WO2024012026A1 - 一种平面倒f天线对及电子设备 - Google Patents

一种平面倒f天线对及电子设备 Download PDF

Info

Publication number
WO2024012026A1
WO2024012026A1 PCT/CN2023/092721 CN2023092721W WO2024012026A1 WO 2024012026 A1 WO2024012026 A1 WO 2024012026A1 CN 2023092721 W CN2023092721 W CN 2023092721W WO 2024012026 A1 WO2024012026 A1 WO 2024012026A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
mode
planar inverted
antenna pair
slot
Prior art date
Application number
PCT/CN2023/092721
Other languages
English (en)
French (fr)
Inventor
张伟泉
张志军
Original Assignee
荣耀终端有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司, 清华大学 filed Critical 荣耀终端有限公司
Priority to EP23786995.3A priority Critical patent/EP4336654A1/en
Publication of WO2024012026A1 publication Critical patent/WO2024012026A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points

Definitions

  • the present application relates to the field of antenna technology, and in particular to a planar inverted F antenna pair and electronic equipment.
  • Wi-Fi 6E uses the 6G frequency band, it has the advantages of wider bandwidth, high concurrency and low latency compared to Wi-Fi 6 in the 5G frequency band. Considering user aesthetics and actual production, antenna systems working on different wireless standards are often integrated.
  • two compactly placed antenna systems 1 and 2 support the Wi-Fi 6 and Wi-Fi 6E standards respectively. Since the working frequency band gap of the two wireless standards is only 0.09GHz, serious signal interference will occur between the two compactly placed antenna systems. Therefore, how to achieve decoupling between antennas has become an urgent problem to be solved.
  • planar inverted F antenna pair and electronic equipment.
  • the planar inverted F antenna pair has a compact structure and can achieve broadband decoupling between antennas through a simple structure without adding complex decoupling structures and optimization processes. No additional losses are introduced.
  • the present application provides a planar inverted F antenna pair, including: a dielectric substrate, a metal floor and a radiating unit.
  • the metal floor is arranged on one side of the dielectric substrate.
  • the two ends of the radiating unit are respectively connected to a first feed part and a radiating unit.
  • the radiating unit and the metal floor are connected through a grounded metal sheet.
  • the grounded metal sheet is located between the first feeding part and the second feeding part.
  • the first feeding part and the second feeding part are connected to the grounding metal.
  • the distance between the plates is unequal, and a groove is provided on the metal floor. The two ends of the groove are located on both sides of the grounded metal plate.
  • two back-to-back planar inverted F antennas are formed by setting a grounded metal sheet to connect the radiating unit and the metal floor, and setting a first feed part and a second feed part at both ends of the radiating unit;
  • the distance from the first feed part and the second feed part to the ground metal sheet is unequal, forming an asymmetric planar inverted F antenna pair, so that the two antennas can work in different operating frequency bands;
  • two slots are provided on the metal floor, the two slots are symmetrically arranged on both sides of the radiating unit, and the first feed part and the second feed part are located between the two slots. between.
  • the slots can achieve broadband demultiplexing of the two antennas. Coupling, and the working principle of the two slots is the same.
  • the two slots are symmetrically set in the radiating unit. The symmetrical structure makes the decoupling effect of the two slots better.
  • both the first power feeding part and the second power feeding part are located on the center line of the radiating unit.
  • this design method makes the inverted F antenna pair symmetrical about the connection between the center of the first feed part and the center of the second feed part, making the structure of the antenna more compact, convenient in design, and at the same time conducive to passing through the slot. Achieve decoupling of two antennas.
  • the working frequency band of one of the inverted F antennas is between 5.15GHz and 5.835GHz, and the working frequency band of the other inverted F antenna is between 5.925GHz and 7.125GHz.
  • the shape of the metal floor and the radiation unit is rectangular, and the shape of the groove is also rectangular.
  • these structures on the antenna are designed into regular rectangles to facilitate design and achieve decoupling of the two antennas.
  • the length of the metal floor is 65mm
  • the width of the metal floor is 30mm
  • the length of the groove is 22-26mm
  • the width of the groove is 2mm.
  • the present application provides an electronic device, including a fuselage and a pair of planar inverted F antennas as provided in the above first aspect and any possible design method thereof.
  • the pair of planar inverted F antennas is disposed in the fuselage. .
  • Figure 1 is a schematic diagram of a dual-antenna system provided by the prior art
  • Figure 2 is a schematic diagram of mutual coupling between antennas provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a decoupling principle of the antenna provided by the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a planar inverted F antenna pair provided by an embodiment of the present application.
  • Figure 5 is a schematic top view of a planar inverted F antenna pair shown in Figure 4.
  • Figure 6 is a schematic front view of a planar inverted F antenna pair shown in Figure 4.
  • Figure 7 is a simulated electric field intensity distribution diagram of the antenna pair shown in Figure 4 in common mode mode at 6GHz;
  • Figure 8 is a simulated electric field intensity distribution diagram of the antenna pair shown in Figure 4 in differential mode at 6GHz;
  • Figure 9 is a Smith chart of the impedance of the antenna pair shown in Figure 4 in common mode and differential mode within 5-7.5GHz;
  • Figure 10 is a simulated S-parameter curve chart of the antenna pair shown in Figure 4 within 5-7.5GHz;
  • FIG 11 is a schematic structural diagram of another planar inverted F antenna pair provided by an embodiment of the present application.
  • Figure 12 is a schematic top view of a planar inverted F antenna pair shown in Figure 11;
  • Figure 13 is a schematic front view of a planar inverted F antenna pair shown in Figure 11;
  • Figure 14 is a schematic bottom view of a planar inverted F antenna pair shown in Figure 11;
  • Figure 15 is a slot decoupling structure provided by an embodiment of the present application.
  • Figure 16 is another groove structure provided by the embodiment of the present application.
  • Figure 17 is a Smith chart of the impedance of the slot structure shown in Figure 16 in common mode mode and differential mode mode within 5-7.5GHz;
  • Figure 18 is a Smith chart of the impedance in two modes when the antenna pair shown in Figure 4 is loaded with a single-mode slot in 5-7.5GHz;
  • Figure 19 is a simulated S-parameter curve chart in 5-7.5GHz when the antenna pair shown in Figure 4 is loaded with a single-mode slot;
  • Figure 20 is another schematic front view of the planar inverted F antenna pair shown in Figure 11;
  • Figure 21 is the electric field intensity distribution diagram of the planar inverted F antenna pair shown in Figure 11 on the XY plane where AA ⁇ is located in the common mode mode at 6GHz;
  • Figure 22 is the electric field intensity distribution diagram of the planar inverted F antenna pair shown in Figure 11 in the 6GHz time difference mode on the XY plane where AA ⁇ is located;
  • Figure 23 is a simulated S-parameter curve diagram of the planar inverted F antenna pair shown in Figure 4 loaded with single-mode slots of different lengths;
  • Figure 24 is a Smith chart of the impedance of the two modes of the planar inverted F antenna shown in Figure 4 loaded with single-mode slots of different lengths;
  • Figure 25 is the radiation pattern of the first port excitation of the planar inverted F antenna pair shown in Figure 11 at different frequencies
  • Figure 26 is the radiation pattern of the second port excitation in the planar inverted F antenna pair shown in Figure 11 at different frequencies;
  • Figure 27 is a simulated S-parameter curve chart of the planar inverted F antenna pair shown in Figure 11 within 5-7.5GHz.
  • first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a sliding connection, or a detachable connection. or integrated into one, etc.; it can be directly connected or indirectly connected through an intermediary.
  • references to “one embodiment”, “another embodiment” and “a possible design” throughout this specification mean that specific features, structures or characteristics related to the embodiment or implementation are included in this specification. In at least one embodiment of the application. Therefore, “in one embodiment of the present application” or “in another embodiment of the present application” or “a possible design manner” appearing in various places throughout the specification do not necessarily refer to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • FIG. 1 is a schematic diagram of a dual-antenna system provided by the prior art.
  • the compact dual antenna in the existing technology includes antenna 1 and antenna 2.
  • Antenna 1 and antenna 2 respectively support the Wi-Fi 6 standard (5.15GHz-5.835GHz) and Wi-Fi 6E (5.925GHz). -7.125GHz) standard.
  • Wi-Fi 6 standard 5.15GHz-5.835GHz
  • Wi-Fi 6E 5.925GHz
  • -7.125GHz -7.125GHz
  • embodiments of the present application provide a planar inverted F antenna pair and electronic
  • the equipment can operate in a continuous frequency band and has broadband high isolation characteristics, and supports both Wi-Fi 6 standard and Wi-Fi 6E, and the antenna system has a compact structure.
  • FIG. 2 is a schematic diagram of mutual coupling between antennas according to an embodiment of the present application.
  • antenna 1 and antenna 2 there is a certain distance between antenna 1 and antenna 2, where antenna 1 is connected to port 1, antenna 2 is connected to port 2, and antenna 1 and antenna 2 are coupled to each other.
  • antenna 1 and antenna 2 when an excitation signal is input to port 1 and an excitation signal is also input to port 2, the two excitation signals have the same size and the same polarity. At this time, antenna 1 and antenna 2 in common mode mode.
  • antenna 1 and antenna 2 are in differential mode mode. Since the impedances corresponding to the antennas are not equal or similar (unbalanced) within the corresponding frequency bands in the common mode mode and the differential mode mode, coupling exists between the two antennas.
  • FIG. 3 is a schematic diagram of a decoupling principle of an antenna provided by an embodiment of the present application.
  • a decoupling structure is added between antenna 1 and antenna 2.
  • the direct coupling path between antenna 1 and antenna 2 is called coupling path 1.
  • the added decoupling structure between antenna 1 and antenna 2 is The coupling formed by the coupling structure is called coupling path 2.
  • the parameters of the decoupling structure can be adjusted so that the coupling formed by the introduced coupling path 2 is equal to the coupling formed by the coupling path 1 of the two antennas in the antenna system.
  • FIG 4 is a schematic structural diagram of a planar inverted F antenna pair provided by an embodiment of the present application.
  • the planar inverted F antenna pair includes a dielectric substrate 1, a metal floor 2, a radiating unit 3 and a connection structure.
  • the radiating unit 3 is a metal sheet.
  • the metal floor 2 is arranged on one side of the dielectric substrate 1, and the metal sheet is connected to the metal floor 2 and the dielectric substrate 1 through a connecting structure.
  • the connection structure includes a grounded metal sheet 4 and a metal connecting post. One end of the grounded metal sheet 4 is connected to the metal sheet, and the other end is connected to the metal floor 2 .
  • Metal connection posts are provided at both ends of the metal sheet.
  • One end of the metal connection post is connected to the metal sheet.
  • the other end of the metal connection post passes through the metal floor 2 and is connected to the dielectric substrate 1, and the metal connection post and the metal floor 2 are maintained A certain gap.
  • the two metal connection posts form the first feed part 5 and the second feed part 6 respectively.
  • One end of the metal connection post connected to the dielectric substrate 1 can be connected to the feed source through a microstrip line to excite the antenna.
  • a grounded metal sheet 4 is arranged in the middle of the metal sheet, and metal connection posts are provided at both ends of the metal sheet.
  • the input of the excitation signal is realized through the metal connection posts and the microstrip line.
  • the two metal connection posts are equivalent Based on the two ports of the antenna, the metal sheet, the ground metal sheet 4, the metal connecting column, the metal floor 2 and the dielectric substrate 1 form an inverted F antenna pair.
  • the ground metal sheet 4 and the metal sheet and metal connection posts on one side of the ground metal sheet 4 can be understood as an inverted F antenna
  • the ground metal sheet 4 and the metal sheet and metal connection posts on the other side of the ground metal sheet 4 can be understood as an inverted F antenna. for another inverted F antenna.
  • the two antennas are set to antennas of different specifications.
  • the metal connection post on the left side of the ground metal sheet 4 is called the first metal connection post
  • the metal connection post on the right side of the ground metal sheet 4 is called the second metal connection post.
  • FIG. 5 is a schematic top view of the planar inverted F antenna pair shown in FIG. 4 , which is the projection of the planar inverted F antenna pair on the xy plane.
  • the length of the metal floor 2 is l 0 and the width of the metal floor 2 is w 0 .
  • the length of the metal piece on the left side of the grounding metal piece 4 is the first length l 1
  • the length of the metal piece on the right side of the grounding metal piece 4 is the second length l 2
  • the width of the metal piece is the second length l 1 .
  • a width w 1 , and the width of the ground metal piece 4 is a second width w 2 .
  • Figure 6 is a schematic front view of a planar inverted F antenna pair shown in Figure 4, which is a projection of the planar inverted F antenna pair on the yz plane.
  • the height between the metal sheet and the metal floor 2 is h1
  • the height of the dielectric substrate 1 is h2 .
  • the distance between the ground metal piece 4 and the first metal connection post is l 3
  • the distance between the ground metal piece 4 and the second metal connection post is l 4 .
  • the two planar inverted F antennas have different lengths, so that the two antennas can work in different frequency bands.
  • the planar inverted F antenna pair has symmetry in the YZ plane.
  • the electric field strengths of the antenna pair shown in Figure 4 in common mode and differential mode at 6GHz are simulated respectively.
  • Figure 7 is a simulated electric field intensity distribution diagram of the antenna pair shown in Figure 4 in common mode mode at 6GHz.
  • Figure 8 is a simulated electric field intensity distribution diagram of the antenna pair shown in Figure 4 in differential mode mode at 6GHz. Distribution.
  • the simulated electric field intensity of the antenna pair shown in Figure 4 is relatively evenly distributed in the common mode mode, and the difference between the electric field intensity at the ends of the metal sheet and the electric field intensity in the middle of the metal sheet is small.
  • the simulated electric field intensity distribution of the antenna pair shown in Figure 4 in differential mode is quite different. The electric field intensity near both ends of the metal sheet is larger, while the electric field intensity in the middle of the metal sheet is smaller.
  • Figure 9 is a Smith chart of the impedance of the antenna pair shown in Figure 4 in common mode mode and differential mode mode within 5-7.5GHz.
  • the curve C CM in the figure represents the impedance of the antenna pair in common mode mode
  • the curve C DM in the figure represents the impedance of the antenna pair in differential mode.
  • Figure 10 is a simulated S-parameter curve chart of the antenna pair shown in Figure 4 within 5-7.5GHz. As shown in Figure 10, it can be seen from the curve S21 in the figure that when within 5-6.5GHz, the coupling degree of the two ports is poor, and the coupling degree is basically higher than -10dB. The coupling of the two ports near 6GHz higher than -9dB.
  • FIG 11 is a schematic structural diagram of another planar inverted F antenna pair provided by an embodiment of the present application.
  • the inverted F antenna pair in the embodiment of the present application includes a dielectric substrate 1, a metal floor 2, a radiating unit 3, a grounded metal piece 4 and a metal connecting post.
  • the radiation unit 3 is a metal sheet as an example.
  • the metal floor 2 is arranged on one side of the dielectric substrate 1 , and the radiation unit 3 (metal sheet) is connected to the metal floor 2 through the ground metal sheet 4 .
  • the two ends of the radiating unit 3 are respectively provided with metal connecting columns (feeding parts).
  • One end of the metal connecting column is connected to the metal sheet, and the other end of the metal connecting column passes through the metal floor 2 and is connected to the dielectric substrate 1, and A certain gap is maintained between the metal connecting column and the metal floor 2, that is, the metal connecting column and the metal floor 2 are not in direct contact.
  • One end of the metal connecting post connected to the dielectric substrate 1 can be connected to the feed source through a microstrip line to excite the antenna.
  • the metal connecting posts at both ends of the radiating unit 3 form the first feed part 5 and the second feed part 6 respectively, and the ground metal sheet 4 is located between the first feed part 5 and the second feed part 6, that is, between the two between metal connecting posts.
  • a groove is provided on the metal floor 2 , and the groove is located on one side of the radiating unit 3 , or grooves are provided on both sides of the radiating unit 3 , and the two ends of the groove are located on both sides of the ground metal sheet 3 .
  • first grooves 7 and second grooves 8 are respectively provided on both sides of the radiation unit 3 .
  • the two slots may be symmetrically arranged on both sides of the radiation unit 3 , that is, the first slot 7 and the second slot 8 are symmetrical about the YZ plane in FIG. 11 . Arranging the two slots symmetrically on both sides of the radiation unit 3 can make the decoupling effect of the two slots better.
  • the two antennas are set to antennas of different specifications.
  • the metal connection post on the left side of the ground metal sheet 4 is called the first metal connection post (first feed part 5)
  • the metal connection post on the right side of the ground metal sheet 4 is called the first metal connection post (first feed part 5).
  • the second metal connecting post (second power feeding part 6).
  • FIG. 12 is a schematic top view of the planar inverted F antenna pair shown in FIG. 11 , which is the projection of the planar inverted F antenna pair on the xy plane.
  • the length of the metal floor 2 is l 0 and the width of the metal floor 2 is w 0 .
  • the length of the metal piece on the left side of the grounding metal piece 4 is the first length l 1
  • the length of the metal piece on the right side of the grounding metal piece 4 is the second length l 2
  • the width of the metal piece is the second length l 1 .
  • a width w 1 , and the width of the ground metal piece 4 is a second width w 2 .
  • the distance between the groove and the metal sheet is d
  • the distance between the first end of the groove and the first end of the metal sheet is d 1
  • the distance between the second end of the groove and the second end of the metal sheet is also d 1 .
  • the size parameters of this part of the antenna pair can be set with reference to the above-mentioned size parameters of the antenna pair shown in Figure 4, d can be 2mm, and d1 can be 0.5mm.
  • Figure 13 is a schematic front view of a planar inverted F antenna pair shown in Figure 11, which is a projection of the planar inverted F antenna pair on the yz plane.
  • the height between the metal sheet and the metal floor 2 is h 1
  • the height of the metal floor 2 is h 2
  • the distance between the ground metal piece 4 and the first metal connection post is l 5
  • the distance between the ground metal piece 4 and the second metal connection post is l 6 .
  • FIG 14 is a schematic bottom view of a planar inverted F antenna pair shown in Figure 11.
  • one end of the first metal connection post connected to the dielectric substrate 1 is connected to the first microstrip line
  • one end of the second metal connection post connected to the dielectric substrate 1 is connected to the second microstrip line
  • the first microstrip line The other end of the line is connected to the first port
  • the other end of the second microstrip line is connected to the second port.
  • first microstrip line and the second microstrip line are as shown in Figure 14, where the first microstrip line consists of three sections of lines with different lengths and widths and connecting parts.
  • the first microstrip line includes a first segment line, a first connecting part, a second segment line, a second connecting part and a third segment line.
  • the first connecting part connects the first segment line and the second segment line.
  • the two connecting parts connect the second segment line and the third segment line.
  • the first metal connecting post is connected to the first segment line and is perpendicular to each other.
  • the first connecting part and the second connecting part are both trapezoidal shapes.
  • the distance between the first end of the first segment of the line and the center line of the first metal connecting post is l 7
  • the distance between the second end of the first segment of the line and the center line of the first metal connecting post is l 8 .
  • the width of the first line segment is w 5
  • the length of the first connecting part is l 9
  • the length of the second segment line is l 10
  • the width of the second segment line is w 6
  • the length of the second connecting part is l 9
  • the width of the third line segment is w 4 .
  • the second microstrip line is also composed of three sections of lines with different lengths and widths and connecting parts.
  • the second microstrip line includes a fourth section of line, a fifth section of line, a third section of line and a sixth section of line.
  • the fourth segment line is connected to the fifth segment line.
  • the third connection part is connected to the fifth segment line and the sixth segment line.
  • the connection point, and the first metal connection post and the second microstrip line are perpendicular to each other, and the third connection part is in a trapezoid shape.
  • the length of the fourth segment line is l 11
  • the length of the fifth segment line is l 12
  • the width of the fifth segment line is w 7
  • the length of the third connecting part is l 9
  • the length of the fourth segment line and the sixth segment line is The width is w 4 .
  • r is the diameter of the metal connecting post
  • r 1 is the diameter of the hole opened in the metal sheet
  • the metal connecting post passes through the hole to be fixed to the dielectric substrate 1
  • one end of the metal connecting post passes through the hole to connect to the microstrip line, Achieve coupling with the excitation signal.
  • slots are symmetrically provided on both sides of the metal floor 2.
  • the influence of the slot structure on the metal floor 2 will be analyzed below.
  • Figure 15 shows a slot decoupling structure provided by an embodiment of the present application.
  • the structure includes a metal floor 2 and a dielectric substrate 1.
  • the metal floor 2 is arranged on the dielectric substrate 1.
  • the groove is generally a rectangular structure.
  • the length of the metal floor 2 is l 0 and the width of the metal floor 2 is w 0
  • the length of the slot is l slot
  • Figure 16 is another slot structure provided by the embodiment of the present application. As shown in Figure 16, the ports are symmetrically loaded on the slot. It should be noted that the two ports maintain a certain distance from both ends of the slot. The distance between the two ports is l port . When performing performance analysis, the value of l port can be 7.5mm. Perform performance analysis on the slot structure shown in Figure 16.
  • Figure 17 is a Smith chart of the impedance of the slot structure shown in Figure 16 in the common mode mode and the differential mode mode within 5-7.5GHz.
  • the curve C CM in Figure 17 represents the impedance of the groove in the common mode mode
  • the curve C DM in the figure represents the impedance of the groove in the differential mode. It can be seen from the curve C CM in the figure that the groove Impedance in common mode mode is good. It can be seen from the curve C DM in the figure that the impedance of the slot in the differential mode is almost pure reactance. Therefore, within the bandwidth of 5-7.5GHz, in differential mode mode, the slot is difficult to be excited effectively; while in common mode mode, the slot can be excited.
  • the structure shown in Figure 17 in which the impedance of one mode is almost pure reactance is called a single-mode structure, and the slot structure in the figure can be called a single-mode slot.
  • another planar inverted F antenna pair shown in Figure 11 is provided with slot structures on both sides of the antenna pair, which is equivalent to loading the planar inverted F antenna pair shown in Figure 4 with the elements shown in Figure 15
  • the two slots in Figure 11 are arranged symmetrically with respect to the YZ plane, which is equivalent to loading the slot structure symmetrically on both sides of the planar inverted F antenna pair shown in Figure 4.
  • the planar inverted F antenna pair realizes the excitation of the slot through the electric field coupling on both sides.
  • the electric field intensity distribution diagram of the two planar inverted F antennas can be referred to Figure 7 and Figure 8.
  • the electric field generated by the two planar inverted F antennas is equivalent to an excitation source for each slot.
  • planar inverted F antenna pair shown in Figure 11 is centered, and the excitation method of each slot is the same as that in Figure 16 Corresponds to the excitation mode of the slot. That is to say, the electric field generated by the two planar inverted F antennas in Figure 11 excites the slot in the same manner as the two ports in Figure 16 excites the slot.
  • planar inverted F antenna pair shown in Figure 11 The performance of the planar inverted F antenna pair shown in Figure 11 is simulated and analyzed.
  • the size of the planar inverted F antenna pair can be set with reference to the description in the above embodiment.
  • Figure 18 is a Smith chart of the impedance in two modes when the antenna pair shown in Figure 4 is loaded with a single-mode slot in 5-7.5GHz.
  • the curve C 1 in the figure represents the impedance in the common mode mode when the single mode groove is not loaded;
  • the curve C 2 in the figure represents the impedance in the common mode mode when the single mode groove is loaded;
  • Figure The curve C 3 in the figure represents the impedance in the differential mode mode when the single mode groove is not loaded;
  • the curve C 4 in the figure represents the impedance in the differential mode mode when the single mode groove is loaded.
  • the loading of the single-mode slot has a greater impact on the impedance of the planar inverted F antenna in the common mode mode and has a minimal impact on the impedance in the differential mode.
  • This phenomenon is caused by the single-mode slot in the common mode and differential mode. Determined by the impedance characteristics, that is: the single-mode slot is difficult to be excited effectively in the differential mode mode; while the single-mode slot can be excited in the common mode mode.
  • Figure 19 is a simulated S-parameter curve in 5-7.5GHz when the antenna pair shown in Figure 4 is loaded with a single-mode slot.
  • the curves S 11 , S 21 and S 22 in the figure represent the S parameters when the single mode groove is not loaded
  • the curves S ⁇ 11 , S ⁇ 21 and S ⁇ 22 in the figure represent the S parameters when the single mode groove is loaded. of each parameter. It can be seen from the curve S 21 in the figure that when the single-mode slot is not loaded, the coupling degree of the two antennas is poor within 5-6.5GHz, and the coupling degree is higher than -10dB most of the time.
  • this application uses simulation analysis to obtain the planar inverted F antenna pair shown in Figure 11 at 6GHz.
  • the XY position of AA ⁇ is Electric field intensity distribution diagram on a plane.
  • Figure 20 is another schematic front view of the planar inverted F antenna pair shown in Figure 11. Compared with Figure 12, Figure 20 shows the location of AA'.
  • Figure 21 is the electric field intensity distribution diagram on the XY plane where AA ⁇ is located for the planar inverted F antenna pair shown in Figure 11 in the common mode mode at 6GHz.
  • Figure 22 is the planar inverted F antenna pair shown in Figure 11 in the 6GHz time difference mode. The electric field intensity distribution diagram on the XY plane where AA ⁇ is located. As shown in Figure 21, in the case of common mode, the electric field intensity on the single-mode slot is large, and the single-mode slot is effectively excited.
  • this application simulates and analyzes the performance of the planar inverted-F antenna pair after loading single-mode slots of different lengths.
  • the planar inverted F antenna pair after loading the single-mode slot is shown in Figure 11.
  • the length of the single-mode slot is l slot .
  • Figure 23 shows the simulated S-parameter curve of the planar inverted F antenna pair shown in Figure 4 loaded with single-mode slots of different lengths. Its bandwidth range is 5-7.5GHz.
  • the curves S 11 , S 21 and S 22 in the figure respectively represent the corresponding S parameters (S 11 , S 21 and S 22 );
  • the curves S ⁇ 11 , S ⁇ 21 and S ⁇ 22 in the figure respectively represent the S parameters corresponding to the antenna pair ( S 11 , S 21 and S 22 ) situation;
  • the curves S ⁇ 11 , S ⁇ 21 and S ⁇ 22 in the figure respectively indicate that when the single-mode slot length of the planar inverted F antenna shown in Figure 4 is 26mm, the antenna For the corresponding S parameters (S 11 , S 21 and S 22 ).
  • S 21 , S ⁇ 21 , and S ⁇ 21 have poor coincidence.
  • their corresponding S 21 parameters change greatly, indicating that the loading of single-mode slots has a negative impact on the planar inverted F antenna pair.
  • the coupling of the two antennas has a significant impact.
  • Figure 24 is a Smith chart of the impedance of the two modes of the planar inverted F antenna shown in Figure 4 loaded with single-mode slots of different lengths.
  • the curve C 1 in the figure represents the impedance of the antenna pair in the common mode mode when the length of the single-mode slot loaded by the planar inverted F antenna is 22mm;
  • the curve C 2 in the figure represents the single-mode impedance loaded by the planar inverted F antenna.
  • the slot length is 24mm
  • curve C3 in the figure represents the impedance of the antenna pair in common mode mode when the single-mode slot length loaded by the planar inverted F antenna is 26mm.
  • Curve D 1 in the figure represents the impedance of the antenna pair in differential mode when the length of the single-mode slot loaded by the planar inverted F antenna is 22mm; curve D 2 in the figure represents the impedance of the antenna pair in the differential mode when the length of the single-mode slot loaded by the planar inverted F antenna is 24mm.
  • the impedance of the antenna pair in differential mode; curve D 3 in the figure represents the plane inverted When the length of the single-mode slot loaded by the F antenna is 26mm, the impedance of the antenna pair in differential mode. It can be seen that the coincidence degree of curve C 1 , curve C 2 and curve C 3 is low, and the coincidence degree of curve D 1 , curve D 2 and curve D 3 is relatively high.
  • Figure 25 is a radiation pattern of the first port excitation of the planar inverted F antenna pair shown in Figure 11 at different frequencies.
  • (a) in Figure 25 is the E-side simulated radiation pattern of the first port excitation at 5.3GHz
  • (b) in Figure 25 is the H-side simulated radiation pattern of the first port excitation at 5.3GHz
  • (c) in Figure 25 is the E-plane simulated radiation pattern of the first port excitation at 5.7GHz
  • (d) in Figure 25 is the H-plane simulated radiation pattern of the first port excitation at 5.7GHz.
  • Figure 26 is the radiation pattern of the second port excitation in the planar inverted F antenna pair shown in Figure 11 at different frequencies.
  • (a) in Figure 26 is the E-side simulated radiation pattern of the second port excitation at 6.3GHz
  • (b) in Figure 26 is the H-side simulated radiation pattern of the second port excitation at 6.3GHz
  • (c) in Figure 26 is the E-side simulated radiation pattern of the second port excitation at 6.7GHz
  • (d) in Figure 26 is the H-side simulated radiation pattern of the second port excitation at 6.7GHz.
  • Figure 27 is a simulated S-parameter curve chart of the planar inverted F antenna pair shown in Figure 11 within 5-7.5GHz.
  • the size parameter l slot of the antenna pair is 24mm, and the remaining parameters refer to the description in the previous embodiment. From curve S21 in Figure 27, we can see that in the 5-7.5GHz range, the isolation of the two ports is lower than -20dB, and the two ports cover Wi-Fi 6 (5.15GHz-5.835GHz) and Wi-Fi respectively. -Fi 6E (5.925GHz-7.125GHz) frequency band.
  • the antenna used is a pair of back-to-back planar inverted F antennas, and the structure of the antenna is relatively compact.
  • the common mode and differential mode impedance analysis methods of the decoupling structure are used to select the appropriate decoupling structure.
  • a back-to-back planar inverted F antenna pair (the antenna shown in Figure 11) loaded with two single-mode slots has broadband and high isolation characteristics, and the antenna in this application can operate in a continuous frequency band.
  • This application achieves broadband decoupling between antennas by loading a single-mode slot.
  • the single-mode slot has a simple structure, does not introduce complex decoupling structures and optimization processes, and does not introduce additional losses.
  • the antenna decoupling and port matching in this application are implemented separately, and are universal in design.
  • the antenna pair in the above embodiment supports Wi-Fi 6 and Wi-Fi 6E standards, but it does not limit the antenna to work in this working frequency band.
  • the decoupling structure of this application (loading a single-mode slot structure realizes decoupling of the antenna ), can also be applied to other antenna pairs that support adjacent/continuous/same operating frequency bands.
  • the following steps can be performed: First, based on the antenna pair The target frequency determines the initial size of the antenna system. Then, analyze the impedance of this antenna pair in differential mode and the impedance in common mode. Based on the topological structure of the antenna pair, a possible loading structure of the antenna pair is determined, such as the loading single-mode slot structure used in the above embodiment. After determining the loading structure, analyze the impedance of the loading structure in differential mode and common mode to determine whether it is a single-mode structure.
  • the loading structure is not a single-mode structure
  • the The topology of the line pair is replaced with a new loading structure until it is a single-mode structure.
  • the loading structure is reasonably loaded into the antenna pair according to the excitation method of the antenna pair, for example, a single-mode slot decoupling structure is loaded, and then the parameters of the antenna pair and single-mode slot structure are adjusted to realize the antenna Broadband decoupling of the pair; finally, impedance matching is performed on the two ports of the antenna pair.
  • Embodiments of the present application also provide an electronic device, which may include a mobile phone, a tablet, a television, smart wearable products (for example, smart watches, smart bracelets), the Internet of things , IoT), virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, drones and other electronic products with antennas.
  • the embodiments of the present application do not place special restrictions on the specific form of the above-mentioned electronic device.
  • the electronic device includes the planar inverted F antenna pair described in the corresponding embodiment in Figure 11. The antenna in the electronic device can pass through its own The loaded single mode slot structure achieves decoupling.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本申请公开一种平面倒F天线对及电子设备,涉及天线技术领域,该平面倒F天线对包括介质基板、金属地板以及辐射单元,金属地板设置于介质基板的一侧,辐射单元的两端分别连接有第一馈电部和第二馈电部,辐射单元与金属地板通过一接地金属片相连,接地金属片位于第一馈电部与第二馈电部之间,第一馈电部与第二馈电部到接地金属片的距离不相等,金属地板上设置有槽,槽的两端位于接地金属片的两侧。该平面倒F天线对结构紧凑,可以通过简单的结构实现天线间的宽带去耦,同时不会增加复杂的去耦结构和优化过程,且不会引入额外的损耗。

Description

一种平面倒F天线对及电子设备
本申请要求于2022年7月13日提交国家知识产权局、申请号为202210821490.6、发明名称为“一种平面倒F天线对及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种平面倒F天线对及电子设备。
背景技术
无线通信技术在生活和技术中发挥着重要的作用。但是,伴随着各种无线技术的应用,频谱资源已不再富余。和许多技术一样,Wi-Fi技术也在不断地提升和演进,以满足日益增长的无线通信需求。2020年,IEEE 802.11ax无线标准更名为Wi-Fi 6E。由于Wi-Fi 6E使用6G频段,所以相较于5G频段的Wi-Fi 6具有更宽的带宽、高并发和低时延等优势。考虑到用户审美和实际生产,工作于不同无线标准的天线系统往会集成一体。
现有技术中,如图1所示,两个紧凑放置的天线系统1和2分别支持Wi-Fi 6和Wi-Fi 6E标准。由于两个无线标准工作频带间隙仅为0.09GHz,两个紧凑放置的天线系统之间将发生严重的信号干扰。因此,如何实现天线间的去耦,成为一个亟待解决的问题。
发明内容
本申请提供一种平面倒F天线对及电子设备,该平面倒F天线对结构紧凑,可以通过简单的结构实现天线间的宽带去耦,同时不会增加复杂的去耦结构和优化过程,且不会引入额外的损耗。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供一种平面倒F天线对,包括:介质基板、金属地板以及辐射单元,金属地板设置于介质基板的一侧,辐射单元的两端分别连接有第一馈电部和第二馈电部,辐射单元与金属地板通过一接地金属片相连,接地金属片位于第一馈电部与第二馈电部之间,第一馈电部与第二馈电部到接地金属片的距离不相等,金属地板上设置有槽,槽的两端位于接地金属片的两侧。
在此基础上,通过设置接地金属片连接辐射单元与金属地板,并在辐射单元的两端设置第一馈电部和第二馈电部,形成两个背对背的平面倒F天线;通过设置第一馈电部与第二馈电部到接地金属片的距离不相等,形成一个非对称平面倒F天线对,使得两个天线可以工作在不同的工作频带内;通过在金属地板上设置槽,并且设置槽的两端位于接地金属片的两侧,使得两个到F天线均可以与槽形成耦合,对其进行激励,通过设计合适的槽尺寸,实现对两个天线的宽带去耦。
在第一方面的一种可能的设计方式中,金属地板上设置有两个槽,两个槽对称地设置在辐射单元两侧,第一馈电部与第二馈电部位于两个槽之间。
在此基础上,通过在辐射单元的两侧均设置槽,槽可以实现对两个天线的宽带去 耦,且两个槽的工作原理相同,对称地在辐射单元设置两个槽,对称结构使得两个槽的去耦效果更好。
在第一方面的一种可能的设计方式中,第一馈电部和第二馈电部均位于辐射单元的中心线上。
在此基础上,该设计方式使得倒F天线对,关于第一馈电部的中心与第二馈电部的中心的连线对称,使得天线的结构更加紧凑,设计方便,同时有利于通过槽实现对两个天线的去耦。
在第一方面的一种可能的设计方式中,其中一个倒F天线的工作频带为5.15GHz至5.835GHz之间,另一个倒F天线的工作频带为5.925GHz至7.125GHz之间。
在第一方面的一种可能的设计方式中,金属地板、辐射单元的形状为长方形,槽的形状也为长方形。在此基础上,将天线上的这些结构均设计为规则的长方形,方便进行设计,以便实现对两个天线的去耦。
在第一方面的一种可能的设计方式中,金属地板的长度为65mm,金属地板的宽度为30mm,槽的长度为22-26mm,槽的宽度为2mm。
第二方面,本申请提供一种电子设备,包括机身以及如上述第一方面及其任一种可能的设计方式中所提供的平面倒F天线对,平面倒F天线对设置于机身内。
可以理解地,上述提供的第二方面所述的电子设备所能达到的有益效果,可参考如第一方面及其任一种可能的设计方式中的有益效果,此处不再赘述。
附图说明
图1为现有技术提供的一种双天线的系统示意图;
图2为本申请实施例提供的天线之间相互耦合的示意图;
图3为本申请实施例提供的天线的一种去耦原理示意图;
图4为本申请实施例提供的一种平面倒F天线对的结构示意图;
图5为图4所示的一种平面倒F天线对的俯视图示意图;
图6为图4所示的一种平面倒F天线对的主视图示意图;
图7为图4所示天线对以共模模式在6GHz下的仿真电场强度分布图;
图8为图4所示天线对以差模模式在6GHz下的仿真电场强度分布图;
图9为图4所示天线对在5-7.5GHz内共模模式和差模模式下阻抗的史密斯圆图;
图10为图4所示天线对在5-7.5GHz内的仿真S参数曲线图;
图11为本申请实施例提供的另一种平面倒F天线对的结构示意图;
图12为图11所示的一种平面倒F天线对的俯视图示意图;
图13为图11所示的一种平面倒F天线对的主视图示意图;
图14为图11所示的一种平面倒F天线对的仰视图示意图;
图15为本申请实施例提供的一种槽去耦结构;
图16为本申请实施例提供的另一种槽结构;
图17为图16所示的槽结构在5-7.5GHz内共模模式和差模模式下阻抗的史密斯圆图;
图18为图4所示天线对在5-7.5GHz内是否加载单模槽时两种模式下阻抗的史密斯圆图;
图19为图4所示天线对是否加载单模槽时在5-7.5GHz内的仿真S参数曲线图;
图20为图11所示平面倒F天线对的另一种主视图示意图;
图21为图11所示平面倒F天线对在6GHz时共模模式下在AA`所在XY平面上的电场强度分布图;
图22为图11所示平面倒F天线对在6GHz时差模模式下在AA`所在XY平面上的电场强度分布图;
图23为图4所示平面倒F天线对加载不同长度的单模槽下的仿真S参数曲线图;
图24为图4所示平面倒F天线对加载不同长度的单模槽下两种模式的阻抗的史密斯圆图;
图25为图11所示平面倒F天线对中第一端口激励在不同频点下的辐射方向图;
图26为图11所示平面倒F天线对中第二端口激励在不同频点下的辐射方向图;
图27为图11所示平面倒F天线对在5-7.5GHz内的仿真S参数曲线图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
应理解,在本文中对各种所述示例的描述中所使用的术语只是为了描述特定示例,而并非旨在进行限制。如在对各种所述示例的描述中所使用的那样,单数形式“一个(“a”,“an”)”和“该”旨在也包括复数形式,除非上下文另外明确地指示。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
还应理解,本文中所使用的术语“和/或”是指并且涵盖相关联的所列出的项目中的一个或多个项目的任何和全部可能的组合。术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中的字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是滑动连接,还可以是可拆卸连接,或成一体等;可以是直接相连,也可以通过中间媒介间接相连。
还应理解,术语“包括”(也称“includes”、“including”、“comprises”和/或“comprising”)当在本说明书中使用时指定存在所陈述的特征、整数、步骤、操作、元素、和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件、和/ 或其分组。
应理解,说明书通篇中提到的“一实施例”、“另一实施例”、“一种可能的设计方式”意味着与实施例或实现方式有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在本申请一实施例中”或“在本申请另一实施例中”、“一种可能的设计方式”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
为了便于理解本申请的技术方案,在撰写本申请实施例前,先对与本申请技术方案相关的技术背景进行介绍。
参考图1,图1为现有技术提供的一种双天线的系统示意图。如图1所示,现有技术中的紧凑型双天线包括天线1和天线2,其中天线1和天线2分别支持Wi-Fi 6标准(5.15GHz-5.835GHz)和Wi-Fi 6E(5.925GHz-7.125GHz)标准。但是由于Wi-Fi 6标准和Wi-Fi 6E标准工作频带的间隙仅为0.09GHz,两个紧凑放置的天线1和天线2之间会发生严重的信号干扰。此外,如何在紧凑的尺寸下分别实现两个具有一定带宽的天线也是一个技术难点。
为了解决现有的紧凑型双天线在同时支持Wi-Fi 6标准和Wi-Fi 6E标准时,两个天线之间存在严重的信号干扰问题,本申请实施例提供一种平面倒F天线对及电子设备,可以实现工作于连续频带并具有宽带高隔离特性,并且同时支持Wi-Fi 6标准和Wi-Fi 6E,且天线系统结构紧凑。
为了便于理解本申请实施例中的技术方案,下面对本申请技术方案所涉及的部分去耦技术和原理进行介绍。
参考图2,图2为本申请实施例提供的天线之间相互耦合的示意图。如图2中(a)所示,天线1和天线2之间具有一定的距离,其中天线1与端口1相连,天线2与端口2相连,天线1和天线2之间相互耦合。如图2中(b)所示,当在端口1输入一个激励信号,在端口2也输入一个激励信号,这两个激励信号的大小相同,且极性也相同,此时,天线1和天线2处于共模模式下。如图2中(c)所示,当调整输入端口1的激励信号与输入端口2的激励信号大小相同,但极性相反,此时,天线1和天线2处于差模模式下。由于在共模模式和差模模式下,天线所对应的阻抗在相应的频带范围内不相等或者不相近(不平衡),使得两个天线之间存在耦合。
下面对图2所示的天线的去耦原理进行介绍。参考图3,图3为本申请实施例提供的天线的一种去耦原理示意图。如图3所示,在天线1和天线2之间增加了一个去耦结构,将天线1和天线2之间直接耦合的路径称为耦合路径1,将天线1和天线2通过所增加的去耦结构所形成的耦合称为耦合路径2。通过在两个天线间加载去耦结构,引入耦合路径2,可以通过调整去耦结构的参数,使得当引入的耦合路径2形成的耦合,和天线系统中两个天线自身耦合路径1形成的耦合相抵消时,即可以实现天线端口间的去耦。在理想情况下,当天线1和天线2在共模模式下的阻抗(SCM)和差模模式下的阻抗(SDM)在频点f0相等时,即SCM=SDM时,两个端口间的隔离度在频点f0处可以达到无穷大。从共模模式或者差模模式的角度来讲,在天线1和天线2之间增加去耦结构,去耦结构的加载对天线在共模模式下的阻抗和天线在差模模式下的阻抗都会产生影响。因此,若可以通过加载去耦结构只对其中一个模式下天线的阻抗 造成影响,则可以实现对天线去耦过程的独立调节。
参考图4,图4为本申请实施例提供的一种平面倒F天线对的结构示意图。如图4所示,平面倒F天线对包括介质基板1、金属地板2、辐射单元3以及连接结构,本实施例中辐射单元3为一金属片。其中,金属地板2设置于介质基板1的一侧,金属片通过连接结构与金属地板2和介质基板1相连。其中,连接结构包括接地金属片4和金属连接柱,接地金属片4的一端与金属片相连,另一端与金属地板2相连。金属片的两端分别设置有金属连接柱,金属连接柱的一端与金属片相连,金属连接柱的另一端穿过金属地板2与介质基板1相连,且金属连接柱与金属地板2之间保持一定的间隙。两个金属连接柱分别形成第一馈电部5和第二馈电部6,金属连接柱与介质基板1连接的一端可以通过微带线与馈源进行连接,实现对天线的激励。
本申请实施例通过在金属片的中间设置接地金属片4,并且在金属片的两端均设置有金属连接柱,通过金属连接柱和微带线实现激励信号的输入,两个金属连接柱相当于天线的两个端口,使得金属片、接地金属片4、金属连接柱、金属地板2以及介质基板1构成了一个倒F天线对。其中,可以将接地金属片4以及接地金属片4一侧的金属片和金属连接柱理解为一个倒F天线,将接地金属片4以及接地金属片4另一侧的金属片和金属连接柱理解为另一个倒F天线。
本申请实施例中,由于倒F天线对需要支持Wi-Fi 6和Wi-Fi 6E标准,因此两个天线设置为不同规格的天线。如图4所示,为了便于描述,将接地金属片4左侧的金属连接柱称为第一金属连接柱,将接地金属片4右侧的金属连接柱称为第二金属连接柱。
图5为图4所示的一种平面倒F天线对的俯视图示意图,其为平面倒F天线对在xy平面上的投影。如图5所示,金属地板2的长度为l0,金属地板2的宽度为w0。以接地金属片4为界,接地金属片4左侧的金属片的长度为第一长度l1,接地金属片4右侧的金属片的长度为第二长度l2,金属片的宽度为第一宽度w1,接地金属片4的宽度为第二宽度w2
图6为图4所示的一种平面倒F天线对的主视图示意图,其为平面倒F天线对在yz平面上的投影。如图6所示,金属片与金属地板2之间的高度为h1,介质基板1的高度为h2。接地金属片4与第一金属连接柱之间的距离为l3,接地金属片4与第二金属连接柱之间的距离为l4
通过设置接地金属片4到第一金属连接柱和到第二金属连接柱的距离不相等,使得两个平面倒F天线具有不同的长度,以实现两个天线可以工作在不同的频带。其中,平面倒F天线对在YZ平面内具有对称性。
为了获取图4所示天线的辐射性能,对图4所示的天线对进行电场强度仿真。本申请实施例中,在进行仿真时,图4所示天线对的尺寸参数可以参照如下数据进行设置:l0=65mm,l1=14mm,l2=11mm,l3=9.5mm,l4=7mm,w0=30mm,w1=7mm,w2=4mm,h1=6mm,h2=0.6mm。分别对图4所示天线对以共模模式和差模模式在6GHz下的电场强度进行仿真。
参考图7和图8,图7为图4所示天线对以共模模式在6GHz下的仿真电场强度分布图,图8为图4所示天线对以差模模式在6GHz下的仿真电场强度分布图。如图7 所示,图4所示天线对在共模模式下的仿真电场强度分布得较为均匀,金属片两端附件的电场强度与金属片中间的电场强度差距较小。如图8所示,图4所示天线对在差模模式下的仿真电场强度分布差异较大,金属片两端附件的电场强度较大,而金属片中间的电场强度较小,金属片两端附件的电场强度与金属片中间的电场强度差距较大。从图7和图8所示的仿真电场强度分布图可以看出,图4所示天线对在共模模式和差模模式下具有完全不同的电场强度分布,因而造成了天线对在两种模式(共模模式和差模模式)下工作频带和辐射性能的差异。
为了进一步分析图4所示天线对在共模模式和差模模式下的性能差异,本申请还对图4所示的天线对在5-7.5GHz内的其它性能参数进行分析测试。参考图9,图9为图4所示天线对在5-7.5GHz内共模模式和差模模式下阻抗的史密斯圆图。如图9所示,图中的曲线CCM表示天线对在共模模式下的阻抗,图中的曲线CDM表示天线对在差模模式下的阻抗,对比曲线CCM和曲线CDM可以看出,图4所示天线对在共模模式下的阻抗与在差模模式下的阻抗差异较大,说明该天线对的两个天线之间存在耦合。
参考图10,图10为图4所示天线对在5-7.5GHz内的仿真S参数曲线图。如图10所示,从图中的曲线S21可以看出,在5-6.5GHz内时,两个端口的耦合度较差,其耦合度基本高于-10dB,两个端口在6GHz附近的耦合度高于-9dB。
为了解决图4所示天线对内的天线之间存在较高的耦合度问题,本申请实施例还提供另一种平面倒F天线对。参考图11,图11为本申请实施例提供的另一种平面倒F天线对的结构示意图。如图11所示,本申请实施例中的倒F天线对包括介质基板1、金属地板2、辐射单元3、接地金属片4和金属连接柱。本实施例中,辐射单元3以金属片为例。其中,金属地板2设置于介质基板1的一侧,辐射单元3(金属片)通过接地金属片4与金属地板2相连。辐射单元3(金属片)的两端分别设置有金属连接柱(馈电部),金属连接柱的一端与金属片相连,金属连接柱的另一端穿过金属地板2与介质基板1相连,且金属连接柱与金属地板2之间保持一定的间隙,也即金属连接柱与金属地板2不直接接触。金属连接柱与介质基板1连接的一端可以通过微带线与馈源进行连接,实现对天线的激励。辐射单元3两端的金属连接柱分别形成第一馈电部5和第二馈电部6,接地金属片4位于第一馈电部5和第二馈电部6之间,也即,位于两个金属连接柱之间。
金属地板2上设置有槽,槽位于辐射单元3的一侧,或者,在辐射单元3的两侧均设置有槽,槽的两端位于接地金属片3的两侧。如图11所示,在辐射单元3的两侧分别设置有第一槽7和第二槽8。当辐射单元3的两侧均设置有槽时,两个槽可以对称地设置在辐射单元3两侧,也即,第一槽7和第二槽8关于图11中的YZ平面对称。将两个槽对称设置在辐射单元3的两侧,可以使得两个槽的去耦效果更好。
本申请实施例中,由于倒F天线对需要支持Wi-Fi 6和Wi-Fi 6E标准,因此两个天线设置为不同规格的天线。如图11所示,为了便于描述,将接地金属片4左侧的金属连接柱称为第一金属连接柱(第一馈电部5),将接地金属片4右侧的金属连接柱称为第二金属连接柱(第二馈电部6)。
图12为图11所示的一种平面倒F天线对的俯视图示意图,其为平面倒F天线对在xy平面上的投影。如图12所示,金属地板2的长度为l0,金属地板2的宽度为w0。 以接地金属片4为界,接地金属片4左侧的金属片的长度为第一长度l1,接地金属片4右侧的金属片的长度为第二长度l2,金属片的宽度为第一宽度w1,接地金属片4的宽度为第二宽度w2。槽与金属片之间的距离为d,槽的第一端到金属片的第一端之间的距离为d1,槽的第二端到金属片的第二端之间的距离也为d1。其中,该部分天线对的尺寸参数可以参照上述中关于对图4所示天线对中的尺寸参数进行设置,d可以为2mm,d1可以为0.5mm。
图13为图11所示的一种平面倒F天线对的主视图示意图,其为平面倒F天线对在yz平面上的投影。如图13所示,金属片与金属地板2之间的高度为h1,金属地板2的高度为h2。接地金属片4与第一金属连接柱之间的距离为l5,接地金属片4与第二金属连接柱之间的距离为l6
两个平面倒F天线均可以通过探针和微带线实现天线的激励和匹配。参考图14,图14为图11所示的一种平面倒F天线对的仰视图示意图。如图14所述,第一金属连接柱与介质基板1连接的一端与第一微带线连接,第二金属连接柱与介质基板1连接的一端与第二微带线连接,第一微带线的另一端与第一端口相连,第二微带线的另一端与第二端口相连。
第一微带线和第二微带线的结构如图14所示,其中,第一微带线由三段不同长度和宽度的线以及连接部组成。具体的,第一微带线包括第一段线、第一连接部、第二段线、第二连接部和第三段线,第一连接部连接第一段线和第二段线,第二连接部连接第二段线和第三段线,第一金属连接柱与第一段线连接,且互相垂直,第一连接部和第二连接部均呈梯形状。第一段线的第一端到第一金属连接柱的中心线之间的距离为l7,第一段线的第二端到第一金属连接柱的中心线之间的距离为l8,第一段线的宽度为w5,第一连接部的长度为l9,第二段线的长度为l10,第二段线的宽度为w6,第二连接部的长度为l9,第三段线的宽度为w4
第二微带线也由三段不同长度和宽度的线以及连接部组成,具体的,第二微带线包括第四段线、第五段线、第三连接部和第六段线,第四段线和第五段线连接,第三连接部连接第五段线和第六段线,第一金属连接柱与第二微带线连接时,连接于第四段线和第五段线的连接处,且第一金属连接柱与第二微带线互相垂直,第三连接部呈梯形状。第四段线的长度为l11,第五段线的长度为l12,第五段线的宽度为w7,第三连接部的长度为l9,第四段线和第六段线的宽度均为w4
其中,图11所示的天线对的尺寸参数参照如下:l5=5mm,l6=6mm,l7=4mm,l8=4mm,l9=1mm,l10=3mm,l11=4.5mm,l12=4mm,w4=1.1mm,w5=2mm,w6=0.3mm,w7=0.5mm,r=1.6mm,r1=1.8mm。其中,r为金属连接柱的直径,r1为金属片上开设的孔的直径,金属连接柱穿过该孔与介质基板1进行固定,金属连接柱穿过该孔的一端与微带线连接,实现与激励信号进行耦合。
由于图11所示的平面倒F天线对中,在金属地板2上的两侧分别对称地设置了槽,下面将对在金属地板2上设置槽结构所产生的影响进行分析。
参考图15,图15为本申请实施例提供的一种槽去耦结构。如图15所示,该结构包括金属地板2以及介质基板1,金属地板2设置在介质基板1上,金属地板2上开设有槽,该槽一般为长方形结构。其中,金属地板2的长度为l0,金属地板2的宽度 为w0,槽的长度为lslot,金属地板2的宽度为wslot,其中,在某一具体示例中,lslot=24mm,wslot=2mm。
为了分析图15所示的槽应用在平面倒F天线对时,槽在工作频带内的特性,在图15所示的槽上增加了两个端口。图16为本申请实施例提供的另一种槽结构,如图16所示,端口对称的加载在槽上,需要说明的是,两个端口分别与槽的两端保持一定的距离。两个端口之间的距离为lport,其中,在进行性能分析时,lport的取值可以为7.5mm。对图16所示的槽结构进行性能分析。
参考图17,图17为图16所示的槽结构在5-7.5GHz内共模模式和差模模式下阻抗的史密斯圆图。如图17所示,图17中的曲线CCM表示槽在共模模式下的阻抗,图中的曲线CDM表示槽在差模模式下的阻抗,从图中曲线CCM可以看出,槽在共模模式下的阻抗良好。从图中曲线CDM可以看出,槽在差模模式下的阻抗几乎为纯电抗。因此,在5-7.5GHz的带宽内,在差模模式下,槽难以被有效地激励起来;而在共模模式下,槽则可以被激励。将图17所示的这种其中一个模式的阻抗几乎为纯电抗的结构称之为单模结构,图中的槽结构可以称为单模槽。
本申请实施例中,图11所示的另一种平面倒F天线对中,在天线对的两侧均设置有槽结构,相当于在图4所示的平面天线对中加载了图15所示的槽结构。图11中的两个槽关于YZ平面对称地设置,相当于将槽结构对称地加载在了图4所示的平面倒F天线对的两侧。平面倒F天线对通过两侧的电场耦合实现对槽的激励,两个平面倒F天线的电场强度分布图可以参考图7和图8。两个平面倒F天线所产生的电场,相对于每个槽而言,相当于一个激励源,因此,图11所示的平面倒F天线对中,每个槽的激励方式与图16中对槽的激励方式相对应。也即,图11中两个平面倒F天线所产生的电场对槽的激励,与图16中两个端口对槽的激励原理相同。
对图11所示的平面倒F天线对性能进行仿真分析,平面倒F天线对的尺寸可以参照上述实施例中的描述进行设置。
图18为图4所示天线对在5-7.5GHz内是否加载单模槽时两种模式下阻抗的史密斯圆图。如图18所示,图中的曲线C1表示在不加载单模槽时,共模模式下的阻抗;图中的曲线C2表示在加载单模槽时,共模模式下的阻抗;图中的曲线C3表示在不加载单模槽时,差模模式下的阻抗;图中的曲线C4表示在加载单模槽时,差模模式下的阻抗。对比曲线C1和曲线C2可知,曲线C1和曲线C2的形状大小差别较大,两条曲线之间的重合度较低,说明是否加载单模槽对平面倒F天线对在共模模式下的阻抗影响较大。对比曲线C3和曲线C4可知,曲线C3和曲线C4的形状大小差别较小,两条曲线几乎重叠在一起,重合度较高,说明是否加载单模槽对平面倒F天线对在差模模式下的阻抗影响非常小,可以忽略不计。
单模槽的加载对平面倒F天线对在共模模式下的阻抗影响较大,对在差模模式下的阻抗影响微乎其微,这种现象是由单模槽在共模模式和差模模式下的阻抗特性所决定的,也即:单模槽在差模模式下,槽难以被有效地激励起来;而单模槽在共模模式下,槽可以被激励。
因此,如图11所示的平面倒F天线对,通过在图4所示的平面倒F天线对中加载单模槽结构,可以实现对背对背平面倒F天线对共模模式下阻抗的单独调节。
图19为图4所示天线对是否加载单模槽时在5-7.5GHz内的仿真S参数曲线图。如图19所示,图中的曲线S11、S21和S22表示未加载单模槽时的各S参数,图中的S`11、S`21和S`22表示加载单模槽时的各参数。从图中的曲线S21可以看出,在未加载单模槽时,在5-6.5GHz内,两个天线的耦合度较差,其耦合度大部分时候处于高于-10dB。从图中的曲线S`21可以看出,在加载单模槽时,在5-7.5GHz内,两个天线的耦合度较号,其耦合度均在-15dB以下。说明平面倒F天线对在加载单模槽后(图11所示的天线对),两个天线之间的耦合度较好,单模槽具有一定的去耦效果。
为了进一步确定加载单模槽对天线系统的影响,本申请通过仿真分析获取图11所示平面倒F天线对在6GHz下,两种模式下(共模模式和差模模式)在AA`所在XY平面上的电场强度分布图。
图20为图11所示平面倒F天线对的另一种主视图示意图,相比于图12,图20示出了AA`所在位置。图21为图11所示平面倒F天线对在6GHz时共模模式下在AA`所在XY平面上的电场强度分布图,图22为图11所示平面倒F天线对在6GHz时差模模式下在AA`所在XY平面上的电场强度分布图。如图21所示,在共模情况下,单模槽上的电场强度大,单模槽被有效地激励起来了。如图22所示,在差模情况下,单模槽上电场强度小,单模槽的激励效果较差,可以视为单模槽难以被激励起来。因此,单模槽的加载对背对背平面倒F天线对的共模模式的阻抗会造成影响。反之,在差模模式下,单模槽无法被有效地激励起来。说明单模槽的加载对天线系统的共模阻抗影响有效。
此外,为了进一步分析加载单模槽后对图4所示平面倒F天线对的性能影响,本申请对加载不同长度的单模槽后,平面倒F天线对的性能进行仿真分析。其中,加载单模槽后的平面倒F天线对如图11所示,单模槽的长度为lslot。示例一,单模槽的长度lslot=22mm;示例二,单模槽的长度lslot=24mm;示例三,单模槽的长度lslot=26mm。
图23为图4所示平面倒F天线对加载不同长度的单模槽下的仿真S参数曲线图,其带宽范围为5-7.5GHz。如图23所示,图中的曲线S11、S21和S22分别表示图4所示平面倒F天线加载的单模槽长度为22mm时,天线对所对应的S参数(S11、S21和S22)情况;图中的曲线S`11、S`21和S`22分别表示图4所示平面倒F天线加载的单模槽长度为24mm时,天线对所对应的S参数(S11、S21和S22)情况;图中的曲线S``11、S``21和S``22分别表示图4所示平面倒F天线加载的单模槽长度为26mm时,天线对所对应的S参数(S11、S21和S22)情况。图中S21、S`21、S``21重合度较差,在加载不同长度的单模槽时,其对应的S21参数变化较大,说明单模槽的加载对平面倒F天线对中两个天线的耦合有明显的影响。
图24为图4所示平面倒F天线对加载不同长度的单模槽下两种模式的阻抗的史密斯圆图。如图24所示,图中曲线C1表示平面倒F天线加载的单模槽长度为22mm时,天线对在共模模式下的阻抗;图中曲线C2表示平面倒F天线加载的单模槽长度为24mm时,天线对在共模模式下的阻抗;图中曲线C3表示平面倒F天线加载的单模槽长度为26mm时,天线对在共模模式下的阻抗。图中曲线D1表示平面倒F天线加载的单模槽长度为22mm时,天线对在差模模式下的阻抗;图中曲线D2表示平面倒F天线加载的单模槽长度为24mm时,天线对在差模模式下的阻抗;图中曲线D3表示平面倒 F天线加载的单模槽长度为26mm时,天线对在差模模式下的阻抗。可以看出,曲线C1、曲线C2和曲线C3的重合度较低,曲线D1、曲线D2和曲线D3的重合度较高。说明不同长度的单模槽的加载对平面倒F天线对在共模模式下的阻抗影响较大,对平面倒F天线对在差模模式下的阻抗影响较小,可以忽略不计。
图25为图11所示平面倒F天线对中第一端口激励在不同频点下的辐射方向图。其中,图25中(a)为第一端口激励在5.3GHz下的E面仿真辐射图,图25中(b)为第一端口激励在5.3GHz下的H面仿真辐射图。图25中(c)为第一端口激励在5.7GHz下的E面仿真辐射图,图25中(d)为第一端口激励在5.7GHz下的H面仿真辐射图。
图26为图11所示平面倒F天线对中第二端口激励在不同频点下的辐射方向图。其中,图26中(a)为第二端口激励在6.3GHz下的E面仿真辐射图,图26中(b)为第二端口激励在6.3GHz下的H面仿真辐射图。图26中(c)为第二端口激励在6.7GHz下的E面仿真辐射图,图26中(d)为第二端口激励在6.7GHz下的H面仿真辐射图。
根据图25和图26可知,图中两个端口激励下的辐射方向图均为正常状态,没有产生畸变或者发生恶化,说明在加载单模槽作为去耦结构后,两个平面倒F天线相互之间对天线辐射性能影响较小。
图27为图11所示平面倒F天线对在5-7.5GHz内的仿真S参数曲线图。该天线对的尺寸参数lslot=24mm,其余参数参照前述实施例中的描述。从图27中的的曲线S21可知,在5-7.5GHz范围内,两个端口的隔离度均低于-20dB,且两个端口分别覆盖了Wi-Fi 6(5.15GHz-5.835GHz)和Wi-Fi 6E(5.925GHz-7.125GHz)频带。
通过上述分析可知,在加载单模槽去耦结构以后,可以实现对背对背平面倒F天线对的宽带去耦,此外,为了实现两个到F天线工作在不同的工作频带,两个平面倒F天线的工作频带应该分别进行匹配。对于双天线系统而言,当两个天线在考虑频带内实现了高隔离度,则改变每个端口的工作频带不会使天线间的耦合恶化。
本申请实施例中,所采用的天线为背对背平面倒F天线对,天线的结构比较紧凑。在设计去耦结构时,采用去耦结构的共模和差模阻抗分析方法,以选择合适的去耦结构。通过加载单模槽的方式,使得加载2个单模槽的背对背平面倒F天线对(图11所示天线),具有宽带高隔离特性,并且本申请中的天线可以工作于连续频带。本申请通过加载单模槽的方式实现天线间的宽带去耦,单模槽结构简单,没有引入复杂的去耦结构和优化过程,且没有引入额外损耗。
本申请中的天线去耦和端口匹配分别实现,在设计上具有普适性。上述实施例中的天线对支持Wi-Fi 6和Wi-Fi 6E标准,但并不限制该天线工作于这一工作频带内,本申请的去耦结构(加载单模槽结构实现对天线去耦),亦可应用于其它支持相邻/连续/相同工作频带的天线对。
根据本申请上述实施例的介绍,当一天线对工作于相邻/连续/相同工作频带,在设计通过加载单模槽去耦结构实现去耦时,可以根据以下步骤进行:首先,基于天线对的目标频率,确定天线系统的初始尺寸。然后,分析该天线对在差模模式下的阻抗和共模模式下的阻抗。基于天线对的拓扑结构,确定该天线对可能的加载结构,例如上述实施例中所采用的加载单模槽结构。确定加载结构后,分析该加载结构在差模模式和共模模式下的阻抗,确定其是否为单模结构。若该加载结构非单模结构,则基于天 线对的拓扑结构,更换新的加载结构,直至其为单模结构。当其为单模结构时,根据天线对的激励方式将加载结构合理地加载到天线对中,例如加载单模槽去耦结构,然后对天线对和单模槽结构的参数进行调整,实现天线对的宽带去耦;最后对该天线对的两个端口分别进行阻抗匹配。
本申请实施例还提供一种电子设备,该电子设备可以包括手机(mobile phone)、平板电脑(pad)、电视、智能穿戴产品(例如,智能手表、智能手环)、物联网(internet of things,IOT)、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality AR)终端设备、无人机等电子产品等具有天线的电子产品。本申请实施例对上述电子设备的具体形式不做特殊限制,该电子设备中包含图11中所对应的实施例中所述的平面倒F天线对,该电子设备中的天线可以通过其自身中加载的单模槽结构实现去耦。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,本申请保护范围包括优选实施例以及落入本申请实施例范围的所有变更和修改。
以上对本申请所提供的一种平面倒F天线对及电子设备,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种平面倒F天线对,其特征在于,包括:介质基板、金属地板以及辐射单元,所述金属地板设置于所述介质基板的一侧,所述辐射单元的两端分别连接有第一馈电部和第二馈电部,所述辐射单元与所述金属地板通过一接地金属片相连,所述接地金属片位于所述第一馈电部与所述第二馈电部之间,所述第一馈电部与所述第二馈电部到所述接地金属片的距离不相等,所述金属地板上设置有槽,所述槽的两端位于所述接地金属片的两侧。
  2. 根据权利要求1所述的平面倒F天线对,其特征在于,所述金属地板上设置有两个槽,所述两个槽对称地设置在所述辐射单元两侧,所述第一馈电部与所述第二馈电部位于所述两个槽之间。
  3. 根据权利要求1或2所述的平面倒F天线对,其特征在于,所述第一馈电部和所述第二馈电部均位于所述辐射单元的中心线上。
  4. 根据权利要求1或2所述的平面倒F天线对,其特征在于,其中一个倒F天线的工作频带为5.15GHz至5.835GHz之间,另一个倒F天线的工作频带为5.925GHz至7.125GHz之间。
  5. 根据权利要求4所述的平面倒F天线对,其特征在于,所述金属地板、所述辐射单元的形状为长方形,所述槽的形状也为长方形。
  6. 根据权利要求5所述的平面倒F天线对,其特征在于,所述金属地板的长度为65mm,所述金属地板的宽度为30mm,所述槽的长度为22-26mm,所述槽的宽度为2mm。
  7. 一种电子设备,其特征在于,包括机身以及如权利要求1至6任意一项所述的平面倒F天线对,所述平面倒F天线对设置于所述机身内。
  8. 一种平面倒F天线对,其特征在于,包括:介质基板、金属地板以及辐射单元,所述金属地板设置于所述介质基板的一侧,所述辐射单元的两端分别连接有第一馈电部和第二馈电部,所述辐射单元与所述金属地板通过一接地金属片相连,所述接地金属片位于所述第一馈电部与所述第二馈电部之间,所述第一馈电部与所述第二馈电部到所述接地金属片的距离不相等,所述金属地板上设置有槽,所述槽的两端位于所述接地金属片的两侧,所述槽沿着所述第一馈电部和所述第二馈电部排列的方向设置。
  9. 根据权利要求8所述的平面倒F天线对,其特征在于,所述金属地板上设置有两个槽,所述两个槽对称地设置在所述辐射单元两侧,所述第一馈电部与所述第二馈电部位于所述两个槽之间。
  10. 根据权利要求8或9所述的平面倒F天线对,其特征在于,所述第一馈电部和所述第二馈电部均位于所述辐射单元的中心线上。
  11. 根据权利要求8或9所述的平面倒F天线对,其特征在于,其中一个倒F天线的工作频带为5.15GHz至5.835GHz之间,另一个倒F天线的工作频带为5.925GHz至7.125GHz之间。
  12. 根据权利要求11所述的平面倒F天线对,其特征在于,所述金属地板、所述辐射单元的形状为长方形,所述槽的形状也为长方形。
  13. 根据权利要求12所述的平面倒F天线对,其特征在于,所述金属地板的长度为65mm,所述金属地板的宽度为30mm,所述槽的长度为22-26mm,所述槽的宽度为2mm。
PCT/CN2023/092721 2022-07-13 2023-05-08 一种平面倒f天线对及电子设备 WO2024012026A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23786995.3A EP4336654A1 (en) 2022-07-13 2023-05-08 Planar inverted-f antenna pair and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210821490.6A CN114976602B (zh) 2022-07-13 2022-07-13 一种平面倒f天线对及电子设备
CN202210821490.6 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024012026A1 true WO2024012026A1 (zh) 2024-01-18

Family

ID=82968935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092721 WO2024012026A1 (zh) 2022-07-13 2023-05-08 一种平面倒f天线对及电子设备

Country Status (3)

Country Link
EP (1) EP4336654A1 (zh)
CN (1) CN114976602B (zh)
WO (1) WO2024012026A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976602B (zh) * 2022-07-13 2022-12-20 荣耀终端有限公司 一种平面倒f天线对及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020140612A1 (en) * 2001-03-27 2002-10-03 Kadambi Govind R. Diversity antenna system including two planar inverted F antennas
CN101533950A (zh) * 2009-04-20 2009-09-16 浙江大学 二元平面倒f天线阵列
CN104852122A (zh) * 2015-06-09 2015-08-19 联想(北京)有限公司 电子设备和天线装置
CN106972236A (zh) * 2017-03-20 2017-07-21 南京邮电大学 一种金属外壳手持式多天线终端
CN206506025U (zh) * 2016-12-29 2017-09-19 深圳天珑无线科技有限公司 可重构的多输入多输出天线以及移动终端
CN114069218A (zh) * 2021-10-28 2022-02-18 荣耀终端有限公司 双端口微带天线、天线解耦方法及电子设备
CN114976602A (zh) * 2022-07-13 2022-08-30 荣耀终端有限公司 一种平面倒f天线对及电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797352B1 (fr) * 1999-08-05 2007-04-20 Cit Alcatel Antenne a empilement de structures resonantes et dispositif de radiocommunication multifrequence incluant cette antenne
DE10244206A1 (de) * 2002-09-23 2004-03-25 Robert Bosch Gmbh Vorrichtung zum Übertragen bzw. Abstrahlen hochfrequenter Wellen
CN101807745B (zh) * 2010-03-29 2013-01-30 清华大学 一种工作在谐振TExδ01模式下的介质谐振天线
CN103326116B (zh) * 2013-06-17 2015-06-10 清华大学 用于移动终端的小型平面宽频带双天线系统
CN105896033A (zh) * 2014-10-31 2016-08-24 西安电子科技大学 高隔离度mimo天线系统
CN107346842A (zh) * 2016-05-05 2017-11-14 智易科技股份有限公司 双频天线
CN107706529B (zh) * 2016-08-08 2021-01-15 华为技术有限公司 一种去耦组件、多天线系统及终端
CN208522080U (zh) * 2018-05-03 2019-02-19 明泰科技股份有限公司 低走线路径的天线结构
CN210296619U (zh) * 2019-10-24 2020-04-10 潍坊歌尔电子有限公司 Mimo天线系统及移动终端
CN113517557B (zh) * 2020-04-10 2023-04-28 华为技术有限公司 一种电子设备
CN113540787B (zh) * 2020-04-22 2022-11-18 华为技术有限公司 天线单元及电子设备
CN113871873A (zh) * 2021-09-30 2021-12-31 深圳大学 天线及移动终端
CN216958508U (zh) * 2021-12-03 2022-07-12 荣耀终端有限公司 高隔离度共体天线及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020140612A1 (en) * 2001-03-27 2002-10-03 Kadambi Govind R. Diversity antenna system including two planar inverted F antennas
CN101533950A (zh) * 2009-04-20 2009-09-16 浙江大学 二元平面倒f天线阵列
CN104852122A (zh) * 2015-06-09 2015-08-19 联想(北京)有限公司 电子设备和天线装置
CN206506025U (zh) * 2016-12-29 2017-09-19 深圳天珑无线科技有限公司 可重构的多输入多输出天线以及移动终端
CN106972236A (zh) * 2017-03-20 2017-07-21 南京邮电大学 一种金属外壳手持式多天线终端
CN114069218A (zh) * 2021-10-28 2022-02-18 荣耀终端有限公司 双端口微带天线、天线解耦方法及电子设备
CN114976602A (zh) * 2022-07-13 2022-08-30 荣耀终端有限公司 一种平面倒f天线对及电子设备

Also Published As

Publication number Publication date
EP4336654A1 (en) 2024-03-13
CN114976602A (zh) 2022-08-30
CN114976602B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN105720364B (zh) 一种具有高选择性和低交叉极化的双极化滤波天线
US11296418B2 (en) Low-profile dual-polarization filtering magneto-electric dipole antenna
WO2020228399A1 (zh) 天线装置及移动终端
CN106935963A (zh) 高隔离度双极化环缝微带天线单元
TWI469441B (zh) 立體天線
WO2015089823A1 (zh) 一种三极化天线
WO2018170969A1 (zh) 一种金属外壳手持式多天线终端
CN205621854U (zh) 一种具有高选择性和低交叉极化的双极化滤波天线
CN112042054B (zh) 一种天线装置和终端设备
CN108429005A (zh) 一种高隔离度平面10天线mimo系统、5g移动终端
WO2024012026A1 (zh) 一种平面倒f天线对及电子设备
WO2019062445A1 (zh) 多极化辐射振子及天线
CN208637590U (zh) 一种双频WiFi天线及电子设备
US20140118206A1 (en) Antenna and filter structures
CN110190381B (zh) 一种基于差分馈电技术的低剖面宽带微带天线
TWI495277B (zh) 無線收發器之多輸入多輸出天線
CN206628592U (zh) 一种用于政务专网的双极化天线振子
CN109672023A (zh) 一种基于开口谐振环的差分双极化贴片天线
CN110011043A (zh) 四频双极化天线及无线通信设备
WO2021139016A1 (zh) 一种 5g 毫米波双极化天线模组及终端设备
CN209641833U (zh) 四频双极化天线及无线通信设备
CN108682923A (zh) 基于ltcc的e波段h面微探针型波导微带转换装置
WO2021139014A1 (zh) 5g 双极化天线模组及终端设备
WO2022001740A1 (zh) 一种电子设备
CN110429379A (zh) 具有对称和差波束的间隙耦合短路贴片天线

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023786995

Country of ref document: EP

Effective date: 20231020