WO2024078167A1 - 天线组件、中框组件以及电子设备 - Google Patents

天线组件、中框组件以及电子设备 Download PDF

Info

Publication number
WO2024078167A1
WO2024078167A1 PCT/CN2023/115560 CN2023115560W WO2024078167A1 WO 2024078167 A1 WO2024078167 A1 WO 2024078167A1 CN 2023115560 W CN2023115560 W CN 2023115560W WO 2024078167 A1 WO2024078167 A1 WO 2024078167A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
radiator
feed source
frequency selection
electrically connected
Prior art date
Application number
PCT/CN2023/115560
Other languages
English (en)
French (fr)
Inventor
周林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024078167A1 publication Critical patent/WO2024078167A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna assembly, a middle frame assembly and an electronic device.
  • the present application provides an antenna assembly, the antenna assembly comprising:
  • a radiator comprising a first free end, a first feeding point and a frequency selection point, wherein the first feeding point is located between the first free end and the frequency selection point;
  • a first feed source used to excite the radiator to support a first frequency band and a second frequency band
  • a first frequency selection circuit is electrically connected between the first feeding point and the first feed source, so that the first feed source is electrically connected to the first feeding point through the first frequency selection circuit, the first frequency selection circuit is grounded, and the current supporting the first frequency band is configured to flow from the ground through the first frequency selection circuit to input into the radiator;
  • the second frequency selection circuit is electrically connected between the frequency selection point and the ground, so that the frequency selection point is grounded through the second frequency selection circuit, and the current supporting the second frequency band is configured to flow from the ground through the second frequency selection circuit to input into the radiator.
  • the present application provides a middle frame assembly, including:
  • a frame is arranged around the substrate.
  • the radiator is arranged on the frame.
  • the present application provides an electronic device, comprising:
  • a main housing is used to mount the display screen, the main housing comprising a ground plane and a frame at least partially surrounding the ground plane.
  • the radiator is arranged on the frame and a gap is formed between the radiator and the ground plane.
  • FIG1 is a schematic diagram of the structure of an antenna assembly in some embodiments of the present application.
  • FIG2 is a schematic diagram of the structure of an antenna assembly in some embodiments of the present application.
  • FIG3 is a schematic diagram of the structure of the first feed source and the first frequency selection circuit in the embodiment shown in FIG2 in other embodiments;
  • FIG4 is a schematic diagram of the structure of the second feed source and the second frequency selection circuit in the embodiment shown in FIG2 in other embodiments;
  • FIG5 is a schematic structural diagram of the antenna assembly shown in FIG2 in another embodiment
  • FIG6 is a schematic structural diagram of the antenna assembly shown in FIG2 in another embodiment
  • FIG7 is a schematic structural diagram of the antenna assembly shown in FIG6 in another embodiment
  • FIG8 is a schematic diagram of the structure of the third feed source and the third frequency selection circuit in the embodiment shown in FIG7 in other embodiments;
  • FIG9 is a schematic structural diagram of the antenna assembly shown in FIG7 in another embodiment
  • FIG10 is a schematic diagram of the structure of the switching circuit shown in FIG9 in some embodiments.
  • FIG11 is a schematic diagram of the structure of the switching circuit in the embodiment shown in FIG10 in another embodiment of the antenna assembly;
  • FIG12 is a schematic structural diagram of the antenna assembly shown in FIG9 in another embodiment
  • FIG13 is a schematic structural diagram of the antenna assembly shown in FIG9 in another embodiment
  • FIG14 is a graph showing a return loss of the antenna assembly shown in FIG13 when excited by a first feed source in another embodiment
  • FIG15 is a graph showing the system total efficiency (System Total Efficiency) of the antenna assembly shown in FIG13 in another embodiment when excited by the first feed source;
  • FIG16 is a graph showing a return loss of the antenna assembly shown in FIG13 when excited by a second feed source in another embodiment
  • FIG17 is a graph showing the total system efficiency of the antenna assembly shown in FIG13 in another embodiment when excited by a second feed source;
  • FIG18 is a graph showing a return loss of the antenna assembly shown in FIG13 when excited by a third feed source in another embodiment
  • FIG19 is a graph showing the total system efficiency of the antenna assembly shown in FIG13 in another embodiment when excited by a third feed source;
  • FIG20 is an exploded view of an electronic device in one embodiment of the present application.
  • FIG21 is a schematic diagram of the structure of the frame assembly in the embodiment shown in FIG20;
  • FIG. 22 is a schematic diagram of the structural composition of an electronic device in an embodiment of the present application.
  • the present application provides an antenna assembly, which includes:
  • a radiator comprising a first free end, a first feeding point and a frequency selection point, wherein the first feeding point is located between the first free end and the frequency selection point;
  • a first feed source used to excite the radiator to support a first frequency band and a second frequency band
  • a first frequency selection circuit is electrically connected between the first feeding point and the first feed source, so that the first feed source is electrically connected to the first feeding point through the first frequency selection circuit, the first frequency selection circuit is grounded, and the current supporting the first frequency band is configured to flow from the ground through the first frequency selection circuit to input into the radiator;
  • the second frequency selection circuit is electrically connected between the frequency selection point and the ground, so that the frequency selection point is grounded through the second frequency selection circuit, and the current supporting the second frequency band is configured to flow from the ground through the second frequency selection circuit to input into the radiator.
  • the radiator has a grounding point
  • the frequency selection point is located between the grounding point and the first feeding point
  • the grounding point is grounded
  • the antenna assembly further includes:
  • the second feed source is used to excite the radiator, and the second frequency selection circuit is electrically connected between the frequency selection point and the second feed source, so that the second feed source is electrically connected to the frequency selection point through the second frequency selection circuit.
  • the first frequency selection circuit includes:
  • a first matching circuit is electrically connected between the first filter circuit and the first feed source so that the first feed source is electrically connected to the first filter circuit through the first matching circuit.
  • the first matching circuit is grounded, and the current supporting the first frequency band is configured to flow from the ground through the first matching circuit and the first filter circuit to input into the radiator.
  • the first filter circuit is configured to be disconnected when the second feed source excites the radiator, and to be connected when the first feed source excites the radiator.
  • the first matching circuit comprises:
  • a first capacitor electrically connected between the first filter circuit and the first feed source, so that the first feed source is electrically connected to the first filter circuit through the first capacitor;
  • the second capacitor is electrically connected between the first capacitor and the ground, so that the first capacitor is grounded through the second capacitor, and the current supporting the first frequency band is configured to flow from the ground through the second capacitor and the first capacitor to input into the radiator.
  • the capacitance of the second capacitor is 1 pF.
  • the first filtering circuit comprises:
  • a third capacitor electrically connected between the first matching circuit and the first feeding point, so that the first matching circuit is electrically connected to the first feeding point through the third capacitor, and a current configuration supporting the first frequency band flows from ground through the third capacitor to input into the radiator;
  • a first inductor is electrically connected between the first matching circuit and the first feeding point, so that the first matching circuit is electrically connected to the first feeding point through the first inductor.
  • the second frequency selection circuit includes:
  • a second filter circuit is electrically connected between the second matching circuit and ground, so that the second matching circuit is grounded through the second filter circuit, and the current supporting the second frequency band is configured to flow from the ground through the second filter circuit and the second matching circuit to input into the radiator, and the second filter circuit is configured to be disconnected when the first feed source excites the radiator, and to be connected when the second feed source excites the radiator.
  • the second matching circuit comprises:
  • a fourth capacitor is electrically connected between the frequency selection point and the second feed source, so that the second feed source is electrically connected to the frequency selection point through the fourth capacitor.
  • the second filtering circuit comprises:
  • a fifth capacitor electrically connected between the second matching circuit and ground, so that the second matching circuit is grounded through the fifth capacitor, and the current supporting the second frequency band is configured to flow from the ground through the fifth capacitor to input into the radiator, and the fifth capacitor is configured to be disconnected when the first feed source excites the radiator, and to be connected when the second feed source excites the radiator.
  • the capacitance of the fifth capacitor is 4 pF.
  • the first feed source is configured to excite the radiating portion on the radiator located between the first feed point and the first free end to generate a first resonant mode supporting the first frequency band
  • the first resonant mode is a 1/4 wavelength inverted F antenna IFA antenna mode
  • the current supporting the first frequency band is configured to flow from the first feed point to the first free end.
  • the first frequency band includes a Wireless Fidelity WiFi 5G frequency band.
  • the first feed source is configured to excite the radiating portion of the radiator located between the frequency selection point and the first free end to generate a second resonant mode supporting the second frequency band, the second resonant mode is a 1/4 wavelength left-handed antenna mode, and the current supporting the second frequency band is configured to flow from the frequency selection point to the first free end.
  • the second frequency band includes the new radio N78 frequency band.
  • the second feed source is configured to excite the radiating portion of the radiator located between the grounding point and the first free end to generate a third resonant mode supporting a third frequency band
  • the third resonant mode is a left-handed antenna mode
  • the current of the third resonant mode includes a current flowing from the grounding point to the first free end.
  • the third frequency band includes a Long Term Evolution LTE B20 frequency band.
  • the radiator has a second free end and a third feeding point
  • the grounding point is located between the frequency selection point and the second free end
  • the third feeding point is located between the grounding point and the second free end
  • the antenna assembly further includes:
  • a third feed source used to excite the radiator.
  • the third frequency selection circuit is electrically connected between the third feeding point and the third feed source, so that the third feed source is electrically connected to the third feeding point through the third frequency selection circuit.
  • the third feed source is configured to excite the radiating portion of the radiator located between the grounding point and the second free end to produce a fourth resonant mode supporting a fourth frequency band
  • the fourth resonant mode is a left-handed antenna mode
  • the current of the fourth resonant mode includes a current flowing from the grounding point to the second free end.
  • the fourth frequency band includes at least one of an LTE B1 band, an LTE B3 band, an LTE B39 band, an LTE B40 band, or an LTE B41 band.
  • the radiator has a switching point, the switching point coincides with the third feeding point or is located between the third feeding point and the second free end, and the antenna assembly further includes:
  • a switching circuit is electrically connected between the switching point and the ground so that the switching point is grounded through the switching circuit, and the switching circuit is used to adjust the frequency of the frequency band supported by the third feed source.
  • the switching circuit comprises:
  • a switching switch having a plurality of connection terminals, a switching portion, and a common terminal electrically connected to the switching point, wherein the switching portion is electrically connected to the common terminal and is configured to be electrically connected to one of the plurality of connection terminals under the control of a control signal;
  • At least one frequency selection branch one end of the at least one frequency selection branch is electrically connected to a connection end of the plurality of connection ends in a one-to-one correspondence, and the other end is grounded.
  • each of the at least one frequency-selective branches comprises a capacitor or an inductor.
  • the present application provides an antenna assembly, which includes:
  • a radiator comprising a first free end, a second free end, a first feeding point, a second feeding point, a grounding point and a third feeding point, wherein the first feeding point is located between the first free end and the second free end, the second feeding point is located between the first feeding point and the second free end, the grounding point is located between the second feeding point and the second free end, and the third feeding point is located between the grounding point and the second free end;
  • a first feed source used for exciting a radiating portion of the radiator between the first feed point and the first free end to generate a first resonance mode, and used for exciting a radiating portion of the radiator between the second feed point and the first free end to generate a second resonance mode;
  • a first frequency selection circuit electrically connected between the first feeding point and the first feed source, so that the first feed source is electrically connected to the first feeding point through the first frequency selection circuit, and the first frequency selection circuit is grounded;
  • a second feed source used to excite a radiating portion of the radiator between the ground point and the first free end to generate a third resonant mode
  • the first frequency selection circuit is configured to be turned on when the first feed source excites the radiator, and to be turned off when the second feed source excites the radiator;
  • the second frequency selection circuit is electrically connected between the second feeding point and the second feed source, so that the second feed source is electrically connected to the second feeding point through the second frequency selection circuit, and the second frequency selection circuit is configured to be disconnected when the first feed source excites the radiator, and to be switched on when the first feed source excites the radiator.
  • the second feed source is turned on when exciting the radiator;
  • a third feed source used for exciting a radiating portion of the radiator between the ground point and the second free end to generate a fourth resonance mode
  • the third frequency selection circuit is electrically connected between the third feeding point and the third feed source, so that the third feed source is electrically connected to the third feeding point through the third frequency selection circuit.
  • the present application provides a middle frame assembly, which includes:
  • a substrate is provided with a ground plane
  • a frame is arranged around the substrate.
  • the radiator is arranged on the frame, and a gap is provided between the radiator and the ground plane.
  • the present application provides an electronic device, comprising:
  • Middle frame assembly including:
  • a frame connected to the substrate comprising a first frame, a second frame, a third frame and a fourth frame which are sequentially connected end to end and are arranged around the substrate, the first frame is arranged opposite to the third frame, the second frame is arranged opposite to the fourth frame, and the lengths of the first frame and the third frame are both shorter than the length of the second frame and shorter than the length of the fourth frame;
  • the radiator is arranged on the first frame
  • a battery cover which is disposed on one side of the middle frame assembly and is respectively connected to the first frame, the second frame, the third frame and the fourth frame, and is disposed opposite to the substrate;
  • the display screen is arranged on the other side of the middle frame assembly, and is respectively connected to the first frame, the second frame, the third frame and the fourth frame, and is arranged opposite to the substrate.
  • the present application provides an antenna assembly.
  • the antenna assembly can be applied to an electronic device.
  • the antenna assembly can support at least one of a WiFi frequency band, a medium-high frequency band, a NR (new air interface) frequency band, or a low frequency band.
  • “electronic equipment” (which may also be referred to as “terminals” or “mobile terminals” or “electronic devices”) include, but are not limited to, devices configured to receive/send communication signals via a wireline electrical connection (e.g., via a public switched telephone network (PSTN), a digital subscriber line (DSL), a digital cable, a direct cable electrical connection, and/or another data electrical connection/network) and/or via a wireless interface (e.g., for a cellular network, a wireless local area network (WLAN), a digital television network such as a DVB-H network, a satellite network, an AM-FM broadcast transmitter, and/or another communication terminal).
  • a wireline electrical connection e.g., via a public switched telephone network (PSTN), a digital subscriber line (DSL), a digital cable, a direct cable electrical connection, and/or another data electrical connection/network
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • WLAN wireless local area network
  • a communication terminal configured to communicate via a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that may combine cellular radiotelephones with data processing, fax, and data communication capabilities; PDAs that may include radiotelephones, pagers, Internet/Intranet access, web browsers, organizers, calendars, and/or global positioning system (GPS) receivers; and conventional laptop and/or palmtop receivers or other electronic devices that include radiotelephone transceivers.
  • PCS personal communication system
  • PDAs may include radiotelephones, pagers, Internet/Intranet access, web browsers, organizers, calendars, and/or global positioning system (GPS) receivers
  • GPS global positioning system
  • a mobile phone is an electronic device equipped with a cellular communication module.
  • the antenna assembly can be a combination of one or more of a flexible printed circuit (FPC) antenna, a laser direct structuring (LDS) antenna, a print direct structuring (PDS) antenna, and a metal frame antenna (also called a metal branch antenna).
  • FPC flexible printed circuit
  • LDS laser direct structuring
  • PDS print direct structuring
  • metal frame antenna also called a metal branch antenna
  • the antenna assembly can also be other types of antennas, which will not be described in detail.
  • the antenna assembly 100 may include a radiator 10, a first feed source 20, a first frequency selection circuit 30, and a second frequency selection circuit 50.
  • the radiator 10 has a first free end 11, a first feed point 13, and a frequency selection point 14.
  • the first feed point 13 is located between the first free end 11 and the frequency selection point 14.
  • the first feed source 20 is used to excite the radiator 10 to support the first frequency band and the second frequency band.
  • the first frequency selection circuit 30 is electrically connected between the first feed point 13 and the first feed source 20, so that the first feed source 20 is electrically connected to the first feed point 13 through the first frequency selection circuit 30, and the first frequency selection circuit 30 is grounded.
  • the current I1 supporting the first frequency band is configured to flow from the ground through the first frequency selection circuit 30 to input the radiator 10.
  • the second frequency selection circuit 50 is electrically connected between the frequency selection point 14 and the ground, so that the frequency selection point 14 is grounded through the second frequency selection circuit 50 , and the current I2 supporting the second frequency band is configured to flow from the ground through the second frequency selection circuit 50 to input into the radiator 10 .
  • first”, “second”, “third”, etc. in this application are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, a feature defined as “first”, “second”, “third”, etc. may explicitly or implicitly include at least one of the features.
  • the antenna assembly 100 may include a radiator 10, a first feed 20 for exciting the radiator 10, a first frequency selection circuit 30 electrically connected between the radiator 10 and the first feed 20, a second feed 40 for exciting the radiator 10, and a second frequency selection circuit 50 electrically connected between the radiator 10 and the second feed 40.
  • the first feed 20 can excite the radiator 10 to support the first frequency band and the second frequency band.
  • the second feed 40 can also excite the radiator 10 to support at least one frequency band.
  • the antenna assembly 100 can excite the radiator 10 through the first feed 20 and the second feed 40 to achieve wireless transmission functions of two frequency bands, such as the first frequency band and the second frequency band, effectively reducing the number of radiators 10 and further reducing the space occupied by the antenna assembly 100 in the electronic device.
  • the radiator 10 may be, but is not limited to, an LDS radiator, or an FPC radiator, or a PDS radiator, or a metal branch radiator.
  • the radiator 10 may be a mechanical design antenna (MDA) radiator designed using the metal embedded in the electronic device itself.
  • MDA mechanical design antenna
  • the shape, structure and material of the radiator 10 are not specifically limited.
  • the shape of the radiator 10 includes but is not limited to a bent shape, a strip, a sheet, or a When the radiator 10 is in a strip shape, there is no restriction on the extension track of the radiator 10, so the radiator 10 can be extended in a straight line, a curve, a multi-stage bend, etc.
  • the radiator 10 can be a line with uniform width on the extension track, or a strip with varying widths such as a gradient width and a widened area.
  • the total length of the radiator 10 may be 30-70 mm. In some embodiments, the total length of the radiator 10 may be 50 mm. It can be understood that the total length of the radiator 10 can be adjusted as needed.
  • the radiator 10 may have a first free end 11, a second free end 12, a first feeding point 13 and a frequency selection point 14.
  • the first feeding point 13 and the frequency selection point 14 may be located between the first free end 11 and the second free end 12.
  • the first feeding point 13 may be located between the first free end 11 and the frequency selection point 14, and located on a side of the frequency selection point 14 away from the second free end 12.
  • the two ends of the radiator 10, such as the first free end 11 and the second free end 12, may have gaps between them and other components.
  • the gaps i.e., two gaps
  • the radiator 10 can still send and receive electromagnetic wave signals. Therefore, the antenna assembly 100 can have better communication performance when applied to an electronic device.
  • the radiator 10 may be in a straight bar shape.
  • the first free end 11 and the second free end 12 may be opposite ends of the radiator 10.
  • the radiator 10 may be in a bent shape.
  • the first free end 11 and the second free end 12 may not be opposite in a straight line.
  • the first free end 11 and the second free end 12 may be two ends of the radiator 10.
  • the distance between the first free end 11 and the second free end 12 may be the total length of the radiator 10.
  • the first feed source 20 may be indirectly connected to the first feed point 13 via the first frequency selection circuit 30.
  • the first feed source 20 may excite the radiator 10 to support multiple frequency bands (e.g., part or all of at least one of the WiFi frequency band and the NR frequency band).
  • the first feed source 20 may excite the radiator 10 to support the first frequency band and the second frequency band.
  • the first frequency band may be a mid-high frequency band or a low frequency band.
  • the first frequency band may be a WiFi frequency band or a NR frequency band.
  • the first frequency band may be a WiFi frequency band. In some embodiments, the first frequency band may be a WiFi 5G frequency band.
  • the first feed source 20 can excite the radiating portion of the radiator 10 between the first free end 11 and the first feeding point 13 to generate a first resonance mode supporting a first frequency band.
  • the first resonant mode is an inverted-F antenna (IFA) antenna mode. In some embodiments, the first resonant mode is a 1/4 wavelength IFA antenna mode.
  • IFA inverted-F antenna
  • the current of the first resonant mode includes a current I1 flowing from the first feeding point 13 to the first free end 11 .
  • the second frequency band may be a mid-high frequency band or a low frequency band.
  • the second frequency band may be a WiFi frequency band or a NR frequency band.
  • the second frequency band may be a NR high frequency band. In some embodiments, the second frequency band may be an N78 frequency band (3.4 GHz-3.6 GHz).
  • the first feed source 20 can excite the radiating portion of the radiator 10 between the first free end 11 and the frequency selection point 14 to generate a second resonance mode supporting a second frequency band.
  • the second resonant mode may be a left-handed antenna mode (a mode of a composite left-handed transmission line structure). In some embodiments, the second resonant mode may be a 1/4 wavelength left-handed antenna mode.
  • the current of the second resonance mode includes a current I2 flowing from the frequency selection point 14 to the first free end 11 .
  • the first frequency selection circuit 30 is electrically connected between the first feeding point 13 and the first feed source 20. That is, the first feed source 20 can be electrically connected to the first feeding point 13 through the first frequency selection circuit 30.
  • the first frequency selection circuit 30 can be directly grounded, so that the current I1 supporting the first frequency band can flow from the ground through the first frequency selection circuit 30 to be input into the radiator 10.
  • the first frequency selection circuit 30 may be composed of a switch control circuit and/or a load circuit, or may be composed of an adjustable capacitor (which may also be replaced by a fixed value capacitor) and/or an adjustable inductor.
  • the switch control circuit may be a switch chip with a switch function, or may be a single-pole multi-throw switch or a single-pole single-throw switch.
  • the first frequency selection circuit 30 may include a first matching circuit 31 and a first filter circuit 32.
  • One end of the first matching circuit 31 is connected to the first feed source 20, the other end is indirectly connected to the first feeding point 13 through the first filter circuit 32, and another end is grounded.
  • the first matching circuit 31 may include a second capacitor C2 with one end grounded and a first capacitor C1 with one end electrically connected to the other end of the second capacitor C2.
  • the other end of the first capacitor C1 is electrically connected to the first feeding point 13.
  • the other end of the second capacitor C2 may also be electrically connected to the first feed source 20.
  • the second capacitor C2 and the first capacitor C1 may flow current I1 when the radiator 10 supports the first frequency band. Specifically, the current I1 may flow from the ground through the second capacitor C2 and the first capacitor C1 and flow to the first feeding point 13. Therefore, the second capacitor C2 may be a virtual return point.
  • the capacitance of the second capacitor C2 may be 1 pF.
  • the first filter circuit 32 can control the first frequency selection circuit 30 to be low impedance when the first feed source 20 excites the radiator 10. state, and is in a high impedance state when the second feed source 40 excites the radiator 10. In some embodiments, the first filter circuit 32 can control the first frequency selection circuit 30 to be in a short circuit state when the first feed source 20 excites the radiator 10, and to be in an open circuit state when the second feed source 40 excites the radiator 10. In some embodiments, the first filter circuit 32 can control the first frequency selection circuit 30 to be connected when the first feed source 20 excites the radiator 10, and to be disconnected when the second feed source 40 excites the radiator 10.
  • the first filter circuit 32 may include a third capacitor C3 electrically connected between the first feeding point 13 and the first matching circuit 31, such as the first capacitor C1, and a first inductor L1 electrically connected between the first feeding point 13 and the first matching circuit 31, such as the first capacitor C1. That is, the first feeding point 13 may be electrically connected to the first matching circuit 31, such as the first capacitor C1, through the third capacitor C3 and the first inductor L1, respectively.
  • one end of the third capacitor C3 and the first inductor L1 electrically connected to the first matching circuit 31 is electrically connected to one end of the first capacitor C1.
  • the third capacitor C3 and the first inductor L1 are connected in parallel to resonate to form a low-impedance high-pass filter circuit. That is, the first filter circuit 32 can be a low-impedance high-pass filter circuit to improve the isolation between the first feed source 20 and the second feed source 40.
  • the third capacitor C3 can flow current I1 when the radiator 10 supports the first frequency band. Specifically, the current I1 can flow from ground through the first matching circuit 31 (eg, the second capacitor C2, the first capacitor C1), the third capacitor C3 and flow to the first feeding point 13.
  • the first matching circuit 31 eg, the second capacitor C2, the first capacitor C1
  • the third capacitor C3 can flow to the first feeding point 13.
  • the second feed source 40 may be indirectly connected to the frequency selection point 14 through the second frequency selection circuit 50.
  • the second feed source 40 may excite the radiator 10 to generate a resonant mode supporting multiple frequency bands (e.g., part or all of at least one of the mid-high frequency band and the low frequency band), thereby broadening the bandwidth of the antenna assembly 100.
  • the frequency selection point 14 may also be referred to as a “second feed point”.
  • the second frequency selection circuit 50 is electrically connected between the frequency selection point 14 and the second feed source 40. That is, the second feed source 40 can be electrically connected to the frequency selection point 14 through the second frequency selection circuit 50.
  • the second frequency selection circuit 50 can be directly grounded, so that the current I2 supporting the second frequency band can flow from the ground through the second frequency selection circuit 50 to be input into the radiator 10.
  • the second frequency selection circuit 50 may be composed of a switch control circuit and/or a load circuit, or may be composed of an adjustable capacitor (which may also be replaced by a fixed-value capacitor) and/or an adjustable inductor.
  • FIG. 4 is a schematic diagram of the structure of the second feed source 40 and the second frequency selection circuit 50 in other embodiments in the embodiment shown in FIG. 2.
  • the second frequency selection circuit 50 may include a second matching circuit 51 and a second filter circuit 52.
  • the second matching circuit 51 is electrically connected between the frequency selection point 14 and the second feed source 40, so that the second feed source 40 is electrically connected to the frequency selection point 14 through the second matching circuit 51.
  • the second filter circuit 52 is electrically connected between the second matching circuit 51 and the ground, so that the second matching circuit 51 is grounded through the second filter circuit 52.
  • the second matching circuit 51 may include a fourth capacitor C4 electrically connected between the frequency selection point 14 and the second feed source 40.
  • the second feed source 40 is electrically connected to the frequency selection point 14 through the fourth capacitor C4.
  • the second matching circuit 51 such as the fourth capacitor C4, is configured so that the second resonant mode is a left-handed antenna mode that uses capacitive coupling feeding to form a composite left-handed transmission line structure.
  • the capacitance of the fourth capacitor C4 may be 2.7 pF.
  • the second filter circuit 52 can control the second frequency selection circuit 50 to be in a high impedance state when the first feed source 20 excites the radiator 10, and to be in a low impedance state when the second feed source 40 excites the radiator 10. In some embodiments, the second filter circuit 52 can control the second frequency selection circuit 50 to be in an open circuit state when the first feed source 20 excites the radiator 10, and to be in a short circuit state when the second feed source 40 excites the radiator 10. In some embodiments, the second filter circuit 52 can control the second frequency selection circuit 50 to be disconnected when the first feed source 20 excites the radiator 10, and to be connected when the second feed source 40 excites the radiator 10.
  • the second filter circuit 52 may include a fifth capacitor C5 electrically connected to the second matching circuit 51, such as the fourth capacitor C4, and the ground.
  • the second matching circuit 51 such as the fourth capacitor C4
  • the fifth capacitor C5 may form a low-pass high-impedance filter circuit. That is, the second filter circuit 52 may be a low-pass high-impedance filter circuit to improve the isolation between the first feed source 20 and the second feed source 40.
  • the fifth capacitor C5 is electrically connected to the second matching circuit 51 and the second feed source 40 respectively.
  • the capacitance of the third capacitor C3 is 2.7 pF.
  • the fifth capacitor C5 can flow current I2 when the radiator 10 supports the second frequency band. Specifically, the current I2 can flow from the ground through the fifth capacitor C5, the second matching circuit 51 such as the fourth capacitor C4, and flow to the first feeding point 13. Therefore, the fifth capacitor C5 can be a virtual return point.
  • FIG. 5 is a schematic diagram of the structure of the antenna assembly 100 shown in FIG. 2 in another embodiment.
  • the second feed source 40 can be omitted.
  • the first filter circuit 32 can be omitted, and the first matching circuit 31 is directly electrically connected to the first feed point 13.
  • the second matching circuit 51 can be omitted, and the second filter circuit 52 is directly electrically connected to the frequency selection point 14.
  • the second filter circuit 52 can be omitted, and the second matching circuit 51 is directly grounded.
  • the total length of the radiator 10 can be adjusted to remove the radiating portion between the frequency selection point 14 and the second free end 12.
  • FIG. 6 is a schematic diagram of the structure of the antenna assembly 100 shown in FIG. 2 in another embodiment.
  • the radiator 10 has a grounding point 15.
  • the grounding point 15 can be located between the frequency selection point 14 and the second free end 12.
  • the grounding point 15 can be directly grounded or indirectly grounded through a tuning circuit.
  • the tuning circuit can be composed of a switch control circuit and/or a load circuit, or composed of an adjustable capacitor (which can also be replaced by a fixed value capacitor) and/or an adjustable inductor.
  • the second feed source 40 can excite the radiating portion of the radiator 10 between the first free end 11 and the grounding point 15 to generate a third resonance mode supporting a third frequency band.
  • the total length of the radiator 10 can be adjusted to remove the gap between the grounding point 15 and the second free end 11. By the radiating portion between the ends 12.
  • the third frequency band may be a frequency band supporting Long Term Evolution (LTE). In some embodiments, the third frequency band may be a LTE low frequency band. In some embodiments, the third frequency band may be a LTE B20 frequency band (791 MHz-861 MHz).
  • LTE Long Term Evolution
  • the third frequency band may be a LTE B20 frequency band (791 MHz-861 MHz).
  • the third resonance mode may be a left-hand antenna mode.
  • the current I3 of the third resonance mode may flow from the ground point 15 to the first free end 11 .
  • Fig. 7 is a schematic diagram of the structure of the antenna assembly 100 shown in Fig. 6 in another embodiment.
  • the radiator 10 may further have a third feeding point 16 located between the second free end 12 and the ground point 15.
  • the antenna assembly 100 may further include a third feed 60.
  • the third feed 60 may be electrically connected directly or indirectly to the third feed point 16.
  • the third feed 60 may excite the radiator 10.
  • the third feed 60 may excite the radiator 10 to generate a portion or all of at least one of a plurality of frequency bands, such as a mid-high frequency band and a low frequency band, thereby broadening the bandwidth of the antenna assembly 100. It can be understood that the provision of the grounding point 15 improves the isolation between the third feed 60 and the first feed 20 and the second feed 40, respectively.
  • the third feed 60 can excite the radiating portion between the grounding point 15 and the second free end 12 on the radiator 10 to generate a fourth resonance mode supporting a fourth frequency band.
  • the number of grounding points 15 between the frequency selection point 14 and the third feed point 16 can be multiple, such as 2, 3, 4, etc., and the grounding point 15 for the third resonance mode can be different from the grounding point 15 for the fourth resonance mode, so as to improve the isolation between the third feed 60 and the first feed 20 and the second feed 40, respectively.
  • the fourth frequency band may be a medium-high frequency band (1710MHz-2690MHz). In some embodiments, the fourth frequency band may be a medium-high frequency band of LTE. In some embodiments, the fourth frequency band may be at least one of a plurality of frequency bands such as LTE B3 band, LTE B1 band, LTE B39 band, LTE B40 band, and LTE B41 band.
  • the fourth resonant mode is a left-handed antenna mode.
  • the current of the fourth resonance mode may include a current I4 flowing from the ground point 15 to the second free end 12 .
  • the antenna assembly 100 may further include a third frequency selection circuit 70 .
  • the third frequency selection circuit 70 is electrically connected between the third feed point 16 and the third feed source 60 , so that the third feed source 60 is electrically connected to the third feed point 16 through the third frequency selection circuit 70 .
  • Fig. 8 is a schematic diagram of the structure of the third feed source 60 and the third frequency selection circuit 70 in other embodiments in the embodiment shown in Fig. 7.
  • the third frequency selection circuit 70 can be composed of a switch control circuit and/or a load circuit, or composed of an adjustable capacitor (which can also be replaced by a fixed value capacitor) and/or an adjustable inductor.
  • the third frequency selection circuit 70 may include a sixth capacitor C6 electrically connected between the third feeding point 16 and the third feed source 60.
  • the third feed source 60 is electrically connected to the third feeding point 16 through the sixth capacitor C6.
  • the third frequency selection circuit 70, such as the sixth capacitor C6, is configured so that the fourth resonant mode is a left-handed antenna mode that adopts capacitive coupling feeding to form a composite left-handed transmission line structure.
  • Fig. 9 is a schematic structural diagram of another embodiment of the antenna assembly 100 shown in Fig. 7.
  • the radiator 10 may further have a switching point 17 located between the second free end 12 and the third feeding point 16.
  • the antenna assembly 100 may further include a switching circuit 80 electrically connected between the switching point 17 and the ground.
  • the switching point 17 is grounded through the switching circuit 80.
  • the switching circuit 80 may adjust the frequency of the fourth frequency band.
  • the switching circuit 80 can switch and select frequencies among multiple sub-bands in the fourth frequency band. For example, the switching circuit 80 can switch and select frequencies among LTE B3 band, LTE B1 band, LTE B39 band, LTE B40 band, and LTE B41 band in the fourth frequency band.
  • the switching circuit 80 may be composed of a switch control circuit and/or a load circuit, or may be composed of an adjustable capacitor (which may also be replaced by a fixed-value capacitor) and/or an adjustable inductor.
  • Fig. 10 is a schematic diagram of the structure of the switching circuit 80 shown in Fig. 9 in some embodiments.
  • the switching circuit 80 may include a switching switch 81 and at least one frequency selection branch 82.
  • the switch 81 has a common terminal 811 electrically connected to the switching point 17, a plurality of connection terminals 812, and a switching portion 813.
  • the switching portion 813 can be electrically connected to the common terminal 811.
  • the switching portion 813 can be electrically connected to one connection terminal 812 under the control of a control signal (which can come from an electronic device such as a processor or other electronic devices).
  • each frequency selection branch 82 is electrically connected to a connection terminal 812 in a one-to-one correspondence, and the other end is grounded.
  • the switching part 813 can be selectively electrically connected to different connection ends 812, so that one end of different frequency selection branches 82 is electrically connected to the third feeding point 16 and the other end is grounded, so that the radiating part located between the grounding point 15 and the second free end 12 on the radiator 10 has different effective electrical lengths in different states.
  • each frequency selection branch 82 may include a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • each frequency selection branch 82 may be different, so that when different frequency selection branches 82 are electrically connected to the radiator 10, the degree of adjustment of the electrical length of the radiator 10 is different. Furthermore, the frequency selection is switched among multiple sub-bands in the fourth frequency band, such as LTE B3 band, LTE B1 band, LTE B39 band, LTE B40 band, LTE B41 band, etc.
  • each frequency selection branch 82 referred to here is different, and the devices included in each frequency selection branch 82 may be different; or, the devices included are the same, but the connection relationship between the devices is different; or, the devices included are the same, and the connection relationship is the same, but the devices are different.
  • the parameters of the components are different.
  • the number of the frequency selection branches 82 is usually greater than or equal to two.
  • each frequency selection branch 82 is electrically connected to a switch 81 in a one-to-one correspondence.
  • FIG11 is a schematic diagram of the structure of the switching circuit 80 in the embodiment shown in FIG10 in another embodiment of the antenna assembly 100.
  • Each frequency selection branch 82 is electrically connected to a switch 81 in a one-to-one correspondence.
  • the end of the switch 81 in FIG. 10 that is grounded may be electrically connected to the switching point 17 , and correspondingly, the end that is electrically connected to the switching point 17 may be directly grounded.
  • the frequency selection branch 82 may include a first frequency selection branch 821, a second frequency selection branch 822, a third frequency selection branch 823, and a fourth frequency selection branch 824.
  • the first frequency selection branch 821, the second frequency selection branch 822, the third frequency selection branch 823, and the fourth frequency selection branch 824 are all electrically connected to a connection terminal 812 at one end, and are all grounded at the other end.
  • the first frequency selection branch 821 may be a capacitor.
  • the second frequency selection branch 822, the third frequency selection branch 823 and the fourth frequency selection branch 824 may all be inductors.
  • the first frequency selection branch 821, the second frequency selection branch 822, the third frequency selection branch 823, and the fourth frequency selection branch 824 are used for frequency selection, as shown in the following table:
  • Fig. 12 is a schematic diagram of the structure of the antenna assembly 100 shown in Fig. 9 in another embodiment.
  • the switching point 17 may coincide with the third feeding point 16. That is, the switching point 17 and the third feeding point 16 may be the same point.
  • the first resonance mode corresponding to the current I1 can operate in the WiFi5G frequency band.
  • the second resonance mode corresponding to the current I2 can operate in the N78 frequency band (3.4GHz-3.6GHz).
  • the third resonance mode corresponding to the current I3 can operate in the B20 frequency band (791MHz-861MHz).
  • the fourth resonance mode corresponding to the current I4 can operate in the LTE medium and high frequency bands such as the LTE B3 band, the LTE B1 band, the LTE B39 band, the LTE B40 band, and the LTE B41 band.
  • the antenna assembly 100 can realize ENDC (a combination of dual connectivity (E-UTRAN New Radio-Dual Connectivity, ENDC) of the N78 band and the WiFi5G band) and can also realize ENDC of the LTE B20 band and medium and high frequency bands (for example, one of the LTE medium and high frequency bands such as the LTE B3 band, LTE B1 band, LTE B39 band, LTE B40 band, LTE B41 band, etc.).
  • ENDC a combination of dual connectivity (E-UTRAN New Radio-Dual Connectivity, ENDC) of the N78 band and the WiFi5G band
  • LTE B20 band and medium and high frequency bands for example, one of the LTE medium and high frequency bands such as the LTE B3 band, LTE B1 band, LTE B39 band, LTE B40 band, LTE B41 band, etc.
  • the present application adopts a solution of sharing the radiator 10, so that the radiator 10 works in the N78 band + WiFi 5G band, LTE B20 band, MHB band, etc., and reduces the probability of isolation/coexistence problems. Due to the shared radiator 10, the antenna assembly's demand for design space is reduced.
  • FIG. 14 is a return loss curve of the antenna assembly 100 shown in FIG. 13 in another embodiment when excited by the first feed source 20, with the horizontal axis being the frequency (GHz) and the vertical axis being the return loss (dB).
  • Curve A1 is the return loss curve of the antenna assembly 100 under the first feed source 20. Wherein there are the first identification point (3.4959, -9.1758), the second identification point (5.4985, -11.998), and the third identification point (4.8473, -3.9138) on curve A.
  • the antenna assembly 100 has good antenna performance in the second frequency band near the first identification point, such as the N78 frequency band, and has good antenna performance in the first frequency band near the second identification point and the third identification point, such as the WiFi5G frequency band.
  • the bandwidth between the first identification point and the second identification point is relatively wide, and thus the antenna assembly 100 is in good working condition and can meet engineering requirements.
  • Figure 15 is a system total efficiency curve of the antenna assembly 100 shown in Figure 13 in another embodiment when excited by the first feed source 20.
  • the horizontal axis is frequency (GHz) and the vertical axis is system total efficiency (dB).
  • Curve A2 is the system total efficiency curve of the antenna assembly 100 under the first feed source 20.
  • the antenna assembly 100 has good antenna performance in the first frequency band (e.g., WiFi5G frequency band) and the second frequency band (e.g., N78 frequency band), and thus has a good working condition and can meet engineering requirements.
  • FIG. 16 is a return loss curve of the antenna assembly 100 shown in FIG. 13 in another embodiment when excited by the second feed source 40, wherein the horizontal axis is frequency (GHz) and the vertical axis is return loss (dB).
  • Curve B1 is a return loss curve of the antenna assembly 100 under the second feed source 40.
  • FIG. 17 is a system total efficiency curve of the antenna assembly 100 shown in FIG. 13 in another embodiment when excited by the second feed source 40.
  • the horizontal axis is frequency (GHz), and the vertical axis is system total efficiency (dB).
  • Curve B2 is a system total efficiency curve of the antenna assembly 100 under the second feed source 40.
  • FIG. 18 is a return loss curve of the antenna assembly 100 shown in FIG. 13 in another embodiment when excited by the third feed source 60, with the horizontal axis being frequency (GHz) and the vertical axis being return loss (dB).
  • Curve C1 is a return loss curve of the antenna assembly 100 corresponding to the LTE B1 frequency band in one embodiment.
  • Curve D1 is a return loss curve of the antenna assembly 100 corresponding to the LTE B3 frequency band in one embodiment.
  • Curve E1 is a return loss curve of the antenna assembly 100 corresponding to the LTE B40 frequency band in one embodiment.
  • Curve F1 is a return loss curve of the antenna assembly 100 corresponding to the LTE B41 frequency band in one embodiment.
  • Curve C1 has a first identification point (2.032, -14.754).
  • Curve D1 has a second identification point (1.7957, -12.746).
  • Curve E1 has a third identification point (2.3516, -24.803).
  • the curve F1 has a fourth identification point (2.5755, -20.694). It can be seen that the antenna assembly 100 has good antenna performance in the fourth frequency band (e.g., LTE B3 band, LTE B1 band, LTE B40 band, LTE B41 band), and thus works well, which can meet engineering requirements.
  • the fourth frequency band e.g., LTE B3 band, LTE B1 band, LTE B40 band, LTE B41 band
  • FIG. 19 is a system total efficiency curve of the antenna assembly 100 shown in FIG. 13 in another embodiment when excited by the third feed source 60, with the horizontal axis being the frequency (GHz) and the vertical axis being the system total efficiency (dB).
  • Curve C2 is a system total efficiency curve of the antenna assembly 100 corresponding to the LTE B1 frequency band in one embodiment.
  • Curve D2 is a system total efficiency curve of the antenna assembly 100 corresponding to the LTE B3 frequency band in one embodiment.
  • Curve E2 is a system total efficiency curve of the antenna assembly 100 corresponding to the LTE B40 frequency band in one embodiment.
  • Curve F2 is a system total efficiency curve of the antenna assembly 100 corresponding to the LTE B41 frequency band in one embodiment.
  • Curve C2 has a first identification point (2.0079, -4.7104).
  • Curve D2 has a second identification point (1.7967, -4.29).
  • Curve E2 has a third identification point (2.3721, -4.3092).
  • the curve F2 has a fourth identification point (2.61, -4.0987). It can be seen that the antenna assembly 100 has good antenna performance in the fourth frequency band (e.g., LTE B3 band, LTE B1 band, LTE B40 band, LTE B41 band), and thus works well, which can meet engineering requirements.
  • the fourth frequency band e.g., LTE B3 band, LTE B1 band, LTE B40 band, LTE B41 band
  • the electronic device can be any one of a plurality of electronic devices, including but not limited to cellular phones, smart phones, other wireless communication devices, personal digital assistants, audio players, other media players, music recorders, video recorders, cameras, other media recorders, radios, medical devices, calculators, programmable remote controls, pagers, netbook computers, personal digital assistants (PDAs), portable multimedia players (PMPs), moving picture experts group (MPEG-1 or MPEG-2), audio layer 3 (MP3) players, portable medical devices, digital cameras, and combinations thereof.
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • MPEG-1 or MPEG-2 moving picture experts group
  • MP3 audio layer 3
  • the electronic device may include but is not limited to a mobile phone, a mobile internet device (MID), an e-book, a portable player station (Play Station Portable, PSP) or a personal digital assistant (Personal Digital Assistant, PDA) and other electronic devices with communication functions.
  • MID mobile internet device
  • PSP Portable Player Station
  • PDA Personal Digital Assistant
  • the electronic device 200 may include a middle frame assembly 90 provided with an antenna assembly 100, a display screen 201 provided on one side of the middle frame assembly 90 and used to display information, a battery cover 202 connected to the other side of the middle frame assembly 90, a circuit board 203 installed on the middle frame assembly 90 and used to control the display screen 201 and the antenna assembly 100, and a battery 204 installed on the middle frame assembly 90 and used to power the electronic device 200 for normal operation.
  • the display screen 201 can be a liquid crystal display (Liquid Crystal Display, LCD) or an organic light-emitting diode display (Organic Light-Emitting Diode, OLED) and other types of display screens for displaying information and images.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the material of the middle frame assembly 90 can be a metal such as magnesium alloy, aluminum alloy, stainless steel, etc. Of course, the material is not limited thereto, and can also be other materials such as insulating materials, such as hard materials.
  • the middle frame assembly 90 can be placed between the display screen 201 and the battery cover 202.
  • the middle frame assembly 90 can be used to carry the display screen 201.
  • the middle frame assembly 90 and the battery cover 202 are snap-fitted to form the main housing 210 of the electronic device 200, and a accommodating cavity is formed inside the main housing 210.
  • the accommodating cavity can be used to accommodate electronic components such as the camera, the circuit main board 203, the battery 204, the processor (arranged on the circuit main board 203, so in some embodiments it can be part of the circuit main board 203), the antenna assembly 100, and various types of sensors in the electronic device 200.
  • electronic components such as the camera, the circuit main board 203, the battery 204, the processor (arranged on the circuit main board 203, so in some embodiments it can be part of the circuit main board 203), the antenna assembly 100, and various types of sensors in the electronic device 200.
  • the circuit main board 203 is installed in the accommodating cavity and can be installed at any position in the accommodating cavity.
  • the circuit main board 203 can be the main board of the electronic device 200.
  • the processor of the electronic device 200 can be set on the circuit main board 203.
  • the circuit main board 203 can also be integrated with one, two or more functional components such as a motor, a microphone, a speaker, a receiver, an earphone interface, a universal serial bus interface (USB interface), a camera, a distance sensor, an ambient light sensor, a gyroscope, etc.
  • the display screen 201 can be electrically connected to the circuit main board 203.
  • the battery 204 is installed in the accommodating cavity and can be installed at any position in the accommodating cavity.
  • the battery 204 can be electrically connected to the circuit main board 203 so that the battery 204 can power the electronic device 200.
  • a power management circuit can be provided on the circuit main board 203. The power management circuit is used to distribute the voltage provided by the battery 204 to various electronic components in the electronic device 200, such as the display screen 201.
  • the battery cover 202 can be made of the same material as the middle frame assembly 90, or other materials.
  • the battery cover 202 can be integrally formed with the middle frame assembly 90.
  • the battery cover 202 can wrap the middle frame assembly 90 and can carry the display screen 201. Structures such as rear camera hole, fingerprint recognition module installation hole, etc.
  • FIG. 21 is a schematic diagram of the structure of the frame assembly 90 in the embodiment shown in FIG. 20 .
  • the middle frame assembly 90 may include a substrate 91 for carrying the display screen 201 and a frame 92 surrounding the substrate 91 .
  • the substrate 91 is arranged opposite to the battery cover 202 .
  • the frame 92 can be used to be snap-fitted with the battery cover 202 . That is, the substrate 91 , the frame 92 and the battery cover 202 are surrounded to form a receiving cavity.
  • the substrate 91 may be a conductive metal, or other materials.
  • a ground plane and a feed source may be provided on the substrate 91.
  • the ground plane serves as a ground.
  • the ground plane and the feed source may not be provided on the substrate 91, but may be directly provided on the circuit main board 203.
  • the substrate 91 may be omitted.
  • the frame 92 may be a conductive metal, so the frame 92 may also be referred to as a "metal frame". Of course, the frame 92 may also be other materials, such as insulating materials. The frame 92 may also be made of the same material as the substrate 91.
  • the frame 92 may include a first frame 921, a second frame 922, a third frame 923, and a fourth frame 924 connected end to end in sequence.
  • the first frame 921, the second frame 922, the third frame 923, and the fourth frame 924 are arranged around the substrate 91 and may be connected and fixed to the substrate 91.
  • the frame 92 may be an integral structure with the battery cover 202.
  • the frame 92 extends from the edge of the battery cover 202 to one side of the display screen 201 so as to be snap-fitted and connected to the display screen 201.
  • first frame 921, the second frame 922, the third frame 923 and the fourth frame 924 are arranged to form a rounded rectangle. Of course, other shapes such as a circle, a triangle, etc. are also possible. In some embodiments, the first frame 921 and the third frame 923 are arranged opposite to each other, and the second frame 922 and the fourth frame 924 are arranged opposite to each other.
  • the lengths of the first frame 921 and the third frame 923 are both shorter than the length of the second frame 922 , and shorter than the length of the fourth frame 92 .
  • the middle frame assembly 90 and the battery cover 202 can form a main housing 210.
  • the main housing is not limited to the middle frame assembly 90 and the battery cover 202, but can also include other components, which will not be described in detail.
  • the antenna assembly 100 can be mounted on the middle frame assembly 90. In some embodiments, the antenna assembly 100 can be a part of the middle frame assembly 90. Of course, in some embodiments, the antenna assembly 100 can also be mounted on other locations of the main housing 210, such as the battery cover 202. In some embodiments, the antenna assembly 100 can be processed from the main housing 210. For example, the antenna assembly 100 appears as a slot antenna. In some embodiments, the antenna assembly 100 can be directly fixed to the main housing 210.
  • the radiator 10 is disposed on a frame 92 , such as a first frame 921 .
  • the first feed source 20 and the second feed source 40 may be feed sources on the substrate 91 or the circuit main board 203. Specifically, the connection between the radiator 10 and the feed source may be achieved through an antenna spring.
  • the ground may be a ground plane on the substrate 91 or the circuit main board 203. Specifically, the connection between the radiator 10 and the ground may be achieved through an antenna spring.
  • a gap 901 is provided between the first frame 921 and the substrate 91.
  • the gap 901 can be extended toward the second frame 922 and the fourth frame 924 in the extension direction of the first frame 921 to be formed between the first frame 921 and the substrate 91, such as a ground plane, so that part or all of the first frame 921 serves as the radiator 10.
  • the gap 901 may be extended toward the second frame 922 in the extension direction of the first frame 921 to form a gap between the second frame 922 and the substrate 91 , such as a ground plane.
  • the gap 901 may be extended toward one side of the fourth frame 924 in the extension direction of the first frame 921 to be formed between the fourth frame 924 and the substrate 91 , such as a ground plane.
  • the radiator 10 utilizes the first border 921 , which can effectively improve the performance loss of the antenna assembly 100 caused by human hands.
  • an insulating material such as resin can be filled between the gaps 901 to realize that the radiator 10 in the antenna assembly 100 is a part of the frame 92, such as the first frame 921, which further improves the appearance of the electronic device 200.
  • the present application adopts a solution of sharing radiators, which reduces the probability of isolation/coexistence problems, makes the overall system efficiency of the antenna assembly 100 good, reduces the antenna assembly 100's demand for design space of the electronic device 200, and has important engineering application benefits.
  • FIG 22 is a schematic diagram of the structure of an electronic device 300 in an embodiment of the present application.
  • the electronic device 300 can be a mobile phone, a tablet computer, a laptop computer, a wearable device, etc.
  • the diagram of this embodiment takes a mobile phone as an example.
  • the structure of the electronic device 300 may include an RF circuit 310 (such as the antenna assembly 100 in the above embodiment), a memory 320, an input unit 330, a display unit 340 (such as the display screen 201 in the above embodiment), a sensor 350, an audio circuit 360, a WiFi module 370, a processor 380, and a power supply 390 (such as the battery 204 in the above embodiment).
  • the RF circuit 310, the memory 320, the input unit 330, the display unit 340, the sensor 350, the audio circuit 360, and the WiFi module 370 are connected to the processor 380 respectively.
  • the power supply 390 is used to provide electrical energy for the entire electronic device 300.
  • the RF circuit 310 is used to receive and send signals.
  • the memory 320 is used to store data instruction information.
  • the input unit 330 is used to input information, and may specifically include a touch panel 3301 and other input devices 3302 such as operation buttons.
  • the display unit 340 may include a display screen.
  • the sensor 350 includes an infrared sensor, a laser sensor, a position sensor, etc., which is used to detect user approach signals, distance signals, etc.
  • the speaker 3601 and the microphone (or microphone, or receiver component) 3602 are connected to the processor 380 through the audio circuit 360 for receiving and sending sound signals.
  • the WiFi module 370 is used to receive and send WiFi signals.
  • the processor 380 is used to process data information of the electronic device.
  • the disclosed device can be implemented in other ways.
  • the device implementation described above is only illustrative, for example, the division of modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请公开了一种天线组件、中框组件以及电子设备,涉及通信技术领域。在本申请中,第一馈源用于激励辐射体,以支持第一频段及第二频段;第一馈源通过第一选频电路与第一馈电点电连接,第一选频电路接地,支持第一频段的电流配置为由地流经第一选频电路以输入辐射体;选频点通过第二选频电路接地,支持第二频段的电流配置为由地流经第二选频电路以输入辐射体。本申请通过单个辐射体上实现两个频段的无线传输功能,有效减少了辐射体个数,并进一步降低天线组件对电子设备空间的占用。

Description

天线组件、中框组件以及电子设备 【技术领域】
本申请涉及通信技术领域,具体涉及一种天线组件、中框组件以及电子设备。
【背景技术】
随着电子装置的通讯功能越来越多,单个天线已不能满足人们无线通信的需求。因此,很多电子装置都配备了多个天线以接收不同的无线信号,如GSM(全球移动通信系统,Global System for Mobile Communication),WiFi(Wireless-Fidelity,无线保真)等信号。然而,多个天线会占用较大的面积,且存在相互干扰的问题。
【发明内容】
本申请提供一种天线组件,所述天线组件包括:
辐射体,具有第一自由端、第一馈电点及选频点,所述第一馈电点位于所述第一自由端与所述选频点之间;
第一馈源,用于激励所述辐射体,以支持第一频段及第二频段;
第一选频电路,电连接至所述第一馈电点与所述第一馈源之间,以使所述第一馈源通过所述第一选频电路与所述第一馈电点电连接,所述第一选频电路接地,支持所述第一频段的电流配置为由地流经所述第一选频电路以输入所述辐射体;以及
第二选频电路,电连接至所述选频点与地之间,以使所述选频点通过所述第二选频电路接地,支持所述第二频段的电流配置为由地流经所述第二选频电路以输入所述辐射体。
本申请提供一种中框组件,包括:
基板;
边框,围设在所述基板的周围;以及
如上述所述的天线组件,所述辐射体设置在所述边框上。
本申请是提供一种电子设备,包括:
显示屏;
主壳体,用于安装所述显示屏,所述主壳体包括接地面及至少部分环绕所述接地面设置的边框,
如上述所述的天线组件,所述辐射体设置在所述边框上,并与所述接地面之间形成有缝隙。
【附图说明】
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一些实施例中天线组件的结构示意图;
图2为本申请一些实施例中天线组件的结构示意图;
图3为图2所示实施例中第一馈源与第一选频电路在另一些实施例中配合的结构示意图;
图4为图2所示实施例中第二馈源与第二选频电路在另一些实施例中配合的结构示意图;
图5为图2所示天线组件在另一实施例中的结构示意图;
图6为图2所示天线组件在另一实施例中的结构示意图;
图7为图6所示天线组件在另一实施例中的结构示意图;
图8为图7所示实施例中第三馈源与第三选频电路在另一些实施例中配合的结构示意图;
图9为图7所示天线组件在另一实施例中的结构示意图;
图10为图9所示切换电路在一些实施例中配合的结构示意图;
图11为图10所示实施例中切换电路在天线组件中另一实施例中的结构示意图;
图12为图9所示天线组件在另一实施例中的结构示意图;
图13为图9所示天线组件在另一实施例中的结构示意图;
图14为图13所示天线组件在另一实施例中受第一馈源激励的回波损耗曲线图;
图15为图13所示天线组件在另一实施例中受第一馈源激励的系统总效率(System Total Efficiency)曲线图;
图16为图13所示天线组件在另一实施例中受第二馈源激励的回波损耗曲线图;
图17为图13所示天线组件在另一实施例中受第二馈源激励的系统总效率曲线图;
图18为图13所示天线组件在另一实施例中受第三馈源激励的回波损耗曲线图;
图19为图13所示天线组件在另一实施例中受第三馈源激励的系统总效率曲线图;
图20为本申请一实施例中电子设备的爆炸图;
图21为图20所示实施例中框组件的结构示意图;
图22为本申请一实施例中电子设备的结构组成示意图。
【具体实施方式】
下面结合附图和实施方式,对本申请作进一步的详细描述。特别指出的是,以下实施方式仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施方式仅为本申请的部分实施方式而非全部实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在本文中提及“实施方式”意味着,结合实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施方式中。在说明书中的各个位置出现该短语并不一定均是指相同的实施方式,也不是与其他实施方式互斥的独立的或备选的实施方式。本领域技术人员显式地和隐式地理解的是,本文所描述的实施方式可以与其他实施方式相结合。
本申请提供了一种天线组件,其中,包括:
辐射体,具有第一自由端、第一馈电点及选频点,所述第一馈电点位于所述第一自由端与所述选频点之间;
第一馈源,用于激励所述辐射体,以支持第一频段及第二频段;
第一选频电路,电连接至所述第一馈电点与所述第一馈源之间,以使所述第一馈源通过所述第一选频电路与所述第一馈电点电连接,所述第一选频电路接地,支持所述第一频段的电流配置为由地流经所述第一选频电路以输入所述辐射体;以及
第二选频电路,电连接至所述选频点与地之间,以使所述选频点通过所述第二选频电路接地,支持所述第二频段的电流配置为由地流经所述第二选频电路以输入所述辐射体。
在一些实施例中,所述辐射体上具有接地点,所述选频点位于所述接地点与所述第一馈电点之间,所述接地点接地,所述天线组件还包括:
第二馈源,用于激励所述辐射体,所述第二选频电路电连接至所述选频点与所述第二馈源之间,以使所述第二馈源通过所述第二选频电路与所述选频点电连接。
在一些实施例中,所述第一选频电路包括:
第一滤波电路,与所述第一馈电点电连接;以及
第一匹配电路,电连接至所述第一滤波电路与所述第一馈源之间,以使所述第一馈源通过所述第一匹配电路与所述第一滤波电路电连接,所述第一匹配电路接地,支持所述第一频段的电流配置为由地流经所述第一匹配电路、所述第一滤波电路以输入所述辐射体,所述第一滤波电路配置为在所述第二馈源激励所述辐射体时断开,且在所述第一馈源激励所述辐射体时接通。
在一些实施例中,所述第一匹配电路包括:
第一电容,电连接至所述第一滤波电路与所述第一馈源之间,以使所述第一馈源通过所述第一电容与所述第一滤波电路电连接,
第二电容,电连接至所述第一电容与地之间,以使所述第一电容通过所述第二电容接地,支持所述第一频段的电流配置为由地流经所述第二电容、所述第一电容以输入所述辐射体。
在一些实施例中,所述第二电容的电容量为1pF。
在一些实施例中,所述第一滤波电路包括:
第三电容,电连接至所述第一匹配电路与所述第一馈电点之间,以使所述第一匹配电路通过所述第三电容与所述第一馈电点电连接,支持所述第一频段的电流配置为由地流经所述第三电容以输入所述辐射体;以及
第一电感,电连接至所述第一匹配电路与所述第一馈电点之间,以使所述第一匹配电路通过所述第一电感与所述第一馈电点电连接。
在一些实施例中,所述第二选频电路包括:
第二匹配电路,电连接至所述选频点与所述第二馈源之间,以使所述第二馈源通过所述第二匹配电路与所述选频点电连接,以及
第二滤波电路,电连接至所述第二匹配电路与地之间,以使所述第二匹配电路通过所述第二滤波电路接地,支持所述第二频段的电流配置为由地流经所述第二滤波电路、所述第二匹配电路以输入所述辐射体,所述第二滤波电路配置为在所述第一馈源激励所述辐射体时断开,且在所述第二馈源激励所述辐射体时接通。
在一些实施例中,所述第二匹配电路包括:
第四电容,电连接至所述选频点与所述第二馈源之间,以使所述第二馈源通过所述第四电容与所述选频点电连接。
在一些实施例中,所述第二滤波电路包括:
第五电容,电连接至所述第二匹配电路与地之间,以使所述第二匹配电路通过所述第五电容接地,支持所述第二频段的电流配置为由地流经所述第五电容以输入所述辐射体,所述第五电容配置为在所述第一馈源激励所述辐射体时断开,且在所述第二馈源激励所述辐射体时接通。
在一些实施例中,所述第五电容的电容量为4pF。
在一些实施例中,所述第一馈源配置为激励所述辐射体上位于所述第一馈电点与所述第一自由端之间的辐射部产生支持所述第一频段的第一谐振模式,所述第一谐振模式为1/4波长的倒F天线IFA天线模式,支持所述第一频段的电流配置为由所述第一馈电点流向所述第一自由端。
在一些实施例中,所述第一频段包括无线保真WiFi5G频段。
在一些实施例中,所述第一馈源配置为激励所述辐射体上位于所述选频点与所述第一自由端之间的辐射部产生支持所述第二频段的第二谐振模式,所述第二谐振模式为1/4波长的左手天线模式,支持所述第二频段的电流配置为由所述选频点流向所述第一自由端。
在一些实施例中,所述第二频段包括新空口N78频段。
在一些实施例中,所述第二馈源配置为激励所述辐射体上位于所述接地点与所述第一自由端之间的辐射部产生支持第三频段的第三谐振模式,所述第三谐振模式为左手天线模式,所述第三谐振模式的电流包括由所述接地点流向所述第一自由端的电流。
在一些实施例中,所述第三频段包括长期演进LTE B20频段。
在一些实施例中,所述辐射体上具有第二自由端及第三馈电点,所述接地点位于所述选频点与所述第二自由端之间,所述第三馈电点位于所述接地点与所述第二自由端之间,所述天线组件还包括:
第三馈源,用于激励所述辐射体;以及
第三选频电路,电连接至所述第三馈电点与所述第三馈源之间,以使所述第三馈源通过所述第三选频电路与所述第三馈电点电连接。
在一些实施例中,所述第三馈源配置为激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射部产生支持第四频段的第四谐振模式,所述第四谐振模式为左手天线模式,所述第四谐振模式的电流包括由所述接地点流向所述第二自由端的电流。
在一些实施例中,所述第四频段包括LTE B1频段、LTE B3频段、LTE B39频段、LTE B40频段或者LTE B41频段中的至少一种。
在一些实施例中,所述辐射体上具有切换点,所述切换点与所述第三馈电点重合或位于所述第三馈电点与所述第二自由端之间,所述天线组件还包括:
切换电路,电连接至所述切换点与地之间,以使所述切换点通过所述切换电路接地,所述切换电路用于调节所述第三馈源所支持频段的频率。
在一些实施例中,所述切换电路包括:
切换开关,具有多个连接端、切换部及与所述切换点电连接的公共端,所述切换部与所述公共端电连接,并配置为在控制信号的控制下电连接至所述多个连接端中的一个连接端;以及
至少一个选频支路,所述至少一个选频支路的一端均与所述多个连接端中的连接端一一对应电连接,且另一端均接地。
在一些实施例中,每一所述至少一个选频支路包括电容或电感。
本申请提供了一种天线组件,其中,包括:
辐射体,具有第一自由端、第二自由端、第一馈电点、第二馈电点、接地点及第三馈电点,所述第一馈电点位于所述第一自由端与所述第二自由端之间,所述第二馈电点位于所述第一馈电点与所述第二自由端之间,所述接地点位于所述第二馈电点与所述第二自由端之间,所述第三馈电点位于所述接地点与所述第二自由端之间;
第一馈源,用于激励所述辐射体上位于所述第一馈电点与所述第一自由端之间的辐射部产生第一谐振模式,用于激励所述辐射体上位于所述第二馈电点与所述第一自由端之间的辐射部产生第二谐振模式;
第一选频电路,电连接至所述第一馈电点与所述第一馈源之间,以使所述第一馈源通过所述第一选频电路与所述第一馈电点电连接,所述第一选频电路接地;
第二馈源,用于激励所述辐射体上位于所述接地点与所述第一自由端之间的辐射部产生第三谐振模式,所述第一选频电路配置为在所述第一馈源激励所述辐射体时接通,且在所述第二馈源激励所述辐射体时断开;
第二选频电路,电连接至所述第二馈电点与所述第二馈源之间,以使所述第二馈源通过所述第二选频电路与所述第二馈电点电连接,所述第二选频电路配置为在所述第一馈源激励所述辐射体时断开,且在所 述第二馈源激励所述辐射体时接通;
第三馈源,用于激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射部产生第四谐振模式;
第三选频电路,电连接至所述第三馈电点与所述第三馈源之间,以使所述第三馈源通过所述第三选频电路与所述第三馈电点电连接。
本申请提供了一种中框组件,其中,包括:
基板,设置有接地面;
边框,围设在所述基板的周围;以及
如上述所述的天线组件,所述辐射体设置在所述边框上,并与所述接地面之间设置缝隙。
本申请提供了一种电子设备,其中,包括:
中框组件,包括:
基板;
边框,与所述基板连接,包括依次首尾相连接且围设在所述基板的周围的第一边框、第二边框、第三边框及第四边框,所述第一边框与所述第三边框相对设置,所述第二边框与所述第四边框相对设置,所述第一边框与所述第三边框两者的长度均较所述第二边框的长度短,且较所述第四边框的长度短;
如上述所述的天线组件,所述辐射体设置在所述第一边框上;
电池盖,盖设在所述中框组件的一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置;以及
显示屏,设置在所述中框组件的另一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置。
本申请提供了一种天线组件。该天线组件可应用于电子设备中。该天线组件可支持WiFi频段、中高频频段、NR(新空口)频段或者低频频段中的至少一个。
作为在此使用的“电子设备”(也可被称为“终端”或“移动终端”或“电子装置”)包括,但不限于被设置成经由有线线路电连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆电连接,以及/或另一数据电连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其他电子装置。手机即为配置有蜂窝通信模块的电子设备。
天线组件可为柔性电路板(Flexible Printed Circuit,FPC)天线、激光直接成型(Laser Direct Structuring,LDS)天线、印刷直接成型(Print Direct Structuring,PDS)天线、金属边框天线(也可叫金属枝节天线)中的一种或多种的混合体。当然,天线组件也可以为其他类型的天线,不作赘述。
请参阅图1,图1为本申请一些实施例中天线组件的结构示意图。天线组件100可包括辐射体10、第一馈源20、第一选频电路30以及第二选频电路50。辐射体10具有第一自由端11、第一馈电点13及选频点14。第一馈电点13位于第一自由端11与选频点14之间。第一馈源20用于激励辐射体10,以支持第一频段及第二频段。第一选频电路30电连接至第一馈电点13与第一馈源20之间,以使第一馈源20通过第一选频电路30与第一馈电点13电连接,第一选频电路30接地。支持第一频段的电流I1配置为由地流经第一选频电路30以输入辐射体10。第二选频电路50电连接至选频点14与地之间,以使选频点14通过第二选频电路50接地,支持第二频段的电流I2配置为由地流经第二选频电路50以输入辐射体10。
本申请中的术语“第一”“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”“第二”“第三”等的特征可以明示或者隐含地包括至少一个该特征。
请参阅图2,图2为本申请一些实施例中天线组件的结构示意图。天线组件100可包括辐射体10、用于激励辐射体10的第一馈源20、电连接至辐射体10与第一馈源20之间的第一选频电路30、用于激励辐射体10的第二馈源40以及电连接至辐射体10与第二馈源40之间的第二选频电路50。第一馈源20可激励辐射体10,以支持第一频段及第二频段。第二馈源40也可激励辐射体10,支持至少一个频段。天线组件100可通过第一馈源20、第二馈源40激励辐射体10,实现两个频段例如第一频段及第二频段的无线传输功能,有效减少了辐射体10个数,并进一步降低天线组件100对电子设备空间的占用。
辐射体10可以为但不仅限于为LDS辐射体,或者,FPC辐射体,或者PDS辐射体,或者为金属枝节辐射体。在一些实施例中,辐射体10可为利用电子设备自身嵌件金属设计的结构件天线(Mechanical Design Antenna,MDA)辐射体。
辐射体10的形状、构造及材质不作具体的限定,辐射体10的形状皆包括但不限于弯折状、条状、片 状、杆状、涂层、薄膜等。当辐射体10呈条状时,可不对辐射体10的延伸轨迹做限定,故辐射体10皆可呈直线、曲线、多段弯折等轨迹延伸。辐射体10在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
在一些实施例中,辐射体10的总长度可为30-70mm。在一些实施例中,辐射体10的总长度可为50mm。可以理解地,辐射体10的总长度可根据需要进行调节。
辐射体10可具有第一自由端11、第二自由端12、第一馈电点13及选频点14。第一馈电点13及选频点14可位于第一自由端11与第二自由端12之间。第一馈电点13可位于第一自由端11与选频点14之间,且位于选频点14远离第二自由端12的一侧。
在一些实施方式中,辐射体10的两端例如第一自由端11、第二自由端12可与其他部件之间各具有缝隙。在一些场景中,当天线组件100应用于电子设备中时,辐射体10的第一自由端11、第二自由端12可分别与电子设备中的其他部件之间各具有的缝隙(即两个缝隙)不容易同时被握住或被遮挡。即便两个缝隙中的一者被遮挡时,辐射体10还是可以收发电磁波信号,因此,天线组件100应用于电子设备中时可具有较好的通信性能。
请参阅图2,辐射体10可呈直线条形。第一自由端11与第二自由端12可为辐射体10的相对两端。在其他实施方式中,辐射体10可呈弯折状。第一自由端11和第二自由端12可不沿直线方向相对。但第一自由端11和第二自由端12可为辐射体10的两个末端。在一些实施方式中,在辐射体10延伸轨迹上,第一自由端11与第二自由端12之间的距离可为辐射体10的总长度。
请参阅图2,第一馈源20可与第一馈电点13通过第一选频电路30间接连接。第一馈源20可激励辐射体10,以支持多个频段(例如WiFi频段、NR频段中的至少一个的部分或全部)。在一些实施例中,第一馈源20可激励辐射体10,以支持第一频段和第二频段。
在一些实施例中,第一频段可为中高频频段或低频频段。
在一些实施例中,第一频段可为WiFi频段或NR频段。
在一些实施例中,第一频段可为WiFi频段。在一些实施例中,第一频段可为WiFi5G频段。
在一些实施例中,第一馈源20可激励辐射体10上位于第一自由端11与第一馈电点13之间的辐射部产生支持第一频段的第一谐振模式。
在一些实施例中,第一谐振模式为倒F天线(IFA,Inverted-F Antenna)天线模式。在一些实施例中,第一谐振模式为1/4波长的IFA天线模式。
在一些实施例中,第一谐振模式的电流包括由第一馈电点13流向第一自由端11的电流I1。
在一些实施例中,第二频段可为中高频频段或低频频段。
在一些实施例中,第二频段可为WiFi频段或NR频段。
在一些实施例中,第二频段可为NR高频频段。在一些实施例中,第二频段可为N78频段(3.4GHz-3.6GHz)。
在一些实施例中,第一馈源20可激励辐射体10上位于第一自由端11与选频点14之间的辐射部产生支持第二频段的第二谐振模式。
在一些实施例中,第二谐振模式可为左手天线模式(复合左手传输线结构的模式)。在一些实施例中,第二谐振模式可为1/4波长的左手天线模式。
在一些实施例中,第二谐振模式的电流包括由选频点14流向第一自由端11的电流I2。
请参阅图2,第一选频电路30电连接至第一馈电点13与第一馈源20之间。即,第一馈源20可通过第一选频电路30与第一馈电点13电连接。第一选频电路30可直接接地,使得支持第一频段的电流I1可由地流经第一选频电路30以输入辐射体10。
在一些实施例中,第一选频电路30可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。在一实施例中,开关控制电路可以是具有开关功能的开关芯片,也可以是单刀多掷开关或单刀单掷开关。
请参阅图3,图3为图2所示实施例中第一馈源20与第一选频电路30在另一些实施例中配合的结构示意图。第一选频电路30可包括第一匹配电路31和第一滤波电路32。第一匹配电路31一端与第一馈源20连接,另一端与第一馈电点13通过第一滤波电路32间接连接,还有一端接地。
在一些实施例中,第一匹配电路31可包括一端接地的第二电容C2以及一端与第二电容C2的另一端电连接的第一电容C1。第一电容C1的另一端与第一馈电点13电连接。第二电容C2的另一端还可电连接至第一馈源20。
在一些实施例中,第二电容C2及第一电容C1可在辐射体10支持第一频段时,流通电流I1。具体的,电流I1可由地流经第二电容C2、第一电容C1并流至第一馈电点13。故第二电容C2可为虚拟回地点。
在一些实施例中,第二电容C2的电容量可为1pF。
在一些实施例中,第一滤波电路32可控制第一选频电路30在第一馈源20激励辐射体10时呈低阻抗 状态,在第二馈源40激励辐射体10时呈高阻抗状态。在一些实施例中,第一滤波电路32可控制第一选频电路30在第一馈源20激励辐射体10时呈短路状态,在第二馈源40激励辐射体10时呈开路状态。在一些实施例中,第一滤波电路32可控制第一选频电路30在第一馈源20激励辐射体10时连通,在第二馈源40激励辐射体10时断开。
在一些实施例中,第一滤波电路32可包括电连接至第一馈电点13与第一匹配电路31例如第一电容C1之间的第三电容C3以及电连接至第一馈电点13与第一匹配电路31例如第一电容C1之间的第一电感L1。即第一馈电点13可分别通过第三电容C3、第一电感L1与第一匹配电路31例如第一电容C1电连接。
在一些实施例中,第三电容C3、第一电感L1分别与第一匹配电路31电连接的一端与第一电容C1的一端电连接。第三电容C3、第一电感L1并联谐振组成低阻高通滤波电路。即第一滤波电路32可为低阻高通滤波电路,提高第一馈源20和第二馈源40之间的隔离度。
在一些实施例中,第三电容C3可在辐射体10支持第一频段时,流通电流I1。具体的,电流I1可由地流经第一匹配电路31(例如第二电容C2、第一电容C1)、第三电容C3并流至第一馈电点13。
请参阅图2,第二馈源40可与选频点14通过第二选频电路50间接连接。第二馈源40可激励辐射体10,以产生支持多个频段(例如中高频频段、低频频段中的至少一个的部分或全部)的谐振模式,拓宽了天线组件100的带宽。可以理解的,选频点14也可被称为“第二馈电点”。
请参阅图2,第二选频电路50电连接至选频点14与第二馈源40之间。即,第二馈源40可通过第二选频电路50与选频点14电连接。第二选频电路50可直接接地,使得支持第二频段的电流I2可由地流经第二选频电路50以输入辐射体10。
在一些实施例中,第二选频电路50可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。
请参阅图4,图4为图2所示实施例中第二馈源40与第二选频电路50在另一些实施例中配合的结构示意图。第二选频电路50可包括第二匹配电路51和第二滤波电路52。第二匹配电路51电连接至选频点14与第二馈源40之间,以使第二馈源40通过第二匹配电路51与选频点14电连接。第二滤波电路52电连接至第二匹配电路51与地之间,以使第二匹配电路51通过第二滤波电路52接地。
在一些实施例中,第二匹配电路51可包括电连接至选频点14与第二馈源40之间的第四电容C4。进而,使得第二馈源40通过第四电容C4与选频点14电连接。在一些实施例中,第二匹配电路51例如第四电容C4的设置使得第二谐振模式为采用电容耦合馈电以构成复合左手传输线结构的左手天线模式。
在一些实施例中,第四电容C4的电容量可为2.7pF。
在一些实施例中,第二滤波电路52可控制第二选频电路50在第一馈源20激励辐射体10时呈高阻抗状态,在第二馈源40激励辐射体10时呈低阻抗状态。在一些实施例中,第二滤波电路52可控制第二选频电路50在第一馈源20激励辐射体10时呈开路状态,在第二馈源40激励辐射体10时呈短路状态。在一些实施例中,第二滤波电路52可控制第二选频电路50在第一馈源20激励辐射体10时断开,在第二馈源40激励辐射体10时连通。
在一些实施例中,第二滤波电路52可包括电连接至第二匹配电路51例如第四电容C4与地之间第五电容C5。进而,使得第二匹配电路51例如第四电容C4通过第五电容C5接地。第五电容C5可组成低通高阻滤波电路。即,第二滤波电路52可为低通高阻滤波电路,提高第一馈源20和第二馈源40之间的隔离度。
在一些实施例中,第五电容C5分别与第二匹配电路51、第二馈源40电连接。
在一些实施例中,第三电容C3的电容量为2.7pF。
在一些实施例中,第五电容C5可在辐射体10支持第二频段时,流通电流I2。具体的,电流I2可由地流经第五电容C5、第二匹配电路51例如第四电容C4,并流至第一馈电点13。故第五电容C5可为虚拟回地点。
在一实施例中,请参阅图5,图5为图2所示天线组件100在另一实施例中的结构示意图。第二馈源40可以省略。进而,在一些场景中,第一滤波电路32可以省略,第一匹配电路31直接与第一馈电点13电连接。在一些场景中,第二匹配电路51可以省略,第二滤波电路52直接与选频点14电连接。在一些场景中,第二滤波电路52可被省略,第二匹配电路51直接接地。在一些场景中,辐射体10的总长度可以调节,以去掉选频点14与第二自由端12之间的辐射部。
请参阅图6,图6为图2所示天线组件100在另一实施例中的结构示意图。辐射体10上具有接地点15。接地点15可位于选频点14与第二自由端12之间。接地点15可直接接地,或通过调谐电路间接接地。调谐电路可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。
在一些实施例中,第二馈源40可激励辐射体10上位于第一自由端11与接地点15之间的辐射部产生支持第三频段的第三谐振模式。在一些场景中,辐射体10的总长度可以调节,以去掉接地点15与第二自 由端12之间的辐射部。
在一些实施例中,第三频段可为支持长期演进(Long Term Evolution,LTE)频段。在一些实施例中,第三频段可为LTE低频频段。在一些实施例中,第三频段可为LTE B20频段(791MHz-861MHz)。
在一些实施例中,第三谐振模式可为左手天线模式。第三谐振模式的电流I3可由接地点15流向第一自由端11。
请参阅图7,图7为图6所示天线组件100在另一实施例中的结构示意图。辐射体10上还可具有位于第二自由端12与接地点15之间的第三馈电点16。
天线组件100还可包括第三馈源60。第三馈源60可与第三馈电点16直接或间接电连接。第三馈源60可激励辐射体10。第三馈源60可激励辐射体10,以产生支持多个频段例如中高频频段、低频频段中的至少一个的部分或全部,拓宽了天线组件100的带宽。可以理解的,接地点15的设置,提高了第三馈源60分别与第一馈源20、第二馈源40之间的隔离度。
在一些实施例中,第三馈源60可激励辐射体10上位于接地点15与第二自由端12之间的辐射部产生支持第四频段的第四谐振模式。在一些场景中,选频点14与第三馈电点16之间的接地点15的数量可为多个例如2个、3个、4个等,进而配合第三谐振模式的接地点15可与配合第四谐振模式的接地点15为不同的两个接地点,以提升第三馈源60分别与第一馈源20、第二馈源40之间的隔离度。
在一些实施例中,第四频段可为中高频频段(1710MHz-2690MHz)。在一些实施例中,第四频段可为LTE中高频频段。在一些实施例中,第四频段可为LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段和LTE B41频段等多个频段中的至少一个。
在一些实施例中,第四谐振模式为左手天线模式。
在一些实施例中,第四谐振模式的电流可包括由接地点15流向第二自由端12的电流I4。
请参阅图7,天线组件100还可包括第三选频电路70。第三选频电路70电连接至第三馈电点16与第三馈源60之间,以使第三馈源60通过第三选频电路70与第三馈电点16电连接。
请参阅图8,图8为图7所示实施例中第三馈源60与第三选频电路70在另一些实施例中配合的结构示意图。第三选频电路70可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。
在一些实施例中,第三选频电路70可包括电连接至第三馈电点16与第三馈源60之间的第六电容C6。进而,使得第三馈源60通过第六电容C6与第三馈电点16电连接。在一些实施例中,第三选频电路70例如第六电容C6的设置使得第四谐振模式为采用电容耦合馈电以构成复合左手传输线结构的左手天线模式。
请参阅图9,图9为图7所示天线组件100在另一实施例中的结构示意图。辐射体10上还可具有位于第二自由端12与第三馈电点16之间的切换点17。
天线组件100还可包括电连接至切换点17与地之间的切换电路80。切换点17通过切换电路80接地。切换电路80可调节第四频段的频率。
切换电路80可在第四频段下的多个子频段之间进行切换选频。例如,切换电路80可在第四频段下LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段、LTE B41频段之间进行切换选频。
切换电路80可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。
请参阅图10,图10为图9所示切换电路80在一些实施例中配合的结构示意图。切换电路80可包括切换开关81以及至少一个选频支路82。
切换开关81具有与切换点17电连接的公共端811、多个连接端812以及切换部813。切换部813可与公共端811电连接。切换部813可在控制信号(可来自电子设备例如处理器,也可来自其他电子器件)的控制下电连接至一个连接端812。
每一个选频支路82的一端与一个连接端812一一对应电连接,另一端均接地。
请参阅图10,切换部813可选择性地与不同的连接端812电连接,使得不同的选频支路82一端与第三馈电点16电连接,另一端接地,进而使得辐射体10上位于接地点15与第二自由端12之间的辐射部在不同状态下具有不同的有效电长度。
可以理解地,图示中选频支路82的图示数目不应当理解为对本申请实施方式提供的选频支路82数目的限定。
在一些实施例中,每一个选频支路82可包括电容,或电感,或电容和电感的组合。
在一实施方式中,当选频支路82为多个时,每个选频支路82可不同,以使得当不同选频支路82电连接至辐射体10时,对辐射体10的电长度的调节程度不同。进而,在第四频段中的多个子频段例如LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段、LTE B41频段等之间切换选频。
需要说明的是,这里所指的每个选频支路82不同,可以为每个选频支路82所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,但是,器 件的参数(如电容值,或电感量)不同。
另外,由于辐射体10所支持第四频段中的子频段较多,因此,为了实现对LB频段较好调节,选频支路82的数目通常大于或等于两个。
可以理解地,图10中的切换开关81也可以为多个,进而每个选频支路82与一个切换开关81一一对应电连接。请参阅图11,图11为图10所示实施例中切换电路80在天线组件100中另一实施例中的结构示意图。每个选频支路82与一个切换开关81一一对应电连接。
另外,图10中切换开关81接地的端部可与切换点17电连接,而相应的,与切换点17电连接的端部可直接接地。
在一些实施例中,选频支路82可包括第一选频支路821、第二选频支路822、第三选频支路823以及第四选频支路824。其中,第一选频支路821、第二选频支路822、第三选频支路823和第四选频支路824均一端与一个连接端812电连接,均另一端接地。
在一些实施例中,第一选频支路821可为电容。在一些实施例中,第二选频支路822、第三选频支路823和第四选频支路824可均为电感。
在一实施例中,请参阅图10和图11,以第四频段下的多个子频段分别为LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段、LTE B41频段为例,利用第一选频支路821、第二选频支路822、第三选频支路823以及第四选频支路824进行选频时,如下表所示:
请参阅图12,图12为图9所示天线组件100在另一实施例中的结构示意图。切换点17可与第三馈电点16重合。即,切换点17可与第三馈电点16为同一点。
请参阅图13,图13为图9所示天线组件100在另一实施例中的结构示意图。其中,对应于电流I1的第一谐振模式可工作在WiFi5G频段。对应于电流I2的第二谐振模式可工作在N78频段(3.4GHz-3.6GHz)。对应于电流I3的第三谐振模式可工作在B20频段(791MHz-861MHz)。对应于电流I4的第四谐振模式可工作在LTE中高频频段例如LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段、LTE B41频段。进而天线组件100可实现N78频段与WiFi5G频段的ENDC(4G无线接入网与5G-NR的双连接(E-UTRAN New Radio-Dual Connectivity,简称ENDC)组合),也可实现LTE B20频段与中高频频段(例如,LTE中高频频段例如LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段、LTE B41频段等中的一个)的ENDC。
由于电流I4的电流路径分别与电流I1的电流路径、电流I2的电流路径不存在重合,进而在中高频段与N78频段存在良好的隔离度性能,中高频段与WiFi5G频段存在良好的隔离度性能。
本申请采用共用辐射体10的方案,使得辐射体10工作在N78频段+WiFi5G频段、LTE B20频段、MHB频段等,并降低了隔离度/共存问题发生的概率。由于共用辐射体10,进而减小了天线组件对设计空间的需求。
在一些实施例中,请参阅图14,图14为图13所示天线组件100在另一实施例中受第一馈源20激励的回波损耗曲线图,横轴为频率(GHz),纵轴为回波损耗(dB)。曲线A1为天线组件100在第一馈源20下的回波损耗曲线。其中在曲线A上具有第一标识点(3.4959,-9.1758)、第二标识点(5.4985,-11.998)、第三标识点(4.8473,-3.9138)。可见,天线组件100在第一标识点附近的第二频段例如N78频段上的天线性能良好,并在低第二标识点及第三标识点附近的第一频段例如WiFi5G频段上的天线性能良好,另外,由第一标识点与第二标识点之间的带宽较宽,进而天线组件100的工作状态良好,可满足工程需求。
在一些实施例中,请参阅图15,图15为图13所示天线组件100在另一实施例中受第一馈源20激励的系统总效率曲线图。横轴为频率(GHz),纵轴为系统总效率(dB)。曲线A2为天线组件100在第一馈源20下的系统总效率曲线。其中在曲线A2上具有第一标识点(3.339,-6.5254)、第二标识点(5.3513,-3.8698)、第三标识点(5.6551,-3.71)。可见,天线组件100在第一频段(例如WiFi5G频段)及第二频段(例如N78频段)上的天线性能良好,进而工作状态良好,可满足工程需求。
在一些实施例中,请参阅图16,图16为图13所示天线组件100在另一实施例中受第二馈源40激励的回波损耗曲线图,横轴为频率(GHz),纵轴为回波损耗(dB)。曲线B1为天线组件100在第二馈源40下的回波损耗曲线。其中在曲线A上具有第一标识点(0.83997,-13.976)。可见,天线组件100在第一标识点附近的第三频段例如LTE B20频段上的天线性能良好,进而天线组件100的工作状态良好,可满 足工程需求。
在一些实施例中,请参阅图17,图17为图13所示天线组件100在另一实施例中受第二馈源40激励的系统总效率曲线图。横轴为频率(GHz),纵轴为系统总效率(dB)。曲线B2为天线组件100在第二馈源40下的系统总效率曲线。其中在曲线B2上具有第一标识点(0.87411,-13.215)、第二标识点(0.81529,-12.964)、第三标识点(0.83987,-9.9632)。可见,天线组件100在第一标识点附近的第三频段例如LTE B20频段上的天线性能良好,进而天线组件100的工作状态良好,可满足工程需求。
在一些实施例中,请参阅图18,图18为图13所示天线组件100在另一实施例中受第三馈源60激励的回波损耗曲线图,横轴为频率(GHz),纵轴为回波损耗(dB)。曲线C1为天线组件100在一实施例中的对应LTE B1频段的回波损耗曲线。曲线D1为天线组件100在一实施例中的对应LTE B3频段的回波损耗曲线。曲线E1为天线组件100在一实施例中的对应LTE B40频段的回波损耗曲线。曲线F1为天线组件100在一实施例中的对应LTE B41频段的回波损耗曲线。曲线C1上具有第一标识点(2.032,-14.754)。曲线D1上具有第二标识点(1.7957,-12.746)。曲线E1上具有第三标识点(2.3516,-24.803)。曲线F1上具有第四标识点(2.5755,-20.694)。可见,天线组件100在第四频段(例如LTE B3频段、LTE B1频段、LTE B40频段、LTE B41频段。)上的天线性能良好,进而工作状态良好,可满足工程需求。
在一些实施例中,请参阅图19,图19为图13所示天线组件100在另一实施例中受第三馈源60激励的系统总效率曲线图,横轴为频率(GHz),纵轴为系统总效率(dB)。曲线C2为天线组件100在一实施例中的对应LTE B1频段的系统总效率曲线。曲线D2为天线组件100在一实施例中的对应LTE B3频段的系统总效率曲线。曲线E2为天线组件100在一实施例中的对应LTE B40频段的系统总效率曲线。曲线F2为天线组件100在一实施例中的对应LTE B41频段的系统总效率曲线。曲线C2上具有第一标识点(2.0079,-4.7104)。曲线D2上具有第二标识点(1.7967,-4.29)。曲线E2上具有第三标识点(2.3721,-4.3092)。曲线F2上具有第四标识点(2.61,-4.0987)。可见,天线组件100在第四频段(例如LTE B3频段、LTE B1频段、LTE B40频段、LTE B41频段。)上的天线性能良好,进而工作状态良好,可满足工程需求。
接下来阐述一种电子设备,该电子设备可安装上述实施例中的天线组件100。该电子设备可以是多个电子设备中的任何一个,多个电子设备包括但不限于蜂窝电话、智能电话、其他无线通信设备、个人数字助理、音频播放器、其他媒体播放器、音乐记录器、录像机、照相机、其他媒体记录器、收音机、医疗设备、计算器、可编程遥控器、寻呼机、上网本电脑、个人数字助理(PDA)、便携式多媒体播放器(PMP)、运动图像专家组(MPEG-1或MPEG-2)、音频层3(MP3)播放器,便携式医疗设备以及数码相机及其组合等设备。
在一些实施例,电子设备可包括但不仅限于为手机、互联网设备(mobile internet device,MID)、电子书、便携式播放站(Play Station Portable,PSP)或个人数字助理(Personal Digital Assistant,PDA)等具有通信功能的电子设备。
请参阅图20,图20为本申请一实施例中电子设备的爆炸图,电子设备200可包括设置有天线组件100的中框组件90、设置在中框组件90一侧且用于显示信息的显示屏201、连接在中框组件90另一侧的电池盖202、安装在中框组件90上且用于控制显示屏201及天线组件100的电路主板203以及安装在中框组件90上且用于为电子设备200正常工作供电的电池204。
其中,显示屏201可为液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(Organic Light-Emitting Diode,OLED)等类型的显示屏,以用于显示信息、画面。
中框组件90的材料可以为镁合金、铝合金、不锈钢等金属,当然材料并不限于此,还可以为其他例如绝缘材料,例如硬性材料。中框组件90可置于显示屏201和电池盖202之间。中框组件90可用于承载显示屏201。中框组件90与电池盖202扣合连接形成电子设备200的主壳体210,且在主壳体210内部形成容纳腔。容纳腔可用于容纳电子设备200中的摄像头、电路主板203、电池204、处理器(设置在电路主板203上,所以在一些实施例中可为电路主板203的一部分)、天线组件100以及各种类型的传感器等电子元件。
电路主板203安装在容纳腔内,可安装在容纳腔内的任意位置。电路主板203可以为电子设备200的主板。电子设备200的处理器可以设置在电路主板203上。电路主板203上还可以集成有马达、麦克风、扬声器、受话器、耳机接口、通用串行总线接口(USB接口)、摄像头、距离传感器、环境光传感器、陀螺仪等功能组件中的一个、两个或多个。同时,显示屏201可以电连接至电路主板203。
电池204安装在容纳腔内,可安装在容纳腔内的任意位置。电池204可以电连接至电路主板203,以实现电池204为电子设备200供电。电路主板203上可以设置有电源管理电路。电源管理电路用于将电池204提供的电压分配到电子设备200中的各个电子元件例如显示屏201。
电池盖202可采用与中框组件90一样的材料,当然还可以采用其他材料。电池盖202可与中框组件90一体成型。在一些实施例中,电池盖202可包裹中框组件90,可承载显示屏201。电池盖202上可形成 后置摄像头孔、指纹识别模组安装孔等结构。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
请参阅图20和图21,图21为图20所示实施例中框组件90的结构示意图。中框组件90可包括用于承载显示屏201的基板91以及围设在基板91周围的边框92。其中,基板91与电池盖202相对设置。边框92可用于与电池盖202扣合连接。即,基板91、边框92及电池盖202围设形成容纳腔。
基板91可为可导电的金属,当然也可以为其他材料。基板91上可设置接地面及馈源。接地面作为地。在一些实施例中,接地面与馈源可不设置在基板91上,而直接设置在电路主板203。在一些实施例中,基板91可以省略。
边框92可为可导电的金属,所以边框92也可被称为“金属边框”。当然边框92也可以为其他材料,例如绝缘材料。边框92也可以采用与基板91一样的材料。边框92可包括依次首尾连接的第一边框921、第二边框922、第三边框923及第四边框924。第一边框921、第二边框922、第三边框923及第四边框924围设在基板91周围并可与基板91连接固定。在一些实施例中,边框92可与电池盖202为一体结构。例如边框92自电池盖202的边缘向显示屏201一侧延伸设置,以与显示屏201扣合连接。
在一些实施例中,第一边框921、第二边框922、第三边框923及第四边框924围设形成圆角矩形。当然,还可以是其他形状例如圆形、三角形等。在一些实施例中,第一边框921与第三边框923相对设置,第二边框922与第四边框924相对设置。
在一些实施例中,第一边框921与第三边框923两者的长度均较第二边框922的长度短,且较第四边框92的长度短。
可以理解地,中框组件90与电池盖202可组成主壳体210。在某些实施例中,主壳体可不仅限于中框组件90与电池盖202,还可以包括其他,不作赘述。
请参阅图21。天线组件100可安装在中框组件90上。在一些实施例中,天线组件100可作为中框组件90的一部分。当然,在某些实施例中,天线组件100也可安装在主壳体210的其他位置例如电池盖202上。在一些实施例中,天线组件100可由主壳体210加工而成。例如天线组件100作为缝隙天线出现。在一些实施例中,天线组件100可直接固定在主壳体210上。
辐射体10设置在边框92例如第一边框921。
在一实施例中,第一馈源20、第二馈源40可为基板91或电路主板203上的馈源。具体可通过天线弹片实现辐射体10与馈源的连接。
在一实施例中,地可为基板91或电路主板203上的接地面。具体可通过天线弹片实现辐射体10与地的连接。
第一边框921与基板91之间设置缝隙901。缝隙901可在第一边框921的延伸方向上向第二边框922、第四边框924一侧延伸设置,以形成在第一边框921与基板91例如接地面之间,进而第一边框921的部分或全部作为辐射体10。
在一些实施例中,缝隙901可在第一边框921的延伸方向上向第二边框922延伸设置,以形成第二边框922与基板91例如接地面之间。
在一些实施例中,缝隙901可在第一边框921的延伸方向上向第四边框924一侧延伸设置,以形成第四边框924与基板91例如接地面之间。
本申请中辐射体10利用了第一边框921,可以有效改善人手对天线组件100的性能损耗。
可以理解地,为了稳固基板91与边框92例如第一边框921、辐射体10之间的连接强度。可在缝隙901之间填充绝缘材料例如树脂,以实现天线组件100中辐射体10为边框92例如第一边框921的一部分,更是提升了电子设备200的外观表现力。
本申请采用共用辐射体的方案,降低了隔离度/共存问题发生的概率,使得天线组件100的系统总效率良好,减小了天线组件100对电子设备200的设计空间的需求,具有重要的工程应用效益。
接下来阐述一种电子设备,请参阅图22,图22为本申请一实施例中电子设备300的结构组成示意图。该电子设备300可以为手机、平板电脑、笔记本电脑以及可穿戴设备等。本实施例图示以手机为例。该电子设备300的结构可以包括RF电路310(如上述实施例中的天线组件100)、存储器320、输入单元330、显示单元340(如上述实施例中的显示屏201)、传感器350、音频电路360、WiFi模块370、处理器380以及电源390(如上述实施例中的电池204)等。其中,RF电路310、存储器320、输入单元330、显示单元340、传感器350、音频电路360以及WiFi模块370分别与处理器380连接。电源390用于为整个电子设备300提供电能。
具体而言,RF电路310用于接发信号。存储器320用于存储数据指令信息。输入单元330用于输入信息,具体可以包括触控面板3301以及操作按键等其他输入设备3302。显示单元340则可以包括显示面 板3401等。传感器350包括红外传感器、激光传感器、位置传感器等,用于检测用户接近信号、距离信号等。扬声器3601以及传声器(或者麦克风,或者受话器组件)3602通过音频电路360与处理器380连接,用于接发声音信号。WiFi模块370则用于接收和发射WiFi信号。处理器380用于处理电子装置的数据信息。
在本申请所提供的几个实施方式中,应该理解到,所揭露的设备,可以通过其他的方式实现。例如,以上所描述的设备实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所做的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (25)

  1. 一种天线组件,其中,包括:
    辐射体,具有第一自由端、第一馈电点及选频点,所述第一馈电点位于所述第一自由端与所述选频点之间;
    第一馈源,用于激励所述辐射体,以支持第一频段及第二频段;
    第一选频电路,电连接至所述第一馈电点与所述第一馈源之间,以使所述第一馈源通过所述第一选频电路与所述第一馈电点电连接,所述第一选频电路接地,支持所述第一频段的电流配置为由地流经所述第一选频电路以输入所述辐射体;以及
    第二选频电路,电连接至所述选频点与地之间,以使所述选频点通过所述第二选频电路接地,支持所述第二频段的电流配置为由地流经所述第二选频电路以输入所述辐射体。
  2. 根据权利要求1所述的天线组件,其中,所述辐射体上具有接地点,所述选频点位于所述接地点与所述第一馈电点之间,所述接地点接地,所述天线组件还包括:
    第二馈源,用于激励所述辐射体,所述第二选频电路电连接至所述选频点与所述第二馈源之间,以使所述第二馈源通过所述第二选频电路与所述选频点电连接。
  3. 根据权利要求2所述的天线组件,其中,所述第一选频电路包括:
    第一滤波电路,与所述第一馈电点电连接;以及
    第一匹配电路,电连接至所述第一滤波电路与所述第一馈源之间,以使所述第一馈源通过所述第一匹配电路与所述第一滤波电路电连接,所述第一匹配电路接地,支持所述第一频段的电流配置为由地流经所述第一匹配电路、所述第一滤波电路以输入所述辐射体,所述第一滤波电路配置为在所述第二馈源激励所述辐射体时断开,且在所述第一馈源激励所述辐射体时接通。
  4. 根据权利要求3所述的天线组件,其中,所述第一匹配电路包括:
    第一电容,电连接至所述第一滤波电路与所述第一馈源之间,以使所述第一馈源通过所述第一电容与所述第一滤波电路电连接,
    第二电容,电连接至所述第一电容与地之间,以使所述第一电容通过所述第二电容接地,支持所述第一频段的电流配置为由地流经所述第二电容、所述第一电容以输入所述辐射体。
  5. 根据权利要求4所述的天线组件,其中,所述第二电容的电容量为1pF。
  6. 根据权利要求3所述的天线组件,其中,所述第一滤波电路包括:
    第三电容,电连接至所述第一匹配电路与所述第一馈电点之间,以使所述第一匹配电路通过所述第三电容与所述第一馈电点电连接,支持所述第一频段的电流配置为由地流经所述第三电容以输入所述辐射体;以及
    第一电感,电连接至所述第一匹配电路与所述第一馈电点之间,以使所述第一匹配电路通过所述第一电感与所述第一馈电点电连接。
  7. 根据权利要求2所述的天线组件,其中,所述第二选频电路包括:
    第二匹配电路,电连接至所述选频点与所述第二馈源之间,以使所述第二馈源通过所述第二匹配电路与所述选频点电连接,以及
    第二滤波电路,电连接至所述第二匹配电路与地之间,以使所述第二匹配电路通过所述第二滤波电路接地,支持所述第二频段的电流配置为由地流经所述第二滤波电路、所述第二匹配电路以输入所述辐射体,所述第二滤波电路配置为在所述第一馈源激励所述辐射体时断开,且在所述第二馈源激励所述辐射体时接通。
  8. 根据权利要求7所述的天线组件,其中,所述第二匹配电路包括:
    第四电容,电连接至所述选频点与所述第二馈源之间,以使所述第二馈源通过所述第四电容与所述选频点电连接。
  9. 根据权利要求7所述的天线组件,其中,所述第二滤波电路包括:
    第五电容,电连接至所述第二匹配电路与地之间,以使所述第二匹配电路通过所述第五电容接地,支持所述第二频段的电流配置为由地流经所述第五电容以输入所述辐射体,所述第五电容配置为在所述第一馈源激励所述辐射体时断开,且在所述第二馈源激励所述辐射体时接通。
  10. 根据权利要求9所述的天线组件,其中,所述第五电容的电容量为4pF。
  11. 根据权利要求1-10任一项所述的天线组件,其中,所述第一馈源配置为激励所述辐射体上位于所述第一馈电点与所述第一自由端之间的辐射部产生支持所述第一频段的第一谐振模式,所述第一谐振模式为1/4波长的倒F天线IFA天线模式,支持所述第一频段的电流配置为由所述第一馈电点流向所述第一自由端。
  12. 根据权利要求9所述的天线组件,其中,所述第一频段包括无线保真WiFi5G频段。
  13. 根据权利要求1-10任一项所述的天线组件,其中,所述第一馈源配置为激励所述辐射体上位于所 述选频点与所述第一自由端之间的辐射部产生支持所述第二频段的第二谐振模式,所述第二谐振模式为1/4波长的左手天线模式,支持所述第二频段的电流配置为由所述选频点流向所述第一自由端。
  14. 根据权利要求13所述的天线组件,其中,所述第二频段包括新空口N78频段。
  15. 根据权利要求2-10任一项所述的天线组件,其中,所述第二馈源配置为激励所述辐射体上位于所述接地点与所述第一自由端之间的辐射部产生支持第三频段的第三谐振模式,所述第三谐振模式为左手天线模式,所述第三谐振模式的电流包括由所述接地点流向所述第一自由端的电流。
  16. 根据权利要求15所述的天线组件,其中,所述第三频段包括长期演进LTE B20频段。
  17. 根据权利要求2-10任一项所述的天线组件,其中,所述辐射体上具有第二自由端及第三馈电点,所述接地点位于所述选频点与所述第二自由端之间,所述第三馈电点位于所述接地点与所述第二自由端之间,所述天线组件还包括:
    第三馈源,用于激励所述辐射体;以及
    第三选频电路,电连接至所述第三馈电点与所述第三馈源之间,以使所述第三馈源通过所述第三选频电路与所述第三馈电点电连接。
  18. 根据权利要求17所述的天线组件,其中,所述第三馈源配置为激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射部产生支持第四频段的第四谐振模式,所述第四谐振模式为左手天线模式,所述第四谐振模式的电流包括由所述接地点流向所述第二自由端的电流。
  19. 根据权利要求18所述的天线组件,其中,所述第四频段包括LTE B1频段、LTE B3频段、LTE B39频段、LTE B40频段或者LTE B41频段中的至少一种。
  20. 根据权利要求17所述的天线组件,其中,所述辐射体上具有切换点,所述切换点与所述第三馈电点重合或位于所述第三馈电点与所述第二自由端之间,所述天线组件还包括:
    切换电路,电连接至所述切换点与地之间,以使所述切换点通过所述切换电路接地,所述切换电路用于调节所述第三馈源所支持频段的频率。
  21. 根据权利要求20所述的天线组件,其中,所述切换电路包括:
    切换开关,具有多个连接端、切换部及与所述切换点电连接的公共端,所述切换部与所述公共端电连接,并配置为在控制信号的控制下电连接至所述多个连接端中的一个连接端;以及
    至少一个选频支路,所述至少一个选频支路的一端均与所述多个连接端中的连接端一一对应电连接,且另一端均接地。
  22. 根据权利要求21所述的天线组件,其中,每一所述至少一个选频支路包括电容或电感。
  23. 一种天线组件,其中,包括:
    辐射体,具有第一自由端、第二自由端、第一馈电点、第二馈电点、接地点及第三馈电点,所述第一馈电点位于所述第一自由端与所述第二自由端之间,所述第二馈电点位于所述第一馈电点与所述第二自由端之间,所述接地点位于所述第二馈电点与所述第二自由端之间,所述第三馈电点位于所述接地点与所述第二自由端之间;
    第一馈源,用于激励所述辐射体上位于所述第一馈电点与所述第一自由端之间的辐射部产生第一谐振模式,用于激励所述辐射体上位于所述第二馈电点与所述第一自由端之间的辐射部产生第二谐振模式;
    第一选频电路,电连接至所述第一馈电点与所述第一馈源之间,以使所述第一馈源通过所述第一选频电路与所述第一馈电点电连接,所述第一选频电路接地;
    第二馈源,用于激励所述辐射体上位于所述接地点与所述第一自由端之间的辐射部产生第三谐振模式,所述第一选频电路配置为在所述第一馈源激励所述辐射体时接通,且在所述第二馈源激励所述辐射体时断开;
    第二选频电路,电连接至所述第二馈电点与所述第二馈源之间,以使所述第二馈源通过所述第二选频电路与所述第二馈电点电连接,所述第二选频电路配置为在所述第一馈源激励所述辐射体时断开,且在所述第二馈源激励所述辐射体时接通;
    第三馈源,用于激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射部产生第四谐振模式;
    第三选频电路,电连接至所述第三馈电点与所述第三馈源之间,以使所述第三馈源通过所述第三选频电路与所述第三馈电点电连接。
  24. 一种中框组件,其中,包括:
    基板,设置有接地面;
    边框,围设在所述基板的周围;以及
    如权利要求1-23任一项所述的天线组件,所述辐射体设置在所述边框上,并与所述接地面之间设置缝隙。
  25. 一种电子设备,其中,包括:
    中框组件,包括:
    基板;
    边框,与所述基板连接,包括依次首尾相连接且围设在所述基板的周围的第一边框、第二边框、第三边框及第四边框,所述第一边框与所述第三边框相对设置,所述第二边框与所述第四边框相对设置,所述第一边框与所述第三边框两者的长度均较所述第二边框的长度短,且较所述第四边框的长度短;
    如权利要求1-23任一项所述的天线组件,所述辐射体设置在所述第一边框上;
    电池盖,盖设在所述中框组件的一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置;以及
    显示屏,设置在所述中框组件的另一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置。
PCT/CN2023/115560 2022-10-10 2023-08-29 天线组件、中框组件以及电子设备 WO2024078167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211238057.6A CN117913511A (zh) 2022-10-10 2022-10-10 天线组件、中框组件以及电子设备
CN202211238057.6 2022-10-10

Publications (1)

Publication Number Publication Date
WO2024078167A1 true WO2024078167A1 (zh) 2024-04-18

Family

ID=90668686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115560 WO2024078167A1 (zh) 2022-10-10 2023-08-29 天线组件、中框组件以及电子设备

Country Status (2)

Country Link
CN (1) CN117913511A (zh)
WO (1) WO2024078167A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808268A (zh) * 2018-06-06 2018-11-13 Oppo(重庆)智能科技有限公司 天线组件及电子设备
CN112821031A (zh) * 2020-12-29 2021-05-18 Oppo广东移动通信有限公司 电子设备
CN113013594A (zh) * 2021-02-26 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
WO2021162428A1 (ko) * 2020-02-10 2021-08-19 삼성전자 주식회사 안테나 및 이를 구비한 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808268A (zh) * 2018-06-06 2018-11-13 Oppo(重庆)智能科技有限公司 天线组件及电子设备
WO2021162428A1 (ko) * 2020-02-10 2021-08-19 삼성전자 주식회사 안테나 및 이를 구비한 전자 장치
CN112821031A (zh) * 2020-12-29 2021-05-18 Oppo广东移动通信有限公司 电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN113013594A (zh) * 2021-02-26 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备

Also Published As

Publication number Publication date
CN117913511A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN104221215B (zh) 可调谐天线系统
CN104064865A (zh) 具有基于隙缝的寄生部件的可调谐天线
CN112928456A (zh) 天线组件及电子设备
US20120105286A1 (en) Mobile terminal
US9196963B2 (en) Mobile terminal
CN113991288A (zh) 天线组件、中框组件以及电子装置
WO2024001069A1 (zh) 天线组件、中框组件以及电子设备
US20240072418A1 (en) Antenna assembly and electronic device
CN108879112B (zh) 天线阵列及终端
WO2023273493A1 (zh) 天线装置及电子设备
CN113991282A (zh) 天线组件以及电子设备
US20170187111A1 (en) Resonant frequency tunable antenna
WO2023160131A1 (zh) 天线组件和电子设备
KR101791129B1 (ko) 이동통신 단말기
WO2024078167A1 (zh) 天线组件、中框组件以及电子设备
WO2024078166A1 (zh) 天线组件、中框组件以及电子设备
WO2024078168A1 (zh) 天线组件、中框组件以及电子设备
WO2022183892A1 (zh) 天线组件及电子设备
CN116231273A (zh) 电子设备
CN114464985A (zh) 天线组件、中框组件以及电子设备
TWI586031B (zh) 寬頻單極型天線、電子裝置、以及天線模組
US20090052360A1 (en) Information terminal device
EP2752939B1 (en) Communication device comprising antenna elements
WO2023071521A1 (zh) 天线组件、中框组件以及电子设备
CN220492217U (zh) 天线系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876372

Country of ref document: EP

Kind code of ref document: A1