WO2022121776A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2022121776A1
WO2022121776A1 PCT/CN2021/135167 CN2021135167W WO2022121776A1 WO 2022121776 A1 WO2022121776 A1 WO 2022121776A1 CN 2021135167 W CN2021135167 W CN 2021135167W WO 2022121776 A1 WO2022121776 A1 WO 2022121776A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
coupling
frame
antenna
antenna device
Prior art date
Application number
PCT/CN2021/135167
Other languages
English (en)
French (fr)
Inventor
吴鹏飞
储嘉慧
王汉阳
侯猛
李建铭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21902483.3A priority Critical patent/EP4243203A4/en
Priority to US18/256,238 priority patent/US20240021982A1/en
Publication of WO2022121776A1 publication Critical patent/WO2022121776A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of terminal technologies, and in particular, to an antenna device and an electronic device.
  • MIMO Multiple-Input Multiple-Output
  • MIMO antenna such as MIMO wireless (also called LB MIMO antenna) in the low frequency (Low Band, LB) frequency band
  • LB MIMO antenna Low Band
  • Multi-segment low-frequency antennas are designed on the frame, and considering that the frequency band of the MIMO antenna is often the same as that of the original communication antenna, the isolation of the antenna system is likely to deteriorate. This achieves better isolation.
  • the low-frequency antenna occupies an excessively large design area on the metal frame of the electronic device, which is not conducive to the layout of other antennas.
  • Embodiments of the present application provide an antenna device and an electronic device, which can reduce the layout area on the metal frame and reduce the impact on other antennas.
  • a first aspect of the embodiments of the present application provides an antenna device, which is applied to an electronic device.
  • the electronic device includes a middle frame, a battery cover, and a battery located between the middle frame and the battery cover.
  • the antenna The device includes: at least one group of coupling feeding units and at least one group of radiation units; each group of the radiation units includes: a first radiator and a second radiator, the first radiator and the second radiator are arranged on the The inner surface of the battery cover; the first radiator and the second radiator are respectively located on both sides of the coupling and feeding unit, and the coupling and feeding unit is respectively connected to the first radiator and the second radiator Body coupled feed.
  • the antenna device includes at least one set of coupling feeding units and at least one set of radiating units.
  • the first radiator and the second radiator are respectively located on both sides of the coupling feeding unit, and the coupling feeding unit is coupled and feeding with the first radiating body and the second radiating body respectively, so that the coupling feeding unit and the radiating body can be realized.
  • Distributed feeding connection between units which can excite double resonance to achieve wide-band coverage
  • the feeding network can be mostly realized by radiators arranged on the inner surface of the battery cover, thereby reducing the size of the antenna on the metal frame
  • the layout area is small, and the influence on other antennas is reduced, and the antenna device can be realized in a limited design space, which effectively saves the antenna design space inside the electronic device to a certain extent.
  • At least one of the first radiator and the second radiator is located between one of the side frames of the middle frame and the orthographic projection of the battery toward the battery cover .
  • At least one of the first radiator and the second radiator is located between the side frame (left side frame or right side frame) and the outer edge of the battery (the outer edge of the side of the battery close to the side frame), so that , at least one of the first radiator and the second radiator is not located in the orthographic projection area of the battery toward the battery cover, then the battery will not block the first radiator or the second radiator, thereby preventing the first radiator influence or interference of the radiation properties of the body or the second radiator.
  • the first radiator is located between one of the side frames of the middle frame and the orthographic projection of the battery toward the battery cover
  • the second radiator is located in the middle frame Between the other opposite side border of the frame and the orthographic projection of the battery towards the battery cover.
  • both the first radiator and the second radiator are located between the side frame (left frame or right frame) and the outer edge of the battery (the outer edge of the battery close to the side frame), that is, the first radiator and the None of the second radiators are located in the orthographic projection area of the battery facing the battery cover, and the battery will not block the first and second radiators, thereby avoiding the impact on the radiation performance of the first and second radiators. influence or interfere.
  • the method further includes: at least two metal frame antennas, and two of the at least two metal frame antennas are low-frequency antennas.
  • part of the metal frame of the electronic device as a radiator in the antenna device, it is beneficial to further improve the radiation performance of the antenna device.
  • one end of the first radiator extends toward the top frame of the middle frame, and one end of the second radiator extends towards the bottom frame of the middle frame; one of the low-frequency The orthographic projection of the antenna facing the battery cover is opposite to the first radiator, and the orthographic projection of the one of the low-frequency antennas facing the battery cover and the first radiator are respectively located on the battery facing the The two sides of the orthographic projection of the battery cover; the orthographic projection of the other low-frequency antenna toward the battery cover is opposite to the second radiator, and the orthographic projection of the other low-frequency antenna toward the battery cover is the same as the second radiator.
  • the second radiators are respectively located on two sides of the orthographic projection of the battery toward the battery cover.
  • the first radiator and the second radiator are arranged diagonally opposite to each other, and the first radiator and one of the low-frequency antennas are arranged opposite to the central axis of the length direction of the frame, and the second radiator and the other low-frequency antenna are arranged along the frame.
  • the central axis in the length direction of the antenna is opposite to each other, and one of the low-frequency antennas is diagonally opposite to the other low-frequency antenna, so that the radiator (the first radiator or the second radiator) and the metal frame antenna (two low-frequency antennas) are both Separately arranged, so that the radiator (the first radiator or the second radiator) and the metal frame antenna are relatively far apart in space, which can increase the distance between the first radiator and the metal frame antenna and the second radiator and the metal frame antenna. Therefore, the isolation effect between the antenna modules in the antenna device can be effectively improved, thereby ensuring that the first radiator and the second radiator do not interfere with the metal frame antenna (two low-frequency antennas).
  • one end of the first radiator extends toward the bottom frame of the middle frame, and one end of the second radiator extends toward the bottom frame of the middle frame; or, the first radiator extends toward the bottom frame of the middle frame.
  • One end of a radiator extends towards the top frame of the middle frame, and one end of the second radiator extends towards the top frame of the middle frame; or, one end of the first radiator faces towards the bottom of the middle frame
  • the frame extends, and one end of the second radiator extends toward the side frame of the middle frame.
  • the electrical length of the first radiator and the second radiator is 1/4 ⁇ -1/2 ⁇ , where ⁇ is the first radiator and the second radiator The wavelength corresponding to the resonant frequency of the body.
  • each group of the coupling feeding units includes: a first coupling feeding unit and a second coupling feeding unit, the first coupling feeding unit is electrically connected to the feeding source, and the The first coupling feeding unit is respectively coupled to the other end of the first radiator and one end of the second coupling feeding unit for feeding; the other end of the second coupling feeding unit is coupled to the second radiator The other end of the coupling feed.
  • the external feed source feeds the first coupling feed unit
  • the first coupling feed unit feeds the first radiator and the second coupling feed unit respectively
  • the second coupling feed unit feeds the second radiator
  • the body-coupled feeding is used to realize the feeding process of the first radiator and the second radiator through the feed source.
  • the first coupling and feeding unit includes: a support and a feeding branch provided on the support, the feeding branch is electrically connected to the feeding source; the support is fixed on the on the inner surface of the battery cover.
  • the first coupling and feeding unit By fixing the bracket on the inner surface of the battery cover, the first coupling and feeding unit can be fixed.
  • the coupling feeding unit couples and feeds the first radiator and the second coupling feeding unit respectively, and then the second coupling feeding unit couples and feeds the second radiator, so as to realize the feeding of the first radiator and the second radiator through the feed source. Feeding process of two radiators.
  • the second coupling and feeding unit, the first radiator, and the second radiator are suspended metal, a graphene layer, or a transparent conductive layer.
  • the working frequency band of the first radiator and the second radiator is 700-900 MHz.
  • the method further includes: at least one group of coupling grounding units, each group of the coupling grounding units includes at least two coupling grounding layers, wherein one of the coupling grounding layers is close to one end of the first radiator is arranged and coupled to the first radiator and grounded; the other coupling ground layer is arranged close to one end of the second radiator and is coupled to the ground with the second radiator.
  • the coupling grounding between the first radiator and the middle frame can be realized through the coupling ground layer close to the first radiator, and the coupling between the second radiator and the middle frame can be realized through the coupling ground layer close to the second radiator ground.
  • a second aspect of the embodiments of the present application provides an electronic device, including at least a display screen, a middle frame, a battery cover, and a battery located between the middle frame and the battery cover, and further comprising: any one of the above-mentioned antennas device; the first radiator, the second radiator and the coupling feed unit in the antenna device are all arranged on the inner surface of the battery cover.
  • the antenna device can reduce the layout area of the antenna on the metal frame and reduce the influence on other antennas, and the antenna device can be used in a limited number of It can be realized in the design space, which can effectively save the antenna design space inside the electronic equipment to a certain extent, and the antenna device is arranged in the electronic equipment, so that the occupied size of the antenna device in the electronic equipment can be reduced while the function of the electronic equipment is enhanced. It can provide effective space for the installation of other components in the electronic device and optimize the experience effect of the electronic device. At the same time, the stability of signal transmission in the electronic device is also ensured, and the normal operation of the electronic device is ensured.
  • the middle frame is a metal middle frame
  • the metal middle frame includes at least a metal frame
  • the metal frame forms at least two metal frame antennas in the antenna device.
  • the metal frame of the electronic device By forming part of the metal frame of the electronic device to form at least two metal frame antennas in the antenna device as radiators, it is beneficial to further improve the radiation performance of the antenna device in the electronic device.
  • a third aspect of the embodiments of the present application further provides an electronic device, the electronic device includes at least a metal middle frame, a battery cover, and a battery located between the metal middle frame and the battery cover, and further includes: an antenna device, the The antenna device includes: a coupling and radiating unit, a feeding unit, and at least three low-frequency antennas formed by a metal frame of a metal middle frame; the coupling and radiating unit is arranged close to one of the low-frequency antennas, and one end of the feeding unit is A feed is coupled with the coupling and radiation unit, and the other end of the feed unit feeds the one of the low-frequency antennas.
  • At least three low-frequency antennas are formed by forming the metal frame of the metal middle frame, the coupling radiation unit in the antenna device is arranged close to one of the low-frequency antennas, and one end of the feeding unit in the antenna device is connected to the coupling radiation unit.
  • the unit is coupled for feeding, and the other end of the feeding unit feeds power to one of the at least three low-frequency antennas, so that the coupling and radiating element can be connected with the metal frame antenna feed to realize distributed feeding, so that the antenna can be improved.
  • the radiation performance of the device can be reduced, and the design difficulty of the entire antenna device can be reduced to a certain extent.
  • the coupling and radiating unit includes: at least one coupling radiator, the coupling radiator is disposed on the inner surface of the battery cover; the feeding unit is located between the coupling radiator and the Between the low-frequency antennas, one end of the feeding unit is coupled to the coupling radiator for feeding, and the other end of the feeding unit feeds the low-frequency antenna.
  • At least part of the coupling radiator is located between one of the side frames of the middle frame and the orthographic projection of the battery toward the battery cover.
  • part or all of the structure of the coupling radiator is located between the side frame (left frame or right frame) and the outer edge of the battery (the outer edge of the battery close to the side frame), so that the coupling radiator Part or all of the structure will not be located in the orthographic projection area of the battery toward the battery cover, then the battery will not block the coupling radiator or only cover part of the structure of the coupling radiator, thereby avoiding the radiation that blocks the coupling radiator. performance effects or interference.
  • the feeding unit is electrically connected to the feeding source, one end of the feeding unit is coupled to the coupling radiator for feeding, and the other end of the feeding unit is connected to the low frequency through the feeding line.
  • the antenna is electrically connected, so that the feeding unit feeds the low-frequency antenna.
  • the external feed source feeds the feed unit, the feed unit couples the feed to the coupled radiator, and the feed unit feeds the low-frequency antenna through the feed line, so as to realize the connection between the coupled radiator and the low-frequency antenna through the feed source. feeding process.
  • the power feeding unit includes: a support and a feeding branch provided on the support, the feeding branch is electrically connected to the feed source; the support is fixed on the battery on the inner surface of the cover.
  • the feeding unit By fixing the bracket on the inner surface of the battery cover, the feeding unit can be fixed, and the feeding branch is electrically connected to the feeding source, so that the feeding unit can be fed by the external feeding source, and the feeding unit can be coupled to the radiator.
  • the feeding is coupled, and the feeding unit feeds the low-frequency antenna through the feeding line, so as to realize the feeding process of the coupled radiator and the low-frequency antenna through the feeding source.
  • the coupling radiation unit or the feeding unit is a suspended metal, a graphene layer or a transparent conductive layer.
  • the method further includes: at least one ground layer, the ground layer is disposed close to one end of the coupling radiator and is coupled to the coupling radiator to be grounded; the ground layer is also connected to the The low-frequency antenna is grounded.
  • the coupling grounding between the first radiator and the middle frame can be achieved through the coupling grounding layer close to the first radiator
  • the coupling grounding between the coupling radiator and the middle frame can be achieved through the grounding layer close to the coupling radiator
  • Ground between low frequency antenna and midframe
  • FIG. 1 is a schematic diagram of the overall structure of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a split structure of an electronic device provided by an embodiment of the present application.
  • 3A is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 3B is a simulation model diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 3C is a simulation model diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • FIG. 6 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the present application.
  • 8A is a diagram of an actual application scenario of an antenna device in an electronic device provided by an embodiment of the present application when the left hand is used to hold the antenna device close to the left ear;
  • 8B is a schematic diagram of an actual application scenario of an antenna device in an electronic device provided by an embodiment of the present application when the antenna device is held close to the right ear with the right hand;
  • FIG. 9 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the present application.
  • FIG. 10 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 11A is a current distribution diagram of an antenna device in an electronic device according to an embodiment of the present application at 0.88 GHz;
  • 11B is an electric field distribution diagram of an antenna device in an electronic device provided in an embodiment of the present application at 0.88 GHz;
  • 11C is a radiation pattern at 0.88 GHz of an antenna device in an electronic device according to an embodiment of the present application.
  • 12A is a current distribution diagram of an antenna device in an electronic device according to an embodiment of the present application at 0.92 GHz;
  • 12B is an electric field distribution diagram of an antenna device in an electronic device provided by an embodiment of the present application at 0.92 GHz;
  • 12C is a radiation pattern of an antenna device in an electronic device provided in an embodiment of the present application at 0.92 GHz;
  • FIG. 13 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 15 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 16 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 17 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 18A is a diagram of a practical application scenario of an antenna device in an electronic device provided by an embodiment of the application when the left hand is used to hold the antenna device close to the left ear;
  • 18B is a schematic diagram of an actual application scenario of an antenna device in an electronic device provided by an embodiment of the application when the antenna device is held close to the right ear with the right hand;
  • 19 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 20 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 21A is a diagram of an actual application scenario of an antenna device in an electronic device provided by an embodiment of the application when the antenna device is held with the left hand;
  • 21B is a diagram of an actual application scenario of an antenna device in an electronic device provided by an embodiment of the application when the antenna device is held with the right hand;
  • 22 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • FIG. 23 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 24A is a current distribution diagram of an antenna device in an electronic device according to an embodiment of the present application at 0.89 GHz;
  • 24B is an electric field distribution diagram of an antenna device in an electronic device according to an embodiment of the present application at 0.89 GHz;
  • 25A is a current distribution diagram of an antenna device in an electronic device according to an embodiment of the present application at 0.95 GHz;
  • 25B is an electric field distribution diagram of an antenna device in an electronic device according to an embodiment of the present application at 0.95 GHz;
  • 26 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 27 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 29A is a radiation pattern at 0.89 GHz of a first low-frequency antenna of an antenna device in an electronic device according to an embodiment of the application;
  • 29B is a radiation pattern at 0.89 GHz of a second low-frequency antenna of an antenna device in an electronic device according to an embodiment of the present application;
  • 29C is a radiation pattern at 0.89 GHz of a third low-frequency antenna of an antenna device in an electronic device according to an embodiment of the present application.
  • 30A is a radiation pattern at 0.95 GHz of a first low-frequency antenna of an antenna device in an electronic device according to an embodiment of the present application;
  • 30B is a radiation pattern at 0.95 GHz of a second low-frequency antenna of an antenna device in an electronic device according to an embodiment of the present application;
  • 30C is a radiation pattern at 0.95 GHz of a third low-frequency antenna of an antenna device in an electronic device according to an embodiment of the present application;
  • 31A is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 31B is a simulation model diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 32 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • FIG. 33 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 34 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 35 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 36 is a performance comparison diagram of an antenna device in an electronic device provided by an embodiment of the application.
  • 38A is a current distribution diagram of an antenna device in an electronic device according to an embodiment of the application at 1.3 GHz;
  • 38B is an electric field distribution diagram of an antenna device in an electronic device according to an embodiment of the present application at 1.3 GHz;
  • 38C is a radiation pattern of an antenna device in an electronic device provided by an embodiment of the application at 1.3 GHz;
  • 39A is a current distribution diagram of an antenna device in an electronic device provided by an embodiment of the application at 1.9 GHz;
  • 39B is an electric field distribution diagram of an antenna device in an electronic device provided by an embodiment of the application at 1.9 GHz;
  • 39C is a radiation pattern of an antenna device at 1.9 GHz in an electronic device provided by an embodiment of the application.
  • 40A is a current distribution diagram of an antenna device in an electronic device according to an embodiment of the present application at 2.01 GHz;
  • 40B is an electric field distribution diagram of an antenna device in an electronic device provided by an embodiment of the present application at 2.01 GHz;
  • 40C is a radiation pattern of an antenna device in an electronic device provided by an embodiment of the present application at 2.01 GHz;
  • 41 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 43 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the application.
  • 44 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 45 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the application.
  • 46 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 47 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the application.
  • FIG. 48 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the application.
  • 49 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the application.
  • FIG. 50 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
  • 100-antenna device 10-coupling feeding unit; 101-first coupling feeding unit; 102-second coupling feeding unit; 20-radiating element; 201-first radiator; 202-second radiator; 30 - metal frame antenna; 40- coupling ground unit; 401 - coupling ground layer; 50 - coupling radiation unit; 60 - feeding unit; 70 - printed circuit board; 200 - mobile phone; 21 - display screen; 211 - opening; 22-middle frame; 221-metal middle plate; 222-frame; 2221-top frame; 2222-bottom frame; 2223-left frame; 2224-right frame; 23-circuit board; 24-battery; 25-battery cover ; 26a-front camera module; 26b-rear camera module.
  • the embodiments of the present application provide an electronic device, which may include, but is not limited to, a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a handheld computer, a walkie-talkie, a netbook, a point of sale (Point of Sale) sales, POS) machines, personal digital assistants (personal digital assistants, PDAs), wearable devices, virtual reality devices, wireless U disks, bluetooth audio/headphones, or in-vehicle front-mounted, driving recorders, security equipment and other mobile devices with antennas or fixed terminal.
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistants
  • wearable devices virtual reality devices
  • wireless U disks wireless U disks
  • bluetooth audio/headphones or in-vehicle front-mounted, driving recorders, security equipment and other mobile devices with antennas or fixed terminal.
  • the mobile phone 200 is used as an example for the above-mentioned electronic device for illustration.
  • the mobile phone 200 provided in the embodiments of the present application may be a curved screen mobile phone or a flat screen mobile phone.
  • the flat screen mobile phone is used as example to illustrate. 1 and 2 respectively show the overall structure and the split structure of the mobile phone 200.
  • the display screen 21 of the mobile phone 200 provided by the embodiment of the present application may be a water drop screen, a notch screen, a full screen or a hole-digging screen (see FIG. 1 ). shown), the following description takes a hole-digging screen as an example to illustrate.
  • the mobile phone 200 may include: a display screen 21, a middle frame 22, a battery cover 25, and a battery 24 located between the middle frame 22 and the battery cover 25, wherein the battery 24 may be disposed on the middle frame 22 toward the battery cover 25 (as shown in Figure 2), or the battery 24 can be arranged on the side of the middle frame 22 facing the display screen 21, for example, the side of the middle frame 22 facing the battery cover 25 can have a battery compartment (not shown in the figure) , the battery 24 is installed in the battery compartment.
  • the mobile phone 200 may further include a circuit board 23, wherein the circuit board 23 may be disposed on the middle frame 22, for example, the circuit board 23 may be disposed on the side of the middle frame 22 facing the battery cover 25 (as shown in FIG. 2), or the circuit board 23 can be disposed on the side of the middle frame 22 facing the display screen 21, and the display screen 21 and the battery cover 25 are located on both sides of the middle frame 22, respectively.
  • the battery 24 can be connected to the charging management module and the circuit board 23 through the power management module, the power management module receives the input of the battery 24 and/or the charging management module, and provides the processor, internal memory, external memory, display screen 21, camera modules and communication modules.
  • the power management module can also be used to monitor parameters such as the capacity of the battery 24, the number of cycles of the battery 24, the state of health of the battery 24 (leakage, impedance).
  • the power management module may also be provided in the processor of the circuit board 23 .
  • the power management module and the charging management module may also be provided in the same device.
  • the display screen 21 can be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen, or can be a liquid crystal display (Liquid Crystal Display, LCD), when the mobile phone 200 is a curved screen mobile phone , the display screen 21 may be an OLED display screen.
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • the middle frame 22 may include a metal middle plate 221 and a frame 222 , and the frame 222 is arranged around the outer circumference of the metal middle plate 221 for a circle.
  • the frame 222 may include a top frame 2221, a bottom frame 2222, a left frame 2223 and a right frame 2224.
  • the top frame 2221, the bottom frame 2222, the left frame 2223 and the right frame 2224 form a frame 222 with a square ring structure.
  • the material of the metal middle plate 221 includes, but is not limited to, aluminum plate, aluminum alloy, stainless steel, steel-aluminum composite die-casting plate, titanium alloy or magnesium alloy, and the like.
  • the frame 222 may be a metal frame, a ceramic frame, or a glass frame.
  • the material of the metal frame includes, but is not limited to, aluminum alloy, stainless steel, steel-aluminum composite die-casting plate, or titanium alloy.
  • the metal middle plate 221 and the frame 222 may be clamped, welded, bonded or integrally formed, or the metal middle plate 221 and the frame 222 may be fixedly connected by injection molding.
  • the top frame 2221 and the bottom frame 2222 are oppositely arranged, the left frame 2223 and the right frame 2224 are oppositely arranged, and the top frame 2221 is connected with one end of the left frame 2223 and one end of the right frame 2224 in a rounded corner.
  • the bottom frame 2222 is connected with the other end of the left frame 2223 and the other end of the right frame 2224 respectively with rounded corners, thereby forming a rounded rectangular area together.
  • the ground plane of the rear case is disposed in the rounded rectangular area, and is respectively connected with the top frame 2221 , the bottom frame 2222 , the left frame 2223 and the right frame 2224 . It can be understood that the ground plane of the rear case may be the battery cover 25 of the mobile phone 200 .
  • the battery cover 25 may be a metal battery cover, a glass battery cover, a plastic battery cover, or a ceramic battery cover.
  • the material of the battery cover 25 is not limited, and the Not limited to the above examples.
  • the battery cover 25 of the mobile phone 200 may be connected with the frame 222 to form a unibody battery cover.
  • the mobile phone 200 may include: a display screen 21 , a metal middle plate 221 and a battery cover.
  • the frame 222 and the battery cover 25 can be formed as a single body, so that the circuit board 23 and the battery 24 are located in the space enclosed by the metal middle plate 221 and the battery cover.
  • the mobile phone 200 may further include: a camera module.
  • the camera module may include a front camera module 26a and a rear camera module 26b.
  • the rear camera module 26b can be disposed on the side of the metal middle plate 221 facing the battery cover 25, the display screen 21 is provided with an opening 211, and the lens of the rear camera module 26b corresponds to the opening 211.
  • the battery cover 25 may be provided with a mounting hole (not shown in the figure) for installing a part of the rear camera module 26b.
  • the rear camera module 26b can also be installed on the battery cover 25 facing the metal middle plate 221. on one side.
  • the front camera module 26a can be arranged on the side of the metal middle plate 221 facing the display screen 21, or the front camera module 26a can be arranged on the side of the metal middle plate 221 facing the battery cover 25, or the front camera module 26a can also be disposed on the side of the battery cover 25 facing the display screen 21, and the metal middle plate 221 has an opening for exposing the lens end of the front camera module 26a.
  • the arrangement positions of the front camera module 26a and the rear camera module 26b include but are not limited to the above descriptions.
  • the number of the front camera module 26a and the rear camera module 26b set in the mobile phone 200 may be 1 or N, where N is a positive integer greater than 1.
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the mobile phone 200 .
  • the mobile phone 200 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • an antenna may be provided on the mobile phone 200 .
  • most electronic devices use the ID design of metal frame and glass back cover. Due to the limited size of the metal frame and the tight antenna environment, the antennas of certain frequency bands can only stimulate a single mode of the metal frame to minimize the size. Therefore, this design adopts a metal frame.
  • the antenna is specially designed for low frequency band, its bandwidth is narrow, and the performance is greatly affected by the hand grip.
  • the specifications of low-frequency three-antenna and four-antenna are gradually put on the agenda, and the added MIMO antenna continues to adopt the frame antenna design, which occupies a large layout area on the metal frame of the mobile phone, which will inevitably compress the space of other antennas, and it is difficult for other antennas (such as medium and high frequency). antenna) has a great impact. Therefore, it is imperative to find a new MIMO antenna scheme that has less impact on other antennas.
  • an embodiment of the present application provides an antenna device, which can be applied to the above-mentioned electronic equipment (such as the mobile phone 200 ), wherein the first radiator, the second radiator and the coupling feeding unit in the antenna device are all It is arranged on the inner surface of the battery cover.
  • the antenna device includes at least one group of coupling feeding units and at least one group of radiating elements.
  • the first radiator and the second radiator are respectively located on both sides of the coupling feeding unit, and the coupling feeding unit is coupled and feeding with the first radiating body and the second radiating body respectively, so that the coupling feeding unit can be realized
  • the distributed feeding connection between the radiating element and the radiating element can excite the double resonance to achieve wide-band coverage.
  • the layout area on the frame reduces the impact on other antennas, and the antenna device can be implemented in a limited design space, effectively saving the antenna design space inside the electronic device to a certain extent.
  • the antenna device provided in the present application is suitable for electronic equipment using one or more of the following MIMO communication technologies: for example, long term evolution (long term evolution, LTE) communication technology, Wi-Fi communication technology, 5G communication technology , SUB-6G communication technology and other MIMO communication technologies in the future.
  • MIMO communication technologies for example, long term evolution (long term evolution, LTE) communication technology, Wi-Fi communication technology, 5G communication technology , SUB-6G communication technology and other MIMO communication technologies in the future.
  • An embodiment of the present application provides an antenna device 100 , and the antenna device 100 is applied to an electronic device, wherein the electronic device (eg, a mobile phone 200 ) may at least include a middle frame 22 , a battery cover 25 , and a space between the middle frame 22 and the battery cover 25 .
  • the battery 24 (see FIG. 2 ), wherein, as shown in FIG.
  • the antenna device 100 may include: at least one group of coupling feeding units 10 and at least one group of radiating elements 20 , specifically, in the embodiment of the present application , each group of radiation units 20 may include: a first radiator 201 and a second radiator 202, the first radiator 201 and the second radiator 202 may be arranged on the inner surface of the battery cover 25, the first radiator 201 and the second radiator 202 The two radiators 202 may be located on two sides of the coupling feed unit 10 respectively, and the coupling feed unit 10 is coupled to the first radiator 201 and the second radiator 202 for feeding respectively.
  • the antenna device 100 can be implemented in a limited design space, effectively saving the antenna design space inside the electronic device. Moreover, the antenna device 100 does not need additional slots on the metal frame of the middle frame 22 , which does not affect the industrial design appearance of the electronic device, and at the same time, can effectively reduce the impact of hand-holding.
  • the first radiator 201 and the second radiator 202 may be printed or pasted on the inner surface of the battery cover 25, or the first radiator 201 and the second radiator 202 may also be embedded in the inner surface of the battery cover 25,
  • the embodiments of the present application do not limit the specific arrangement of the first radiator 201 and the second radiator 202 on the inner surface of the battery cover 25, nor are they limited to the above examples.
  • the first radiator 201 and the second radiator 202 may also be disposed on the outer surface of the battery cover 25 , which is not limited in this embodiment of the present application.
  • the antenna device 100 provided by the embodiments of the present application may include multiple groups of radiating elements 20 to add more radiators, and by increasing the number of radiators, the antenna device 100 can achieve more Multimodal coverage.
  • At least one of the first radiator 201 and the second radiator 202 may be located between one of the side frames of the middle frame 22 and the orthographic projection of the battery 24 toward the battery cover 25 . That is, at least one of the first radiator 201 and the second radiator 202 may be located on the side frame (the left side frame 2223 or the right side frame 2224) and the outer edge of the battery 24 (the side of the battery 24 close to the side frame) 3A, the first radiator 201 is located between the left side frame 2223 and the outer edge of the battery 24 near the left side frame 2223.
  • the battery 24 will not block the first radiator 201 or the second radiator 202, Further, influence or interference on the radiation performance of the first radiator 201 or the second radiator 202 can be avoided.
  • the first radiator 201 may be located between one side frame of the middle frame 22 and the orthographic projection of the battery 24 toward the battery cover 25
  • the second radiator 202 may be located on the other side of the middle frame 22 Between the opposite side frame and the orthographic projection of the battery 24 towards the battery cover 25 . That is to say, the first radiator 201 may be located between one of the side frames of the middle frame 22 and the outer edge of the battery 24 (the outer edge of the side of the battery 24 close to the side frame), and the second radiator 202 may be located at the middle frame Between the other side frame of 22 opposite to the side frame and the other opposite outer edge of the battery 24 (the other outer edge of the battery 24 on the side close to the other side frame), for example, as shown in FIG.
  • the first radiator 201 is located between the left side frame 2223 and the outer edge of the battery 24 on the side close to the left side frame 2223, and the second radiator 202 is located between the right side frame 2224 and the battery 24 on the side close to the right side frame 2224. between the edges.
  • the first radiator 201 and the second radiator 202 are both located between the side frame (the left frame 2223 or the right frame 2224) and the outer edge of the battery 24 (the outer edge of the battery 24 close to the side frame), That is, neither the first radiator 201 nor the second radiator 202 is located within the orthographic projection area of the battery 24 facing the battery cover 25, and the battery 24 will not block the first radiator 201 and the second radiator 202, thereby avoiding Influence or interference of the radiation properties of the first radiator 201 and the second radiator 202 .
  • the first radiator 201 or the second radiator 202 may not be completely located at the side frame (the left frame 2223 or the right frame 2224 ) and the outer edge of the battery 24 (the battery 24 is close to the side frame 2223 or the right frame 2224 ) between the outer edge of the side frame), that is, the part of the first radiator 201 or the second radiator 202 can also be located within the orthographic projection area of the battery 24 toward the battery cover 25, as long as the first radiator 201 or the second radiator 202 is guaranteed. Not all of the two radiators 202 are located within the orthographic projection area of the battery 24 facing the battery cover 25 .
  • partial areas of the first radiator 201 and the second radiator 202 may be located within the orthographic projection area of the battery 24 toward the battery cover 25 , but the larger areas of the first radiator 201 and the second radiator 202 may be located. Part of the area is outside the orthographic projection area of the battery 24 toward the battery cover 25 .
  • the antenna device 100 may further include: at least two metal frame antennas 30 , and two of the at least two metal frame antennas 30 may be low frequency antennas.
  • the antenna device 100 further includes two metal frame antennas 30 , and the two metal frame antennas 30 are both low frequency antennas.
  • the middle frame 22 may be a metal middle frame, and the metal middle frame includes at least a metal frame, and the metal frame forms at least two metal frame antennas 30 in the antenna device 100 .
  • the metal frame antenna 30 may be a radiator located on the metal frame, and the radiator is formed by opening a slot in the metal frame.
  • the metal frame antenna 30 is a slot antenna formed by opening a slot on the metal frame.
  • the slot antenna may include a first portion, a second portion, and a third portion separated by a slot, wherein the first portion and the second portion, the second portion and the third portion, and the third portion and the first portion Can be filled with non-conductive material.
  • each gap can be filled with a non-conductive material (eg, plastic) to ensure the appearance integrity of the metal frame.
  • a non-conductive material eg, plastic
  • the extending directions of the first radiator 201 and the second radiator 202 may include but are not limited to the following possible implementations:
  • one end of the first radiator 201 may extend toward the bottom frame of the middle frame 22, and one end of the second radiator 202 may extend towards the bottom frame of the middle frame 22 (see FIG. 3, FIG. 43, FIG. 49 or Figure 50).
  • one end of the first radiator 201 may extend toward the top frame of the middle frame 22, and one end of the second radiator 202 may extend towards the bottom frame of the middle frame 22 (see FIG. 13, FIG. 44, Figure 46 or Figure 48).
  • one end of the first radiator 201 may extend toward the top frame of the middle frame 22, and one end of the second radiator 202 may extend towards the top frame of the middle frame 22 (see FIG. 31A or FIG. 47 . Show).
  • one end of the first radiator 201 may extend toward the bottom frame of the middle frame 22, and one end of the second radiator 202 may extend towards the side frame of the middle frame 22 (see FIG. 45).
  • the electrical lengths of the first radiator 201 and the second radiator 202 may be 1/4 ⁇ -1/2 ⁇ , where ⁇ is the first radiator 201 and the second radiator 202 The wavelength corresponding to the resonant frequency.
  • the electrical lengths of the first radiator 201 and the second radiator 202 are one-quarter wavelength to one-half wavelength corresponding to the desired resonance frequency.
  • each group of coupling and feeding units 10 may include: a first coupling and feeding unit 101 and a second coupling and feeding unit 102 , wherein the first coupling and feeding unit 101 may be electrically connected to the feed source , and the first coupling feeding unit 101 can be coupled to feed with the other end of the first radiator 201 and one end of the second coupling feeding unit 102 respectively, and the other end of the second coupling feeding unit 102 can be coupled with the second radiator The other end of 202 is coupled to feed.
  • the external feed source feeds the first coupling feeding unit 101
  • the first coupling feeding unit 101 respectively couples and feeds the first radiator 201 and the second coupling feeding unit 102
  • the second coupling feeding unit 102 The second radiator 202 is then coupled to feed, so as to realize the process of feeding the first radiator 201 and the second radiator 202 through the feed source.
  • the first coupling and feeding unit 101 may include: a support (not shown in the figure) and a feeding branch (not shown in the figure) provided on the support, wherein the feeding branch and the feed source For electrical connection (or, there may be a feeding point on the feeding branch, and the feeding point is electrically connected with the feeding source), the bracket can be fixed on the inner surface of the battery cover 25 .
  • the first coupling and feeding unit 101 can be fixed, and the first coupling and feeding unit 101 can be fed by the feeding source by being electrically connected with the feeding branch.
  • the first coupling and feeding unit 101 respectively couples and feeds the first radiator 201 and the second coupling and feeding unit 102, and then the second coupling and feeding unit 102 couples and feeds the second radiator 202, thereby realizing the The feeding process of the source to the first radiator 201 and the second radiator 202 .
  • the feeding branch can also be directly a circuit layer disposed on the bracket, and the feeding branch can be directly etched on the bracket by laser forming, so as to form a part to be fixed to the inner surface of the battery cover 25, and a part to be electrically connected to the external feed source The first coupling feeding unit 101. It should be noted that, if the feeding branch is implemented by suspended metal, the feeding branch can also be used to cover other frequency bands.
  • the bracket may be an insulating material, for example, the bracket may be made of polycarbonate, acrylonitrile-butadiene-styrene copolymer and a mixture of PC/ABS materials (such as plastics). Any one or more of these are not limited in the embodiments of the present application, nor are they limited to the above examples.
  • the coupling feeding unit 10 (for example, the first coupling feeding unit 101 and the second coupling feeding unit 102 ) may also be disposed on the battery cover 25 , and the first coupling feeding unit 101 and the There is a coupling distance between the second coupling and feeding units 102, the second coupling and feeding unit 102 is coupled by the first coupling and feeding unit 101 in a space, and a coupling area may be formed therebetween.
  • a coupling area may be formed therebetween.
  • the specific values of the coupling distance and the coupling area can be flexibly set according to actual application requirements, which are not limited in the embodiments of the present application.
  • the antenna device 100 may further include: at least one group of coupling ground units 40, wherein each group of coupling ground units 40 may include at least two coupling ground layers 401, one of which is close to the first coupling ground layer 401 One end of the radiator 201 is disposed and coupled to the ground with the first radiator 201 , and the other coupling ground layer 401 is disposed close to one end of the second radiator 202 and is coupled to the ground with the second radiator 202 .
  • the coupling grounding layer 401 close to the first radiator 201 can realize the coupling grounding between the first radiator 201 and the middle frame 22
  • the coupling grounding layer 401 close to the second radiator 202 can realize the coupling grounding between the second radiator 202 and the middle frame 22 .
  • the coupling between blocks 22 is ground.
  • one end of the coupling ground layer 401 may be connected to at least one of the first radiator 201 and the second radiator 202, and the other end of the coupling ground layer 401 may be connected to the electronic device. ground plane.
  • the first radiator 201 and the second radiator 202 may not adopt a coupled grounding structure, for example, they may be directly grounded through feed lines.
  • the feed line may be a wired cable (for example, a cable line) or a transmission line or the like.
  • the first radiator 201 and the second radiator 202 are low-frequency antennas.
  • the operating frequency bands of the first radiator 201 and the second radiator 202 may be 700-900 MHz.
  • the working frequency bands of the first radiator 201 and the second radiator 202 may be 700 MHz, 800 MHz, or 900 MHz, etc., which are not limited in the embodiments of the present application, nor are they limited to the above examples.
  • the first radiator 201 and the second radiator 202 may be disposed on the inner surface of the battery cover 25 , the design space of the first radiator 201 and the second radiator 202 on the inner surface of the battery cover 25 is sufficient, and the size of the first radiator 201 and the second radiator 202 is sufficient. It can be designed to be larger, so that the coupling antenna design structure formed by the first radiator 201 and the second radiator 202 and the coupling feed unit 10 can excite the resonance mode of the lower frequency band, generate more resonance, and achieve more Frequency band coverage, or, in some other embodiments, the size of the first radiator 201 and the second radiator 202 included in the antenna device 100 can be designed to be small, and the influence of surrounding devices is reduced, and the design space is small. can be achieved within.
  • the first radiator 201 and the second radiator 202 may also have a filter, such as a band-pass filter. , high-frequency filter, etc., so that the signal radiated by the suspended metal antenna can be filtered, and multiple frequency bands can be realized.
  • a filter such as a band-pass filter. , high-frequency filter, etc.
  • the second coupling and feeding unit 102 , the first radiator 201 , and the second radiator 202 may be suspended metals, graphene layers, or transparent conductive layers.
  • the first radiator 201 may be used to form the first MIMO antenna
  • the second radiator 202 may be used to form the second MIMO antenna.
  • the second coupling feeding unit 102 , the first radiator 201 and the second radiator 202 include but are not limited to suspended metal antennas, graphene antennas and transparent antennas.
  • the first radiator 201 and the second radiator 202 on the inner surface of the cover 25 may also be other antenna elements disposed on the inner surface of the battery cover 25 that can be coupled to radiate signals.
  • 3B and 3C are simulation model diagrams of the antenna device 100 provided by the embodiment of the present application, taking the second coupling feeding unit 102 , the first radiator 201 and the second radiator 202 as suspended metals as an example, refer to FIG.
  • the distance L1 between the first radiator 201 (ie the first suspended metal antenna) and the frame 222 (metal frame) and the distance between the second radiator 202 (ie the second suspended metal antenna) and the frame 222 (metal frame) L1 can be 0.3mm-0.7mm.
  • the size of the electronic device with the antenna device 100 as 158mm*78mm as an example (see FIG.
  • the distance between the first suspended metal antenna and the metal frame and the second suspended metal antenna may be 0.4 mm, 0.5 mm, 0.6 mm, etc., which is not limited in the embodiments of the present application, nor is it limited to the above examples.
  • the distance L2 between the first radiator 201 (ie the first suspended metal antenna) and the printed circuit board 70 and the distance L2 between the second radiator 202 (ie the second floating metal antenna) and the printed circuit board 70 may be 2.6mm- 3.0mm, for example, the distance between the first suspended metal antenna and the printed circuit board 70 and the distance between the second suspended metal antenna and the printed circuit board 70 may be 2.7 mm, 2.8 mm, 2.9 mm, etc.
  • the distance L3 between the first coupling feeding unit 101 (eg, the bracket in the first coupling feeding unit 101 ) and the second radiator 202 (ie, the second suspended metal antenna) may be 0.1 mm-0.5 mm, for example, the first coupling
  • the distance L3 between the feeding unit 101 and the second suspended metal antenna may be 0.2 mm, 0.3 mm, 0.5 mm, etc., which is not limited in this embodiment of the present application, nor is it limited to the above examples.
  • the frame 222 (metal frame) in the antenna device 100 is grounded and does not radiate.
  • the embodiments of the present application further provide an antenna device 100 (see FIG. 4 ) whose radiating unit 20 only includes the first radiator 201 and a radiating unit 20 that only includes the first radiator 201 .
  • the antenna device 100 with two radiators 202 that is, FIG. 3 is the distributed radiator feeding structure, FIG. 4 is the left single radiator feeding structure, and FIG. 5 is the right single radiator feeding structure.
  • Figures 6 and 7 show the performance comparison diagrams under the three antenna structures. Referring to FIG.
  • S1 is a graph of the variation of the antenna reflection coefficient with frequency corresponding to the distributed radiator feeding structure in free space (without causing interference to the antenna device 100 ), and S2 is the left single radiator feeding
  • S3 is the graph of the corresponding antenna reflection coefficient as a function of frequency in the free space of the single radiator feed structure on the right.
  • E1 is a graph of the system efficiency with frequency corresponding to the distributed radiator feeding structure in free space
  • E2 is the system efficiency corresponding to the left single radiator feeding structure in free space with frequency.
  • E3 is the curve diagram of the system efficiency corresponding to the right single radiator feeding structure in free space as a function of frequency
  • R1 is the corresponding radiation efficiency of the distributed radiator feeding structure in free space
  • R2 is the curve of the corresponding radiation efficiency of the left single radiator feeding structure in free space as a function of frequency
  • R3 is the corresponding radiation efficiency of the right single radiator feeding structure in free space as a function of frequency
  • the head-hand performance of the three antenna devices 100 in actual scenarios, that is, holding an electronic device such as a mobile phone 200 close to the head, wherein the mobile phone 200 has the antenna device 100, and the left hand holds the mobile phone 200 close to the left ear (see Fig. 8A), the application evaluation under the right hand holding the mobile phone 200 close to the right ear (see FIG. 8B ), as shown in FIG. 9 and FIG.
  • A1 is the corresponding curve of the distributed radiator feeding structure when the left hand holds the mobile phone 200 close to the left ear
  • A2 is the graph corresponding to the left-hand single radiator feeding structure when the left hand holds the mobile phone 200 close to the left ear
  • A3 is the corresponding graph of the right-side single radiator feeding structure when the left hand holds the mobile phone 200 close to the left ear
  • B1 is the corresponding graph of the distributed radiator feeding structure when the right hand holds the handset 200 close to the right ear
  • B2 is the corresponding graph of the left single radiator feeding structure when the right hand holds the handset 200 close to the right ear
  • B3 is the right
  • FIGS. 11A , 11B and 11C are the current, electric field distribution and radiation patterns corresponding to the antenna device 100 corresponding to the distributed feed structure at 0.88 GHz, respectively
  • FIGS. 12A , 12B and 12C are respectively the distributed feed
  • the current, electric field distribution and radiation pattern corresponding to the antenna device 100 corresponding to the electrical structure at 0.92 GHz, through the current and electric field corresponding to the two resonances (0.88 GHz and 0.92 GHz) of the antenna device 100 corresponding to the distributed feeding structure From the analysis of the distribution and the radiation pattern, it can be found that the lower resonance is mainly generated by the second radiator 202 on the right side, and the higher resonance is generated by the first metal radiator on the left side.
  • one end of the first radiator 201 may extend toward the top frame of the middle frame 22
  • one end of the second radiator 202 may extend towards the bottom frame of the middle frame 22 .
  • the orthographic projection of one of the low-frequency antennas toward the battery cover 25 may be opposite to the first radiator 201
  • the orthographic projection of one of the low-frequency antennas toward the battery cover 25 and the first radiator 201 may be located on the right side of the battery 24 toward the battery cover 25 , respectively. Both sides of the projection.
  • the orthographic projection of the other low-frequency antenna toward the battery cover 25 may be opposite to the second radiator 202 , and the orthographic projection of the other low-frequency antenna toward the battery cover 25 and the second radiator 202 may be located at the orthographic projection of the battery 24 toward the battery cover 25 , respectively on both sides.
  • the first radiator 201 and the second radiator 202 are arranged diagonally opposite to each other, and the first radiator 201 and one of the low-frequency antennas are arranged opposite to the central axis along the length direction of the frame,
  • the second radiator 202 is disposed opposite to the central axis of the other low-frequency antenna along the length direction of the frame, wherein one low-frequency antenna is disposed diagonally opposite to the other low-frequency antenna, so that the radiator (the first radiator 201 or the second The radiator 202) and the metal frame antenna 30 (two low-frequency antennas) are separately arranged, so that the radiator (the first radiator 201 or the second radiator 202) and the metal frame antenna 30 are relatively far apart in space, and can
  • the isolation between the first radiator 201 and the metal frame antenna 30 and the second radiator 202 and the metal frame antenna 30 are increased, so that the isolation effect between the antenna modules in the antenna device 100 can be effectively improved, thereby ensuring the first A radiator 201 and a second radiator 202 do not cause interference to the metal frame antenna
  • the embodiments of the present application further provide an antenna device 100 (see FIG. 14 ) in which the radiation unit 20 only includes the first radiator 201 and a radiation unit 20 that only includes the first radiator 201 .
  • S1 is the corresponding antenna reflection coefficient of the distributed radiator feeding structure in free space (without causing interference to the antenna device 100 ) as a function of frequency
  • S2 is the graph of the corresponding antenna reflection coefficient of the left single radiator feeding structure in free space as a function of frequency
  • S3 is the corresponding antenna reflection coefficient of the right single radiator feeding structure in free space
  • E1 is the graph of the system efficiency variation with frequency corresponding to the distributed radiator feeding structure in free space
  • E2 is the corresponding left single radiator feeding structure in free space.
  • the curve diagram of the system efficiency as a function of frequency E3 is the curve diagram of the system efficiency as a function of frequency corresponding to the single radiator feed structure on the right side in free space
  • R1 is the corresponding curve diagram of the distributed radiator feed structure in free space
  • the curve of radiation efficiency versus frequency R2 is the corresponding radiation efficiency versus frequency of the left-side single radiator feed structure in free space
  • R3 is the right-side single radiator feed structure corresponding to the free space
  • the graph of the radiation efficiency versus frequency shows that the distributed radiator-fed structure has an efficiency improvement of nearly 2dB compared to the single-radiator-fed structure, and its bandwidth (the frequency bandwidth occupied by the signal) is more than doubled.
  • the simulation evaluation of the right hand holding the phone 200 close to the right ear (refer to FIG. 18B ), and the antenna device corresponding to the distributed radiator feeding structure shown in FIG. 13 in a practical application scenario
  • the hand-holding performance of 100 that is, the simulation evaluation of holding an electronic device such as a mobile phone 200, the left hand holding the mobile phone 200 (see FIG. 21A ), and the right hand holding the mobile phone 200 (see FIG.
  • C1 is the corresponding graph in the free space state
  • C2 is the corresponding graph when the left hand holds the mobile phone 200 close to the left ear
  • C3 is the right hand holding the mobile phone.
  • C1 is the corresponding graph in the free space state
  • C2 is the corresponding graph when the left hand holds the phone 200
  • C3 is the corresponding graph when the right hand holds the phone 200. It can be seen from the graph that the left and right head-hand performance and left-hand grip performance of the distributed radiator feeding structure are balanced, and the difference is within 1dB.
  • FIGS. 24A and 24B are respectively the current distribution diagram and the electric field distribution diagram corresponding to the antenna device 100 corresponding to the distributed feeding structure at 0.89 GHz
  • FIGS. 25A and 25B are respectively the antenna device 100 corresponding to the distributed feeding structure.
  • the corresponding current distribution diagram and electric field distribution diagram at 0.95GHz after analyzing the current distribution diagram and electric field distribution diagram corresponding to the two resonances (0.89GHz and 0.95GHz) of the antenna device 100 corresponding to the distributed radiator feeding structure , it can be found that the lower resonance is mainly generated by the first radiator 201 on the left, and the higher resonance is generated by the second radiator 202 on the right.
  • the metal frame antenna 30 also radiates, taking the first radiator 201 and the second radiator 202 as low-frequency antennas as an example, as shown in FIG. 13 , the distributed antenna (the first radiator 201 and the second radiator 202 ) and the two low-frequency antennas (metal frame antenna 30) work in the same frequency band.
  • the metal frame antenna 30 on the left is used as the first low frequency antenna (ant1)
  • the metal frame antenna 30 on the right is used as the second low frequency antenna (ant2)
  • the first radiator 201 and the second radiator 202 is taken as the third low-frequency antenna (ant3) as an example.
  • Figures 26 and 27 show the antenna reflection coefficient curves and efficiency curves of the three low-frequency antennas in free space, where S1 is the antenna reflection coefficient curve corresponding to the first low-frequency antenna.
  • S2 is the antenna reflection coefficient curve corresponding to the second low frequency antenna
  • S3 is the antenna reflection coefficient curve corresponding to the third low frequency antenna
  • E1 is the system efficiency curve corresponding to the first low frequency antenna
  • E2 is the second low frequency antenna corresponding
  • E3 is the system efficiency curve corresponding to the third low-frequency antenna
  • R1 is the radiation efficiency curve corresponding to the first low-frequency antenna
  • R2 is the radiation efficiency curve corresponding to the second low-frequency antenna
  • R3 is the third low-frequency antenna.
  • the radiation efficiency curve corresponding to the antenna shows that the three low-frequency antennas perform normally in the same frequency state.
  • FIG. 28 is a graph of the system isolation corresponding to the three low-frequency antennas, wherein D1 is a graph corresponding to the system isolation between the second low-frequency antenna and the first low-frequency antenna, D2 is the third low-frequency antenna and the The graph corresponding to the system isolation degree between the first low-frequency antennas, D3 is the graph corresponding to the system isolation degree between the third low-frequency antenna and the second low-frequency antenna.
  • the system isolation degrees are all above 12dB, which means that the radiation performance of the antenna device 100 shown in FIG. 13 is good.
  • Figures 29A, 29B and 29C respectively show the radiation patterns of the three low frequency antennas at 0.89GHz
  • Figures 30A, 30B and 30C respectively show the radiation patterns of the three low frequency antennas at 0.95GHz
  • the above table shows the envelope correlation coefficients (Envelope Correlation Coefficient, ECC) of the above three low-frequency antennas at two frequency points.
  • ECC envelope Correlation Coefficient
  • the first radiator 201 and the second radiator 202 in FIG. 13 are used as the first radiator.
  • Three low-frequency antennas (ant3), the metal frame antenna 30 on the left is used as the first low-frequency antenna (ant1), and the metal frame antenna 30 on the right is used as the second low-frequency antenna (ant2).
  • the ECCs at the two frequency points (0.89GHz and 0.95GHz) are both less than 0.5, so it can be seen that the distributed antenna design shown in Figure 13 is a better MIMO antenna design solution.
  • the radiator in the embodiment of the present application is a medium-high frequency radiator.
  • the length of the radiator can be reduced to increase the frequency band.
  • Metal antennas are located on the left and right sides, and are connected through coupling feed units 10 (eg, suspended metal).
  • the length of the first radiator 201 and the length of the second radiator 202 are both shortened.
  • the first radiator 201 and the second radiator are shortened by shortening
  • the length of the body 202 increases its operating frequency band.
  • the lengths of the first radiator 201 and the second radiator 202 in the antenna device 100 shown in FIG. 31A are shorter.
  • the first radiator 201 and the second radiator 202 are medium and high frequency antennas.
  • the operating frequency bands of the first radiator 201 and the second radiator 202 may be greater than 1000 MHz.
  • the working frequency bands of the first radiator 201 and the second radiator 202 may be 1000 MHz, 1100 MHz, or 1200 MHz, etc., which are not limited in the embodiments of the present application, nor are they limited to the above examples.
  • FIG. 31B is a diagram of a simulation model of the antenna device 100 according to an embodiment of the present application.
  • the simulation model and the antenna environment are the same as or similar to those in the first embodiment, and are not repeated here.
  • the embodiments of the present application further provide an antenna device 100 (see FIG. 32 ) in which the radiation unit 20 only includes the first radiator 201 and a radiation unit 20 that only includes the first radiator 201 .
  • S1 is a graph of the variation of the antenna reflection coefficient with frequency corresponding to the distributed radiator feeding structure in free space (without causing interference to the antenna device 100 ), and S2 is the left single radiator The corresponding curve of the antenna reflection coefficient of the feed structure in free space as a function of frequency
  • S3 is the curve of the corresponding antenna reflection coefficient of the right single radiator feed structure in free space as a function of frequency
  • E1 is a graph of the system efficiency versus frequency corresponding to the distributed radiator-fed structure in free space
  • E2 is a graph of the system efficiency versus frequency corresponding to the left-side single radiator-feed structure in free space
  • E3 is the graph of the system efficiency versus frequency corresponding to the single radiator-fed structure on the right in free space
  • R1 is the corresponding radiation efficiency versus frequency of the distributed radiator-fed structure in free space
  • R2 is the graph of the corresponding radiation efficiency versus frequency of the left-side single radiator-fed structure in free space
  • R3 is the corresponding radiation efficiency versus frequency of the corresponding
  • FIG. 36 and FIG. 37 show the antenna performance corresponding to the distributed radiator feeding structure held by the left and right hands.
  • C1 is the corresponding graph in the free space state
  • C2 is the corresponding graph in the left hand holding the mobile phone 200 state
  • C3 is the corresponding graph in the state of the right hand holding the phone 200. It can be seen from the figure that the efficiency is only 2-3dB lower than that in the free space state in the left hand holding and the right hand holding, and it is more balanced.
  • FIGS. 38A , 38B and 38C are respectively the current distribution diagram, electric field distribution diagram and radiation pattern corresponding to the antenna device 100 corresponding to the distributed feeding structure at 1.3 GHz
  • FIGS. 39A , 39B and 39C are respectively The current distribution diagram, electric field distribution diagram and radiation pattern corresponding to the antenna device 100 corresponding to the distributed feeding structure at 1.9 GHz
  • Figure 40A, Figure 40B and Figure 40C are respectively the antenna device 100 corresponding to the distributed feeding structure at 2.01
  • Corresponding current distribution diagram, electric field distribution diagram and radiation pattern at GHz through the analysis of the current distribution diagram and electric field distribution diagram corresponding to the three resonances of the antenna device 100 corresponding to the distributed feeding structure, it is found that two high frequency The resonance is generated by the first radiator 201 on the left and the second radiator 202 on the right, while the lower resonance is generated by the feeding branch in the coupling feeding unit 10.
  • the environment is better, by adjusting the length , can also be used to design low-frequency antennas.
  • the above table compares the 5mm body SAR (unit mass per unit time per unit time) under the two antenna structures of the antenna device 100 (dual resonance structure) shown in FIG. 31A and the antenna device 100 (single resonance structure) shown in FIG. 32
  • the electromagnetic radiation energy absorbed by the material, which measures the thermal effect of terminal radiation is fed through a distributed radiator structure (the antenna device 100 shown in FIG. The left single radiator feeding structure), its SAR value drops by about 1 to 2dB.
  • the radiator and the metal frame antenna 30 in the embodiment of the present application can be connected for feeding, and combined to realize distributed feeding.
  • the embodiment of the present application provides an electronic device, the electronic device at least includes: a middle frame 22 (metal middle frame), a battery cover 25 and a battery 24 located between the metal middle frame and the battery cover 25, and further includes: an antenna device 100, Specifically, as shown in FIG. 41 , the antenna device 100 includes: a coupling and radiating unit 50, a feeding unit 60, and at least three low-frequency antennas formed by a metal frame of a metal middle frame; the coupling and radiating unit 50 is arranged close to one of the low-frequency antennas, In addition, one end of the feeding unit 60 is coupled to the coupling and radiating unit 50 for feeding, and the other end of the feeding unit 60 is fed to one of the low-frequency antennas.
  • the antenna device 100 includes: a coupling and radiating unit 50, a feeding unit 60, and at least three low-frequency antennas formed by a metal frame of a metal middle frame; the coupling and radiating unit 50 is arranged close to one of the low-frequency antennas,
  • the coupling and radiating element 50 in the antenna device 100 is disposed close to one of the low-frequency antennas, and one end of the feeding unit 60 in the antenna device 100 is coupled with the coupling and radiating element 50 for feeding. , the other end of the feeding unit 60 feeds power to one of the at least three low-frequency antennas, so that the coupling radiation unit 50 can be fed and connected to the metal frame antenna 30 to achieve distributed feeding, so that the antenna device can be improved.
  • the radiation performance of the antenna device 100 can be reduced, and the design difficulty of the entire antenna device 100 can be reduced to a certain extent.
  • the coupling radiation unit 50 may include: at least one coupling radiator, which is arranged on the inner surface of the battery cover 25; the feeding unit 60 is located between the coupling radiator and the low-frequency antenna, and one end of the feeding unit 60 is connected to the coupling radiation Body coupling feeding, the other end of the feeding unit 60 feeds the low frequency antenna.
  • At least part of the coupling radiator is located between one of the side frames of the middle frame 22 and the orthographic projection of the battery 24 toward the battery cover 25 . That is to say, part or all of the structure of the coupling radiator is located between the side frame (the left frame 2223 or the right frame 2224) and the outer edge of the battery 24 (the outer edge of the battery 24 close to the side frame), so that, Part or all of the structure of the coupling radiator will not be located in the orthographic projection area of the battery 24 toward the battery cover 25, so the battery 24 will not block the coupling radiator or only block part of the structure of the coupling radiator, thereby avoiding the possibility of distorting the coupling radiator. Blocks the influence or interference of the radiation properties of the coupled radiator.
  • the feeding unit 60 is electrically connected to the feeding source, one end of the feeding unit 60 is coupled to the coupling radiator for feeding, and the other end of the feeding unit 60 is electrically connected to the low-frequency antenna through the feeding line to realize the feeding
  • the electrical unit 60 feeds the low frequency antenna.
  • the external feeding source feeds the feeding unit 60
  • the feeding unit 60 couples and feeds the coupled radiator
  • the feeding unit 60 feeds the low-frequency antenna through the feeding wire, so as to realize the coupling radiator and the coupling radiator through the feeding source. Feeding process of low frequency antenna.
  • the feeding form can be realized by a wired cable (such as a cable line), a transmission line, or a suspended metal structure, etc.
  • the feeding form in the embodiment of the present application includes but is not limited to the above examples, and can be specific according to actual application scenarios. Flexible settings are required.
  • the feeding unit 60 includes: a bracket and a feeding branch provided on the bracket, the feeding branch is electrically connected with the feeding source; the bracket is fixed on the inner surface of the battery cover 25 .
  • the feeding unit 60 can be fixed, and the feeding branch is electrically connected to the feeding source, so that the feeding unit 60 can be fed by an external feeding source, and the feeding unit 60 can be
  • the coupled radiator is coupled to feed, and the feeding unit 60 feeds the low-frequency antenna through the feeding line, so as to realize the feeding process of the coupled radiator and the low-frequency antenna through the feed source.
  • the coupling radiation unit 50 or the feeding unit 60 may be a suspended metal, a graphene layer, or a transparent conductive layer.
  • the antenna device 100 provided in this embodiment of the present application may further include: at least one ground layer, the ground layer is disposed close to one end of the coupling radiator and is coupled to ground with the coupling radiator; the ground layer is also grounded with the low-frequency antenna through a feeder.
  • the coupling grounding between the first radiator 201 and the middle frame 22 can be realized through the coupling grounding layer 401 close to the first radiator 201
  • the coupling between the radiator and the middle frame 22 can be realized through the grounding layer close to the coupling radiator
  • the coupling ground of , and the ground between the low frequency antenna and the middle frame 22 may further include: at least one ground layer, the ground layer is disposed close to one end of the coupling radiator and is coupled to ground with the coupling radiator; the ground layer is also grounded with the low-frequency antenna through a feeder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)

Abstract

本申请实施例提供一种天线装置及电子设备,该天线装置通过设置至少一组耦合馈电单元和至少一组辐射单元,每组辐射单元中的第一辐射体和第二辐射体设置在电池盖的内表面,第一辐射体和第二辐射体分别位于耦合馈电单元的两侧,且耦合馈电单元分别与第一辐射体和第二辐射体耦合馈电,减小了在金属边框上的布局面积,降低了对其它天线的影响。

Description

天线装置及电子设备
本申请要求于2020年12月08日提交中国专利局、申请号为202011423001.9、申请名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,特别涉及一种天线装置及电子设备。
背景技术
随着通信技术的不断发展,多输入多输出(Multiple-Input Multiple-Output,MIMO)天线技术在电子设备上的应用愈加广泛,需求越来越高,因而天线数量成倍增加,覆盖的频段也越来越多。目前,电子设备产品尤其是金属工业设计(industry design,ID)的电子设备依然要求很高的结构紧凑型以及金属占比度,而最近的电子设备设计趋势是更高的屏占比、更多的多媒体器件以及更大的电池容量,这些设计使得天线空间被急剧压缩,对金属机身终端的天线设计带来了严峻的挑战。
现有技术中,在金属边框、玻璃电池盖ID的电子设备上,MIMO天线,例如低频(Low Band,LB)频段的MIMO无线(也可称为LB MIMO天线)的传统设计方案一般是在金属边框上设计多段低频天线,而且,考虑到MIMO天线频段往往和原有通信天线频段相同,容易导致天线系统的隔离度恶化,通常将相邻两个低频天线之间的距离设计得较大,以此实现较好的隔离度。
然而,上述方案中,低频天线在电子设备的金属边框上占据过大的设计面积,不利于其它天线的布局。
发明内容
本申请实施例提供一种天线装置及电子设备,能够减小在金属边框上的布局面积,降低对其它天线的影响。
本申请实施例第一方面提供一种天线装置,该天线装置应用于电子设备,所述电子设备包括中框、电池盖和位于所述中框和所述电池盖之间的电池,所述天线装置包括:至少一组耦合馈电单元和至少一组辐射单元;每组所述辐射单元包括:第一辐射体和第二辐射体,所述第一辐射体和第二辐射体设置在所述电池盖的内表面;所述第一辐射体和第二辐射体分别位于所述耦合馈电单元的两侧,且所述耦合馈电单元分别与所述第一辐射体和所述第二辐射体耦合馈电。
本申请实施例提供的天线装置,该天线装置包括至少一组耦合馈电单元和至少一组辐射单元,通过将至少一组辐射单元中的第一辐射体和第二辐射体设置在电池盖的内表面,第一辐射体和第二辐射体分别位于耦合馈电单元的两侧,且耦合馈电单元分别与第一辐射体和第二辐射体耦合馈电,可实现耦合馈电单元和辐射单元之间的分布式馈电连接,这样 能够激励出双谐振实现宽频段覆盖,馈电网络可大部分通过设置在电池盖的内表面上的辐射体实现,从而能够减小天线在金属边框上的布局面积,降低对其它天线的影响,而且该天线装置可以在有限的设计空间内实现,在一定程度上有效节省了电子设备内部的天线设计空间。
在一种可能的实现方式中,所述第一辐射体和所述第二辐射体中的至少一个位于所述中框的其中一个侧边框和所述电池朝向所述电池盖的正投影之间。
也就是说,第一辐射体和第二辐射体中的至少一个位于侧边框(左侧边框或右侧边框)和电池的外边缘(电池靠近该侧边框一侧的外边缘)之间,这样,第一辐射体和第二辐射体中的至少一个不位于电池朝向电池盖的正投影区域之内,则电池不会遮挡住第一辐射体或第二辐射体,进而能够避免对第一辐射体或第二辐射体的辐射性能的影响或干涉。
在一种可能的实现方式中,所述第一辐射体位于所述中框的其中一个侧边框和所述电池朝向所述电池盖的正投影之间,所述第二辐射体位于所述中框的另一相对的侧边框和所述电池朝向所述电池盖的正投影之间。
这样,第一辐射体和第二辐射体均位于侧边框(左侧边框或右侧边框)和电池的外边缘(电池靠近该侧边框一侧的外边缘)之间,即第一辐射体和第二辐射体均不位于电池朝向电池盖的正投影区域之内,电池不会遮挡住第一辐射体和第二辐射体,进而能够避免对第一辐射体和第二辐射体的辐射性能的影响或干涉。
在一种可能的实现方式中,还包括:至少两个金属边框天线,且所述至少两个金属边框天线中的其中两个为低频天线。
通过将电子设备的部分金属边框作为天线装置中的辐射体,有利于进一步提升天线装置的辐射性能。
在一种可能的实现方式中,所述第一辐射体的一端朝向所述中框的顶边框延伸,所述第二辐射体的一端朝向所述中框的底边框延伸;其中一个所述低频天线朝向所述电池盖的正投影与所述第一辐射体相对,且所述其中一个所述低频天线朝向所述电池盖的正投影与所述第一辐射体分别位于所述电池朝向所述电池盖的正投影的两侧;另一个所述低频天线朝向所述电池盖的正投影与所述第二辐射体相对,且所述另一个所述低频天线朝向所述电池盖的正投影与所述第二辐射体分别位于所述电池朝向所述电池盖的正投影的两侧。
通过第一辐射体与第二辐射体呈对角相对设置,且第一辐射体与其中一个低频天线沿着边框的长度方向的中轴线相对设置,第二辐射体与另一个低频天线沿着边框的长度方向的中轴线相对设置,其中一个低频天线与另一个低频天线呈对角相对设置,这样,辐射体(第一辐射体或第二辐射体)与金属边框天线(两个低频天线)均分离设置,使得辐射体(第一辐射体或第二辐射体)与金属边框天线在空间位置上相对相距较远,能够增加第一辐射体与金属边框天线以及第二辐射体与金属边框天线之间的隔离度,从而能够有效提升天线装置中的各天线模块之间的隔离效果,进而能够保证第一辐射体和第二辐射体不对金属边框天线(两个低频天线)造成干扰。
在一种可能的实现方式中,所述第一辐射体的一端朝向所述中框的底边框延伸,所述第二辐射体的一端朝向所述中框的底边框延伸;或者,所述第一辐射体的一端朝向所述中框的顶边框延伸,所述第二辐射体的一端朝向所述中框的顶边框延伸;或者,所述第一辐射体的一端朝向所述中框的底边框延伸,所述第二辐射体的一端朝向所述中框的侧边框延 伸。
在一种可能的实现方式中,所述第一辐射体和所述第二辐射体的电长度为1/4λ-1/2λ,其中,λ为所述第一辐射体和所述第二辐射体的谐振频率对应的波长。
在一种可能的实现方式中,每组所述耦合馈电单元包括:第一耦合馈电单元和第二耦合馈电单元,所述第一耦合馈电单元与馈源电连接,且所述第一耦合馈电单元分别与所述第一辐射体的另一端和所述第二耦合馈电单元的一端耦合馈电;所述第二耦合馈电单元的另一端与所述第二辐射体的另一端耦合馈电。
这样,外部馈源对第一耦合馈电单元馈电,第一耦合馈电单元分别对第一辐射体和第二耦合馈电单元耦合馈电,然后第二耦合馈电单元再对第二辐射体耦合馈电,以此实现通过馈源对第一辐射体和第二辐射体的馈电过程。
在一种可能的实现方式中,所述第一耦合馈电单元包括:支架和设在所述支架上的馈电枝节,所述馈电枝节与所述馈源电连接;所述支架固定在所述电池盖的内表面上。
通过将支架固定在电池盖的内表面上,能够实现对第一耦合馈电单元的固定,通过馈电枝节与馈源电连接,能够实现馈源对第一耦合馈电单元馈电,第一耦合馈电单元分别对第一辐射体和第二耦合馈电单元耦合馈电,然后第二耦合馈电单元再对第二辐射体耦合馈电,从而实现通过馈源对第一辐射体和第二辐射体的馈电过程。
在一种可能的实现方式中,所述第二耦合馈电单元、所述第一辐射体、所述第二辐射体为悬浮金属、石墨烯层或透明导电层。
在一种可能的实现方式中,所述第一辐射体和所述第二辐射体的工作频段为700-900MHz。
在一种可能的实现方式中,还包括:至少一组耦合接地单元,每组所述耦合接地单元包括至少两个耦合接地层,其中一个所述耦合接地层靠近所述第一辐射体的一端设置且与所述第一辐射体耦合接地;另一个所述耦合接地层靠近所述第二辐射体的一端设置且与所述第二辐射体耦合接地。
这样,通过靠近第一辐射体的耦合接地层能够实现第一辐射体与中框之间的耦合接地,通过靠近第二辐射体的耦合接地层能够实现第二辐射体与中框之间的耦合接地。
本申请实施例第二方面提供一种电子设备,至少包括:显示屏、中框、电池盖和位于所述中框和所述电池盖之间的电池,还包括:上述任一所述的天线装置;所述天线装置中的所述第一辐射体、第二辐射体和耦合馈电单元均设置在所述电池盖的内表面。
本申请实施例提供的电子设备,通过在电子设备中设置上述天线装置,因该天线装置能够减小天线在金属边框上的布局面积,降低对其它天线的影响,且该天线装置可以在有限的设计空间内实现,在一定程度上有效节省电子设备内部的天线设计空间,在电子设备内设置该天线装置,这样在增强电子设备功能的同时,能够缩小天线装置在电子设备内的占用尺寸,从而能够给电子设备中其他元器件的安装提供有效的空间,优化电子设备的体验效果。与此同时,也保证了电子设备中信号传输的稳定性,确保电子设备的正常工作。
在一种可能的实现方式中,所述中框为金属中框,且所述金属中框至少包括金属边框,所述金属边框形成所述天线装置中的至少两个金属边框天线。
通过将电子设备的部分金属边框形成天线装置中的至少两个金属边框天线作为辐射体,有利于进一步提升该电子设备中天线装置的辐射性能。
本申请实施例第三方面还提供一种电子设备,该电子设备至少包括:金属中框、电池盖和位于所述金属中框和所述电池盖之间的电池,还包括:天线装置,所述天线装置包括:耦合辐射单元、馈电单元以及由金属中框的金属边框形成的至少三个低频天线;所述耦合辐射单元靠近其中一个所述低频天线设置,且所述馈电单元的一端与所述耦合辐射单元耦合馈电,所述馈电单元的另一端向所述其中一个低频天线馈电。
本申请实施例提供的电子设备,通过将金属中框的金属边框形成至少三个低频天线,天线装置中的耦合辐射单元靠近其中一个低频天线设置,天线装置中的馈电单元的一端与耦合辐射单元耦合馈电,馈电单元的另一端向至少三个低频天线中的其中一个低频天线馈电,这样能够通过耦合辐射单元与金属边框天线馈电连接以实现分布式馈电,从而能够提升天线装置的辐射性能,且能够在一定程度上降低整个天线装置的设计难度。
在一种可能的实现方式中,所述耦合辐射单元包括:至少一个耦合辐射体,所述耦合辐射体设置在所述电池盖的内表面;所述馈电单元位于所述耦合辐射体和所述低频天线之间,所述馈电单元的一端与所述耦合辐射体耦合馈电,所述馈电单元的另一端向所述低频天线馈电。
在一种可能的实现方式中,所述耦合辐射体的至少部分位于所述中框的其中一个侧边框和所述电池朝向所述电池盖的正投影之间。
也就是说,耦合辐射体的部分或全部结构位于侧边框(左侧边框或右侧边框)和电池的外边缘(电池靠近该侧边框一侧的外边缘)之间,这样,耦合辐射体的部分或全部结构将不位于电池朝向电池盖的正投影区域之内,则电池不会遮挡住耦合辐射体或只能遮挡住耦合辐射体的部分结构,进而能够避免对遮挡住耦合辐射体的辐射性能的影响或干涉。
在一种可能的实现方式中,所述馈电单元与馈源电连接,所述馈电单元的一端与所述耦合辐射体耦合馈电,所述馈电单元的另一端通过馈电线与低频天线电连接,以实现所述馈电单元向所述低频天线馈电。
这样,外部馈源对馈电单元馈电,馈电单元对耦合辐射体耦合馈电,且馈电单元通过馈电线向低频天线馈电,以此实现通过馈源对耦合辐射体和低频天线的馈电过程。
在一种可能的实现方式中,所述馈电单元包括:支架和设在所述支架上的馈电枝节,所述馈电枝节与所述馈源电连接;所述支架固定在所述电池盖的内表面上。
通过将支架固定在电池盖的内表面上,能够实现对馈电单元的固定,通过馈电枝节与馈源电连接,能够实现外部馈源对馈电单元馈电,馈电单元对耦合辐射体耦合馈电,且馈电单元通过馈电线向低频天线馈电,以此实现通过馈源对耦合辐射体和低频天线的馈电过程。
在一种可能的实现方式中,所述耦合辐射单元或所述馈电单元为悬浮金属、石墨烯层或透明导电层。
在一种可能的实现方式中,还包括:至少一个接地层,所述接地层靠近所述耦合辐射体的一端设置且与所述耦合辐射体耦合接地;所述接地层还通过馈电线与所述低频天线接地。
这样,通过靠近第一辐射体的耦合接地层能够实现第一辐射体与中框之间的耦合接地,通过靠近耦合辐射体的接地层能够实现耦合辐射体与中框之间的耦合接地,以及低频天线与中框之间的接地。
结合附图,根据下文描述的实施例,示例性实施例的这些和其它方面、实施形式和优点将变得显而易见。但应了解,说明书和附图仅用于说明并且不作为对本申请实施例的限制的定义,详见随附的权利要求书。本申请实施例的其它方面和优点将在以下描述中阐述,而且部分将从描述中显而易见,或通过本申请实施例的实践得知。此外,本申请实施例的各方面和优点可以通过所附权利要求书中特别指出的手段和组合得以实现和获得。
附图说明
图1为本申请一实施例提供的电子设备的整体结构示意图;
图2为本申请一实施例提供的电子设备的拆分结构示意图;
图3A为本申请一实施例提供的电子设备中天线装置的结构示意图;
图3B为本申请一实施例提供的电子设备中天线装置的仿真模型图;
图3C为本申请一实施例提供的电子设备中天线装置的仿真模型图;
图4为本申请一实施例提供的电子设备中天线装置的结构示意图;
图5为本申请一实施例提供的电子设备中天线装置的结构示意图;
图6为本申请一实施例提供的电子设备中天线装置的性能对比图;
图7为本申请一实施例提供的电子设备中天线装置的性能对比图;
图8A为本申请一实施例提供的电子设备中天线装置在使用左手持握靠近左耳时的实际应用场景图;
图8B为本申请一实施例提供的电子设备中天线装置在使用右手持握靠近右耳时的实际应用场景图;
图9为本申请一实施例提供的电子设备中天线装置的性能对比图;
图10为本申请一实施例提供的电子设备中天线装置的性能对比图;
图11A为本申请一实施例提供的电子设备中天线装置在0.88GHz下的电流分布图;
图11B为本申请一实施例提供的电子设备中天线装置在0.88GHz下的电场分布图;
图11C为本申请一实施例提供的电子设备中天线装置在0.88GHz下的辐射方向图;
图12A为本申请一实施例提供的电子设备中天线装置在0.92GHz下的电流分布图;
图12B为本申请一实施例提供的电子设备中天线装置在0.92GHz下的电场分布图;
图12C为本申请一实施例提供的电子设备中天线装置在0.92GHz下的辐射方向图;
图13为本申请一实施例提供的电子设备中天线装置的结构示意图;
图14为本申请一实施例提供的电子设备中天线装置的结构示意图;
图15为本申请一实施例提供的电子设备中天线装置的结构示意图;
图16为本申请一实施例提供的电子设备中天线装置的性能对比图;
图17为本申请一实施例提供的电子设备中天线装置的性能对比图;
图18A为本申请一实施例提供的电子设备中天线装置在使用左手持握靠近左耳时的实际应用场景图;
图18B为本申请一实施例提供的电子设备中天线装置在使用右手持握靠近右耳时的实际应用场景图;
图19为本申请一实施例提供的电子设备中天线装置的性能对比图;
图20为本申请一实施例提供的电子设备中天线装置的性能对比图;
图21A为本申请一实施例提供的电子设备中天线装置在使用左手持握时的实际应用场景图;
图21B为本申请一实施例提供的电子设备中天线装置在使用右手持握时的实际应用场景图;
图22为本申请一实施例提供的电子设备中天线装置的性能对比图;
图23为本申请一实施例提供的电子设备中天线装置的性能对比图;
图24A为本申请一实施例提供的电子设备中天线装置在0.89GHz下的电流分布图;
图24B为本申请一实施例提供的电子设备中天线装置在0.89GHz下的电场分布图;
图25A为本申请一实施例提供的电子设备中天线装置在0.95GHz下的电流分布图;
图25B为本申请一实施例提供的电子设备中天线装置在0.95GHz下的电场分布图;
图26为本申请一实施例提供的电子设备中天线装置的性能对比图;
图27为本申请一实施例提供的电子设备中天线装置的性能对比图;
图28为本申请一实施例提供的电子设备中天线装置的性能对比图;
图29A为本申请一实施例提供的电子设备中天线装置的第一低频天线在0.89GHz下的辐射方向图;
图29B为本申请一实施例提供的电子设备中天线装置的第二低频天线在0.89GHz下的辐射方向图;
图29C为本申请一实施例提供的电子设备中天线装置的第三低频天线在0.89GHz下的辐射方向图;
图30A为本申请一实施例提供的电子设备中天线装置的第一低频天线在0.95GHz下的辐射方向图;
图30B为本申请一实施例提供的电子设备中天线装置的第二低频天线在0.95GHz下的辐射方向图;
图30C为本申请一实施例提供的电子设备中天线装置的第三低频天线在0.95GHz下的辐射方向图;
图31A为本申请一实施例提供的电子设备中天线装置的结构示意图;
图31B为本申请一实施例提供的电子设备中天线装置的仿真模型图;
图32为本申请一实施例提供的电子设备中天线装置的结构示意图;
图33为本申请一实施例提供的电子设备中天线装置的结构示意图;
图34为本申请一实施例提供的电子设备中天线装置的性能对比图;
图35为本申请一实施例提供的电子设备中天线装置的性能对比图;
图36为本申请一实施例提供的电子设备中天线装置的性能对比图;
图37为本申请一实施例提供的电子设备中天线装置的性能对比图;
图38A为本申请一实施例提供的电子设备中天线装置在1.3GHz下的电流分布图;
图38B为本申请一实施例提供的电子设备中天线装置在1.3GHz下的电场分布图;
图38C为本申请一实施例提供的电子设备中天线装置在1.3GHz下的辐射方向图;
图39A为本申请一实施例提供的电子设备中天线装置在1.9GHz下的电流分布图;
图39B为本申请一实施例提供的电子设备中天线装置在1.9GHz下的电场分布图;
图39C为本申请一实施例提供的电子设备中天线装置在1.9GHz下的辐射方向图;
图40A为本申请一实施例提供的电子设备中天线装置在2.01GHz下的电流分布图;
图40B为本申请一实施例提供的电子设备中天线装置在2.01GHz下的电场分布图;
图40C为本申请一实施例提供的电子设备中天线装置在2.01GHz下的辐射方向图;
图41为本申请一实施例提供的电子设备中天线装置的结构示意图;
图42为本申请一实施例提供的电子设备中天线装置的性能对比图;
图43为本申请一实施例提供的电子设备中天线装置的结构示意图;
图44为本申请一实施例提供的电子设备中天线装置的结构示意图;
图45为本申请一实施例提供的电子设备中天线装置的结构示意图;
图46为本申请一实施例提供的电子设备中天线装置的结构示意图;
图47为本申请一实施例提供的电子设备中天线装置的结构示意图;
图48为本申请一实施例提供的电子设备中天线装置的结构示意图;
图49为本申请一实施例提供的电子设备中天线装置的结构示意图;
图50为本申请一实施例提供的电子设备中天线装置的结构示意图。
附图标记说明:
100-天线装置;10-耦合馈电单元;101-第一耦合馈电单元;102-第二耦合馈电单元;20-辐射单元;201-第一辐射体;202-第二辐射体;30-金属边框天线;40-耦合接地单元;401-耦合接地层;50-耦合辐射单元;60-馈电单元;70-印制电路板;200-手机;21-显示屏;211-开孔;22-中框;221-金属中板;222-边框;2221-顶边框;2222-底边框;2223-左侧边框;2224-右侧边框;23-电路板;24-电池;25-电池盖;26a-前置摄像模组;26b-后置摄像模组。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请,下面将结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供一种电子设备,可以包括但不限于为手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、销售点(Point of sales,POS)机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实设备、无线U盘、蓝牙音响/耳机、或车载前装、行车记录仪、安防设备等具有天线的移动或固定终端。
其中,本申请实施例中,以手机200为上述电子设备为例进行说明,本申请实施例提供的手机200可以为曲面屏手机也可以为平面屏手机,本申请实施例中以平面屏手机为例进行说明。图1和图2分别示出了手机200的整体结构和拆分结构,本申请实施例提供的手机200的显示屏21可以为水滴屏、刘海屏、全面屏或者挖孔屏(参见图1所示),下述描述以挖孔屏为例进行说明。
参见图2所示,手机200可以包括:显示屏21、中框22、电池盖25和位于中框22和电池盖25之间的电池24,其中,电池24可以设在中框22朝向电池盖25的一面上(如图2所示),或者电池24可以设置在中框22朝向显示屏21的一面上,例如中框22朝向电池盖25的一面可以具有电池仓(图中未示出),电池24安装在电池仓中。在一些其它的示例中,手机200还可以包括电路板23,其中,电路板23可以设置在中框22上,例如, 电路板23可以设置在中框22朝向电池盖25的一面上(如图2所示),或者电路板23可以设置在中框22朝向显示屏21的一面上,显示屏21和电池盖25分别位于中框22的两侧。
其中,电池24可以通过电源管理模块与充电管理模块和电路板23相连,电源管理模块接收电池24和/或充电管理模块的输入,并为处理器、内部存储器、外部存储器、显示屏21、摄像模组以及通信模块等供电。电源管理模块还可以用于监测电池24容量,电池24循环次数,电池24健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块也可以设置于电路板23的处理器中。在另一些实施例中,电源管理模块和充电管理模块也可以设置于同一个器件中。
当手机200为平面屏手机时,显示屏21可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏,也可以为液晶显示屏(Liquid Crystal Display,LCD),当手机200为曲面屏手机时,显示屏21可以为OLED显示屏。
继续参照图2,中框22可以包括金属中板221和边框222,边框222围绕金属中板221的外周设置一周。一般地,边框222可以包括顶边框2221、底边框2222、左侧边框2223和右侧边框2224,顶边框2221、底边框2222、左侧边框2223和右侧边框2224围成方环结构的边框222。其中,金属中板221的材料包括但不限于为铝板、铝合金、不锈钢、钢铝复合压铸板、钛合金或镁合金等。边框222可以为金属边框,也可以为陶瓷边框,还可以为玻璃边框。当边框222为金属边框时,金属边框的材料包括但不限于为铝合金、不锈钢、钢铝复合压铸板或钛合金等。其中,金属中板221和边框222之间可以卡接、焊接、粘合或一体成型,或者金属中板221与边框222之间可以通过注塑固定相连。
参照图2所示,顶边框2221和底边框2222相对设置,左侧边框2223与右侧边框2224相对设置,顶边框2221分别与左侧边框2223的一端和右侧边框2224的一端呈圆角连接,底边框2222分别与左侧边框2223的另一端和右侧边框2224的另一端呈圆角连接,从而共同形成一圆角矩形区域。后壳接地面设置于圆角矩形区域内,并分别与顶边框2221、底边框2222、左侧边框2223以及右侧边框2224连接。可以理解的是,后壳接地面可以为手机200的电池盖25。
电池盖25可以为金属电池盖,也可以为玻璃电池盖,还可以为塑料电池盖,或者,还可以为陶瓷电池盖,本申请实施例中,对电池盖25的材质并不加以限定,也不限于上述示例。
需要说明的是,在一些示例中,手机200的电池盖25可以与边框222相连形成一体成型(Unibody)电池盖,例如手机200可以包括:显示屏21、金属中板221和电池盖,电池盖可以为边框222和电池盖25一体成型(Unibody)形成的电池盖,这样电路板23和电池24位于金属中板221和电池盖围成的空间中。
其中,为了实现拍摄功能,手机200还可以包括:摄像模组,继续参照图2所示,摄像模组可以包括前置摄像模组26a和后置摄像模组26b。其中,后置摄像模组26b可以设置在金属中板221朝向电池盖25的一面上,显示屏21上开设有开孔211,后置摄像模组26b的镜头与开孔211相对应。电池盖25上可以开设可供后置摄像模组26b的部分区域安装的安装孔(图中未示出),当然,后置摄像模组26b也可以安装在电池盖25朝向金属中板221的一面上。前置摄像模组26a可以设在金属中板221朝向显示屏21的一面上,或者 前置摄像模组26a可以设在金属中板221朝向电池盖25的一面上,或者,前置摄像模组26a还可以设在电池盖25朝向显示屏21的一面上,金属中板221上开设可供前置摄像模组26a的镜头端裸露的开口。
本申请实施例中,前置摄像模组26a和后置摄像模组26b的设置位置包括但不限于上述描述。其中,在一些实施例中,手机200内设置的前置摄像模组26a和后置摄像模组26b的数量可以为1个或N个,N为大于1的正整数。
可以理解的是,本申请实施例示意的结构并不构成对手机200的具体限定。在本申请另一些实施例中,手机200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
为了进一步的增加手机200的可实现功能,可以在该手机200上可以设置有天线。目前电子设备大多应用金属边框、玻璃后盖的ID设计,由于金属边框尺寸有限而且天线环境紧张,某些频段的天线只能激励金属边框的单个模式以尽量小型化,因此这种采用金属边框设计的天线,特别设计在低频段时,其带宽较窄,而且性能受手握影响程度较大。目前低频三天线、四天线的规格逐渐提上日程,增加的MIMO天线继续采用边框天线设计,在手机的金属边框上占据较大的布局面积,必然压缩其他天线空间,对其它天线(例如中高频天线)影响很大。因此,找到一种对其他天线影响较小的新型MIMO天线方案成为当务之急。
基于此,本申请实施例提供一种天线装置,该天线装置可应用于上述的电子设备(例如手机200)中,该天线装置中的第一辐射体、第二辐射体和耦合馈电单元均设置在电池盖的内表面,具体地,该天线装置包括至少一组耦合馈电单元和至少一组辐射单元,通过将至少一组辐射单元中的第一辐射体和第二辐射体设置在电池盖的内表面,第一辐射体和第二辐射体分别位于耦合馈电单元的两侧,且耦合馈电单元分别与第一辐射体和第二辐射体耦合馈电,可实现耦合馈电单元和辐射单元之间的分布式馈电连接,这样能够激励出双谐振实现宽频段覆盖,馈电网络可大部分通过设置在电池盖的内表面上的辐射体实现,从而能够减小天线在金属边框上的布局面积,降低对其它天线的影响,而且该天线装置可以在有限的设计空间内实现,在一定程度上有效节省了电子设备内部的天线设计空间。
需要说明的是,本申请提供的天线装置适用于采用以下一种或多种MIMO通信技术的电子设备:例如,长期演进(long term evolution,LTE)通信技术、Wi-Fi通信技术、5G通信技术、SUB-6G通信技术以及未来其他MIMO通信技术等。
下面分别以不同的实施例为例,并结合附图对该天线装置的具体结构进行介绍(以下各实施例不突出通信网络的需求,仅以频率大小说明天线装置的工作特性)。
实施例一
本申请实施例提供一种天线装置100,该天线装置100应用于电子设备,其中,电子设备(例如手机200)至少可以包括中框22、电池盖25以及位于中框22和电池盖25之间的电池24(参见图2所示),其中,如图3A所示,该天线装置100可以包括:至少一组耦合馈电单元10和至少一组辐射单元20,具体地,在本申请实施例中,每组辐射单元20可以包括:第一辐射体201和第二辐射体202,第一辐射体201和第二辐射体202可以设置在电池盖25的内表面,第一辐射体201和第二辐射体202可以分别位于耦合馈电单元 10的两侧,且耦合馈电单元10分别与第一辐射体201和第二辐射体202耦合馈电。
在一定程度上,该天线装置100可以在有限的设计空间内实现,有效节省了电子设备内部的天线设计空间。而且,该天线装置100无需在中框22的金属边框上额外开槽,不会影响电子设备的工业设计外观,且同时可以有效降低手握影响。
其中,第一辐射体201和第二辐射体202可以印制或者粘贴于电池盖25的内表面,或者,第一辐射体201和第二辐射体202也可以是嵌入电池盖25的内表面,本申请实施例对第一辐射体201和第二辐射体202在电池盖25的内表面上的具体设置方式并不加以限定,也不限于上述示例。当然,在其它的一些实施例中,第一辐射体201和第二辐射体202也可以是设置在电池盖25的外表面,本申请实施例对此并不加以限定。
可以理解的是,在一些实施例中,本申请实施例提供的天线装置100可以包括多组辐射单元20,以增加更多的辐射体,通过辐射体的数量的增加,天线装置100能够实现更多模式的覆盖。
在本申请实施例中,第一辐射体201和第二辐射体202中的至少一个可以位于中框22的其中一个侧边框和电池24朝向电池盖25的正投影之间。也就是说,第一辐射体201和第二辐射体202中的至少一个可以位于侧边框(左侧边框2223或右侧边框2224)和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,例如,参照图3A所示,第一辐射体201位于左侧边框2223和电池24靠近该左侧边框2223一侧的外边缘之间。这样,第一辐射体201和第二辐射体202中的至少一个位于电池24朝向电池盖25的正投影区域之外,则电池24不会遮挡住第一辐射体201或第二辐射体202,进而能够避免对第一辐射体201或第二辐射体202的辐射性能的影响或干涉。
进一步地,在一些实施例中,第一辐射体201可以位于中框22的其中一个侧边框和电池24朝向电池盖25的正投影之间,第二辐射体202可以位于中框22的另一相对的侧边框和电池24朝向电池盖25的正投影之间。也就是说,第一辐射体201可以位于中框22的其中一个侧边框和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,第二辐射体202可以位于中框22的与该侧边框相对的另一侧边框和电池24的另一相对的外边缘(电池24靠近该另一侧边框一侧的另一外边缘)之间,例如,如图3A所示,第一辐射体201位于左侧边框2223和电池24靠近该左侧边框2223一侧的外边缘之间,第二辐射体202位于右侧边框2224和电池24靠近该右侧边框2224一侧的外边缘之间。
这样,第一辐射体201和第二辐射体202均位于侧边框(左侧边框2223或右侧边框2224)和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,即第一辐射体201和第二辐射体202均不位于电池24朝向电池盖25的正投影区域之内,电池24不会遮挡住第一辐射体201和第二辐射体202,进而能够避免对第一辐射体201和第二辐射体202的辐射性能的影响或干涉。
或者,在其它的一些实施例中,第一辐射体201或者第二辐射体202也可以不完全位于侧边框(左侧边框2223或右侧边框2224)和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,即第一辐射体201或第二辐射体202的部分也可以位于电池24朝向电池盖25的正投影区域之内,只要保证第一辐射体201或第二辐射体202并非全部位于电池24朝向电池盖25的正投影区域之内即可。即在一些示例中,第一辐射体201和第二辐射体202的部分区域可能会位于电池24朝向电池盖25的正投影区域之内,但是第一 辐射体201和第二辐射体202的大部分区域位于电池24朝向电池盖25的正投影区域之外。
该天线装置100还可以包括:至少两个金属边框天线30,且至少两个金属边框天线30中的其中两个可以为低频天线。示例性地,如图3A所示,该天线装置100还包括两个金属边框天线30,且两个金属边框天线30均为低频天线。通过将电子设备的部分金属边框作为天线装置100中的辐射体,有利于进一步提升天线装置100的辐射性能。
需要说明的是,在本申请实施例中,中框22可以为金属中框,金属中框至少包括金属边框,金属边框形成天线装置100中的至少两个金属边框天线30。具体地,金属边框天线30可以是位于金属边框上的辐射体,通过在金属边框在开设缝隙以形成辐射体,换句话说,金属边框天线30即在金属边框上开缝形成的槽天线。该槽天线可以包括用缝隙隔开的第一部分,第二部分,第三部分,其中,第一部分与第二部分之间、第二部分与第三部分之间以及第三部分与第一部分之间可以填充有非导电材料。
在实际应用时,缝隙的位置可以根据需要改变,各缝隙内可以采用非导电材料(例如塑胶)填充,以保证金属边框在外观上的完整性。通过灵活设置金属边框上的缝隙的开设位置,可以在保证天线辐射性能的同时,实现不同需求的外观设计,有利于提升电子设备的产品品质。
在本申请实施例中,第一辐射体201和第二辐射体202的延伸方向可以包括但不限于以下几种可能的实现方式:
一种可能的实现方式为:第一辐射体201的一端可以朝向中框22的底边框延伸,第二辐射体202的一端可以朝向中框22的底边框延伸(参见图3、图43、图49或图50所示)。
另一种可能的实现方式为:第一辐射体201的一端可以朝向中框22的顶边框延伸,第二辐射体202的一端可以朝向中框22的底边框延伸(参见图13、图44、图46或图48所示)。
再一种可能的实现方式为:第一辐射体201的一端可以朝向中框22的顶边框延伸,第二辐射体202的一端可以朝向中框22的顶边框延伸(参见图31A或图47所示)。
又一种可能的实现方式为:第一辐射体201的一端可以朝向中框22的底边框延伸,第二辐射体202的一端可以朝向中框22的侧边框延伸(参见图45所示)。
基于以上描述,在本申请实施例中,第一辐射体201和第二辐射体202的电长度可以为1/4λ-1/2λ,其中,λ为第一辐射体201和第二辐射体202的谐振频率对应的波长。第一辐射体201和第二辐射体202的电长度为所需谐振频率对应的四分之一波长至二分之一波长。
进一步地,结合图3A所示,每组耦合馈电单元10可以包括:第一耦合馈电单元101和第二耦合馈电单元102,其中,第一耦合馈电单元101可以与馈源电连接,且第一耦合馈电单元101可以分别与第一辐射体201的另一端和第二耦合馈电单元102的一端耦合馈电,第二耦合馈电单元102的另一端可以与第二辐射体202的另一端耦合馈电。这样,外部馈源对第一耦合馈电单元101馈电,第一耦合馈电单元101分别对第一辐射体201和第二耦合馈电单元102耦合馈电,然后第二耦合馈电单元102再对第二辐射体202耦合馈电,以此实现通过馈源对第一辐射体201和第二辐射体202的馈电过程。
在本申请实施例中,第一耦合馈电单元101可以包括:支架(图中未示出)以及设在 支架上的馈电枝节(图中未示出),其中,馈电枝节与馈源电连接(或者是,馈电枝节上可以具有馈电点,馈电点与馈源电连接),支架可以固定在电池盖25的内表面上。通过将支架固定在电池盖25的内表面上,能够实现对第一耦合馈电单元101的固定,通过馈电枝节与馈源电连接,能够实现馈源对第一耦合馈电单元101馈电,第一耦合馈电单元101分别对第一辐射体201和第二耦合馈电单元102耦合馈电,然后第二耦合馈电单元102再对第二辐射体202耦合馈电,从而实现通过馈源对第一辐射体201和第二辐射体202的馈电过程。
另外,馈电枝节也可以直接是设置在支架上的线路层,馈电枝节可以通过激光直接成型蚀刻在支架上,以此形成一部分与电池盖25的内表面固定,一部分与外部馈源电连接的第一耦合馈电单元101。需要说明的是,若馈电枝节是通过悬浮金属实现,该馈电枝节也可以用于覆盖其它频段。
其中,作为一种可选的实施方式,支架可以为绝缘材料,示例性地,支架可以为聚碳酸酯、丙烯腈-丁二烯-苯乙烯共聚物和混合物PC/ABS材料(例如塑胶)中的任意一种或多种,本申请实施例对此并不加以限定,也不限于上述示例。
在一种可能的实现方式中,耦合馈电单元10(例如第一耦合馈电单元101和第二耦合馈电单元102)也可以设置在电池盖25上,且第一耦合馈电单元101与第二耦合馈电单元102之间存在耦合间距,第二耦合馈电单元102被第一耦合馈电单元101隔空耦合,两者之间可以形成耦合区域。应当理解的是,耦合间距越小,耦合效应越强;耦合间距越大,耦合效应越弱;耦合区域越大,耦合效应越强;耦合区域越小,耦合效应越弱。耦合间距以及耦合区域的具体取值可根据实际应用需求进行灵活设定,本申请实施例对此并不加以限定。
继续参照图3A所示,该天线装置100还可以包括:至少一组耦合接地单元40,其中,每组耦合接地单元40可以包括至少两个耦合接地层401,其中一个耦合接地层401靠近第一辐射体201的一端设置且与第一辐射体201耦合接地,另一个耦合接地层401靠近第二辐射体202的一端设置且与第二辐射体202耦合接地。通过靠近第一辐射体201的耦合接地层401可以实现第一辐射体201与中框22之间的耦合接地,通过靠近第二辐射体202的耦合接地层401可以实现第二辐射体202与中框22之间的耦合接地。
容易理解的是,在本申请实施例中,耦合接地层401的一端可以与第一辐射体201和第二辐射体202中的至少一个连接,耦合接地层401的另一端可以连接至电子设备的接地面。当然,在其它的一些实施例中,第一辐射体201和第二辐射体202也可以不采用耦合接地结构,例如可以通过馈电线直接接地。其中,馈电线可以是有线电缆(例如cable线)或传输线等。本申请实施例对该天线装置100的接地结构并不加以限定,也不限于上述示例。
在本申请实施例中,第一辐射体201和第二辐射体202为低频天线,作为低频天线时,第一辐射体201和第二辐射体202的工作频段可以为700-900MHz。示例性地,第一辐射体201和第二辐射体202的工作频段可以为700MHz、800MHz或900MHz等,本申请实施例对此并不加以限定,也不限于上述示例。
具体地,第一辐射体201和第二辐射体202可以设置在电池盖25的内表面,第一辐射体201和第二辐射体202在电池盖25的内表面上的设计空间充裕,其尺寸可以设计的 较大,这样,该第一辐射体201和第二辐射体202和耦合馈电单元10形成的耦合天线设计结构可以激励出较低频段的谐振模式,产生更多谐振,实现更多频段覆盖,或者,在其它的一些实施例中,该天线装置100包括的第一辐射体201和第二辐射体202的尺寸可以设计的很小,受周围器件影响降低,在较小的设计空间内便可以得以实现。
另外,在一些实施例中,以第一辐射体201和第二辐射体202为悬浮金属天线为例,第一辐射体201和第二辐射体202内部还可以具有滤波器,如带通滤波器、高频滤波器等,这样可对悬浮金属天线辐射的信号进行滤波,即可实现多个频段。
在本申请实施例中,第二耦合馈电单元102、第一辐射体201、第二辐射体202可以为悬浮金属、石墨烯层或透明导电层。其中,第一辐射体201可以用于形成第一MIMO天线,第二辐射体202可以用于形成第二MIMO天线。当然,在本申请实施例中,第二耦合馈电单元102、第一辐射体201以及第二辐射体202包括但不限于为悬浮金属天线、石墨烯天线以及透明天线,例如,该设置于电池盖25的内表面上的第一辐射体201和第二辐射体202还可以是其他设置于电池盖25的内表面上的能够被耦合而辐射信号的天线元件。
其中,图3B和3C为本申请实施例提供的天线装置100的仿真模型图,以第二耦合馈电单元102、第一辐射体201和第二辐射体202为悬浮金属为例,参照如图3C所示,第一辐射体201(即第一悬浮金属天线)距离边框222(金属边框)的间距L1以及第二辐射体202(即第二悬浮金属天线)距离边框222(金属边框)的间距L1可以为0.3mm-0.7mm,以具有该天线装置100的电子设备的尺寸为158mm*78mm为例(参见图3B所示),第一悬浮金属天线距离金属边框的间距以及第二悬浮金属天线距离金属边框的间距L1可以为0.4mm、0.5mm、0.6mm等,本申请实施例对此并不加以限定,也不限于上述示例。第一辐射体201(即第一悬浮金属天线)距离印制电路板70的间距L2以及第二辐射体202(即第二悬浮金属天线)距离印制电路板70的间距L2可以为2.6mm-3.0mm,例如,第一悬浮金属天线距离印制电路板70的间距以及第二悬浮金属天线距离印制电路板70的间距可以为2.7mm、2.8mm、2.9mm等,本申请实施例对此并不加以限定,也不限于上述示例。第一耦合馈电单元101(例如第一耦合馈电单元101中的支架)距离第二辐射体202(即第二悬浮金属天线)的间距L3可以为0.1mm-0.5mm,例如,第一耦合馈电单元101距离第二悬浮金属天线的间距L3可以为0.2mm、0.3mm、0.5mm等,本申请实施例对此并不加以限定,也不限于上述示例。另外,在一种可能的实现方式中,在图3B所示的天线装置100的仿真模型图中,天线装置100中边框222(金属边框)接地不辐射。
基于上述描述,为了进一步体现上述天线装置100的优势,本申请实施例还提供一种辐射单元20仅包括第一辐射体201的天线装置100(参见图4)以及一种辐射单元20仅包括第二辐射体202的天线装置100(参见图5),即图3是分布式辐射体馈电结构,图4是左侧单独辐射体馈电结构,图5是右侧单独辐射体馈电结构。图6和图7给出了该三种天线结构下的性能对比图。参见图6,S1为分布式辐射体馈电结构在自由空间(未对天线装置100造成干扰的情形下)下对应的天线反射系数随频率变化的曲线图,S2为左侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,S3为右侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图。参见图7所示,E1为分布式辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,E2为左侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,E3为右侧单独辐射 体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,R1为分布式辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,R2为左侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,R3为右侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,由图可知,分布式辐射体馈电结构相比于单独辐射体馈电结构,辐射效率提升1.5dB以上,其带宽(信号所占据的频带宽度)约增加1倍。
而且,经过在实际场景下对三种天线装置100的头手性能,即手握电子设备例如手机200靠近头部,其中,手机200中具有天线装置100,左手握手机200靠近左耳(参见图8A),右手握手机200靠近右耳(参见图8B)下的应用评测,如图9和图10所示,A1为分布式辐射体馈电结构在左手握手机200靠近左耳时对应的曲线图,A2为左侧单独辐射体馈电结构在左手握手机200靠近左耳时对应的曲线图,A3为右侧单独辐射体馈电结构在左手握手机200靠近左耳时对应的曲线图,B1为分布式辐射体馈电结构在右手握手机200靠近右耳时对应的曲线图,B2为左侧单独辐射体馈电结构在右手握手机200靠近右耳时对应的曲线图,B3为右侧单独辐射体馈电结构在右手握手机200靠近右耳时对应的曲线图,由图可知,分布式馈电结构的头手性能更加均衡,分布式馈电结构相比于单独馈电结构,其头手性能效率带宽也更好。
此外,图11A、图11B和图11C分别为分布式馈电结构对应的天线装置100在0.88GHz下对应的电流、电场分布以及辐射方向图,图12A、图12B和图12C分别为分布式馈电结构对应的天线装置100在0.92GHz下对应的电流、电场分布以及辐射方向图,经过对分布式馈电结构对应的天线装置100的两个谐振(0.88GHz和0.92GHz)对应的电流、电场分布以及辐射方向图的分析,可以发现较低谐振主要由右侧的第二辐射体202产生,较高谐振由左侧的第一金属辐射体产生。
实施例二
与上述实施例一不同的是,继续参照附图13所示,第一辐射体201的一端可以朝向中框22的顶边框延伸,第二辐射体202的一端可以朝向中框22的底边框延伸。而且,其中一个低频天线朝向电池盖25的正投影可以与第一辐射体201相对,其中一个低频天线朝向电池盖25的正投影与第一辐射体201可以分别位于电池24朝向电池盖25的正投影的两侧。另一个低频天线朝向电池盖25的正投影可以与第二辐射体202相对,且另一个低频天线朝向电池盖25的正投影与第二辐射体202可以分别位于电池24朝向电池盖25的正投影的两侧。
具体地,继续参照图13所示,第一辐射体201与第二辐射体202呈对角相对设置,且第一辐射体201与其中一个低频天线沿着边框的长度方向的中轴线相对设置,第二辐射体202与另一个低频天线沿着边框的长度方向的中轴线相对设置,其中一个低频天线与另一个低频天线呈对角相对设置,这样,辐射体(第一辐射体201或第二辐射体202)与金属边框天线30(两个低频天线)均分离设置,使得辐射体(第一辐射体201或第二辐射体202)与金属边框天线30在空间位置上相对相距较远,能够增加第一辐射体201与金属边框天线30以及第二辐射体202与金属边框天线30之间的隔离度,从而能够有效提升天线装置100中的各天线模块之间的隔离效果,进而能够保证第一辐射体201和第二辐射体202不对金属边框天线30(两个低频天线)造成干扰。
同样,基于上述描述,为了进一步体现上述天线装置100的优势,本申请实施例还提供一种辐射单元20仅包括第一辐射体201的天线装置100(参见图14)以及一种辐射单元20仅包括第二辐射体202的天线装置100(参见图15),即图13是分布式辐射体馈电结构,图14是左侧单独辐射体馈电结构,图15是右侧单独辐射体馈电结构。同样对比了该三种天线结构下的性能,参见图16所示,S1为分布式辐射体馈电结构在自由空间(未对天线装置100造成干扰的情形下)下对应的天线反射系数随频率变化的曲线图,S2为左侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,S3为右侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,参见图17,E1为分布式辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,E2为左侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,E3为右侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,R1为分布式辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,R2为左侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,R3为右侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,由图可知,分布式辐射体馈电结构相比于单独辐射体馈电结构,效率提升接近2dB,其带宽(信号所占据的频带宽度)提升1倍以上。
而且,经过在实际应用场景下图13所示的分布式辐射体馈电结构对应的天线装置100的头手性能,即手握电子设备例如手机200靠近头部,左手握手机200靠近左耳(参见图18A所示),右手握手机200靠近右耳(参见图18B所示)的仿真模拟评测,以及经过在实际应用场景下对图13所示的分布式辐射体馈电结构对应的天线装置100的手握性能,即手握电子设备例如手机200,左手持握手机200(参见图21A所示),右手持握手机200(参见图21B所示)的仿真模拟评测,分别如图19和图20以及图22和图23所示,在图19和图20中,C1为自由空间状态下对应的曲线图,C2为左手握手机200靠近左耳时对应的曲线图,C3为右手握手机200靠近右耳时对应的曲线图,在图22和图23中,C1为自由空间状态下对应的曲线图,C2为左手握手机200时对应的曲线图,C3为右手握手机200时对应的曲线图,由图可知,分布式辐射体馈电结构的左右头手性能和左右手握性能均衡,差异在1dB以内。
此外,图24A和图24B分别为分布式馈电结构对应的天线装置100在0.89GHz下对应的电流分布图和电场分布图,图25A和图25B分别为分布式馈电结构对应的天线装置100在0.95GHz下对应的电流分布图和电场分布图,经过对分布式辐射体馈电结构对应的天线装置100的两个谐振(0.89GHz和0.95GHz)对应的电流分布图和电场分布图的分析,可以发现偏低谐振主要由左侧的第一辐射体201产生,偏高谐振由右侧的第二辐射体202产生。
另外,当金属边框天线30也辐射时,以第一辐射体201和第二辐射体202为低频天线为例,如图13所示,分布式天线(第一辐射体201和第二辐射体202)与两个低频天线(金属边框天线30)工作在同一频段。
例如,在图13中,以左侧的金属边框天线30作为第一低频天线(ant1),右侧的金属边框天线30作为第二低频天线(ant2),第一辐射体201和第二辐射体202作为第三低频天线(ant3)为例,图26和图27显示了该三个低频天线自由空间下的天线反射系数曲线以及效率曲线,其中,S1为第一低频天线对应的天线反射系数曲线图,S2为第二低频天 线对应的天线反射系数曲线图,S3为第三低频天线对应的天线反射系数曲线图,E1为第一低频天线对应的系统效率曲线图,E2为第二低频天线对应的系统效率曲线图,E3为第三低频天线对应的系统效率曲线图,R1为第一低频天线对应的辐射效率曲线图,R2为第二低频天线对应的辐射效率曲线图,R3为第三低频天线对应的辐射效率曲线图,由图可知,该三个低频天线在同频状态下性能正常。
另外,图28为这三个低频天线对应的系统隔离度的曲线图,其中,D1为第二低频天线与第一低频天线之间的系统隔离度对应的曲线图,D2为第三低频天线与第一低频天线之间的系统隔离度对应的曲线图,D3为第三低频天线与第二低频天线之间的系统隔离度对应的曲线图,由图可知,这三个天线两两之间的系统隔离度均在12dB以上,即说明图13所示的天线装置100的辐射性能很好。
ECC at 0.89GHz/0.95GHz ant1 ant2 ant3
ant1      
ant2 0.14/0.1    
ant3 0.15/0.13 0.23/0.47  
图29A、图29B和图29C分别显示了该三个低频天线在0.89GHz下的辐射方向图,图30A、图30B和图30C分别显示了该三个低频天线在0.95GHz下的辐射方向图,另外,上表显示了上述三个低频天线在两个频点下的包络相关系数(Envelope Correlation Coefficient,ECC),同样,以图13中的第一辐射体201和第二辐射体202作为第三低频天线(ant3),左侧的金属边框天线30作为第一低频天线(ant1),右侧的金属边框天线30作为第二低频天线(ant2),由上表可知,该三个低频天线在两个频点(0.89GHz和0.95GHz)下的ECC均小于0.5,因此,足以可见图13所示的这种分布式天线设计是一种较好的MIMO天线设计方案。
在本申请实施例中,其他技术特征与实施例一相同,并能取得相同或相应的技术效果,此处不再一一赘述。
实施例三
与上述实施例一或实施例二不同的是,本申请实施例中的辐射体为中高频辐射体,例如可以通过缩减辐射体的长度以实现频段的增加,两个中高频辐射体(例如悬浮金属天线)位于左右两侧,并通过耦合馈电单元10(例如悬浮金属)实现连接。具体地,与实施例一相比,参照图31A所示,第一辐射体201的长度以及第二辐射体202的长度均有缩短,本申请实施例通过缩短第一辐射体201和第二辐射体202的长度来提高其工作频段。具体地,结合图3和图31A所示,与图3相比,图31A所示的天线装置100中第一辐射体201和第二辐射体202的长度较短。
在本申请实施例中,第一辐射体201和第二辐射体202为中高频天线,作为中高频天线时,第一辐射体201和第二辐射体202的工作频段可以大于1000MHz。示例性地,第一辐射体201和第二辐射体202的工作频段可以为1000MHz、1100MHz或1200MHz等,本申请实施例对此并不加以限定,也不限于上述示例。
另外,图31B为本申请实施例提供的天线装置100的仿真模型图,该仿真模型及天线环境与实施例一相同或相似,此处不再赘述。
同样,基于上述描述,为了进一步体现上述天线装置100的优势,本申请实施例还提供一种辐射单元20仅包括第一辐射体201的天线装置100(参见图32)以及一种辐射单元20仅包括第二辐射体202的天线装置100(参见图33),即图31A是分布式辐射体馈电结构,图32是左侧单独辐射体馈电结构,图33是右侧单独辐射体馈电结构。参见图34所示,S1为分布式辐射体馈电结构在自由空间(未对天线装置100造成干扰的情形下)下对应的天线反射系数随频率变化的曲线图,S2为左侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,S3为右侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,参见图35所示,E1为分布式辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,E2为左侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,E3为右侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,R1为分布式辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,R2为左侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,R3为右侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,由图可知,分布式辐射体馈电结构相比于单独辐射体馈电结构,其带宽(信号所占据的频带宽度)提升1倍以上,且分布式辐射体馈电结构的两个谐振分别对应单独辐射体馈电结构两个不同单元的谐振。
而且,图36和图37给出了左右手握下的分布式辐射体馈电结构对应的天线性能,经过在实际场景下对图31A所示的天线装置100的手握性能(即手握电子设备例如手机200,左手握手机200或右手握手机200)的应用评测,参见图36和图37所示,C1为自由空间状态下对应的曲线图,C2为左手握手机200状态下对应的曲线图,C3为右手握手机200状态下对应的曲线图,由图可知,左手手握和右手手握情形下,效率相比自由空间状态只降低2~3dB,而且比较均衡。
此外,图38A、图38B和图38C分别为分布式馈电结构对应的天线装置100在1.3GHz下对应的电流分布图、电场分布图以及辐射方向图,图39A、图39B和图39C分别为分布式馈电结构对应的天线装置100在1.9GHz下对应的电流分布图、电场分布图以及辐射方向图,图40A、图40B和图40C分别为分布式馈电结构对应的天线装置100在2.01GHz下对应的电流分布图、电场分布图以及辐射方向图,经过对分布式馈电结构对应的天线装置100的三个谐振对应的电流分布图和电场分布图的分析,发现高频的两个谐振分别由左侧的第一辐射体201和右侧的第二辐射体202产生,而较低的谐振由耦合馈电单元10中的馈电枝节产生,当其环境较好时,通过调整长度,也可以用于设计低频天线。
Figure PCTCN2021135167-appb-000001
另外,上表对比了图31A所示的天线装置100(双谐振结构)和图32所示的天线装置100(单谐振结构)这两种天线结构下背面的5mm body SAR(单位时间内单位质量的物质 吸收的电磁辐射能量,衡量终端辐射的热效应),通过分布式辐射体馈电结构(图31A所示的天线装置100),相比于单独辐射体馈电结构(例如图32所示的左侧单独辐射体馈电结构),其SAR值下降约1~2dB。
在本申请实施例中,其他技术特征与实施例一或实施例二相同,并能取得相同或相应的技术效果,此处不再一一赘述。
实施例四
与上述实施例一、实施例二或实施例三不同的是,本申请实施例中的辐射体与金属边框天线30可以馈电连接,相结合以实现分布式馈电。
本申请实施例提供一种电子设备,该电子设备至少包括:中框22(金属中框)、电池盖25和位于金属中框和电池盖25之间的电池24,还包括:天线装置100,具体地,参照图41所示,天线装置100包括:耦合辐射单元50、馈电单元60以及由金属中框的金属边框形成的至少三个低频天线;耦合辐射单元50靠近其中一个低频天线设置,且馈电单元60的一端与耦合辐射单元50耦合馈电,馈电单元60的另一端向其中一个低频天线馈电。
通过将金属中框的金属边框形成至少三个低频天线,天线装置100中的耦合辐射单元50靠近其中一个低频天线设置,天线装置100中的馈电单元60的一端与耦合辐射单元50耦合馈电,馈电单元60的另一端向至少三个低频天线中的其中一个低频天线馈电,这样能够通过耦合辐射单元50与金属边框天线30馈电连接以实现分布式馈电,从而能够提升天线装置100的辐射性能,且能够在一定程度上降低整个天线装置100的设计难度。
其中,耦合辐射单元50可以包括:至少一个耦合辐射体,耦合辐射体设置在电池盖25的内表面;馈电单元60位于耦合辐射体和低频天线之间,馈电单元60的一端与耦合辐射体耦合馈电,馈电单元60的另一端向低频天线馈电。
在一种可能的实现方式中,耦合辐射体的至少部分位于中框22的其中一个侧边框和电池24朝向电池盖25的正投影之间。也就是说,耦合辐射体的部分或全部结构位于侧边框(左侧边框2223或右侧边框2224)和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,这样,耦合辐射体的部分或全部结构将不位于电池24朝向电池盖25的正投影区域之内,则电池24不会遮挡住耦合辐射体或只能遮挡住耦合辐射体的部分结构,进而能够避免对遮挡住耦合辐射体的辐射性能的影响或干涉。
在本申请实施例中,馈电单元60与馈源电连接,馈电单元60的一端与耦合辐射体耦合馈电,馈电单元60的另一端通过馈电线与低频天线电连接,以实现馈电单元60向低频天线馈电。这样,外部馈源对馈电单元60馈电,馈电单元60对耦合辐射体耦合馈电,且馈电单元60通过馈电线向低频天线馈电,以此实现通过馈源对耦合辐射体和低频天线的馈电过程。
可以理解的是,馈电形式可以是通过有线电缆(例如cable线)、传输线或者悬浮金属结构等实现,本申请实施例中的馈电形式包括但不限于上述示例,具体可以根据实际应用场景的需求进行灵活设置。
馈电单元60包括:支架和设在支架上的馈电枝节,馈电枝节与馈源电连接;支架固定在电池盖25的内表面上。通过将支架固定在电池盖25的内表面上,能够实现对馈电单元60的固定,通过馈电枝节与馈源电连接,能够实现外部馈源对馈电单元60馈电,馈电 单元60对耦合辐射体耦合馈电,且馈电单元60通过馈电线向低频天线馈电,以此实现通过馈源对耦合辐射体和低频天线的馈电过程。
在本申请实施例中,耦合辐射单元50或馈电单元60可以为悬浮金属、石墨烯层或透明导电层。
此外,本申请实施例提供的该天线装置100还可以包括:至少一个接地层,接地层靠近耦合辐射体的一端设置且与耦合辐射体耦合接地;接地层还通过馈电线与低频天线接地。这样,通过靠近第一辐射体201的耦合接地层401能够实现第一辐射体201与中框22之间的耦合接地,通过靠近耦合辐射体的接地层能够实现耦合辐射体与中框22之间的耦合接地,以及低频天线与中框22之间的接地。
综上,耦合辐射体与金属边框天线30作分布式馈电连接以提升辐射性能时,参见图42所示,其中,F1为图41所示的分布式馈电天线结构(耦合辐射体+金属边框天线30)对应的效率曲线图,F2为现有技术中仅馈电金属边框天线30的天线结构对应的效率曲线图,由图可知,图41所示的分布式馈电天线结构(耦合辐射体+金属边框天线30)相比于现有技术中仅馈电金属边框天线30的天线结构,分布式馈电天线效率可提升1.5dB,带宽增加1倍左右。
在本申请实施例中,其他技术特征与实施例一、实施例二或实施例三相同,并能取得相同或相应的技术效果,此处不再一一赘述。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (14)

  1. 一种天线装置,应用于电子设备,所述电子设备包括中框、电池盖和位于所述中框和所述电池盖之间的电池,其特征在于,所述天线装置包括:
    至少一组耦合馈电单元和至少一组辐射单元;
    每组所述辐射单元包括:第一辐射体和第二辐射体,所述第一辐射体和第二辐射体设置在所述电池盖的内表面;
    所述第一辐射体和第二辐射体分别位于所述耦合馈电单元的两侧,且所述耦合馈电单元分别与所述第一辐射体和所述第二辐射体耦合馈电。
  2. 根据权利要求1所述的天线装置,其特征在于,
    所述第一辐射体和所述第二辐射体中的至少一个位于所述中框的其中一个侧边框和所述电池朝向所述电池盖的正投影之间。
  3. 根据权利要求2所述的天线装置,其特征在于,
    所述第一辐射体位于所述中框的其中一个侧边框和所述电池朝向所述电池盖的正投影之间,所述第二辐射体位于所述中框的另一相对的侧边框和所述电池朝向所述电池盖的正投影之间。
  4. 根据权利要求1-3任一所述的天线装置,其特征在于,还包括:至少两个金属边框天线,且所述至少两个金属边框天线中的其中两个为低频天线。
  5. 根据权利要求4所述的天线装置,其特征在于,所述第一辐射体的一端朝向所述中框的顶边框延伸,所述第二辐射体的一端朝向所述中框的底边框延伸;
    其中一个所述低频天线朝向所述电池盖的正投影与所述第一辐射体相对,且所述其中一个所述低频天线朝向所述电池盖的正投影与所述第一辐射体分别位于所述电池朝向所述电池盖的正投影的两侧;
    另一个所述低频天线朝向所述电池盖的正投影与所述第二辐射体相对,且所述另一个所述低频天线朝向所述电池盖的正投影与所述第二辐射体分别位于所述电池朝向所述电池盖的正投影的两侧。
  6. 根据权利要求1-4任一所述的天线装置,其特征在于,所述第一辐射体的一端朝向所述中框的底边框延伸,所述第二辐射体的一端朝向所述中框的底边框延伸;
    或者,所述第一辐射体的一端朝向所述中框的顶边框延伸,所述第二辐射体的一端朝向所述中框的顶边框延伸;
    或者,所述第一辐射体的一端朝向所述中框的底边框延伸,所述第二辐射体的一端朝向所述中框的侧边框延伸。
  7. 根据权利要求1-6任一所述的天线装置,其特征在于,所述第一辐射体和所述第二辐射体的电长度为1/4λ-1/2λ,其中,λ为所述第一辐射体和所述第二辐射体的谐振频率对应的波长。
  8. 根据权利要求1-7任一所述的天线装置,其特征在于,每组所述耦合馈电单元包括:第一耦合馈电单元和第二耦合馈电单元,所述第一耦合馈电单元与馈源电连接,且所述第一耦合馈电单元分别与所述第一辐射体的另一端和所述第二耦合馈电单元的一端耦合馈电;
    所述第二耦合馈电单元的另一端与所述第二辐射体的另一端耦合馈电。
  9. 根据权利要求8所述的天线装置,其特征在于,所述第一耦合馈电单元包括:支架和设在所述支架上的馈电枝节,所述馈电枝节与所述馈源电连接;所述支架固定在所述电池盖的内表面上。
  10. 根据权利要求8所述的天线装置,其特征在于,所述第二耦合馈电单元、所述第一辐射体、所述第二辐射体为悬浮金属、石墨烯层或透明导电层。
  11. 根据权利要求1-10任一所述的天线装置,其特征在于,所述第一辐射体和所述第二辐射体的工作频段为700-900MHz。
  12. 根据权利要求1-11任一所述的天线装置,其特征在于,还包括:至少一组耦合接地单元,每组所述耦合接地单元包括至少两个耦合接地层,其中一个所述耦合接地层靠近所述第一辐射体的一端设置且与所述第一辐射体耦合接地;
    另一个所述耦合接地层靠近所述第二辐射体的一端设置且与所述第二辐射体耦合接地。
  13. 一种电子设备,其特征在于,至少包括:显示屏、中框、电池盖和位于所述中框和所述电池盖之间的电池,还包括:上述权利要求1-12任一所述的天线装置;所述天线装置中的所述第一辐射体、第二辐射体和耦合馈电单元均设置在所述电池盖的内表面。
  14. 根据权利要求13所述的电子设备,其特征在于,所述中框为金属中框,且所述金属中框至少包括金属边框,所述金属边框形成所述天线装置中的至少两个金属边框天线。
PCT/CN2021/135167 2020-12-08 2021-12-02 天线装置及电子设备 WO2022121776A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21902483.3A EP4243203A4 (en) 2020-12-08 2021-12-02 ANTENNA APPARATUS AND ELECTRONIC DEVICE
US18/256,238 US20240021982A1 (en) 2020-12-08 2021-12-02 Antenna Apparatus and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011423001.9 2020-12-08
CN202011423001.9A CN114614242B (zh) 2020-12-08 2020-12-08 天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022121776A1 true WO2022121776A1 (zh) 2022-06-16

Family

ID=81856103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135167 WO2022121776A1 (zh) 2020-12-08 2021-12-02 天线装置及电子设备

Country Status (4)

Country Link
US (1) US20240021982A1 (zh)
EP (1) EP4243203A4 (zh)
CN (2) CN114614242B (zh)
WO (1) WO2022121776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175454A (zh) * 2022-09-08 2022-10-11 荣耀终端有限公司 一种电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435787A (zh) * 2022-09-07 2023-07-14 荣耀终端有限公司 电子组件及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128190A1 (en) * 2009-12-02 2011-06-02 Sony Ericsson Mobile Communications Ab Wireless communication terminal with a split multi-band antenna having a single rf feed node
CN109390679A (zh) * 2017-08-03 2019-02-26 广达电脑股份有限公司 双频带天线结构
CN109962331A (zh) * 2017-12-25 2019-07-02 广达电脑股份有限公司 移动装置
TWM592170U (zh) * 2019-10-22 2020-03-11 宏碁股份有限公司 行動裝置
CN111092292A (zh) * 2018-10-24 2020-05-01 深圳市超捷通讯有限公司 天线结构及具有该天线结构的无线通信装置
US20200274231A1 (en) * 2019-02-22 2020-08-27 Wistron Neweb Corp. Mobile device and antenna structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078333A (ja) * 2001-08-30 2003-03-14 Murata Mfg Co Ltd 無線通信機
US8698677B2 (en) * 2010-04-09 2014-04-15 Sony Corporation Mobile wireless terminal and antenna device
US20150222008A1 (en) * 2012-07-11 2015-08-06 Xi3, Inc. Performance enhancing electronic steerable case antenna employing direct or wireless coupling
EP2876727B8 (en) * 2012-07-20 2018-10-31 AGC Inc. Antenna device and wireless device provided with same
CN106716715B (zh) * 2014-10-02 2020-10-30 Agc株式会社 天线装置以及无线装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128190A1 (en) * 2009-12-02 2011-06-02 Sony Ericsson Mobile Communications Ab Wireless communication terminal with a split multi-band antenna having a single rf feed node
CN109390679A (zh) * 2017-08-03 2019-02-26 广达电脑股份有限公司 双频带天线结构
CN109962331A (zh) * 2017-12-25 2019-07-02 广达电脑股份有限公司 移动装置
CN111092292A (zh) * 2018-10-24 2020-05-01 深圳市超捷通讯有限公司 天线结构及具有该天线结构的无线通信装置
US20200274231A1 (en) * 2019-02-22 2020-08-27 Wistron Neweb Corp. Mobile device and antenna structure
TWM592170U (zh) * 2019-10-22 2020-03-11 宏碁股份有限公司 行動裝置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243203A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175454A (zh) * 2022-09-08 2022-10-11 荣耀终端有限公司 一种电子设备
CN115175454B (zh) * 2022-09-08 2023-01-20 荣耀终端有限公司 一种电子设备

Also Published As

Publication number Publication date
EP4243203A1 (en) 2023-09-13
CN114614242A (zh) 2022-06-10
EP4243203A4 (en) 2024-04-03
CN117039408A (zh) 2023-11-10
CN114614242B (zh) 2023-08-22
US20240021982A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
EP3855567B1 (en) Coupled antenna device and electronic device
WO2022121776A1 (zh) 天线装置及电子设备
US10511079B2 (en) Electronic device and antenna structure thereof
US10838266B2 (en) Display device
US20230146114A1 (en) Electronic device
US10468775B2 (en) Antenna assembly, wireless communications electronic device and remote control having the same
CN107667428B (zh) 显示装置
EP4266497A1 (en) Electronic device
US11973261B2 (en) Antenna structure and wireless communication device using same
US20230048914A1 (en) Antenna Apparatus and Electronic Device
CN114122685A (zh) 天线单元和电子设备
US10784565B2 (en) Mobile device and antenna structure therein
TW202130042A (zh) 天線結構及具有該天線結構之無線通訊裝置
US20240021993A1 (en) Antenna Apparatus and Electronic Device
US11973278B2 (en) Antenna structure and electronic device
TWI724738B (zh) 天線結構及具有該天線結構之無線通訊裝置
TW202301741A (zh) 天線結構及具有該天線結構之電子設備
CN112448136A (zh) 天线及移动终端
CN114156633B (zh) 低sar天线装置及电子设备
WO2023040928A1 (zh) 一种电子设备
WO2024109444A1 (zh) 终端设备
CN112542692B (zh) 电子设备
WO2023016353A1 (zh) 一种天线结构和电子设备
WO2022135148A1 (zh) 电子设备
WO2021088736A1 (zh) 天线辐射体及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18256238

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021902483

Country of ref document: EP

Effective date: 20230607

NENP Non-entry into the national phase

Ref country code: DE