WO2024078166A1 - 天线组件、中框组件以及电子设备 - Google Patents

天线组件、中框组件以及电子设备 Download PDF

Info

Publication number
WO2024078166A1
WO2024078166A1 PCT/CN2023/115559 CN2023115559W WO2024078166A1 WO 2024078166 A1 WO2024078166 A1 WO 2024078166A1 CN 2023115559 W CN2023115559 W CN 2023115559W WO 2024078166 A1 WO2024078166 A1 WO 2024078166A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed source
radiator
point
feeding point
feed
Prior art date
Application number
PCT/CN2023/115559
Other languages
English (en)
French (fr)
Inventor
周林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024078166A1 publication Critical patent/WO2024078166A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna assembly, a middle frame assembly and an electronic device.
  • the present application provides an antenna assembly, the antenna assembly comprising:
  • a radiator having a first free end and a second free end, and further having a first feeding point, a second feeding point and a grounding point located between the first free end and the second free end, wherein the grounding point is located between the first feeding point and the second feeding point and is located on a side of the second feeding point away from the second free end;
  • a first feed source electrically connected to the first feed point, for exciting the radiator to support a first frequency band
  • a second feed source used to excite the radiator to support a second frequency band
  • a first switching circuit electrically connected between the grounding point and the ground, so that the grounding point is grounded through the first switching circuit, and the first switching circuit is used to control the grounding point to be connected to the ground, or to control the grounding point to be disconnected from the ground;
  • a second switching circuit is electrically connected between the second feeding point and the second feed source so that the second feed source is electrically connected to the second feeding point through the second switching circuit.
  • the second switching circuit is used to control the second feeding point to be connected to the second feed source, or to control the second feeding point to be disconnected from the second feed source.
  • the first switching circuit controls the grounding point to be connected to the ground
  • the second switching circuit is configured to control the second feeding point to be connected to the second feed source so that the second feed source excites the radiator to support the second frequency band.
  • the second switching circuit is configured to control the second feeding point to be disconnected from the second feed source so that the first feed source excites the radiator to support the first frequency band.
  • an antenna assembly comprising:
  • a radiator having a first free end and a second free end, and further having a first feeding point, a second feeding point, a third feeding point and a grounding point located between the first free end and the second free end, wherein the grounding point is located between the first feeding point and the second feeding point and is located on a side of the second feeding point away from the second free end, and the third feeding point is located between the first free end and the first feeding point;
  • a first feed source electrically connected to the first feed point and used to excite a radiator located between the first feed point and the second free end on the radiator to support a low frequency band;
  • a second feed source used to excite the radiator located between the ground point and the second free end on the radiator to support medium and high frequency bands;
  • a first switching circuit electrically connected between the grounding point and the ground, so that the grounding point is grounded through the first switching circuit, and the first switching circuit is used to control the grounding point to be connected to the ground, or to control the grounding point to be disconnected from the ground;
  • the second switching circuit is used to control the second feeding point to be connected to the second feed source, or to control the second feeding point to be disconnected from the second feed source, when the first switching circuit controls the grounding point to be connected to the ground, the second switching circuit is configured to control the second feeding point to be connected to the second feed source, so that the second feed source excites the radiator located between the grounding point and the second free end on the radiator, and when the first switching circuit controls the grounding point to be disconnected from the ground, the second switching circuit is configured to control the second feeding point to be disconnected from the second feed source, so that the first feed source excites the radiator located between the first feeding point and the second free end on the radiator; and
  • a third feed source is electrically connected to the third feeding point and is used to excite the radiator to support a WiFi frequency band or an NR frequency band.
  • the present application provides a middle frame assembly, including:
  • a substrate is provided with a ground plane
  • a frame is arranged around the substrate.
  • the radiator is arranged on the frame, and a gap is provided between the radiator and the ground plane.
  • the present application provides an electronic device, including:
  • Middle frame assembly including:
  • a frame connected to the substrate comprising a first frame, a second frame, a third frame and a fourth frame which are sequentially connected end to end and arranged around the substrate, wherein the first frame is arranged opposite to the third frame, and the second frame is arranged opposite to the fourth frame.
  • the lengths of the first frame and the third frame are both shorter than the length of the second frame, and shorter than the length of the fourth frame;
  • the radiator is arranged on the first frame
  • a battery cover which is disposed on one side of the middle frame assembly and is respectively connected to the first frame, the second frame, the third frame and the fourth frame, and is disposed opposite to the substrate;
  • the display screen is arranged on the other side of the middle frame assembly, and is respectively connected to the first frame, the second frame, the third frame and the fourth frame, and is arranged opposite to the substrate.
  • FIG1 is a schematic diagram of the structure of an antenna assembly in some embodiments of the present application.
  • FIG2 is a schematic diagram of the structure of the cooperation between the second feed source and the second switching circuit shown in FIG1 in some embodiments;
  • FIG3 is a schematic diagram of the structure of the second switching circuit in another embodiment of the antenna assembly in the embodiment shown in FIG2 ;
  • FIG4 is a schematic structural diagram of the antenna assembly shown in FIG1 in another embodiment
  • FIG5 is a schematic diagram of the structure of the first feed source and the first frequency selection circuit in the embodiment shown in FIG4 in other embodiments;
  • FIG6 is a schematic diagram of the structure of the third feed source and the second frequency selection circuit in the embodiment shown in FIG4 in other embodiments;
  • FIG7 is a schematic diagram of the structure of the antenna assembly shown in FIG4 in some other embodiments.
  • FIG8 is a return loss curve diagram of the antenna assembly shown in FIG7 in another embodiment when excited by the second feed source and the third feed source;
  • FIG9 is a graph showing the system total efficiency (System Total Efficiency) of the antenna assembly shown in FIG7 in another embodiment when excited by the second feed source and the third feed source;
  • FIG10 is a graph showing a return loss of the antenna assembly shown in FIG7 when excited by the first feed source and the third feed source in another embodiment
  • FIG11 is a system total efficiency curve diagram of the antenna assembly shown in FIG7 in another embodiment when excited by the first feed source and the third feed source;
  • FIG12 is an exploded view of an electronic device in one embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of the frame assembly in the embodiment shown in FIG12;
  • FIG. 14 is a schematic diagram of the structural composition of an electronic device in an embodiment of the present application.
  • the present application provides an antenna assembly, which includes:
  • a radiator having a first free end and a second free end, and further having a first feeding point, a second feeding point and a grounding point located between the first free end and the second free end, wherein the grounding point is located between the first feeding point and the second feeding point and is located on a side of the second feeding point away from the second free end;
  • a first feed source electrically connected to the first feed point, for exciting the radiator to support a first frequency band
  • a second feed source used to excite the radiator to support a second frequency band
  • a first switching circuit electrically connected between the grounding point and the ground, so that the grounding point is grounded through the first switching circuit, and the first switching circuit is used to control the grounding point to be connected to the ground, or to control the grounding point to be disconnected from the ground;
  • a second switching circuit is electrically connected between the second feeding point and the second feed source so that the second feed source is electrically connected to the second feeding point through the second switching circuit.
  • the second switching circuit is used to control the second feeding point to be connected to the second feed source, or to control the second feeding point to be disconnected from the second feed source.
  • the first switching circuit controls the grounding point to be connected to the ground
  • the second switching circuit is configured to control the second feeding point to be connected to the second feed source so that the second feed source excites the radiator to support the second frequency band.
  • the second switching circuit is configured to control the second feeding point to be disconnected from the second feed source so that the first feed source excites the radiator to support the first frequency band.
  • the first feed source is configured to excite the radiating portion of the radiator located between the first feeding point and the second free end to support the first frequency band.
  • the second feed source is configured to excite the radiating portion on the radiator located between the grounding point and the second free end to support the second frequency band.
  • the first switching circuit comprises:
  • a single-pole single-throw switch is electrically connected between the grounding point and the ground, so that the grounding point is grounded through the single-pole single-throw switch.
  • the first feed source is configured to excite the radiating portion of the radiator located between the first feed point and the second free end to generate a first resonant mode supporting the first frequency band
  • the first resonant mode is an inverted F antenna (IFA) antenna mode
  • the current of the first resonant mode includes the current flowing from the first feed point to the second free end.
  • IFA inverted F antenna
  • the second feed source is configured to excite a radiating portion on the radiator between the ground point and the second free end to generate a second resonant mode supporting the second frequency band
  • the second resonant mode is a left-handed antenna mode
  • the current of the second resonant mode includes a current flowing from the ground point to the second free end.
  • the second switching circuit is configured to adjust the frequency of the second frequency band.
  • the second switching circuit comprises:
  • a switching switch having a plurality of connection terminals, a switching part, and a common terminal electrically connected to the second feeding point, wherein the switching part is electrically connected to the common terminal and is configured to be electrically connected to one of the plurality of connection terminals under the control of a control signal;
  • At least one frequency selective branch one end of the at least one frequency selective branch is electrically connected to a connection end among the multiple connection ends in a one-to-one correspondence, and the other end of one of the frequency selective branches is electrically connected to the second feed source, and the other ends of the remaining frequency selective branches are grounded.
  • each of the at least one frequency-selective branches comprises a capacitor or an inductor.
  • the radiator has a third feeding point located between the first free end and the first feeding point, and the antenna assembly further comprises:
  • a third feed source is electrically connected to the third feeding point and is used to excite the radiator to support a third frequency band.
  • the third frequency band includes a first sub-frequency band
  • the third feed source is configured to excite a radiating portion on the radiator located between the first feed point and the first free end to generate a third resonant mode supporting the first sub-frequency band
  • the third resonant mode is a left-handed antenna mode
  • the current of the third resonant mode includes a current flowing from the first feed point to the first free end.
  • the first sub-frequency band includes the new radio N78 frequency band.
  • the first feed source is configured to excite a radiating portion of the radiator between the first feed point and the second free end to generate a first resonant mode supporting the first frequency band, where the first frequency band is smaller than the first sub-frequency band.
  • the third frequency band includes a second sub-frequency band
  • the third feed source is configured to excite a radiating portion on the radiator located between the third feed point and the first free end to generate a fourth resonant mode supporting the second sub-frequency band
  • the fourth resonant mode is an IFA antenna mode
  • the current of the fourth resonant mode includes a current flowing from the third feed point to the first free end.
  • the second sub-band includes a Wireless Fidelity WiFi 5G band.
  • the circuit electrically connecting the first feed source to the first feed point is configured to be in a high impedance state when the third feed source excites the radiator, and to be in a low impedance state when the first feed source excites the radiator, and the circuit electrically connecting the third feed source to the third feed point is configured to be in a high impedance state when the first feed source excites the radiator, and to be in a low impedance state when the third feed source excites the radiator.
  • the circuit electrically connecting the first feed source to the first feed point is configured to be disconnected when the third feed source excites the radiator, and to be connected when the first feed source excites the radiator, and the circuit electrically connecting the third feed source to the third feed point is configured to be disconnected when the first feed source excites the radiator, and to be connected when the third feed source excites the radiator.
  • the antenna assembly further comprises:
  • a first frequency selection circuit is electrically connected between the first feed source and the first feeding point, so that the first feed source is electrically connected to the first feeding point through the first frequency selection circuit, and the first frequency selection circuit is configured to be in a high impedance state when the third feed source excites the radiator, and to be in a low impedance state when the first feed source excites the radiator.
  • the first frequency selection circuit includes:
  • a first filtering circuit has one end connected to one end of the first matching circuit to form one end of the first frequency selection circuit connected to the first feed source and the other end connected to the first feeding point.
  • the other end of the first matching circuit and the other end of the first filtering circuit are both grounded.
  • the first filtering circuit is configured to control the first frequency selection circuit to be in an open circuit state when the third feed source excites the radiator, and to be in a short circuit state when the first feed source excites the radiator.
  • the first matching circuit comprises:
  • the first inductor is electrically connected between the first feeding point and the ground, so that the first feeding point is grounded through the first inductor.
  • the first filtering circuit comprises:
  • the first capacitor is electrically connected between the first feeding point and the ground, so that the first feeding point is grounded through the first capacitor.
  • the antenna assembly further comprises:
  • a first matching circuit electrically connected between the first feeding point and ground, so that the first feeding point is grounded through the first matching circuit
  • a first filtering circuit is electrically connected between the first feeding point and the ground so that the first feeding point is grounded through the first filtering circuit.
  • the third feed source is configured to excite the radiating portion of the radiator located between the first feeding point and the first free end to generate a third resonant mode.
  • the current of the third resonant mode includes a current flowing from the ground through the first filtering circuit, the first feeding point and to the first free end.
  • the antenna assembly further comprises:
  • a second frequency selection circuit is electrically connected between the third feed source and the third feeding point, so that the third feed source is electrically connected to the third feeding point through the second frequency selection circuit, and the second frequency selection circuit is configured to be in a high impedance state when the first feed source excites the radiator, and to be in a low impedance state when the third feed source excites the radiator.
  • the second frequency selection circuit includes:
  • a second matching circuit one end of which is connected to the third feed source
  • a second filter circuit has one end electrically connected to the other end of the second matching circuit and the other end electrically connected to the third feeding point.
  • the second filter circuit is configured to be in an open circuit state when the first feed source excites the radiator and to be in a short circuit state when the third feed source excites the radiator.
  • the second matching circuit comprises:
  • a third capacitor is electrically connected between the third feed source and the second filtering circuit, so that the third feed source is electrically connected to the second filtering circuit through the second capacitor.
  • the second filtering circuit comprises:
  • the second inductor is electrically connected between the second matching circuit and the third feeding point, so that the second matching circuit is electrically connected to the second inductor through the fourth capacitor.
  • the present application provides an antenna assembly, which includes:
  • a radiator having a first free end and a second free end, and further having a first feeding point, a second feeding point, a third feeding point and a grounding point located between the first free end and the second free end, wherein the grounding point is located between the first feeding point and the second feeding point and is located on a side of the second feeding point away from the second free end, and the third feeding point is located between the first free end and the first feeding point;
  • a first feed source electrically connected to the first feed point and used to excite a radiator located between the first feed point and the second free end on the radiator to support a low frequency band;
  • a second feed source used to excite the radiator located between the ground point and the second free end on the radiator to support medium and high frequency bands;
  • a first switching circuit electrically connected between the grounding point and the ground, so that the grounding point is grounded through the first switching circuit, and the first switching circuit is used to control the grounding point to be connected to the ground, or to control the grounding point to be disconnected from the ground;
  • the second switching circuit is used to control the second feeding point to be connected to the second feed source, or to control the second feeding point to be disconnected from the second feed source, when the first switching circuit controls the grounding point to be connected to the ground, the second switching circuit is configured to control the second feeding point to be connected to the second feed source, so that the second feed source excites the radiator located between the grounding point and the second free end on the radiator, and when the first switching circuit controls the grounding point to be disconnected from the ground, the second switching circuit is configured to control the second feeding point to be disconnected from the second feed source, so that the first feed source excites the radiator located between the first feeding point and the second free end on the radiator; and
  • a third feed source is electrically connected to the third feeding point and is used to excite the radiator to support a WiFi frequency band or an NR frequency band.
  • the present application provides a middle frame assembly, which includes:
  • a substrate is provided with a ground plane
  • a frame is arranged around the substrate.
  • the radiator is arranged on the frame, and a gap is provided between the radiator and the ground plane.
  • the present application provides an electronic device, comprising:
  • Middle frame assembly including:
  • a frame connected to the substrate comprising a first frame, a second frame, a third frame and a fourth frame which are sequentially connected end to end and are arranged around the substrate, the first frame is arranged opposite to the third frame, the second frame is arranged opposite to the fourth frame, and the lengths of the first frame and the third frame are both shorter than the length of the second frame and shorter than the length of the fourth frame;
  • the radiator is arranged on the first frame
  • a battery cover which is disposed on one side of the middle frame assembly and is respectively connected to the first frame, the second frame, the third frame and the fourth frame, and is disposed opposite to the substrate;
  • the display screen is arranged on the other side of the middle frame assembly, and is respectively connected to the first frame, the second frame, the third frame and the fourth frame, and is arranged opposite to the substrate.
  • the present application provides an antenna assembly.
  • the antenna assembly can be applied to an electronic device.
  • the antenna assembly can support at least one of a WiFi frequency band, a medium-high frequency band, a NR (new air interface) frequency band, or a low frequency band.
  • “electronic equipment” (which may also be referred to as “terminals” or “mobile terminals” or “electronic devices”) include, but are not limited to, devices configured to receive/send communication signals via a wireline connection (e.g., via a public switched telephone network (PSTN), a digital subscriber line (DSL), digital cable, a direct cable connection, and/or another data connection/network) and/or via a wireless interface (e.g., for a cellular network, a wireless local area network (WLAN), a digital television network such as a DVB-H network, a satellite network, an AM-FM broadcast transmitter, and/or another communication terminal).
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • WLAN wireless local area network
  • a digital television network such as a DVB-H network
  • satellite network such as a satellite network, an AM-FM broadcast transmitter, and/or another communication terminal
  • Communication terminals configured to communicate via a wireless interface may be referred to as “wireless communication terminals,” “wireless terminals,” or “mobile terminals.”
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that may combine cellular radiotelephones with data processing, fax, and data communication capabilities; PDAs that may include radiotelephones, pagers, Internet/Intranet access, Web browsers, organizers, calendars, and/or global positioning system (GPS) receivers; and conventional laptop and/or palmtop receivers or other electronic devices that include radiotelephone transceivers.
  • PCS personal communication system
  • PDAs may include radiotelephones, pagers, Internet/Intranet access, Web browsers, organizers, calendars, and/or global positioning system (GPS) receivers
  • GPS global positioning system
  • a mobile phone is an electronic device equipped with a cellular communication module.
  • the antenna assembly can be a combination of one or more of a flexible printed circuit (FPC) antenna, a laser direct structuring (LDS) antenna, a print direct structuring (PDS) antenna, and a metal frame antenna (also called a metal branch antenna).
  • FPC flexible printed circuit
  • LDS laser direct structuring
  • PDS print direct structuring
  • metal frame antenna also called a metal branch antenna
  • the antenna assembly can also be other types of antennas, which will not be described in detail.
  • the antenna assembly 100 may include a radiator 10, a first feed source 20 for exciting the radiator 10, a second feed source 30 for exciting the radiator 10, a first switching circuit 40 electrically connected between the radiator 10 and the ground, and a second switching circuit 50 electrically connected between the radiator 10 and the second feed source 30.
  • the antenna assembly 100 can excite the radiator 10 through the first feed source 20 and/or the second feed source 30 to achieve a wireless transmission function, reduce the number of radiators 10, and further reduce the space occupied by the antenna assembly 100 in the electronic device.
  • the antenna assembly 100 can be controlled by the first switching circuit 40 and/or the second switching circuit 50 to reduce the mutual interference when the first feed source 20 and the second feed source 30 excite the radiator 10.
  • first”, “second”, “third”, etc. in this application are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, a feature defined as “first”, “second”, “third”, etc. may explicitly or implicitly include at least one of the features.
  • the radiator 10 may be, but is not limited to, an LDS radiator, or an FPC radiator, or a PDS radiator, or a metal branch radiator.
  • the radiator 10 may be a mechanical design antenna (MDA) radiator designed using the metal embedded in the electronic device itself.
  • MDA mechanical design antenna
  • the shape, structure and material of the radiator 10 are not specifically limited, and the shapes of the radiator 10 include but are not limited to bends, strips, sheets, rods, coatings, films, etc.
  • the radiator 10 is in a strip shape, there is no limitation on the extension trajectory of the radiator 10, so the radiator 10 can be extended in a straight line, a curve, a multi-segment bend, etc.
  • the radiator 10 can be a line with uniform width on the extension trajectory, or a strip with varying widths such as a gradient width and a widened area.
  • the total length of the radiator 10 may be 30-70 mm. In some embodiments, the total length of the radiator 10 may be 50 mm. It can be understood that the total length of the radiator 10 can be adjusted as needed.
  • the radiator 10 may have a first free end 11, a second free end 12, a first feeding point 13, a grounding point 14, and a second feeding point 15.
  • the first feeding point 13, the grounding point 14, and the second feeding point 15 may be located between the first free end 11 and the second free end 12.
  • the grounding point 14 may be located between the first feeding point 13 and the second feeding point 15, and located on a side of the second feeding point 15 away from the second free end 12. That is, the second feeding point 15 may be located between the second free end 12 and the grounding point 14.
  • the two ends of the radiator 10, such as the first free end 11 and the second free end 12, may have gaps between them and other components.
  • the gaps i.e., two gaps
  • the radiator 10 can still send and receive electromagnetic wave signals. Therefore, the antenna assembly 100 can have better communication performance when applied to an electronic device.
  • the radiator 10 may be in a straight bar shape.
  • the first free end 11 and the second free end 12 may be opposite ends of the radiator 10.
  • the radiator 10 may be in a bent shape.
  • the first free end 11 and the second free end 12 may not be opposite in a straight line.
  • the first free end 11 and the second free end 12 may be two ends of the radiator 10.
  • the distance between the first free end 11 and the second free end 12 may be the total length of the radiator 10.
  • the first feed source 20 may be directly or indirectly connected to the first feed point 13.
  • the first feed source 20 may excite the radiator 10 to support the first frequency band.
  • the first frequency band may be a medium-high frequency band or a low frequency band.
  • the first frequency band may be a Long Term Evolution (LTE) frequency band.
  • the first frequency band may be an LTE low frequency band.
  • the first frequency band may be an LTE B20 frequency band (791 MHz-861 MHz).
  • the first feed source 20 can excite the radiating portion of the radiator 10 between the second free end 12 and the first feeding point 13 to generate a first resonance mode supporting a first frequency band.
  • the first resonant mode may be an inverted-F antenna (IFA) antenna mode.
  • IFA inverted-F antenna
  • the current of the first resonant mode may include a current I1 flowing from the first feeding point 13 to the second free end 12 .
  • the second feed source 30 may be indirectly connected to the second feed point 15 via a second switching circuit 50.
  • the second feed source 30 may excite the radiator 10 to support a second frequency band.
  • the second frequency band may be a medium-high frequency band or a low-frequency band.
  • the second frequency band may be an LTE frequency band.
  • the second frequency band may be an LTE medium-high frequency band.
  • the fourth frequency band may be at least one of an LTE B3 frequency band, an LTE B1 frequency band, an LTE B39 frequency band, an LTE B40 frequency band, or an LTE B41 frequency band.
  • the second feed source 30 can excite the radiating portion of the radiator 10 between the second free end 12 and the ground point 14 to generate a second resonance mode supporting a second frequency band.
  • the first switching circuit 40 is electrically connected to the grounding point 14, so that the grounding point 14 is grounded through the first switching circuit 40.
  • the first switching circuit 40 can be used to improve the isolation between the first feed source 20 and the second feed source 30.
  • the first switching circuit 40 may be composed of a switch control circuit and/or a load circuit, or may be composed of an adjustable capacitor (which may also be replaced by a fixed value capacitor) and/or an adjustable inductor.
  • the switch control circuit may be a switch chip having a switch function, or may be a single-pole multi-throw switch or a single-pole single-throw switch.
  • the first switching circuit 40 may include a single-pole single-throw switch electrically connected between the grounding point 14 and the ground, so that the grounding point 14 is grounded through the single-pole single-throw switch, thereby realizing connection or disconnection between the grounding point 14 and the ground.
  • the first switching circuit 40 can realize the connection or disconnection of the ground point 14 with the ground. In some embodiments, the first switching circuit 40 can realize the connection of the ground point 14 with the ground, so that the second feed 30 can excite the radiator 10 to support the second frequency band. In some embodiments, the first switching circuit 40 can realize the disconnection of the ground point 14 with the ground, so that the first feed 20 can excite the radiator 10 to support the first frequency band. For example, when the ground point 14 is disconnected from the ground and the first feed 20 and the second feed 30 also have an isolation degree that does not interfere with the first frequency band and the second frequency band, the first feed 20 can excite the radiator 10 to support the first frequency band.
  • the second switching circuit 50 can indirectly electrically connect the second feed source 30 to the second feeding point 15.
  • the second switching circuit 50 can adjust the frequency of the second frequency band.
  • the second switching circuit 50 may be used to improve the isolation between the first feed source 20 and the second feed source 30 .
  • the second switching circuit 50 may be composed of a switch control circuit and/or a load circuit, or may be composed of an adjustable capacitor (which may also be replaced by a fixed value capacitor) and/or an adjustable inductor.
  • the switch control circuit may be a switch chip having a switch function, or may be a single-pole multi-throw switch or a single-pole single-throw switch.
  • the second switching circuit 50 can realize the connection or disconnection of the second feed source 30 and the second feed point 15. In some embodiments, the second switching circuit 50 can realize the connection of the second feed source 30 and the second feed point 15, so that the second feed source 30 can excite the radiator 10 to support the second frequency band. For example, when the grounding point 14 is connected to the ground, the second feed source 30 is connected to the second feed point 15, so that the first feed source 20 and the second feed source 30 also have an isolation degree that does not interfere with the first frequency band and the second frequency band, and the second feed source 30 can excite the radiator 10 to support the second frequency band.
  • the second switching circuit 50 can realize the disconnection of the second feed source 30 and the second feed point 15, so that the first feed source 20 can excite the radiator 10 to support the first frequency band.
  • the second feed source 30 is disconnected from the second feed point 15, so that the first feed source 20 and the second feed source 30 also have an isolation degree that does not interfere with the first frequency band and the second frequency band, and the first feed source 20 can excite the radiator 10 to support the first frequency band.
  • Fig. 2 is a schematic diagram of the structure of the second feed source 30 and the second switching circuit 50 shown in Fig. 1 in some embodiments.
  • the second switching circuit 50 may include a switch 51 and at least one frequency selection branch 52.
  • the switch 51 has a common terminal 511 electrically connected to the second feeding point 15, a plurality of connection terminals 512, and a switching portion 513.
  • the switching portion 513 can be electrically connected to the common terminal 511.
  • the switching portion 513 can be electrically connected to one connection terminal 512 under the control of a control signal (which can come from an electronic device such as a processor or from other electronic devices).
  • each frequency selection branch 52 is electrically connected to a connection end 512 in a one-to-one correspondence, the other end of one frequency selection branch 52 is electrically connected to the second feed source 30, and the other ends of the remaining frequency selection branches 52 are grounded.
  • the switching part 513 can be selectively electrically connected to different connection ends 512, so that one end of different frequency selection branches 52 is electrically connected to the second feeding point 15 and the other end is grounded, thereby making the radiating part located between the grounding point 14 and the second free end 12 on the radiator 10 have different effective electrical lengths in different states.
  • each frequency-selective branch 52 may include a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • each frequency selection branch 52 may be different, so that when different frequency selection branches 52 are electrically connected to the radiator 10, the degree of adjustment of the electrical length of the radiator 10 is different. Furthermore, the frequency selection is switched between multiple sub-bands in the second frequency band, such as LTE B3 band, LTE B1 band, LTE B39 band, LTE B40 band, LTE B41 band, etc.
  • each frequency selection branch 52 referred to here is different, and the components included in each frequency selection branch 52 may be different; or, The devices included are the same, but the connection relationships between the devices are different; or, the devices included are the same and the connection relationships are the same, but the parameters of the devices (such as capacitance or inductance) are different.
  • the number of the frequency selection branches 52 is usually greater than or equal to two.
  • each frequency selection branch 52 is electrically connected to a switch 51 in a one-to-one correspondence.
  • FIG3 is a schematic diagram of the structure of the second switching circuit 50 in the embodiment shown in FIG2 in another embodiment of the antenna assembly 100.
  • Each frequency selection branch 52 is electrically connected to a switch 51 in a one-to-one correspondence.
  • the frequency-selective branch 52 electrically connected to the second feed source 30 may be referred to as a matching circuit.
  • the frequency selection branch 52 may include a first frequency selection branch 521, a second frequency selection branch 522, a third frequency selection branch 523, and a fourth frequency selection branch 524.
  • the first frequency selection branch 521, the second frequency selection branch 522, and the third frequency selection branch 523 are all electrically connected to a connection terminal 512 at one end, and are all grounded at the other end.
  • the fourth frequency selection branch 524 is electrically connected between a connection terminal 512 and the second feed source 30, so that the second feed source 30 is electrically connected to a connection terminal 512 through the fourth frequency selection branch 524.
  • the first frequency selection branch 521, the second frequency selection branch 522, and the third frequency selection branch 523 may all be inductors.
  • the fourth frequency selection branch 524 may be a capacitor to implement capacitive coupling feeding of the radiator 10 under the second feed source 30 .
  • all switches 51 are turned off, so that the second feed source 30 is disconnected from the second feeding point 15 , thereby enabling the first feed source 20 to excite the radiator 10 to support the first frequency band.
  • the first frequency selection branch 521, the second frequency selection branch 522, the third frequency selection branch 523, and the fourth frequency selection branch 524 are used for frequency selection, as shown in the following table:
  • FIG. 4 is a schematic diagram of the structure of the antenna assembly 100 shown in FIG. 1 in another embodiment.
  • the radiator 10 may also have a third feeding point 16 located between the first free end 11 and the first feeding point 13.
  • the antenna assembly 100 may also include a third feed source 60.
  • the third feed source 60 may be indirectly connected to the third feeding point 16.
  • the third feed source 60 may excite the radiator 10 to support a third frequency band.
  • the third frequency band may be a mid-high frequency band or a low frequency band.
  • the third frequency band may be a WiFi frequency band or a NR frequency band.
  • the third frequency band may include the first sub-band.
  • the first sub-band is larger than the first band.
  • the first sub-band may be an NR band. In some embodiments, the first sub-band may be an NR high frequency band. In some embodiments, the first sub-band may be an N78 band (3.4 GHz-3.6 GHz).
  • the third feed source 60 can excite the radiation portion between the first feeding point 13 and the first free end 11 to generate a third resonance mode supporting the first sub-frequency band.
  • the third resonant mode may be a left-handed antenna mode (a mode of a composite left-handed transmission line structure). In some embodiments, the third resonant mode may be a 1/4 wavelength left-handed antenna mode.
  • the current of the third resonant mode includes a current I3 flowing from the first feeding point 13 to the first free end 11 .
  • the third frequency band may include a sub-band of the second frequency band.
  • the second sub-band may be a WiFi band. In some embodiments, the second sub-band may be a WiFi 5G band.
  • the third feed source 60 can excite the radiation portion between the third feed point 16 and the first free end 11 to generate a fourth resonance mode supporting the second sub-frequency band.
  • the fourth resonant mode is an IFA antenna mode. In some embodiments, the fourth resonant mode is a 1/4 wavelength IFA antenna mode.
  • the current of the fourth resonant mode includes a current I4 flowing from the third feeding point 16 to the first free end 11 .
  • the circuit electrically connecting the first feed source 20 to the first feed point 13 can be set to be in a high impedance state when the third feed source 60 excites the radiator 10, and in a low impedance state when the first feed source 20 excites the radiator 10.
  • the antenna assembly 100 can improve the isolation between the first feed source 20 and the third feed source 60 when the first feed source 20 excites the radiator 10.
  • the circuit electrically connecting the first feed 20 to the first feed point 13 may be set to be disconnected when the third feed 60 excites the radiator 10 , and connected when the first feed 20 excites the radiator 10 .
  • the antenna assembly 100 may further include a first frequency selection circuit 70 electrically connected between the first feed 20 and the first feed point 13.
  • the first feed 20 may be electrically connected to the first feed point 13 through the first frequency selection circuit 70. That is, the first frequency selection circuit 70 may serve as a circuit for electrically connecting the first feed 20 to the first feed point 13.
  • the first frequency selection circuit 70 may be in a high impedance state when the third feed 60 excites the radiator 10, and in a low impedance state when the first feed 20 excites the radiator 10. In some embodiments, in the antenna assembly 100, the first frequency selection circuit 70 is disconnected when the third feed 60 excites the radiator 10, and is connected when the first feed 20 excites the radiator 10.
  • the first frequency selection circuit 70 may be composed of a switch control circuit and/or a load circuit, or may be composed of an adjustable capacitor (which may also be replaced by a fixed value capacitor) and/or an adjustable inductor.
  • the switch control circuit may be a switch chip with a switch function, or may be a single-pole multi-throw switch or a single-pole single-throw switch.
  • the first frequency selection circuit 70 may have a first end 71 and a second end 72.
  • the first end 71 may be electrically connected to the first feed source 20, and the second end 72 may be electrically connected to the first feeding point 13.
  • the first frequency selection circuit 70 may include a first matching circuit 73 and a first filter circuit 74.
  • One end of the first matching circuit 73 is electrically connected to one end of the first filter circuit 74 to form a first end 71 and a second end 72. That is, the first matching circuit 73 and the first filter circuit 74 may both be electrically connected between the first feeding point 13 and the ground, and the first feed source 20 may be directly electrically connected to the first feeding point 13, so that the first feeding point 13 may be grounded through the first matching circuit 73 and the first filter circuit 74, respectively.
  • the first filter circuit 74 can control the first frequency selection circuit 70 to be in a high impedance state when the third feed source 60 excites the radiator 10, and to be in a low impedance state when the first feed source 20 excites the radiator 10. In some embodiments, the first filter circuit 74 can control the first frequency selection circuit 70 to be in an open circuit state when the third feed source 60 excites the radiator 10, and to be in a short circuit state when the first feed source 20 excites the radiator 10. In some embodiments, the first filter circuit 74 can control the first frequency selection circuit 70 to be disconnected when the third feed source 60 excites the radiator 10, and to be connected when the first feed source 20 excites the radiator 10.
  • the first matching circuit 73 may include a first inductor L1 electrically connected between the second terminal 72 and the ground. The second terminal 72 is grounded through the first inductor L1.
  • the first filter circuit 74 may include a first capacitor C1 electrically connected between the second end 72 and the ground. The second end 72 is grounded through the first capacitor C1.
  • the first capacitor C1 may form a low-pass high-resistance filter circuit. That is, the first filter circuit 74 may be a low-pass high-resistance filter circuit to improve the isolation between the first feed source 20 and the third feed source 60.
  • the first capacitor C1 can flow current I3 when the radiator 10 supports the third frequency band, such as the first sub-frequency band. Specifically, the current I3 can flow from the ground through the first capacitor C1 and flow to the first feeding point 13. Therefore, the first capacitor C1 can be a virtual return point.
  • the capacitance of the first capacitor C1 is 2.7 pF.
  • the circuit electrically connecting the third feed source 60 to the third feed point 16 can be set to be in a low impedance state when the third feed source 60 excites the radiator 10, and in a high impedance state when the first feed source 20 excites the radiator 10.
  • the antenna assembly 100 can improve the isolation between the third feed source 60 and the first feed source 20 when the third feed source 60 excites the radiator 10.
  • the circuit electrically connecting the third feed 60 to the third feed point 16 may be set to be turned on when the third feed 60 excites the radiator 10 , and turned off when the first feed 20 excites the radiator 10 .
  • the antenna assembly 100 may further include a second frequency selection circuit 80 electrically connected between the third feed 60 and the third feed point 16.
  • the third feed 60 may be electrically connected to the third feed point 16 via the second frequency selection circuit 80. That is, the second frequency selection circuit 80 may serve as a circuit for electrically connecting the third feed 60 to the third feed point 16.
  • the second frequency selection circuit 80 may be in a low impedance state when the third feed 60 excites the radiator 10, and in a high impedance state when the first feed 20 excites the radiator 10.
  • the second frequency selection circuit 80 may be turned on when the third feed 60 excites the radiator 10, and may be turned off when the first feed 20 excites the radiator 10.
  • the second frequency selection circuit 80 may be composed of a switch control circuit and/or a load circuit, or may be composed of an adjustable capacitor (which may also be replaced by a fixed value capacitor) and/or an adjustable inductor.
  • the switch control circuit may be a switch chip with a switch function, or may be a single-pole multi-throw switch or a single-pole single-throw switch.
  • the second frequency selection circuit 80 may include a second matching circuit 81 and a second filter circuit 82.
  • One end of the second matching circuit 81 is connected to the third feed source 60, and the other end is connected to the second filter circuit 82.
  • One end of the second filter circuit 82 is connected to the other end of the second matching circuit 81, and the other end is connected to the third feeding point 16, so as to realize the series connection of the third feed source 60, the second matching circuit 81 and the second filter circuit 82.
  • the second matching circuit 81 includes a second capacitor C2 with one end grounded and a third capacitor C3 with one end electrically connected to the other end of the second capacitor C2. The other end of the third capacitor C3 is electrically connected to the second filter circuit 82.
  • the second capacitor C2 and the third capacitor C3 may flow current I4 when the radiator 10 supports a third frequency band, such as a second sub-frequency band.
  • the current I4 may flow from the ground through the second capacitor C2, the third capacitor C3, the second filter circuit 82 and flow to the third feeding point 16. Therefore, the second capacitor C2 may be a virtual return point.
  • the capacitance of the second capacitor C2 may be 1 pF.
  • the second filter circuit 82 can control the second frequency selection circuit 80 to be in a low impedance state when the third feed source 60 excites the radiator 10, and to be in a high impedance state when the first feed source 20 excites the radiator 10.
  • the frequency selection circuit 80 is in a short circuit state when the third feed source 60 excites the radiator 10, and is in an open circuit state when the first feed source 20 excites the radiator 10.
  • the second filter circuit 82 can control the second frequency selection circuit 80 to be turned on when the third feed source 60 excites the radiator 10, and to be turned off when the first feed source 20 excites the radiator 10.
  • the second filtering circuit 82 may include a fourth capacitor C4 electrically connected between the third feeding point 16 and the second matching circuit 81 and a second inductor L2 electrically connected between the third feeding point 16 and the second matching circuit 81. That is, the third feeding point 16 may be electrically connected to the second matching circuit 81 through the fourth capacitor C4 and the second inductor L2, respectively.
  • one end of the fourth capacitor C4 and the second inductor L2 electrically connected to the second matching circuit 81 is electrically connected to one end of the third capacitor C3.
  • the fourth capacitor C4 and the second inductor L2 are connected in parallel to resonate to form a low-resistance high-pass filter circuit. That is, the second filter circuit 82 can be a low-resistance high-pass filter circuit to improve the isolation between the first feed source 20 and the third feed source 60.
  • the fourth capacitor C4 can flow current I4 when the radiator 10 supports the third frequency band, such as the second sub-frequency band. Specifically, the current I4 can flow from the ground through the second capacitor C2, the third capacitor C3, the fourth capacitor C4 and flow to the third feeding point 16.
  • the first resonance mode corresponding to the current I1 can support the first frequency band, such as the LTE B20 frequency band (791MHz-861MHz).
  • the second resonance mode corresponding to the current I2 can support the second frequency band, such as the LTE B1 frequency band, the LTE B3 frequency band, the LTE B39 frequency band, the LTE B40 frequency band, and the LTE B41 frequency band.
  • the third resonance mode corresponding to the current I3 can support the third frequency band, such as the first sub-band (such as the N78 frequency band (3.4GHz-3.6GHz)).
  • the fourth resonance mode corresponding to the current I4 can support the third frequency band, such as the second sub-band (such as the WiFi5G frequency band).
  • the antenna assembly 100 can realize ENDC (a combination of dual connectivity of 4G wireless access network and 5G-NR (E-UTRAN New Radio-Dual Connectivity, ENDC for short)) of the N78 band and the WiFi5G band, and can also realize ENDC of the LTE B20 band and the N78 band or the WiFi5G band.
  • ENDC a combination of dual connectivity of 4G wireless access network and 5G-NR (E-UTRAN New Radio-Dual Connectivity, ENDC for short) of the N78 band and the WiFi5G band
  • ENDC E-UTRAN New Radio-Dual Connectivity
  • the second switching circuit 50 When the first feed source 20 excites the radiating portion of the radiator 10 located between the second free end 12 and the first feeding point 13, the second switching circuit 50 is disconnected relative to the first feed source 20, so that the second feed source 30 does not excite the radiator 10.
  • the second switching circuit 50 is disconnected relative to the first feed source 20, thereby achieving better isolation between the first feed source 20 and the second feed source 30.
  • the first switching circuit 40 is connected relative to the second feed source 30, so that the second feed source 30 can excite the radiator 10, and the first feed source 20 cannot excite the radiating portion of the radiator 10 located between the second free end 12 and the grounding point 14, thereby achieving better isolation between the first feed source 20 and the second feed source 30.
  • the third feed source 60 can excite the radiator 10 to generate the third resonance mode and the fourth resonance mode.
  • the first frequency selection circuit 70 and the second frequency selection circuit 80 are arranged so that the isolation between the first feed source 20 and the third feed source 60 is better.
  • the third feed source 60 can excite the radiator 10 to generate the third resonant mode and the fourth resonant mode.
  • the distance between the radiating part between the third feed point 16 and the first free end 11 and the radiating part between the grounding point 14 and the second free end 12 is relatively far, and the grounding point 14 in the middle is grounded, so that the isolation between the third feed source 60 and the second feed source 30 is relatively good.
  • the first feed 20, the second feed 30 and the third feed 60 have good isolation performance, there is good isolation performance between the mid-high frequency band and the N78 frequency band, and there is good isolation performance between the mid-high frequency band and the WiFi5G frequency band. There is good isolation performance between the LTE B20 frequency band and the N78 frequency band, and there is good isolation performance between the LTE B20 frequency band and the WiFi5G frequency band.
  • the present application adopts a solution of sharing the radiator 10, so that the radiator 10 supports the N78 band + WiFi 5G band, LTE B20 band, MHB band, etc., and solves the isolation/coexistence problem. Due to the shared radiator 10, the design space requirement of the antenna component is reduced.
  • FIG. 8 is a return loss curve of the antenna assembly 100 shown in FIG. 7 in another embodiment when excited by the second feed source 30 and the third feed source 60, with the horizontal axis being the frequency (GHz) and the vertical axis being the return loss (dB).
  • Curve C1 is a return loss curve of the antenna assembly 100 under the excitation of the third feed source 60.
  • Curve C2 is a return loss curve of the antenna assembly 100 corresponding to the LTE B3 frequency band under the excitation of the second feed source 30.
  • Curve C3 is a return loss curve of the antenna assembly 100 corresponding to the LTE B1 frequency band under the excitation of the second feed source 30.
  • Curve C4 is a return loss curve of the antenna assembly 100 corresponding to the LTE B40 frequency band under the excitation of the second feed source 30.
  • Curve C5 is a return loss curve of the antenna assembly 100 corresponding to the LTE B41 frequency band under the excitation of the second feed source 30.
  • the curve C1 has a first identification point (3.6528, -14.003) and a second identification point (3.5079, -4.2272)
  • the curve C2 has a third identification point (1.7891, -12.97)
  • the curve C3 has a fourth identification point (2.022, -14.853)
  • the curve C4 has a fifth identification point (2.3557, -25.508)
  • the curve C5 has a sixth identification point (2.5757, -20.723).
  • the isolation between the second feed source 30 and the third feed source 60 in the antenna assembly 100 is good, and the antenna performance in the second frequency band (such as LTE B3 frequency band, LTE B1 frequency band, LTE B40 frequency band, LTE B41 frequency band) is good, and thus the working state is good, which can meet the engineering requirements.
  • the second frequency band such as LTE B3 frequency band, LTE B1 frequency band, LTE B40 frequency band, LTE B41 frequency band
  • FIG. 9 is a system total efficiency curve of the antenna assembly 100 shown in FIG. 7 in another embodiment when excited by the second feed source 30 and the third feed source 60, with the horizontal axis being the frequency (GHz) and the vertical axis being the system total efficiency (dB).
  • Curve D1 is a system total efficiency curve of the antenna assembly 100 under the excitation of the third feed source 60.
  • Curve D2 is a system total efficiency curve of the antenna assembly 100 corresponding to the LTE B3 frequency band under the excitation of the second feed source 30.
  • Curve D3 is a system total efficiency curve of the antenna assembly 100 corresponding to the LTE B1 frequency band under the excitation of the second feed source 30.
  • Curve D4 is a system total efficiency curve of the antenna assembly 100 corresponding to the LTE B40 frequency band under the excitation of the second feed source 30.
  • Curve D5 is a system total efficiency curve of the antenna assembly 100 corresponding to the LTE B41 frequency band under the excitation of the second feed source 30.
  • the curve D1 has a first identification point (3.5394, -4.8538), the curve D2 has a second identification point (1.8, -4.2537), and the curve D3 has a third identification point (2.0431, -4.6083), the curve D4 has a fourth identification point (2.3794, -4.3104), and the curve D5 has a fifth identification point (2.5982, -401249).
  • the isolation under the second feed source 30 and the third feed source 60 in the antenna assembly 100 is good, and the antenna performance in the second frequency band (such as LTE B3 band, LTE B1 band, LTE B40 band, LTE B41 band) is good, and thus the working state is good, which can meet the engineering requirements.
  • the second frequency band such as LTE B3 band, LTE B1 band, LTE B40 band, LTE B41 band
  • FIG. 10 is a return loss curve of the antenna assembly 100 shown in FIG. 7 in another embodiment when excited by the first feed source 20 and the third feed source 60.
  • the horizontal axis is frequency (GHz) and the vertical axis is return loss (dB).
  • Curve A1 is a return loss curve of the antenna assembly 100 under the excitation of the third feed source 60.
  • Curve A2 is a return loss curve of the antenna assembly 100 under the excitation of the first feed source 20.
  • Curve A3 is an isolation curve of the antenna assembly 100 under the excitation of the first feed source 20 and the third feed source 60.
  • first identification point (0.8223, -12.718), a second identification point (0.8557, -3.1137), and a third identification point (0.79122, -3.7022) on curve A2.
  • curve A1 there are the fourth identification point (3.4959, -6.8451), the fifth identification point (5.4985, -12.045), and the sixth identification point (5.2707, -4.5778).
  • the antenna performance of the antenna assembly 100 in the first frequency band near the first identification point is good, specifically, the antenna performance in the first frequency band between the second identification point and the third identification point is good.
  • the isolation corresponding to the first frequency band between the second identification point and the third identification point of curve A3 is good.
  • the antenna performance in the first sub-frequency band and the second sub-frequency band near the fifth identification point and the sixth identification point of the antenna assembly 100 is good, and the isolation between curve A3 and the fourth identification point and the fifth identification is good, so that the working condition of the antenna assembly 100 is good and can meet the engineering requirements.
  • FIG. 11 is a system total efficiency curve of the antenna assembly 100 shown in FIG. 7 in another embodiment when excited by the first feed source 20 and the third feed source 60.
  • the horizontal axis is the frequency (GHz) and the vertical axis is the system total efficiency (dB).
  • Curve B1 is the system total efficiency curve of the antenna assembly 100 under the excitation of the third feed source 60.
  • Curve B2 is the system total efficiency curve of the antenna assembly 100 under the excitation of the first feed source 20.
  • the electronic device can be any one of a plurality of electronic devices, including but not limited to cellular phones, smart phones, other wireless communication devices, personal digital assistants, audio players, other media players, music recorders, video recorders, cameras, other media recorders, radios, medical devices, calculators, programmable remote controls, pagers, netbook computers, personal digital assistants (PDAs), portable multimedia players (PMPs), moving picture experts group (MPEG-1 or MPEG-2), audio layer 3 (MP3) players, portable medical devices, digital cameras, and combinations thereof.
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • MPEG-1 or MPEG-2 moving picture experts group
  • MP3 audio layer 3
  • the electronic device may include but is not limited to a mobile phone, a mobile internet device (MID), an e-book, a portable player station (Play Station Portable, PSP) or a personal digital assistant (Personal Digital Assistant, PDA) and other electronic devices with communication functions.
  • MID mobile internet device
  • PSP Portable Player Station
  • PDA Personal Digital Assistant
  • the electronic device 200 may include a middle frame assembly 90 provided with an antenna assembly 100, a display screen 201 provided on one side of the middle frame assembly 90 and used to display information, a battery cover 202 connected to the other side of the middle frame assembly 90, a circuit board 203 installed on the middle frame assembly 90 and used to control the display screen 201 and the antenna assembly 100, and a battery 204 installed on the middle frame assembly 90 and used to power the electronic device 200 for normal operation.
  • the display screen 201 can be a liquid crystal display (Liquid Crystal Display, LCD) or an organic light-emitting diode display (Organic Light-Emitting Diode, OLED) and other types of display screens for displaying information and images.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the material of the middle frame assembly 90 can be a metal such as magnesium alloy, aluminum alloy, stainless steel, etc. Of course, the material is not limited thereto, and can also be other materials such as insulating materials, such as hard materials.
  • the middle frame assembly 90 can be placed between the display screen 201 and the battery cover 202.
  • the middle frame assembly 90 can be used to carry the display screen 201.
  • the middle frame assembly 90 and the battery cover 202 are snap-fitted to form the main housing 205 of the electronic device 200, and a accommodating cavity is formed inside the main housing 205.
  • the accommodating cavity can be used to accommodate electronic components such as the camera, the circuit main board 203, the battery 204, the processor (arranged on the circuit main board 203, so in some embodiments it can be part of the circuit main board 203), the antenna assembly 100, and various types of sensors in the electronic device 200.
  • electronic components such as the camera, the circuit main board 203, the battery 204, the processor (arranged on the circuit main board 203, so in some embodiments it can be part of the circuit main board 203), the antenna assembly 100, and various types of sensors in the electronic device 200.
  • the circuit main board 203 is installed in the accommodating cavity and can be installed at any position in the accommodating cavity.
  • the circuit main board 203 can be the main board of the electronic device 200.
  • the processor of the electronic device 200 can be set on the circuit main board 203.
  • the circuit main board 203 can also be integrated with one, two or more functional components such as a motor, a microphone, a speaker, a receiver, an earphone interface, a universal serial bus interface (USB interface), a camera, a distance sensor, an ambient light sensor, a gyroscope, etc.
  • the display screen 201 can be electrically connected to the circuit main board 203.
  • the battery 204 is installed in the accommodating cavity and can be installed at any position in the accommodating cavity.
  • the battery 204 can be electrically connected to the circuit main board 203 so that the battery 204 can power the electronic device 200.
  • a power management circuit can be provided on the circuit main board 203. The power management circuit is used to distribute the voltage provided by the battery 204 to various electronic components in the electronic device 200, such as the display screen 201.
  • the battery cover 202 can be made of the same material as the middle frame assembly 90, or other materials.
  • the battery cover 202 can be integrally formed with the middle frame assembly 90.
  • the battery cover 202 can wrap the middle frame assembly 90 and can carry the display screen 201.
  • the battery cover 202 can be formed with a rear camera hole, a fingerprint recognition module installation hole, and other structures.
  • FIG. 13 is a schematic diagram of the structure of the frame assembly 90 in the embodiment shown in FIG. 12.
  • the middle frame assembly 90 may include a substrate 91 for carrying the display screen 201 and a frame 92 surrounding the substrate 91.
  • the substrate 91 is arranged opposite to the battery cover 202.
  • the frame 92 can be used to snap-fit with the battery cover 202. That is, the substrate 91, the frame 92 and the battery cover 202 are surrounded to form a receiving cavity.
  • the substrate 91 may be a conductive metal, or other materials.
  • a ground plane and a feed source may be provided on the substrate 91.
  • the ground plane serves as a ground.
  • the ground plane and the feed source may not be provided on the substrate 91, but may be directly provided on the circuit main board 203.
  • the substrate 91 may be omitted.
  • the frame 92 may be a conductive metal, so the frame 92 may also be referred to as a "metal frame". Of course, the frame 92 may also be other materials, such as insulating materials. The frame 92 may also be made of the same material as the substrate 91.
  • the frame 92 may include a first frame 921, a second frame 922, a third frame 923, and a fourth frame 924 connected end to end in sequence.
  • the first frame 921, the second frame 922, the third frame 923, and the fourth frame 924 are arranged around the substrate 91 and may be connected and fixed to the substrate 91.
  • the frame 92 may be an integral structure with the battery cover 202.
  • the frame 92 extends from the edge of the battery cover 202 to one side of the display screen 201 so as to be snap-fitted and connected to the display screen 201.
  • first frame 921, the second frame 922, the third frame 923 and the fourth frame 924 are arranged to form a rounded rectangle. Of course, other shapes such as a circle, a triangle, etc. are also possible. In some embodiments, the first frame 921 and the third frame 923 are arranged opposite to each other, and the second frame 922 and the fourth frame 924 are arranged opposite to each other.
  • the lengths of the first frame 921 and the third frame 923 are both shorter than the length of the second frame 922 , and shorter than the length of the fourth frame 92 .
  • the middle frame assembly 90 and the battery cover 202 can form a main housing 205.
  • the main housing is not limited to the middle frame assembly 90 and the battery cover 202, but can also include other components, which will not be described in detail.
  • the antenna assembly 100 can be mounted on the middle frame assembly 90. In some embodiments, the antenna assembly 100 can be a part of the middle frame assembly 90. Of course, in some embodiments, the antenna assembly 100 can also be mounted on other locations of the main housing 205, such as the battery cover 202. In some embodiments, the antenna assembly 100 can be processed from the main housing 205. For example, the antenna assembly 100 appears as a slot antenna. In some embodiments, the antenna assembly 100 can be directly fixed to the main housing 205.
  • the radiator 10 is disposed on the frame 92 , such as the first frame 921 . It can be understood that the antenna assembly 100 may further include a second radiator 101 and a third radiator 102 .
  • the second radiator 101 and the third radiator 102 are located on both sides of the radiator 10 and may be spaced apart from the radiator 10 .
  • the second radiator 101 is disposed on the first frame 921 and the fourth frame 924 .
  • the third radiator 102 is disposed on the first frame 921 and the second frame 922 .
  • the first feed source 20, the second feed source 30, and the third feed source 60 may be feed sources on the substrate 91 or the circuit main board 203.
  • the connection between the radiator 10 and the feed source may be achieved through an antenna spring.
  • the ground may be a ground plane on the substrate 91 or the circuit main board 203. Specifically, the connection between the radiator 10 and the ground may be achieved through an antenna spring.
  • a gap 901 is provided between the first frame 921 and the substrate 91.
  • the gap 901 can be extended toward the second frame 922 and the fourth frame 924 in the extension direction of the first frame 921 to be formed between the first frame 921 and the substrate 91, such as a ground plane, so that part or all of the first frame 921 serves as the radiator 10.
  • the gap 901 may extend toward the second frame 922 in the extension direction of the first frame 921 to form a gap between the second frame 922 and the substrate 91 , such as a ground plane, so that part of the first frame 921 and part of the second frame 922 serve as the third radiator 102 .
  • the gap 901 may be extended toward the fourth frame 924 in the extension direction of the first frame 921 to form a gap between the fourth frame 924 and the substrate 91 , such as a ground plane, so that part of the first frame 921 and part of the fourth frame 924 serve as the second radiator 101 .
  • the radiator 10 utilizes the first border 921 , which can effectively improve the performance loss of the antenna assembly 100 caused by human hands.
  • an insulating material such as resin can be filled between the gaps 901 to realize that the radiator 10 in the antenna assembly 100 is a part of the frame 92, such as the first frame 921, which further improves the appearance of the electronic device 200.
  • the present application adopts a solution of sharing a radiator, solves the isolation/coexistence problem, makes the overall system efficiency of the antenna assembly 100 good, reduces the design space requirement of the electronic device 200 by the antenna assembly 100, and has important engineering application benefits.
  • FIG 14 is a schematic diagram of the structural composition of an electronic device 300 in one embodiment of the present application.
  • the electronic device 300 can be a mobile phone, a tablet computer, a laptop computer, a wearable device, etc.
  • the diagram of this embodiment takes a mobile phone as an example.
  • the structure of the electronic device 300 may include an RF circuit 310 (such as the antenna assembly 100 in the above embodiment), a memory 320, an input unit 330, a display unit 340 (such as the display screen 201 in the above embodiment), a sensor 350, an audio circuit 360, a WiFi module 370, a processor 380, and a power supply 390 (such as the battery 204 in the above embodiment).
  • the element 340, the sensor 350, the audio circuit 360 and the WiFi module 370 are respectively connected to the processor 380.
  • the power supply 390 is used to provide power to the entire electronic device 300.
  • the RF circuit 310 is used to receive and send signals.
  • the memory 320 is used to store data instruction information.
  • the input unit 330 is used to input information, and may specifically include a touch panel 3301 and other input devices 3302 such as operation buttons.
  • the display unit 340 may include a display panel 3401, etc.
  • the sensor 350 includes an infrared sensor, a laser sensor, a position sensor, etc., for detecting user approach signals, distance signals, etc.
  • the speaker 3601 and the microphone (or microphone, or receiver component) 3602 are connected to the processor 380 through the audio circuit 360 for receiving and sending sound signals.
  • the WiFi module 370 is used to receive and transmit WiFi signals.
  • the processor 380 is used to process data information of the electronic device.
  • the disclosed device can be implemented in other ways.
  • the device implementation described above is only illustrative, for example, the division of modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Transceivers (AREA)

Abstract

本申请公开了一种天线组件、中框组件以及电子设备,涉及通信技术领域。本申请中第一馈源用于激励辐射体以支持第一频段;第二馈源用于激励辐射体以支持第二频段;在第一切换电路控制接地点与地接通时,第二切换电路配置为控制第二馈电点与第二馈源接通,以使第二馈源激励辐射体以支持第二频段,在第一切换电路控制接地点与地断开时,第二切换电路配置为控制第二馈电点与第二馈源断开,以使第一馈源激励辐射体以支持第一频段。本申请有效减少了辐射体个数,并进一步降低天线组件对电子设备空间的占用。

Description

天线组件、中框组件以及电子设备 【技术领域】
本申请涉及通信技术领域,具体涉及一种天线组件、中框组件以及电子设备。
【背景技术】
随着电子装置的通讯功能越来越多,单个天线已不能满足人们无线通信的需求。因此,很多电子装置都配备了多个天线以接收不同的无线信号,如GSM(全球移动通信系统,Global System for Mobile Communication),WiFi(Wireless-Fidelity,无线保真)等信号。然而,多个天线会占用较大的面积,且存在相互干扰的问题。
【发明内容】
本申请提供一种天线组件,所述天线组件包括:
辐射体,具有第一自由端及第二自由端,还具有位于所述第一自由端与所述第二自由端之间的第一馈电点、第二馈电点及接地点,所述接地点位于所述第一馈电点与所述第二馈电点之间,且位于所述第二馈电点远离所述第二自由端的一侧;
第一馈源,与所述第一馈电点电连接,用于激励所述辐射体以支持第一频段;
第二馈源,用于激励所述辐射体以支持第二频段;
第一切换电路,电连接至所述接地点与地之间,以使所述接地点通过所述第一切换电路接地,所述第一切换电路用于控制所述接地点与地接通,或控制所述接地点与地断开;以及
第二切换电路,电连接至所述第二馈电点与所述第二馈源之间,以使所述第二馈源通过所述第二切换电路与所述第二馈电点电连接,所述第二切换电路用于控制所述第二馈电点与所述第二馈源接通,或控制所述第二馈电点与所述第二馈源断开,在所述第一切换电路控制所述接地点与地接通时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源接通,以使所述第二馈源激励所述辐射体以支持所述第二频段,在所述第一切换电路控制所述接地点与地断开时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源断开,以使所述第一馈源激励所述辐射体以支持所述第一频段。
本申请提供一种天线组件,包括:
辐射体,具有第一自由端及第二自由端,还具有位于所述第一自由端与所述第二自由端之间的第一馈电点、第二馈电点、第三馈电点及接地点,所述接地点位于所述第一馈电点与所述第二馈电点之间,且位于所述第二馈电点远离所述第二自由端的一侧,所述第三馈电点位于所述第一自由端与所述第一馈电点之间;
第一馈源,与所述第一馈电点电连接,用于激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射体,以支持低频频段;
第二馈源,用于激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射体以支持中高频频段;
第一切换电路,电连接至所述接地点与地之间,以使所述接地点通过所述第一切换电路接地,所述第一切换电路用于控制所述接地点与地接通,或控制所述接地点与地断开;
第二切换电路,电连接至所述第二馈电点与所述第二馈源之间,以使所述第二馈源通过所述第二切换电路与所述第二馈电点电连接,所述第二切换电路用于控制所述第二馈电点与所述第二馈源接通,或控制所述第二馈电点与所述第二馈源断开,在所述第一切换电路控制所述接地点与地接通时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源接通,以使所述第二馈源激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射体,在所述第一切换电路控制所述接地点与地断开时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源断开,以使所述第一馈源激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射体;以及
第三馈源,与所述第三馈电点电连接,用于激励所述辐射体,以支持WiFi频段或NR频段。
本申请提供一种中框组件,包括:
基板,设置有接地面;
边框,围设在所述基板的周围;以及
如上述所述的天线组件,所述辐射体设置在所述边框上,并与所述接地面之间设置缝隙。
本申请提供一种电子设备,包括:
中框组件,包括:
基板;
边框,与所述基板连接,包括依次首尾相连接且围设在所述基板的周围的第一边框、第二边框、第三边框及第四边框,所述第一边框与所述第三边框相对设置,所述第二边框与所述第四边框相对设置, 所述第一边框与所述第三边框两者的长度均较所述第二边框的长度短,且较所述第四边框的长度短;
如上述所述的天线组件,所述辐射体设置在所述第一边框上;
电池盖,盖设在所述中框组件的一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置;以及
显示屏,设置在所述中框组件的另一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置。
【附图说明】
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一些实施例中天线组件的结构示意图;
图2为图1所示第二馈源和第二切换电路在一些实施例中配合的结构示意图;
图3为图2所示实施例中第二切换电路在天线组件中另一实施例中的结构示意图;
图4为图1所示天线组件在另一实施例中的结构示意图;
图5为图4所示实施例中第一馈源与第一选频电路在另一些实施例中配合的结构示意图;
图6为图4所示实施例中第三馈源与第二选频电路在另一些实施例中配合的结构示意图;
图7为图4所示天线组件在另一些实施例中的结构示意图;
图8为图7所示天线组件在另一实施例中受第二馈源和第三馈源激励的回波损耗曲线图;
图9为图7所示天线组件在另一实施例中受第二馈源和第三馈源激励的系统总效率(System Total Efficiency)曲线图;
图10为图7所示天线组件在另一实施例中受第一馈源和第三馈源激励的回波损耗曲线图;
图11为图7所示天线组件在另一实施例中受第一馈源和第三馈源激励的系统总效率曲线图;
图12为本申请一实施例中电子设备的爆炸图;
图13为图12所示实施例中框组件的结构示意图;
图14为本申请一实施例中电子设备的结构组成示意图。
【具体实施方式】
下面结合附图和实施方式,对本申请作进一步的详细描述。特别指出的是,以下实施方式仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施方式仅为本申请的部分实施方式而非全部实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在本文中提及“实施方式”意味着,结合实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施方式中。在说明书中的各个位置出现该短语并不一定均是指相同的实施方式,也不是与其他实施方式互斥的独立的或备选的实施方式。本领域技术人员显式地和隐式地理解的是,本文所描述的实施方式可以与其他实施方式相结合。
本申请提供了一种天线组件,其中,包括:
辐射体,具有第一自由端及第二自由端,还具有位于所述第一自由端与所述第二自由端之间的第一馈电点、第二馈电点及接地点,所述接地点位于所述第一馈电点与所述第二馈电点之间,且位于所述第二馈电点远离所述第二自由端的一侧;
第一馈源,与所述第一馈电点电连接,用于激励所述辐射体以支持第一频段;
第二馈源,用于激励所述辐射体以支持第二频段;
第一切换电路,电连接至所述接地点与地之间,以使所述接地点通过所述第一切换电路接地,所述第一切换电路用于控制所述接地点与地接通,或控制所述接地点与地断开;以及
第二切换电路,电连接至所述第二馈电点与所述第二馈源之间,以使所述第二馈源通过所述第二切换电路与所述第二馈电点电连接,所述第二切换电路用于控制所述第二馈电点与所述第二馈源接通,或控制所述第二馈电点与所述第二馈源断开,在所述第一切换电路控制所述接地点与地接通时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源接通,以使所述第二馈源激励所述辐射体以支持所述第二频段,在所述第一切换电路控制所述接地点与地断开时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源断开,以使所述第一馈源激励所述辐射体以支持所述第一频段。
在一些实施例中,在所述第一切换电路控制所述接地点与地断开,且所述第二切换电路控制所述第二馈电点与所述第二馈源断开时,所述第一馈源配置为激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射部,以支持所述第一频段。
在一些实施例中,在所述第一切换电路控制所述接地点与地接通,且所述第二切换电路控制所述第二馈电点与所述第二馈源接通时,所述第二馈源配置为激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射部,以支持所述第二频段。
在一些实施例中,所述第一切换电路包括:
单刀单掷开关,电连接至所述接地点与地之间,以使所述接地点通过所述单刀单掷开关接地。
在一些实施例中,所述第一馈源配置为激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射部产生支持所述第一频段的第一谐振模式,所述第一谐振模式为倒F天线IFA天线模式,所述第一谐振模式的电流包括由所述第一馈电点流向所述第二自由端的电流。
在一些实施例中,所述第二馈源配置为激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射部产生支持所述第二频段的第二谐振模式,所述第二谐振模式为左手天线模式,所述第二谐振模式的电流包括由所述接地点流向所述第二自由端的电流。
在一些实施例中,所述第二切换电路配置为调节所述第二频段的频率。
在一些实施例中,所述第二切换电路包括:
切换开关,具有多个连接端、切换部及与所述第二馈电点电连接的公共端,所述切换部与所述公共端电连接,并配置为在控制信号的控制下电连接至所述多个连接端中的一个连接端;以及
至少一个选频支路,所述至少一个选频支路的一端均与所述多个连接端中的连接端一一对应电连接,且其中一个选频支路的另一端与所述第二馈源电连接,余下的选频支路的另一端均接地。
在一些实施例中,每一所述至少一个选频支路包括电容或电感。
在一些实施例中,所述辐射体具有位于所述第一自由端与所述第一馈电点之间的第三馈电点,所述天线组件还包括:
第三馈源,与所述第三馈电点电连接,用于激励所述辐射体,以支持第三频段。
在一些实施例中,所述第三频段包括第一子频段,所述第三馈源配置为激励所述辐射体上位于所述第一馈电点与所述第一自由端之间的辐射部产生支持所述第一子频段的第三谐振模式,所述第三谐振模式为左手天线模式,所述第三谐振模式的电流包括由所述第一馈电点流向所述第一自由端的电流。
在一些实施例中,所述第一子频段包括新空口N78频段。
在一些实施例中,所述第一馈源配置为激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射部产生支持所述第一频段的第一谐振模式,所述第一频段小于所述第一子频段。
在一些实施例中,所述第三频段包括第二子频段,所述第三馈源配置为激励所述辐射体上位于所述第三馈电点与所述第一自由端之间的辐射部产生支持所述第二子频段的第四谐振模式,所述第四谐振模式为IFA天线模式,所述第四谐振模式的电流包括由所述第三馈电点流向所述第一自由端的电流。
在一些实施例中,所述第二子频段包括无线保真WiFi5G频段。
在一些实施例中,将所述第一馈源电连接至所述第一馈电点的电路配置为在所述第三馈源激励所述辐射体时呈高阻抗状态,且在所述第一馈源激励所述辐射体时呈低阻抗状态,将所述第三馈源电连接至所述第三馈电点的电路配置为在所述第一馈源激励所述辐射体时呈高阻抗状态,且在所述第三馈源激励所述辐射体时低阻抗状态。
在一些实施例中,将所述第一馈源电连接至所述第一馈电点的电路配置为在所述第三馈源激励所述辐射体时断开,且在所述第一馈源激励所述辐射体时接通,将所述第三馈源电连接至所述第三馈电点的电路配置为在所述第一馈源激励所述辐射体时呈断开,且在所述第三馈源激励所述辐射体时接通。
在一些实施例中,所述天线组件还包括:
第一选频电路,电连接至所述第一馈源与所述第一馈电点之间,以使所述第一馈源通过所述第一选频电路与所述第一馈电点电连接,所述第一选频电路配置为在所述第三馈源激励所述辐射体时呈高阻抗状态,在所述第一馈源激励所述辐射体时呈低阻抗状态。
在一些实施例中,所述第一选频电路包括:
第一匹配电路;
第一滤波电路,一端与所述第一匹配电路的一端配合连接,以形成所述第一选频电路的与所述第一馈源连接的一端及与所述第一馈电点连接的另一端,所述第一匹配电路的另一端和所述第一滤波电路的另一端均接地,所述第一滤波电路配置为控制所述第一选频电路在所述第三馈源激励所述辐射体时呈开路状态,在所述第一馈源激励所述辐射体时呈短路状态。
在一些实施例中,所述第一匹配电路包括:
第一电感,电连接至所述第一馈电点与地之间,以使所述第一馈电点通过所述第一电感接地。
在一些实施例中,所述第一滤波电路包括:
第一电容,电连接至所述第一馈电点与地之间,以使所述第一馈电点通过所述第一电容接地。
在一些实施例中,所述天线组件还包括:
第一匹配电路,电连接至所述第一馈电点与地之间,以使所述第一馈电点通过所述第一匹配电路接地;以及
第一滤波电路,电连接至所述第一馈电点与地之间,以使所述第一馈电点通过所述第一滤波电路接地,所述第三馈源配置为激励所述辐射体上位于所述第一馈电点与所述第一自由端之间的辐射部产生第三谐振模式,所述第三谐振模式的电流包括由地流经所述第一滤波电路、所述第一馈电点并流向所述第一自由端的电流。
在一些实施例中,所述天线组件还包括:
第二选频电路,电连接至所述第三馈源与所述第三馈电点之间,以使所述第三馈源通过所述第二选频电路与所述第三馈电点电连接,所述第二选频电路配置为在所述第一馈源激励所述辐射体时呈高阻抗状态,在所述第三馈源激励所述辐射体时呈低阻抗状态。
在一些实施例中,所述第二选频电路包括:
第二匹配电路,一端与所述第三馈源连接;
第二滤波电路,一端与所述第二匹配电路的另一端电连接,另一端与所述第三馈电点电连接,所述第二滤波电路配置为在所述第一馈源激励所述辐射体时呈开路状态,在所述第三馈源激励所述辐射体时呈短路状态。
在一些实施例中,所述第二匹配电路包括:
第二电容,电连接至所述第三馈源与地之间,以使所述第三馈源通过所述第二电容接地;以及
第三电容,电连接至所述第三馈源与第二滤波电路之间,以使所述第三馈源通过所述第二电容与所述第二滤波电路电连接。
在一些实施例中,所述第二滤波电路包括:
第四电容,电连接至所述第二匹配电路与第三馈电点之间,以使所述第二匹配电路通过所述第四电容与第三馈电点电连接;以及
第二电感,电连接至所述第二匹配电路与第三馈电点之间,以使所述第二匹配电路通过所述第四电容与第二电感电连接。
本申请提供了一种天线组件,其中,包括:
辐射体,具有第一自由端及第二自由端,还具有位于所述第一自由端与所述第二自由端之间的第一馈电点、第二馈电点、第三馈电点及接地点,所述接地点位于所述第一馈电点与所述第二馈电点之间,且位于所述第二馈电点远离所述第二自由端的一侧,所述第三馈电点位于所述第一自由端与所述第一馈电点之间;
第一馈源,与所述第一馈电点电连接,用于激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射体,以支持低频频段;
第二馈源,用于激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射体以支持中高频频段;
第一切换电路,电连接至所述接地点与地之间,以使所述接地点通过所述第一切换电路接地,所述第一切换电路用于控制所述接地点与地接通,或控制所述接地点与地断开;
第二切换电路,电连接至所述第二馈电点与所述第二馈源之间,以使所述第二馈源通过所述第二切换电路与所述第二馈电点电连接,所述第二切换电路用于控制所述第二馈电点与所述第二馈源接通,或控制所述第二馈电点与所述第二馈源断开,在所述第一切换电路控制所述接地点与地接通时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源接通,以使所述第二馈源激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射体,在所述第一切换电路控制所述接地点与地断开时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源断开,以使所述第一馈源激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射体;以及
第三馈源,与所述第三馈电点电连接,用于激励所述辐射体,以支持WiFi频段或NR频段。
本申请提供了一种中框组件,其中,包括:
基板,设置有接地面;
边框,围设在所述基板的周围;以及
如上述所述的天线组件,所述辐射体设置在所述边框上,并与所述接地面之间设置缝隙。
本申请提供了一种电子设备,其中,包括:
中框组件,包括:
基板;
边框,与所述基板连接,包括依次首尾相连接且围设在所述基板的周围的第一边框、第二边框、第三边框及第四边框,所述第一边框与所述第三边框相对设置,所述第二边框与所述第四边框相对设置,所述第一边框与所述第三边框两者的长度均较所述第二边框的长度短,且较所述第四边框的长度短;
如上述所述的天线组件,所述辐射体设置在所述第一边框上;
电池盖,盖设在所述中框组件的一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置;以及
显示屏,设置在所述中框组件的另一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置。
本申请提供了一种天线组件。该天线组件可应用于电子设备中。该天线组件可支持WiFi频段、中高频频段、NR(新空口)频段或者低频频段中的至少一个。
作为在此使用的“电子设备”(也可被称为“终端”或“移动终端”或“电子装置”)包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其他电子装置。手机即为配置有蜂窝通信模块的电子设备。
天线组件可为柔性电路板(Flexible Printed Circuit,FPC)天线、激光直接成型(Laser Direct Structuring,LDS)天线、印刷直接成型(Print Direct Structuring,PDS)天线、金属边框天线(也可叫金属枝节天线)中的一种或多种的混合体。当然,天线组件也可以为其他类型的天线,不作赘述。
请参阅图1,图1为本申请一些实施例中天线组件的结构示意图。天线组件100可包括辐射体10、用于激励辐射体10的第一馈源20、用于激励辐射体10的第二馈源30、电连接至辐射体10与地之间的第一切换电路40以及电连接至辐射体10与第二馈源30之间第二切换电路50。天线组件100可通过第一馈源20和/或第二馈源30激励辐射体10,实现无线传输功能,减少辐射体10的个数,进一步可降低天线组件100对电子设备空间的占用。另外,天线组件100可通过第一切换电路40和/或第二切换电路50进行控制,降低第一馈源20、第二馈源30激励辐射体10时的相互干扰。
本申请中的术语“第一”“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”“第二”“第三”等的特征可以明示或者隐含地包括至少一个该特征。
辐射体10可以为但不仅限于为LDS辐射体,或者,FPC辐射体,或者PDS辐射体,或者为金属枝节辐射体。在一些实施例中,辐射体10可为利用电子设备自身嵌件金属设计的结构件天线(Mechanical Design Antenna,MDA)辐射体。
辐射体10的形状、构造及材质不做具体的限定,辐射体10的形状皆包括但不限于弯折状、条状、片状、杆状、涂层、薄膜等。当辐射体10呈条状时,可不对辐射体10的延伸轨迹做限定,故辐射体10皆可呈直线、曲线、多段弯折等轨迹延伸。辐射体10在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
在一些实施例中,辐射体10的总长度可为30-70mm。在一些实施例中,辐射体10的总长度可为50mm。可以理解地,辐射体10的总长度可根据需要进行调节。
辐射体10可具有第一自由端11、第二自由端12、第一馈电点13、接地点14及第二馈电点15。第一馈电点13、接地点14及第二馈电点15可位于第一自由端11与第二自由端12之间。接地点14可位于第一馈电点13与第二馈电点15之间,且位于第二馈电点15远离第二自由端12的一侧。即,第二馈电点15可位于第二自由端12与接地点14之间。
在一些实施方式中,辐射体10的两端例如第一自由端11、第二自由端12可与其他部件之间各具有缝隙。在一些场景中,当天线组件100应用于电子设备中时,辐射体10的第一自由端11、第二自由端12可分别与电子设备中的其他部件之间各具有的缝隙(即两个缝隙)不容易同时被握住或被遮挡。即便两个缝隙中的一者被遮挡时,辐射体10还是可以收发电磁波信号,因此,天线组件100应用于电子设备中时可具有较好的通信性能。
请参阅图1,辐射体10可呈直线条形。第一自由端11与第二自由端12可为辐射体10的相对两端。在其他实施方式中,辐射体10可呈弯折状。第一自由端11和第二自由端12可不沿直线方向相对。但第一自由端11和第二自由端12可为辐射体10的两个末端。在一些实施方式中,在辐射体10延伸轨迹上,第一自由端11与第二自由端12之间的距离可为辐射体10的总长度。
请参阅图1,第一馈源20可与第一馈电点13直接或间接连接。第一馈源20可激励辐射体10,以支持第一频段。在一些实施例中,第一频段可为中高频频段或低频频段。在一些实施例中,第一频段可为长期演进(Long Term Evolution,LTE)频段。在一些实施例中,第一频段可为LTE低频频段。在一些实施例中,第一频段可为LTE B20频段(791MHz-861MHz)。
在一些实施例中,第一馈源20可激励辐射体10上位于第二自由端12与第一馈电点13之间的辐射部产生支持第一频段的第一谐振模式。
在一些实施例中,第一谐振模式可为倒F天线(IFA,Inverted-F Antenna)天线模式。
在一些实施例中,第一谐振模式的电流可包括由第一馈电点13流向第二自由端12的电流I1。
请参阅图1,第二馈源30可通过第二切换电路50与第二馈电点15间接连接。第二馈源30可激励辐射体10,以支持第二频段。在一些实施例中,第二频段可为中高频频段或低频频段。在一些实施例中,第二频段可为LTE频段。在一些实施例中,第二频段可为LTE中高频频段。在一些实施例中,第四频段可为LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段或者LTE B41频段中的至少一个。
在一些实施例中,第二馈源30可激励辐射体10上位于第二自由端12与接地点14之间的辐射部产生支持第二频段的第二谐振模式。
请参阅图1,第一切换电路40与接地点14电连接,以使接地点14通过第一切换电路40接地。第一切换电路40可用于提升第一馈源20与第二馈源30之间的隔离度。
在一些实施例中,第一切换电路40可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。在一实施例中,开关控制电路可以是具有开关功能的开关芯片,也可以是单刀多掷开关或单刀单掷开关。
在一些实施例中,第一切换电路40可包括单刀单掷开关。单刀单掷开关电连接至接地点14与地之间,以使接地点14通过单刀单掷开关接地,进而实现接地点14与地接通或断开。
在一些实施例中,第一切换电路40可实现接地点14与地接通或断开。在一些实施例中,第一切换电路40可实现接地点14与地接通,进而使得第二馈源30可激励辐射体10以支持第二频段。在一些实施例中,第一切换电路40可实现接地点14与地断开,进而使得第一馈源20可激励辐射体10以支持第一频段。例如,接地点14与地断开,第一馈源20与第二馈源30也具有第一频段与第二频段不干扰的隔离度时,第一馈源20可激励辐射体10以支持第一频段。
请参阅图1,第二切换电路50可使得第二馈源30与第二馈电点15间接电连接。第二切换电路50可调节第二频段的频率。
第二切换电路50可用于提升第一馈源20与第二馈源30之间的隔离度。
在一些实施例中,第二切换电路50可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。在一实施例中,开关控制电路可以是具有开关功能的开关芯片,也可以是单刀多掷开关或单刀单掷开关。
在一些实施例中,第二切换电路50可实现第二馈源30与第二馈电点15接通或断开。在一些实施例中,第二切换电路50可实现第二馈源30与第二馈电点15接通,进而使得第二馈源30可激励辐射体10以支持第二频段。例如,在接地点14与地接通,第二馈源30与第二馈电点15接通,使得第一馈源20与第二馈源30也具有第一频段与第二频段不干扰的隔离度,第二馈源30可激励辐射体10以支持第二频段。在一些实施例中,第二切换电路50可实现第二馈源30与第二馈电点15断开,进而使得第一馈源20可激励辐射体10以支持第一频段。例如,接地点14与地断开,第二馈源30与第二馈电点15断开,使得第一馈源20与第二馈源30也具有第一频段与第二频段不干扰的隔离度,第一馈源20可激励辐射体10以支持第一频段。
请参阅图2,图2为图1所示第二馈源30和第二切换电路50在一些实施例中配合的结构示意图。第二切换电路50可包括切换开关51以及至少一个选频支路52。
切换开关51具有与第二馈电点15电连接的公共端511、多个连接端512以及切换部513。切换部513可与公共端511电连接。切换部513可在控制信号(可来自电子设备例如处理器,也可来自其他电子器件)的控制下电连接至一个连接端512。
每一个选频支路52的一端与一个连接端512一一对应电连接,其中一个选频支路52的另一端与第二馈源30电连接,余下的选频支路52的另一端均接地。
请参阅图2,切换部513可选择性地与不同的连接端512电连接,使得不同的选频支路52一端与第二馈电点15电连接,另一端接地,进而使得辐射体10上位于接地点14与第二自由端12之间的辐射部在不同状态下具有不同的有效电长度。
可以理解地,图示中选频支路52的图示数目不应当理解为对本申请实施方式提供的选频支路52数目的限定。
在一些实施例中,每一个选频支路52可包括电容,或电感,或电容和电感的组合。
在一实施方式中,当选频支路52为多个时,每个选频支路52可不同,以使得当不同选频支路52电连接至辐射体10时,对辐射体10的电长度的调节程度不同。进而,在第二频段中的多个子频段例如LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段、LTE B41频段等之间切换选频。
需要说明的是,这里所指的每个选频支路52不同,可以为每个选频支路52所包括的器件不同;或者, 所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,但是,器件的参数(如电容值,或电感量)不同。
另外,由于辐射体10所支持第二频段中的子频段较多,因此,为了实现对LB频段较好调节,选频支路52的数目通常大于或等于两个。
可以理解地,图2中的切换开关51也可以为多个,进而每个选频支路52与一个切换开关51一一对应电连接。请参阅图3,图3为图2所示实施例中第二切换电路50在天线组件100中另一实施例中的结构示意图。每个选频支路52与一个切换开关51一一对应电连接。
在一些实施例中,由于一个选频支路52与第二馈源30电连接,因此,与第二馈源30电连接的选频支路52可被称为匹配电路。
在一些实施例中,选频支路52可包括第一选频支路521、第二选频支路522、第三选频支路523以及第四选频支路524。其中,第一选频支路521、第二选频支路522和第三选频支路523均一端与一个连接端512电连接,均另一端接地。第四选频支路524电连接至一个连接端512与第二馈源30之间,使得第二馈源30通过第四选频支路524与一个连接端512电连接。
在一些实施例中,第一选频支路521、第二选频支路522、第三选频支路523可均为电感。
在一些实施例中,第四选频支路524可为电容,以实现辐射体10在第二馈源30下的电容耦合馈电。
在一些实施例中,切换开关51全部断开,使得第二馈源30与第二馈电点15断开,进而使得第一馈源20可激励辐射体10以支持第一频段。
在一实施例中,请参阅图2和图3,以第二频段下的多个子频段分别为LTE B3频段、LTE B1频段、LTE B39频段、LTE B40频段、LTE B41频段为例,利用第一选频支路521、第二选频支路522、第三选频支路523以及第四选频支路524进行选频时,如下表所示:
请参阅图4,图4为图1所示天线组件100在另一实施例中的结构示意图。辐射体10上还可具有位于第一自由端11与第一馈电点13之间的第三馈电点16。相应地,天线组件100还可包括第三馈源60。第三馈源60可与第三馈电点16间接连接。第三馈源60可激励辐射体10,以支持第三频段。
在一些实施例中,第三频段可为中高频频段或低频频段。
在一些实施例中,第三频段可为WiFi频段、NR频段。
在一些实施例中,第三频段可包括第一子频段。
在一些实施例中,第一子频段大于第一频段。
在一些实施例中,第一子频段可为NR频段。在一些实施例中,第一子频段可为NR高频频段。在一些实施例中,第一子频段可为N78频段(3.4GHz-3.6GHz)。
在一些实施例中,第三馈源60可激励第一馈电点13与第一自由端11之间的辐射部产生支持第一子频段的第三谐振模式。
在一些实施例中,第三谐振模式可为左手天线模式(复合左手传输线结构的模式)。在一些实施例中,第三谐振模式可为1/4波长的左手天线模式。
在一些实施例中,第三谐振模式的电流包括由第一馈电点13流向第一自由端11的电流I3。
在一些实施例中,第三频段可包括第二子频段。
在一些实施例中,第二子频段可为WiFi频段。在一些实施例中,第二子频段可为WiFi5G频段。
在一些实施例中,第三馈源60可激励第三馈电点16与第一自由端11之间的辐射部产生支持第二子频段的第四谐振模式。
在一些实施例中,第四谐振模式为IFA天线模式。在一些实施例中,第四谐振模式为1/4波长的IFA天线模式。
在一些实施例中,第四谐振模式的电流包括由第三馈电点16流向第一自由端11的电流I4。
请参阅图4,在天线组件100中,可将第一馈源20电连接至第一馈电点13的电路设置为在第三馈源60激励辐射体10时呈高阻抗状态,且在第一馈源20激励辐射体10时呈低阻抗状态。进而,天线组件100可在第一馈源20激励辐射体10时,提升第一馈源20与第三馈源60的隔离度。
在一些实施例中,在天线组件100中,可将第一馈源20电连接至第一馈电点13的电路设置为在第三馈源60激励辐射体10时断开,且在第一馈源20激励辐射体10时接通。
请参阅图4,天线组件100还可包括电连接至第一馈源20与第一馈电点13之间的第一选频电路70。第一馈源20可通过第一选频电路70与第一馈电点13电连接。即,第一选频电路70可作为将第一馈源20电连接至第一馈电点13的电路。进而,第一选频电路70可在第三馈源60激励辐射体10时呈高阻抗状态,在第一馈源20激励辐射体10时呈低阻抗状态。在一些实施例中,在天线组件100中,第一选频电路70在第三馈源60激励辐射体10时断开,且在第一馈源20激励辐射体10时接通。
在一些实施例中,第一选频电路70可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。在一实施例中,开关控制电路可以是具有开关功能的开关芯片,也可以是单刀多掷开关或单刀单掷开关。
请参阅图5,图5为图4所示实施例中第一馈源20与第一选频电路70在另一些实施例中配合的结构示意图。第一选频电路70可具有第一端71以及第二端72。第一端71可与第一馈源20电连接,第二端72可与第一馈电点13电连接。
第一选频电路70可包括第一匹配电路73以及第一滤波电路74。第一匹配电路73的一端与第一滤波电路74一端电连接,以形成第一端71及第二端72。即,第一匹配电路73及第一滤波电路74可均电连接至第一馈电点13与地之间,且第一馈源20可与第一馈电点13直接电连接,使得第一馈电点13可分别通过第一匹配电路73、第一滤波电路74接地。
在一些实施例中,第一滤波电路74可控制第一选频电路70在第三馈源60激励辐射体10时呈高阻抗状态,在第一馈源20激励辐射体10时呈低阻抗状态。在一些实施例中,第一滤波电路74可控制第一选频电路70在第三馈源60激励辐射体10时呈开路状态,在第一馈源20激励辐射体10时呈短路状态。在一些实施例中,第一滤波电路74可控制第一选频电路70在第三馈源60激励辐射体10时断开,在第一馈源20激励辐射体10接通。
在一些实施例中,第一匹配电路73可包括电连接至第二端72与地之间的第一电感L1。第二端72通过第一电感L1接地。
在一些实施例中,第一滤波电路74可包括电连接至第二端72与地之间的第一电容C1。第二端72通过第一电容C1接地。第一电容C1可组成低通高阻滤波电路。即,第一滤波电路74可为低通高阻滤波电路,提高第一馈源20和第三馈源60之间的隔离度。
在一些实施例中,第一电容C1可在辐射体10支持第三频段例如第一子频段时,流通电流I3。具体的,电流I3可由地流经第一电容C1并流至第一馈电点13。故第一电容C1可为虚拟回地点。
在一些实施例中,第一电容C1的电容量为2.7pF。
请参阅图4,在天线组件100中,可将第三馈源60电连接至第三馈电点16的电路设置为在第三馈源60激励辐射体10时呈低阻抗状态,且在第一馈源20激励辐射体10时呈高阻抗状态。进而,天线组件100可在第三馈源60激励辐射体10时,提升第三馈源60与第一馈源20的隔离度。
在一些实施例中,在天线组件100中,可将第三馈源60电连接至第三馈电点16的电路设置为在第三馈源60激励辐射体10时接通,且在第一馈源20激励辐射体10断开。
请参阅图4,天线组件100还可包括电连接至第三馈源60与第三馈电点16之间的第二选频电路80。第三馈源60可通过第二选频电路80与第三馈电点16电连接。即,第二选频电路80可作为将第三馈源60电连接至第三馈电点16的电路。进而,第二选频电路80可在第三馈源60激励辐射体10时呈低阻抗状态,在第一馈源20激励辐射体10时呈高阻抗状态。在一些实施例中,在天线组件100中,第二选频电路80可在第三馈源60激励辐射体10时接通,且可在第一馈源20激励辐射体10时断开。
在一些实施例中,第二选频电路80可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器组成。在一实施例中,开关控制电路可以是具有开关功能的开关芯片,也可以是单刀多掷开关或单刀单掷开关。
请参阅图6,图6为图4所示实施例中第三馈源60与第二选频电路80在另一些实施例中配合的结构示意图。第二选频电路80可包括第二匹配电路81及第二滤波电路82。第二匹配电路81一端与第三馈源60连接,另一端与第二滤波电路82连接。第二滤波电路82一端与第二匹配电路81的另一端连接,另一端与第三馈电点16连接,以实现第三馈源60、第二匹配电路81及第二滤波电路82的串联连接。
在一些实施例中,第二匹配电路81包括一端接地的第二电容C2以及一端与第二电容C2的另一端电连接的第三电容C3。第三电容C3的另一端与第二滤波电路82电连接。
在一些实施例中,第二电容C2及第三电容C3可在辐射体10支持第三频段例如第二子频段时,流通电流I4。具体的,电流I4可由地流经第二电容C2、第三电容C3、第二滤波电路82并流至第三馈电点16。故第二电容C2可为虚拟回地点。
在一些实施例中,第二电容C2的电容量可为1pF。
在一些实施例中,第二滤波电路82可控制第二选频电路80在第三馈源60激励辐射体10时呈低阻抗状态,在第一馈源20激励辐射体10时呈高阻抗状态。在一些实施例中,第二滤波电路82可控制第二选 频电路80在第三馈源60激励辐射体10时呈短路状态,在第一馈源20激励辐射体10时呈开路状态。在一些实施例中,第二滤波电路82可控制第二选频电路80在第三馈源60激励辐射体10时接通,在第一馈源20激励辐射体10时断开。
请参阅图6,第二滤波电路82可包括电连接至第三馈电点16与第二匹配电路81之间的第四电容C4以及电连接至第三馈电点16与第二匹配电路81之间的第二电感L2。即第三馈电点16可分别通过第四电容C4、第二电感L2与第二匹配电路81电连接。
在一些实施例中,第四电容C4、第二电感L2分别与第二匹配电路81电连接的一端与第三电容C3的一端电连接。第四电容C4、第二电感L2并联谐振组成低阻高通滤波电路。即第二滤波电路82可为低阻高通滤波电路,提高第一馈源20和第三馈源60之间的隔离度。
在一些实施例中,第四电容C4可在辐射体10支持第三频段例如第二子频段时,流通电流I4。具体的,电流I4可由地流经第二电容C2、第三电容C3、第四电容C4并流至第三馈电点16。
请参阅图7,图7为图4所示天线组件100在另一些实施例中的结构示意图。在天线组件100中,对应于电流I1的第一谐振模式可支持第一频段例如LTE B20频段(791MHz-861MHz)。对应于电流I2的第二谐振模式可支持第二频段例如LTE B1频段、LTE B3频段、LTE B39频段、LTE B40频段、LTE B41频段。对应于电流I3的第三谐振模式可支持第三频段例如第一子频段(比如N78频段(3.4GHz-3.6GHz))。对应于电流I4的第四谐振模式可支持第三频段例如第二子频段(比如WiFi5G频段)。
进而,天线组件100可实现N78频段与WiFi5G频段的ENDC(4G无线接入网与5G-NR的双连接(E-UTRAN New Radio-Dual Connectivity,简称ENDC)组合),也可实现LTE B20频段与N78频段或WiFi5G频段的ENDC。
当第一馈源20激励辐射体10上位于第二自由端12与第一馈电点13的辐射部时,第二切换电路50相对于第一馈源20断开,使得第二馈源30不激励辐射体10,第二切换电路50相对于第一馈源20断开,进而,使得第一馈源20与第二馈源30隔离度较好。
当第二馈源30激励辐射体10上位于第二自由端12与接地点14的辐射部时,第一切换电路40相对于第二馈源30接通,使得第二馈源30可激励辐射体10,使得第一馈源20不能激励辐射体10上位于第二自由端12与接地点14的辐射部,进而,使得第一馈源20与第二馈源30隔离度较好。
第三馈源60可激励辐射体10产生第三谐振模式和第四谐振模式。在第一选频电路70和第二选频电路80的设置,而使得第一馈源20与第三馈源60的隔离度较好。
第三馈源60可激励辐射体10产生第三谐振模式和第四谐振模式。在第二选频电路80的设置下,使得第三馈电点16与第一自由端11之间的辐射部和接地点14与第二自由端12之间的辐射部的距离较远,且中间部位接地点14接地,而使得第三馈源60与第二馈源30的隔离度较好。
由于第一馈源20、第二馈源30及第三馈源60具有良好的隔离度性能。并且,在中高频段与N78频段存在良好的隔离度性能,中高频段与WiFi5G频段存在良好的隔离度性能。在LTE B20频段与N78频段存在良好的隔离度性能,LTE B20频段与WiFi5G频段存在良好的隔离度性能。
本申请采用共用辐射体10的方案,使得辐射体10支持N78频段+WiFi5G频段、LTE B20频段、MHB频段等,并解决了隔离度/共存问题。由于共用辐射体10,进而减小了天线组件对设计空间的需求。
在一些实施例中,请参阅图8,图8为图7所示天线组件100在另一实施例中受第二馈源30和第三馈源60激励的回波损耗曲线图,横轴为频率(GHz),纵轴为回波损耗(dB)。曲线C1为天线组件100在第三馈源60激励下的回波损耗曲线。曲线C2为天线组件100在第二馈源30激励下对应LTE B3频段的回波损耗曲线。曲线C3为天线组件100在第二馈源30激励下对应LTE B1频段的回波损耗曲线。曲线C4为天线组件100在第二馈源30激励下对应LTE B40频段的回波损耗曲线。曲线C5为天线组件100在第二馈源30激励下对应LTE B41频段的回波损耗曲线。其中,曲线C1上具有第一标识点(3.6528,-14.003)和第二标识点(3.5079,-4.2272),曲线C2上具有第三标识点(1.7891,-12.97),曲线C3上具有第四标识点(2.022,-14.853),曲线C4上具有第五标识点(2.3557,-25.508),曲线C5上具有第六标识点(2.5757,-20.723)。可见,天线组件100中第二馈源30和第三馈源60下的隔离度良好,并在第二频段(例如LTE B3频段、LTE B1频段、LTE B40频段、LTE B41频段)上的天线性能良好,进而工作状态良好,可满足工程需求。
在一些实施例中,请参阅图9,图9为图7所示天线组件100在另一实施例中受第二馈源30和第三馈源60激励的系统总效率曲线图,横轴为频率(GHz),纵轴为系统总效率(dB)。曲线D1为天线组件100在第三馈源60激励下的系统总效率曲线。曲线D2为天线组件100在第二馈源30激励下对应LTE B3频段的系统总效率曲线。曲线D3为天线组件100在第二馈源30激励下对应LTE B1频段的系统总效率曲线。曲线D4为天线组件100在第二馈源30激励下对应LTE B40频段的系统总效率曲线。曲线D5为天线组件100在第二馈源30激励下对应LTE B41频段的系统总效率曲线。其中曲线D1上具有第一标识点(3.5394,-4.8538),曲线D2上具有第二标识点(1.8,-4.2537),曲线D3上具有第三标识点(2.0431, -4.6083),曲线D4上具有第四标识点(2.3794,-4.3104),曲线D5上具有第五标识点(2.5982,-401249)。可见,天线组件100中第二馈源30和第三馈源60下的隔离度良好,并在第二频段(例如LTE B3频段、LTE B1频段、LTE B40频段、LTE B41频段)上的天线性能良好,进而工作状态良好,可满足工程需求。
在一些实施例中,请参阅图10,图10为图7所示天线组件100在另一实施例中受第一馈源20和第三馈源60激励的回波损耗曲线图。横轴为频率(GHz),纵轴为回波损耗(dB)。曲线A1为天线组件100在第三馈源60激励下的回波损耗曲线。曲线A2为天线组件100在第一馈源20激励下的回波损耗曲线。曲线A3为天线组件100在第一馈源20和第三馈源60激励下的隔离度曲线。其中在曲线A2上具有第一标识点(0.8223,-12.718)、第二标识点(0.8557,-3.1137)、第三标识点(0.79122,-3.7022)。在曲线A1上具有第四标识点(3.4959,-6.8451)、第五标识点(5.4985,-12.045)、第六标识点(5.2707,-4.5778)。可见,天线组件100在第一标识点附近的第一频段上的天线性能良好,具体可在第二标识点与第三标识点之间的第一频段的天线性能良好。并且,曲线A3与第二标识点与第三标识点之间的第一频段相对应的隔离度较好。天线组件100第五标识点、第六标识点附近的第一子频段第二子频段上的天线性能良好,并且,曲线A3与第四标识点与第五标识之间的隔离度较好,进而天线组件100的工作状态良好,可满足工程需求。
在一些实施例中,请参阅图11,图11为图7所示天线组件100在另一实施例中受第一馈源20和第三馈源60激励的系统总效率曲线图。横轴为频率(GHz),纵轴为系统总效率(dB)。曲线B1为天线组件100在第三馈源60激励下的系统总效率曲线。曲线B2为天线组件100在第一馈源20激励下的系统总效率曲线。其中在曲线B2上具有第一标识点(0.82073,-6.5118)、第二标识点(0.85608,-9.4712)、第三标识点(0.78743,-9.4249)。曲线B1上具有第四标识点(3.4714,-3.5651)、第五标识点(5.2342,-5.0804)、第六标识点(5.8686,-5.0916)。可见,天线组件100在曲线B1上,对应第一子频段、第二子频段处的系统总效率较好,天线组件100在曲线B2上,对应第一频段处的系统总效率较好。可见。在第一频段、第三频段上的天线性能良好,进而工作状态良好,可满足工程需求。
接下来阐述一种电子设备,该电子设备可安装上述实施例中的天线组件100。该电子设备可以是多个电子设备中的任何一个,多个电子设备包括但不限于蜂窝电话、智能电话、其他无线通信设备、个人数字助理、音频播放器、其他媒体播放器、音乐记录器、录像机、照相机、其他媒体记录器、收音机、医疗设备、计算器、可编程遥控器、寻呼机、上网本电脑、个人数字助理(PDA)、便携式多媒体播放器(PMP)、运动图像专家组(MPEG-1或MPEG-2)、音频层3(MP3)播放器,便携式医疗设备以及数码相机及其组合等设备。
在一些实施例,电子设备可包括但不仅限于为手机、互联网设备(mobile internet device,MID)、电子书、便携式播放站(Play Station Portable,PSP)或个人数字助理(Personal Digital Assistant,PDA)等具有通信功能的电子设备。
请参阅图12,图12为本申请一实施例中电子设备的爆炸图,电子设备200可包括设置有天线组件100的中框组件90、设置在中框组件90一侧且用于显示信息的显示屏201、连接在中框组件90另一侧的电池盖202、安装在中框组件90上且用于控制显示屏201及天线组件100的电路主板203以及安装在中框组件90上且用于为电子设备200正常工作供电的电池204。
其中,显示屏201可为液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(Organic Light-Emitting Diode,OLED)等类型的显示屏,以用于显示信息、画面。
中框组件90的材料可以为镁合金、铝合金、不锈钢等金属,当然材料并不限于此,还可以为其他例如绝缘材料,例如硬性材料。中框组件90可置于显示屏201和电池盖202之间。中框组件90可用于承载显示屏201。中框组件90与电池盖202扣合连接形成电子设备200的主壳体205,且在主壳体205内部形成容纳腔。容纳腔可用于容纳电子设备200中的摄像头、电路主板203、电池204、处理器(设置在电路主板203上,所以在一些实施例中可为电路主板203的一部分)、天线组件100以及各种类型的传感器等电子元件。
电路主板203安装在容纳腔内,可安装在容纳腔内的任意位置。电路主板203可以为电子设备200的主板。电子设备200的处理器可以设置在电路主板203上。电路主板203上还可以集成有马达、麦克风、扬声器、受话器、耳机接口、通用串行总线接口(USB接口)、摄像头、距离传感器、环境光传感器、陀螺仪等功能组件中的一个、两个或多个。同时,显示屏201可以电连接至电路主板203。
电池204安装在容纳腔内,可安装在容纳腔内的任意位置。电池204可以电连接至电路主板203,以实现电池204为电子设备200供电。电路主板203上可以设置有电源管理电路。电源管理电路用于将电池204提供的电压分配到电子设备200中的各个电子元件例如显示屏201。
电池盖202可采用与中框组件90一样的材料,当然还可以采用其他材料。电池盖202可与中框组件90一体成型。在一些实施例中,电池盖202可包裹中框组件90,可承载显示屏201。电池盖202上可形成后置摄像头孔、指纹识别模组安装孔等结构。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
请参阅图12和图13,图13为图12所示实施例中框组件90的结构示意图。中框组件90可包括用于承载显示屏201的基板91以及围设在基板91周围的边框92。其中,基板91与电池盖202相对设置。边框92可用于与电池盖202扣合连接。即,基板91、边框92及电池盖202围设形成容纳腔。
基板91可为可导电的金属,当然也可以为其他材料。基板91上可设置接地面及馈源。接地面作为地。在一些实施例中,接地面与馈源可不设置在基板91上,而直接设置在电路主板203。在一些实施例中,基板91可以省略。
边框92可为可导电的金属,所以边框92也可被称为“金属边框”。当然边框92也可以为其他材料,例如绝缘材料。边框92也可以采用与基板91一样的材料。边框92可包括依次首尾连接的第一边框921、第二边框922、第三边框923及第四边框924。第一边框921、第二边框922、第三边框923及第四边框924围设在基板91周围并可与基板91连接固定。在一些实施例中,边框92可与电池盖202为一体结构。例如边框92自电池盖202的边缘向显示屏201一侧延伸设置,以与显示屏201扣合连接。
在一些实施例中,第一边框921、第二边框922、第三边框923及第四边框924围设形成圆角矩形。当然,还可以是其他形状例如圆形、三角形等。在一些实施例中,第一边框921与第三边框923相对设置,第二边框922与第四边框924相对设置。
在一些实施例中,第一边框921与第三边框923两者的长度均较第二边框922的长度短,且较第四边框92的长度短。
可以理解地,中框组件90与电池盖202可组成主壳体205。在某些实施例中,主壳体可不仅限于中框组件90与电池盖202,还可以包括其他,不作赘述。
请参阅图13。天线组件100可安装在中框组件90上。在一些实施例中,天线组件100可作为中框组件90的一部分。当然,在某些实施例中,天线组件100也可安装在主壳体205的其他位置例如电池盖202上。在一些实施例中,天线组件100可由主壳体205加工而成。例如天线组件100作为缝隙天线出现。在一些实施例中,天线组件100可直接固定在主壳体205上。
辐射体10设置在边框92例如第一边框921。可以理解地,天线组件100中还可包括第二辐射体101及第三辐射体102。
在一些实施例中,第二辐射体101及第三辐射体102位于辐射体10两侧,并可与辐射体10间隔设置。
在一些实施例中,第二辐射体101设置在第一边框921与第四边框924上。
在一些实施例中,第三辐射体102设置在第一边框921与第二边框922上。
在一实施例中,第一馈源20、第二馈源30、第三馈源60可为基板91或电路主板203上的馈源。具体可通过天线弹片实现辐射体10与馈源的连接。
在一实施例中,地可为基板91或电路主板203上的接地面。具体可通过天线弹片实现辐射体10与地的连接。
第一边框921与基板91之间设置缝隙901。缝隙901可在第一边框921的延伸方向上向第二边框922、第四边框924一侧延伸设置,以形成在第一边框921与基板91例如接地面之间,进而第一边框921的部分或全部作为辐射体10。
在一些实施例中,缝隙901可在第一边框921的延伸方向上向第二边框922延伸设置,以形成第二边框922与基板91例如接地面之间,进而第一边框921的部分及第二边框922的部分作为第三辐射体102。
在一些实施例中,缝隙901可在第一边框921的延伸方向上向第四边框924一侧延伸设置,以形成第四边框924与基板91例如接地面之间,进而第一边框921的部分及第四边框924的部分作为第二辐射体101。
本申请中辐射体10利用了第一边框921,可以有效改善人手对天线组件100的性能损耗。
可以理解地,为了稳固基板91与边框92例如第一边框921、辐射体10之间的连接强度。可在缝隙901之间填充绝缘材料例如树脂,以实现天线组件100中辐射体10为边框92例如第一边框921的一部分,更是提升了电子设备200的外观表现力。
本申请采用共用辐射体的方案,解决了隔离度/共存问题,使得天线组件100的系统总效率良好,减小了天线组件100对电子设备200的设计空间的需求,具有重要的工程应用效益。
接下来阐述一种电子设备,请参阅图14,图14为本申请一实施例中电子设备300的结构组成示意图。该电子设备300可以为手机、平板电脑、笔记本电脑以及可穿戴设备等。本实施例图示以手机为例。该电子设备300的结构可以包括RF电路310(如上述实施例中的天线组件100)、存储器320、输入单元330、显示单元340(如上述实施例中的显示屏201)、传感器350、音频电路360、WiFi模块370、处理器380以及电源390(如上述实施例中的电池204)等。其中,RF电路310、存储器320、输入单元330、显示单 元340、传感器350、音频电路360以及WiFi模块370分别与处理器380连接。电源390用于为整个电子设备300提供电能。
具体而言,RF电路310用于接发信号。存储器320用于存储数据指令信息。输入单元330用于输入信息,具体可以包括触控面板3301以及操作按键等其他输入设备3302。显示单元340则可以包括显示面板3401等。传感器350包括红外传感器、激光传感器、位置传感器等,用于检测用户接近信号、距离信号等。扬声器3601以及传声器(或者麦克风,或者受话器组件)3602通过音频电路360与处理器380连接,用于接发声音信号。WiFi模块370则用于接收和发射WiFi信号。处理器380用于处理电子装置的数据信息。
在本申请所提供的几个实施方式中,应该理解到,所揭露的设备,可以通过其他的方式实现。例如,以上所描述的设备实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所做的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (29)

  1. 一种天线组件,其中,包括:
    辐射体,具有第一自由端及第二自由端,还具有位于所述第一自由端与所述第二自由端之间的第一馈电点、第二馈电点及接地点,所述接地点位于所述第一馈电点与所述第二馈电点之间,且位于所述第二馈电点远离所述第二自由端的一侧;
    第一馈源,与所述第一馈电点电连接,用于激励所述辐射体以支持第一频段;
    第二馈源,用于激励所述辐射体以支持第二频段;
    第一切换电路,电连接至所述接地点与地之间,以使所述接地点通过所述第一切换电路接地,所述第一切换电路用于控制所述接地点与地接通,或控制所述接地点与地断开;以及
    第二切换电路,电连接至所述第二馈电点与所述第二馈源之间,以使所述第二馈源通过所述第二切换电路与所述第二馈电点电连接,所述第二切换电路用于控制所述第二馈电点与所述第二馈源接通,或控制所述第二馈电点与所述第二馈源断开,在所述第一切换电路控制所述接地点与地接通时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源接通,以使所述第二馈源激励所述辐射体以支持所述第二频段,在所述第一切换电路控制所述接地点与地断开时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源断开,以使所述第一馈源激励所述辐射体以支持所述第一频段。
  2. 根据权利要求1所述的天线组件,其中,在所述第一切换电路控制所述接地点与地断开,且所述第二切换电路控制所述第二馈电点与所述第二馈源断开时,所述第一馈源配置为激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射部,以支持所述第一频段。
  3. 根据权利要求1所述的天线组件,其中,在所述第一切换电路控制所述接地点与地接通,且所述第二切换电路控制所述第二馈电点与所述第二馈源接通时,所述第二馈源配置为激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射部,以支持所述第二频段。
  4. 根据权利要求1-3任一项所述的天线组件,其中,所述第一切换电路包括:
    单刀单掷开关,电连接至所述接地点与地之间,以使所述接地点通过所述单刀单掷开关接地。
  5. 根据权利要求1-3任一项所述的天线组件,其中,所述第一馈源配置为激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射部产生支持所述第一频段的第一谐振模式,所述第一谐振模式为倒F天线IFA天线模式,所述第一谐振模式的电流包括由所述第一馈电点流向所述第二自由端的电流。
  6. 根据权利要求1-3任一项所述的天线组件,其中,所述第二馈源配置为激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射部产生支持所述第二频段的第二谐振模式,所述第二谐振模式为左手天线模式,所述第二谐振模式的电流包括由所述接地点流向所述第二自由端的电流。
  7. 根据权利要求1-3任一项所述的天线组件,其中,所述第二切换电路配置为调节所述第二频段的频率。
  8. 根据权利要求7所述的天线组件,其中,所述第二切换电路包括:
    切换开关,具有多个连接端、切换部及与所述第二馈电点电连接的公共端,所述切换部与所述公共端电连接,并配置为在控制信号的控制下电连接至所述多个连接端中的一个连接端;以及
    至少一个选频支路,所述至少一个选频支路的一端均与所述多个连接端中的连接端一一对应电连接,且其中一个选频支路的另一端与所述第二馈源电连接,余下的选频支路的另一端均接地。
  9. 根据权利要求8所述的天线组件,其中,每一所述至少一个选频支路包括电容或电感。
  10. 根据权利要求1所述的天线组件,其中,所述辐射体具有位于所述第一自由端与所述第一馈电点之间的第三馈电点,所述天线组件还包括:
    第三馈源,与所述第三馈电点电连接,用于激励所述辐射体,以支持第三频段。
  11. 根据权利要求10所述的天线组件,其中,所述第三频段包括第一子频段,所述第三馈源配置为激励所述辐射体上位于所述第一馈电点与所述第一自由端之间的辐射部产生支持所述第一子频段的第三谐振模式,所述第三谐振模式为左手天线模式,所述第三谐振模式的电流包括由所述第一馈电点流向所述第一自由端的电流。
  12. 根据权利要求11所述的天线组件,其中,所述第一子频段包括新空口N78频段。
  13. 根据权利要求11所述的天线组件,其中,所述第一馈源配置为激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射部产生支持所述第一频段的第一谐振模式,所述第一频段小于所述第一子频段。
  14. 根据权利要求10所述的天线组件,其中,所述第三频段包括第二子频段,所述第三馈源配置为激励所述辐射体上位于所述第三馈电点与所述第一自由端之间的辐射部产生支持所述第二子频段的第四谐振模式,所述第四谐振模式为IFA天线模式,所述第四谐振模式的电流包括由所述第三馈电点流向所述第一自由端的电流。
  15. 根据权利要求14所述的天线组件,其中,所述第二子频段包括无线保真WiFi5G频段。
  16. 根据权利要求10-15任一项所述的天线组件,其中,将所述第一馈源电连接至所述第一馈电点的电路配置为在所述第三馈源激励所述辐射体时呈高阻抗状态,且在所述第一馈源激励所述辐射体时呈低阻抗状态,将所述第三馈源电连接至所述第三馈电点的电路配置为在所述第一馈源激励所述辐射体时呈高阻抗状态,且在所述第三馈源激励所述辐射体时低阻抗状态。
  17. 根据权利要求16所述的天线组件,其中,将所述第一馈源电连接至所述第一馈电点的电路配置为在所述第三馈源激励所述辐射体时断开,且在所述第一馈源激励所述辐射体时接通,将所述第三馈源电连接至所述第三馈电点的电路配置为在所述第一馈源激励所述辐射体时呈断开,且在所述第三馈源激励所述辐射体时接通。
  18. 根据权利要求16所述的天线组件,其中,所述天线组件还包括:
    第一选频电路,电连接至所述第一馈源与所述第一馈电点之间,以使所述第一馈源通过所述第一选频电路与所述第一馈电点电连接,所述第一选频电路配置为在所述第三馈源激励所述辐射体时呈高阻抗状态,在所述第一馈源激励所述辐射体时呈低阻抗状态。
  19. 根据权利要求18所述的天线组件,其中,所述第一选频电路包括:
    第一匹配电路;
    第一滤波电路,一端与所述第一匹配电路的一端配合连接,以形成所述第一选频电路的与所述第一馈源连接的一端及与所述第一馈电点连接的另一端,所述第一匹配电路的另一端和所述第一滤波电路的另一端均接地,所述第一滤波电路配置为控制所述第一选频电路在所述第三馈源激励所述辐射体时呈开路状态,在所述第一馈源激励所述辐射体时呈短路状态。
  20. 根据权利要求19所述的天线组件,其中,所述第一匹配电路包括:
    第一电感,电连接至所述第一馈电点与地之间,以使所述第一馈电点通过所述第一电感接地。
  21. 根据权利要求19所述的天线组件,其中,所述第一滤波电路包括:
    第一电容,电连接至所述第一馈电点与地之间,以使所述第一馈电点通过所述第一电容接地。
  22. 根据权利要求16所述的天线组件,其中,所述天线组件还包括:
    第一匹配电路,电连接至所述第一馈电点与地之间,以使所述第一馈电点通过所述第一匹配电路接地;以及
    第一滤波电路,电连接至所述第一馈电点与地之间,以使所述第一馈电点通过所述第一滤波电路接地,所述第三馈源配置为激励所述辐射体上位于所述第一馈电点与所述第一自由端之间的辐射部产生第三谐振模式,所述第三谐振模式的电流包括由地流经所述第一滤波电路、所述第一馈电点并流向所述第一自由端的电流。
  23. 根据权利要求16所述的天线组件,其中,所述天线组件还包括:
    第二选频电路,电连接至所述第三馈源与所述第三馈电点之间,以使所述第三馈源通过所述第二选频电路与所述第三馈电点电连接,所述第二选频电路配置为在所述第一馈源激励所述辐射体时呈高阻抗状态,在所述第三馈源激励所述辐射体时呈低阻抗状态。
  24. 根据权利要求23所述的天线组件,其中,所述第二选频电路包括:
    第二匹配电路,一端与所述第三馈源连接;
    第二滤波电路,一端与所述第二匹配电路的另一端电连接,另一端与所述第三馈电点电连接,所述第二滤波电路配置为在所述第一馈源激励所述辐射体时呈开路状态,在所述第三馈源激励所述辐射体时呈短路状态。
  25. 根据权利要求24所述的天线组件,其中,所述第二匹配电路包括:
    第二电容,电连接至所述第三馈源与地之间,以使所述第三馈源通过所述第二电容接地;以及
    第三电容,电连接至所述第三馈源与第二滤波电路之间,以使所述第三馈源通过所述第二电容与所述第二滤波电路电连接。
  26. 根据权利要求24所述的天线组件,其中,所述第二滤波电路包括:
    第四电容,电连接至所述第二匹配电路与第三馈电点之间,以使所述第二匹配电路通过所述第四电容与第三馈电点电连接;以及
    第二电感,电连接至所述第二匹配电路与第三馈电点之间,以使所述第二匹配电路通过所述第四电容与第二电感电连接。
  27. 一种天线组件,其中,包括:
    辐射体,具有第一自由端及第二自由端,还具有位于所述第一自由端与所述第二自由端之间的第一馈电点、第二馈电点、第三馈电点及接地点,所述接地点位于所述第一馈电点与所述第二馈电点之间,且位于所述第二馈电点远离所述第二自由端的一侧,所述第三馈电点位于所述第一自由端与所述第一馈电点之间;
    第一馈源,与所述第一馈电点电连接,用于激励所述辐射体上位于所述第一馈电点与所述第二自由端 之间的辐射体,以支持低频频段;
    第二馈源,用于激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射体以支持中高频频段;
    第一切换电路,电连接至所述接地点与地之间,以使所述接地点通过所述第一切换电路接地,所述第一切换电路用于控制所述接地点与地接通,或控制所述接地点与地断开;
    第二切换电路,电连接至所述第二馈电点与所述第二馈源之间,以使所述第二馈源通过所述第二切换电路与所述第二馈电点电连接,所述第二切换电路用于控制所述第二馈电点与所述第二馈源接通,或控制所述第二馈电点与所述第二馈源断开,在所述第一切换电路控制所述接地点与地接通时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源接通,以使所述第二馈源激励所述辐射体上位于所述接地点与所述第二自由端之间的辐射体,在所述第一切换电路控制所述接地点与地断开时,所述第二切换电路配置为控制所述第二馈电点与所述第二馈源断开,以使所述第一馈源激励所述辐射体上位于所述第一馈电点与所述第二自由端之间的辐射体;以及
    第三馈源,与所述第三馈电点电连接,用于激励所述辐射体,以支持WiFi频段或NR频段。
  28. 一种中框组件,其中,包括:
    基板,设置有接地面;
    边框,围设在所述基板的周围;以及
    如权利要求1-27任一项所述的天线组件,所述辐射体设置在所述边框上,并与所述接地面之间设置缝隙。
  29. 一种电子设备,其中,包括:
    中框组件,包括:
    基板;
    边框,与所述基板连接,包括依次首尾相连接且围设在所述基板的周围的第一边框、第二边框、第三边框及第四边框,所述第一边框与所述第三边框相对设置,所述第二边框与所述第四边框相对设置,所述第一边框与所述第三边框两者的长度均较所述第二边框的长度短,且较所述第四边框的长度短;
    如权利要求1-27任一项所述的天线组件,所述辐射体设置在所述第一边框上;
    电池盖,盖设在所述中框组件的一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置;以及
    显示屏,设置在所述中框组件的另一侧,并分别与所述第一边框、所述第二边框、所述第三边框及所述第四边框连接,且与所述基板相对设置。
PCT/CN2023/115559 2022-10-10 2023-08-29 天线组件、中框组件以及电子设备 WO2024078166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211236196.5A CN117913507A (zh) 2022-10-10 2022-10-10 天线组件、中框组件以及电子设备
CN202211236196.5 2022-10-10

Publications (1)

Publication Number Publication Date
WO2024078166A1 true WO2024078166A1 (zh) 2024-04-18

Family

ID=90668704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115559 WO2024078166A1 (zh) 2022-10-10 2023-08-29 天线组件、中框组件以及电子设备

Country Status (2)

Country Link
CN (1) CN117913507A (zh)
WO (1) WO2024078166A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149134A (zh) * 2018-08-20 2019-01-04 深圳市万普拉斯科技有限公司 移动终端的天线系统、移动终端及天线系统的切换方法
US20190181554A1 (en) * 2017-12-12 2019-06-13 Chiun Mai Communication Systems, Inc. Antenna structure
CN112821040A (zh) * 2020-12-29 2021-05-18 Oppo广东移动通信有限公司 共体天线及电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备
CN114944548A (zh) * 2022-05-27 2022-08-26 Oppo广东移动通信有限公司 一种天线组件及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190181554A1 (en) * 2017-12-12 2019-06-13 Chiun Mai Communication Systems, Inc. Antenna structure
CN109149134A (zh) * 2018-08-20 2019-01-04 深圳市万普拉斯科技有限公司 移动终端的天线系统、移动终端及天线系统的切换方法
CN112821040A (zh) * 2020-12-29 2021-05-18 Oppo广东移动通信有限公司 共体天线及电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备
CN114944548A (zh) * 2022-05-27 2022-08-26 Oppo广东移动通信有限公司 一种天线组件及电子设备

Also Published As

Publication number Publication date
CN117913507A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
US9627743B2 (en) Antenna device and mobile terminal having the same
JP6113913B2 (ja) 同調可能な高帯域寄生素子を有するアンテナ
US9431693B2 (en) Mobile terminal
US9564679B2 (en) Antenna device and mobile terminal having same
US10014582B2 (en) Antenna module and mobile terminal including same
US8816913B2 (en) Mobile terminal
CN104064865A (zh) 具有基于隙缝的寄生部件的可调谐天线
CN206388851U (zh) 一种电子设备
CN112928456A (zh) 天线组件及电子设备
US9196963B2 (en) Mobile terminal
JP2002151928A (ja) アンテナ、及びアンテナを内蔵する電子機器
WO2024001069A1 (zh) 天线组件、中框组件以及电子设备
CN113991288A (zh) 天线组件、中框组件以及电子装置
CN108879112B (zh) 天线阵列及终端
US20170187111A1 (en) Resonant frequency tunable antenna
WO2023160131A1 (zh) 天线组件和电子设备
WO2024078166A1 (zh) 天线组件、中框组件以及电子设备
WO2024078168A1 (zh) 天线组件、中框组件以及电子设备
WO2024078167A1 (zh) 天线组件、中框组件以及电子设备
KR20120003532A (ko) 이동통신 단말기
TWI586031B (zh) 寬頻單極型天線、電子裝置、以及天線模組
CN117977204A (zh) 天线组件及电子设备
CN115528420A (zh) 一种电子设备
CN118263664A (zh) 电子设备
CN117937097A (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876371

Country of ref document: EP

Kind code of ref document: A1