第二接地端32可与第一中框11连接并实现接地。寄生枝节40的第一自由端41可与第一中框11间隔设置,寄生枝节40的第一接地端42可与第二中框21间隔设置。
本申请实施例中第一中框11和第二中框21形成接地平面,主辐射枝节30和寄生枝节40可以与第一中框11、第二中框21连接并通过第一中框11、第二中框21接地,这样设计可以保证主辐射枝节30和寄生枝节40的连接稳定性,也可以减少二者接地设计时的布线。
其中,请参考图29和图30,图29为本申请实施例提供的电子设备100的第十三种结构示意图,图30为本申请实施例提供的电子设备100的第十四种结构示意图。第一中框11上可以开设第一缝隙101以在第一中框11上形成第一金属枝节111,主辐射枝节30可以包括第一金属枝节111,第一金属枝节111与第一中框11连接的一端可以是主辐射枝节30的第二接地端32,第一金属枝节111不与第一中框 11其他部位连接的一端可以是主辐射枝节30的第二自由端31。第二部中框上可以开设第二缝隙102以在第二中框21上形成第二金属枝节211,寄生枝节40可以包括第二金属枝节211,第二金属枝节211与第二中框21连接的一端可以是寄生枝节40的第一接地端42,第二金属枝节211不与第二中框21其他部位连接的一端可以是寄生枝节40的第一自由端41。
可以理解的是,电子设备100可以在第一缝隙101和第二缝隙102之间填充非导体材料,以增加第一中框11和第二中框21的结构强度。
本申请实施例的电子设备100,第一中框11和第二中框21通过开缝形成主辐射枝节30和寄生枝节40,主辐射枝节30和寄生枝节40不需要额外占用电子设备100的空间,电子设备100可以实现小型化设计。
其中,请再次参考图27至图30,电子设备100还可以包括柔性显示屏70、电路板80和电源90。
柔性显示屏70可以形成电子设备100的显示面,用于显示图像、文本等信息。其中,柔性显示屏70可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏等类型的显示屏。柔性显示屏70可以连接于第一本体10和第二本体20,并可以随第一本体10、第二本体20的折叠而折叠。
例如,柔性显示屏70的第一端可连接于第一本体10,柔性显示屏70的第二可连接于第二本体20。当第一本体10和第二本体20处于展开状态时,柔性显示屏70可随着第一本体10和第二本体20的展开而使柔性显示屏70的第一端和第二端可处于同一平面,柔性显示屏70处于展开状态。当第一本体10和第二本体20处于重叠状态时,柔性显示屏70可随着第一本体10和第二本体20的折叠而也折叠,使得柔性显示屏70的第一端和第二端可以相互靠近或者完全相互靠近折叠在一起。可以理解的是,在图9至图12所示的实施例中,电子设备100可以在第一本体10和第二本体20中的一个上设置显示屏,该显示屏可以是柔性屏也可以是非柔性屏。该实施例中的显示屏可不随第一本体10和第二本体20的滑动而发生形态变化。
电路板80可以安装在第一本体10或者第二本体20上,电路板80可以为电子设备100的主板。电路板80上可以集成有处理器,此外还可以集成耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。其中,柔性显示屏70、馈源61、匹配电路62、控制电路63、调节电路64可以设置在电路板80,以通过电路板80上的处理器对其进行控制。
电源90可以安装在第一本体10或者第二本体20上。同时,电源90可电连接至电路板80,以实现电源90为电子设备100供电。电路板80上可以设置有电源管理电路。电源管理电路用于将电源90提供的电压分配到电子设备100中的各个电子器件。
可以理解的是,以上仅为电子设备100的示例性举例,本申请实施例的电子设备100还可以包括摄像头、传感器、声电转换装置等部件,这些部件可以参见相关技术中的描述,在此不再赘述。
需要理解的是,在本申请的描述中,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上对本申请实施例提供的电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种电子设备,包括:
    第一本体;
    第二本体,可相对所述第一本体折叠或滑动,以使至少部分所述第二本体与所述第一本体重叠;
    馈源,用于提供激励信号;
    主辐射枝节,设置于所述第一本体,所述主辐射枝节与所述馈源电连接,所述主辐射枝节用于在所述激励信号的作用下支持第一频段;及
    寄生枝节,设置于所述第二本体,当至少部分所述第二本体与所述第一本体重叠时,所述寄生枝节与所述主辐射枝节耦合并共同支持第二频段;其中,
    当至少部分所述第二本体与所述第一本体重叠且所述寄生枝节的自由端的朝向与所述主辐射枝节的自由端的朝向同向时,所述寄生枝节的电长度小于所述第一频段对应波长的四分之一。
  2. 根据权利要求1所述的电子设备,其中,所述第一频段和所述第二频段至少部分重叠。
  3. 根据权利要求1所述的电子设备,其中,所述寄生枝节包括相对设置的第一自由端和第一接地端,所述第一接地端接地;
    所述主辐射枝节包括相对设置的第二自由端和第二接地端,所述第二接地端接地,当至少部分所述第二本体与所述第一本体重叠时,至少部分所述第一自由端与所述第二自由端重叠。
  4. 根据权利要求1所述的电子设备,其中,所述第一本体包括弯折连接的第一边和第二边,所述第二本体包括与所述第一边相对设置的第三边;
    所述寄生枝节设置于所述第三边,所述主辐射枝节设置于所述第一边,所述主辐射枝节的自由端与所述寄生枝节的自由端均朝向远离所述第二边的方向延伸,以使所述寄生枝节的自由端的朝向与所述主辐射枝节的自由端的朝向同向。
  5. 根据权利要求1所述的电子设备,其中,所述主辐射枝节的电长度等于所述第一频段对应波长的四分之一。
  6. 根据权利要求1所述的电子设备,其中,还包括:
    匹配电路,串联于所述馈源和所述主辐射枝节之间,所述匹配电路用于对所述馈源传输所述激励信号时的阻抗进行匹配,以使所述主辐射枝节支持所述第一频段。
  7. 根据权利要求1所述的电子设备,其中,所述主辐射枝节还用于在所述激励信号的作用下支持第三频段;所述电子设备还包括:
    控制电路,与所述寄生枝节电连接,所述控制电路用于当所述主辐射枝节支持所述第三频段且至少部分所述第二本体与所述第一本体重叠时,控制所述寄生枝节不与所述主辐射枝节耦合。
  8. 根据权利要求1所述的电子设备,其中,所述主辐射枝节还用于在所述激励信号的作用下支持第三频段;所述电子设备还包括:
    调节电路,与所述寄生枝节电连接,所述调节电路用于当所述主辐射枝节支持所述第三频段且至少部分所述第二本体与所述第一本体重叠时,调整所述寄生枝节的电长度小于所述第三频段对应波长的四分之一,以使所述寄生枝节与所述主辐射枝节耦合并共同支持第四频段。
  9. 根据权利要求1所述的电子设备,其中,所述第一本体包括第一中框,所述第一中框上设有缝隙以在所述第一中框上形成第一金属枝节,所述主辐射枝节包括所述第一金属枝节;和/或,
    所述第二本体包括第二中框,所述第二中框上设有缝隙以在所述第二中框上形成第二金属枝节,所述寄生枝节包括所述第二金属枝节。
  10. 一种电子设备,包括:
    第一本体;
    第二本体,可相对所述第一本体折叠或滑动,以使至少部分所述第二本体与所述第一本体重叠;
    馈源,用于提供激励信号;
    主辐射枝节,设置于所述第一本体,所述主辐射枝节与所述馈源电连接,所述主辐射枝节用于在所述激励信号的作用下支持第一频段;及
    寄生枝节,设置于所述第二本体,当至少部分所述第二本体与所述第一本体重叠时,所述寄生枝节与所述主辐射枝节耦合并共同支持第二频段;其中,
    当至少部分所述第二本体与所述第一本体重叠且所述寄生枝节的自由端的朝向与所述主辐射枝节的自由端的朝向不同向时,所述寄生枝节的电长度大于所述第一频段对应波长的四分之一。
  11. 根据权利要求10所述的电子设备,其中,所述第一频段和所述第二频段至少部分重叠。
  12. 根据权利要求10所述的电子设备,其中,所述寄生枝节包括相对设置的第一自由端和第一接地端,所述第一接地端接地;
    所述主辐射枝节包括相对设置的第二自由端和第二接地端,所述第二接地端接地,当至少部分所述 第二本体与所述第一本体重叠时,至少部分所述第一自由端与所述第二自由端重叠。
  13. 根据权利要求10所述的电子设备,其中,所述第一本体包括弯折连接的第一边和第二边,所述第二本体包括与所述第一边相对设置的第三边;
    所述主辐射枝节设置于所述第一边和所述第二边,所述寄生枝节设置于所述第三边,所述主辐射枝节的自由端朝向远离所述第一边的方向延伸,所述寄生枝节的自由端朝向远离所述第二边的方向延伸,以使所述寄生枝节的自由端的朝向与所述主辐射枝节的自由端的朝向不同向。
  14. 根据权利要求10所述的电子设备,其中,所述主辐射枝节的电长度等于所述第一频段对应波长的四分之一。
  15. 根据权利要求10所述的电子设备,其中,所述寄生枝节的电长度还小于或等于所述第一频段对应波长的三分之一。
  16. 根据权利要求10所述的电子设备,其中,还包括:
    匹配电路,串联于所述馈源和所述主辐射枝节之间,所述匹配电路用于对所述馈源传输所述激励信号时的阻抗进行匹配,以使所述主辐射枝节支持所述第一频段。
  17. 根据权利要求10所述的电子设备,其中,所述主辐射枝节还用于在所述激励信号的作用下支持第三频段;所述电子设备还包括:
    控制电路,与所述寄生枝节电连接,所述控制电路用于当所述主辐射枝节支持所述第三频段且至少部分所述第二本体与所述第一本体重叠时,控制所述寄生枝节不与所述主辐射枝节耦合。
  18. 根据权利要求10所述的电子设备,其中,所述主辐射枝节还用于在所述激励信号的作用下支持第三频段;所述电子设备还包括:
    调节电路,与所述寄生枝节电连接,所述调节电路用于当所述主辐射枝节支持所述第三频段且至少部分所述第二本体与所述第一本体重叠时,调整所述寄生枝节的电长度大于所述第三频段对应波长的四分之一,以使所述寄生枝节与所述主辐射枝节耦合并共同支持第四频段。
  19. 根据权利要求10所述的电子设备,其中,所述第一本体包括第一中框,所述第一中框上设有缝隙以在所述第一中框上形成第一金属枝节,所述主辐射枝节包括所述第一金属枝节;和/或,
    所述第二本体包括第二中框,所述第二中框上设有缝隙以在所述第二中框上形成第二金属枝节,所述寄生枝节包括所述第二金属枝节。
  20. 根据权利要求10所述的电子设备,其中,还包括:
    柔性显示屏,分别连接于所述第一本体和所述第二本体,所述柔性显示屏可随所述第一本体和所述第二本体的折叠或滑动操作而发生形态变化。
PCT/CN2022/121784 2021-12-06 2022-09-27 电子设备 WO2023103545A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111481019.9 2021-12-06
CN202111481019 2021-12-06
CN202210672886.9 2022-06-14
CN202210672886.9A CN116231273A (zh) 2021-12-06 2022-06-14 电子设备

Publications (1)

Publication Number Publication Date
WO2023103545A1 true WO2023103545A1 (zh) 2023-06-15

Family

ID=86570233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121784 WO2023103545A1 (zh) 2021-12-06 2022-09-27 电子设备

Country Status (2)

Country Link
CN (1) CN116231273A (zh)
WO (1) WO2023103545A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117913508A (zh) * 2022-10-10 2024-04-19 Oppo广东移动通信有限公司 电子设备及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141820A1 (en) * 2015-11-13 2017-05-18 Samsung Electronics Co., Ltd. Antenna device and electronic device including the same
CN109361062A (zh) * 2018-11-12 2019-02-19 维沃移动通信有限公司 移动终端
CN111613873A (zh) * 2019-02-22 2020-09-01 华为技术有限公司 天线装置及电子设备
CN112151960A (zh) * 2019-06-28 2020-12-29 华为技术有限公司 可折叠的移动终端和天线控制方法
CN112952345A (zh) * 2021-01-27 2021-06-11 维沃移动通信有限公司 电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141820A1 (en) * 2015-11-13 2017-05-18 Samsung Electronics Co., Ltd. Antenna device and electronic device including the same
CN109361062A (zh) * 2018-11-12 2019-02-19 维沃移动通信有限公司 移动终端
CN111613873A (zh) * 2019-02-22 2020-09-01 华为技术有限公司 天线装置及电子设备
CN112151960A (zh) * 2019-06-28 2020-12-29 华为技术有限公司 可折叠的移动终端和天线控制方法
CN112952345A (zh) * 2021-01-27 2021-06-11 维沃移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN116231273A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US11664583B2 (en) Mobile device and manufacturing method thereof
WO2022142659A1 (zh) 天线装置及电子设备
US7791546B2 (en) Antenna device and electronic apparatus
US10542130B1 (en) Mobile device
CN101207229A (zh) 电子设备
US8963780B2 (en) Antenna module
WO2021238541A1 (zh) 天线装置及电子设备
WO2021093684A1 (zh) 一种电子设备
TWM316507U (en) Antenna capable of adjusting impedance matching
JP2005039394A (ja) アンテナ及び無線端末
WO2023103545A1 (zh) 电子设备
WO2023216600A1 (zh) 电子设备
US20070013588A1 (en) Broadband antenna
US10530044B2 (en) Mobile device and antenna structure thereof
WO2022121453A1 (zh) 天线装置及电子设备
KR20160029539A (ko) 공진주파수 가변 안테나
WO2022116290A1 (zh) 天线模组及移动终端
US11929547B2 (en) Mobile device
WO2023273493A1 (zh) 天线装置及电子设备
WO2023000733A1 (zh) 天线装置的接地结构、天线装置及电子设备
CN215342969U (zh) 天线装置及电子设备
WO2022037443A1 (zh) 一种终端
TWI586031B (zh) 寬頻單極型天線、電子裝置、以及天線模組
WO2023103604A1 (zh) 电子设备
WO2024078158A1 (zh) 电子设备及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902970

Country of ref document: EP

Kind code of ref document: A1