WO2024088117A1 - 一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用 - Google Patents

一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用 Download PDF

Info

Publication number
WO2024088117A1
WO2024088117A1 PCT/CN2023/125093 CN2023125093W WO2024088117A1 WO 2024088117 A1 WO2024088117 A1 WO 2024088117A1 CN 2023125093 W CN2023125093 W CN 2023125093W WO 2024088117 A1 WO2024088117 A1 WO 2024088117A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
conductive ink
based conductive
work function
dopant
Prior art date
Application number
PCT/CN2023/125093
Other languages
English (en)
French (fr)
Inventor
刘旭影
刘水任
武志云
陈金周
Original Assignee
郑州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州大学 filed Critical 郑州大学
Publication of WO2024088117A1 publication Critical patent/WO2024088117A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention belongs to the field of nanomaterials and optoelectronics, and specifically relates to a MXene-based conductive ink with adjustable work function, a preparation method thereof, and an application in a thin film transistor.
  • the interface formed at the contact between metal electrodes and semiconductor materials is a key component of modern electronic and optoelectronic devices.
  • the charge transfer between electrodes and semiconductors passes through an energy barrier called a potential barrier.
  • the work function is defined as the minimum energy required to move an electron from the inside of a solid to the surface of an object.
  • the carrier injection barrier can be estimated by the difference between the work function of the conductor and the electron affinity (or vacuum ionization energy) of the semiconductor. After the metal and semiconductor are in contact equilibrium, the barrier region generated by the difference in carrier concentration on both sides is high-resistance for electron transfer. At this time, the barrier is a Schottky barrier.
  • electrodes with a wide adjustable work function provide a greater possibility for forming a lower potential barrier, thereby effectively improving the carrier injection efficiency.
  • the rich surface functional groups of MXene materials give them a wide range of work function adjustability.
  • the work function of MXene materials is mainly affected by the changes in surface dipole moment caused by different proportions of surface functional groups.
  • the work function regulation methods of MXene ink as electrode materials include chemical grafting, vacuum annealing, thermal evaporation, UV ozone treatment, etc.
  • Chinese patent CN109904326B discloses an organic solar cell with MXene doped PEDOT:PSS as an anode modification layer material and a preparation method thereof. The patent drips MXene solution (work function 5.0eV) into PEDOT:PSS solution and stirs it evenly.
  • the anode modification layer After spin coating on the anode substrate of the solar cell (work function 4.7eV), annealing at 130-170°C for 5-15 minutes obtains the anode modification layer. By reducing the interface capacity between the anode and the active layer, the photoelectric conversion efficiency of the integrated solar cell is finally increased from 3.48% to 4.43%, and the conversion efficiency is increased by 27.30%.
  • the doping solid content in the blend is 2-6.5% of the mass percentage of MXene. The higher doping content will affect the intrinsic properties of MXene (conductivity, hydrophilicity, etc.), and the relatively high annealing temperature will limit its application on flexible substrates.
  • Chinese patent CN112670365A discloses a GaAs/MXene heterojunction solar cell and its preparation method, wherein one or more composite electrodes of Ag, Cr, Ti, Ni, and Au are evaporated on the surface of the MXene film.
  • the vacuum annealing temperature is 30°C to 300°C after the MXene transfer is completed. This ultimately helps to improve the open circuit voltage and conversion efficiency of the battery.
  • the evaporation process of this patent is relatively complicated, and the subsequent annealing process requires strict oxygen-free to ensure the quality of MXene.
  • the high temperature environment also limits its application on flexible substrates.
  • Patterning of electrode materials is a key technology in the processing of electronic devices. Printing is a process similar to "addition”. Choosing a suitable printing method can achieve patterned deposition on various flexible substrates, which is simpler to operate and lower in cost. However, in order to prepare inks with suitable rheological properties to meet printing requirements, most MXene inks use water as a solvent, which will cause a large difference in surface energy between MXene inks and organic semiconductor molecules, resulting in a rapid decrease in printability.
  • the purpose of the present invention is to provide a MXene-based conductive ink with adjustable work function, a preparation method thereof, and an application in thin film transistors.
  • a first aspect of the present invention provides a MXene-based conductive ink with adjustable work function, comprising a two-dimensional MXene material and a dopant, wherein the mass percentage of the two-dimensional MXene material in the two-dimensional MXene material and the dopant is greater than or equal to 98%, and the mass percentage of the dopant in the two-dimensional MXene material and the dopant is 0.02% to 2%.
  • the dopant is selected from 3-aminopropyltriethoxysilane (APTES), branched polyethyleneimine (BPEI), dodecyltrimethoxysilane, poly(4-styrenesulfonic acid) sodium salt (PSSNa), poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-ALT-2,7-(9,9-dioctylfluorene)] (PFN), poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS), poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)fluorenyl-2,7-diyl)-ALT-[(9,9-di-n-octylfluorenyl-2,7-diyl)-bromide (APTES),
  • the MXene-based conductive ink further comprises a solvent, and the solvent is selected from any one of water, methanol, ethanol, isopropanol and chloroform.
  • the MXene nanosheets are selected from any one of Ti 4 C 3 , Ti 3 C 2 , and Ti 2 C.
  • the MXene nanosheet is a single-layer or multi-layer MXene nanosheet.
  • the single-layer MXene nanosheet has a thickness of 0.5 to 2 nm and an area of 1 ⁇ m 2 to 50 ⁇ m 2 .
  • a second aspect of the present invention provides a method for preparing the above-mentioned MXene-based conductive ink with adjustable work function, wherein a dopant is dissolved in a solvent and then mixed with a MXene dispersion to obtain the MXene-based conductive ink with adjustable work function.
  • the third aspect of the present invention provides an application of the MXene-based conductive ink with adjustable work function described in the first aspect in the printing of conductive electrodes and electronic circuits using a printing method and a coating method.
  • the printing and coating methods include inkjet printing, screen printing, 3D printing, transfer printing, drop coating, spin coating, rod coating, spray coating, and vacuum filtration.
  • the hard substrate material used in the printing and coating process includes glass, silicon dioxide, ceramic, aluminum nitride glass fiber epoxy laminate or copper clad laminate.
  • the flexible substrate material used in the printing and coating process includes printing paper, coated paper, offset paper, letterpress paper, gravure paper, white paper, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polycarbonate or polyether ketone.
  • a third aspect of the present invention provides an application of the MXene-based conductive ink with adjustable work function described in the first aspect in the preparation of a thin film transistor.
  • the semiconductor film for preparing the thin film transistor includes 2,7-diphenyl[1]benzothiophene[3,2-B][1]benzothiophene (DPh-BTBT), 2-decyl-7-phenyl[1]benzothiophene[3,2-B][1]benzothiophene (Ph-BTBT-C10), 2,7-dioctyl[1]benzothiophene[3,2-B]benzothiophene (C8-BTBT), dinaphtho[2,3-b:2′,3′-f]thiophene[3,2-b]thiophene (DNTT), DNTT-10, pentacene, and 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene).
  • DPh-BTBT 2,7-diphenyl[1]benzothiophene[3,2-B][1]benzothiophene
  • the present invention has the following beneficial effects:
  • the present invention prepares a MXene-based conductive ink with adjustable work function by blending different dopants with a MXene dispersion.
  • the ink is composed of a two-dimensional MXene material, a dopant, and a solvent, wherein the mass of the dopant accounts for only 0.02% to 2% of the total mass of the two-dimensional MXene material and the dopant.
  • the work function of the titanium carbide MXene-based conductive ink prepared by the present invention using four different dopants namely APTES, PSSNa, PSS:PEDOT and PFN-Br, can be controlled in a wide range of 4.88 to 5.66 eV, which greatly broadens the types of base materials that can be used for printing MXene-based conductive ink.
  • the MXene-based conductive ink with adjustable work function prepared by the present invention can adjust the ink viscosity within the range of 0.003-30000 Pa ⁇ s by adjusting the solid content of the MXene two-dimensional material and the proportion of the dopant, so that it can be combined with various printing methods (such as inkjet printing, screen printing, 3D printing and transfer printing, etc.) and coating methods (drip coating, spin coating, rod coating, spray coating, vacuum filtration) to achieve patterned deposition.
  • various printing methods such as inkjet printing, screen printing, 3D printing and transfer printing, etc.
  • coating methods dip coating, spin coating, rod coating, spray coating, vacuum filtration
  • the present invention introduces different dopants into the MXene material. Compared with the undoped MXene-based ink, Due to the introduction of functional groups, the deposition pattern of the MXene-based conductive ink prepared by the present invention on the semiconductor is more regular, which also shows that the affinity of the MXene-based conductive ink prepared by the present invention to the semiconductor film is significantly improved, providing a preparation method and guarantee for the preparation of large-area flexible electronic devices in the future.
  • the method for preparing MXene-based conductive ink and the printing process of the present invention can be completed at room temperature, avoiding the damage to the semiconductor layer caused by high-temperature deposition in the prior art, which can make it have a wider application in the field of flexible electronic devices.
  • the MXene-based conductive ink with adjustable work function prepared by the present invention changes the surface dipole of the material by introducing different dopants, so that when it contacts the semiconductor, it can form a contact interface with a smaller potential barrier according to the band structure design, thereby effectively improving the performance of the thin film transistor.
  • the electronic devices using the MXene-based conductive ink with adjustable work function prepared by the present invention as the electrode layer show a high carrier mobility (1-20 cm 2 v -1 s -1 ), which is much higher than that of the undoped MXene integrated electronic devices.
  • the switching ratio is 10 5 to 10 8
  • the turn-on voltage is 0.2 to 4.5 V
  • the subthreshold swing is only 300 mv/dec. This has great application potential in the preparation of printed flexible portable electronic devices based on thin film transistors in the future.
  • FIG1 is a Kelvin probe force microscopy (KPFM) image of the MXene-based conductive ink prepared in Examples 1 to 4 of the present invention and Comparative Example 1;
  • KPFM Kelvin probe force microscopy
  • FIG2 is a work function diagram of MXene-based conductive inks prepared in Examples 1, 2, 3, 4 and Comparative Example 1 of the present invention
  • FIG3 is a conductivity test graph of MXene-based conductive inks prepared in Examples 1 to 4 of the present invention and Comparative Example 1;
  • FIG4 is a graph showing rheological properties of MXene-based conductive inks prepared in Examples 1 to 4 of the present invention and Comparative Example 1;
  • FIG5 is a display of printed logos of MXene-based conductive ink prepared in Example 4 of the present invention on PET, PEN, and fiber paper (from top to bottom) (left); a display of electrode array printing of titanium carbide-PFN-Br conductive ink prepared in Example 4 on a flexible substrate (PET) (right);
  • FIG6 is a diagram showing the deposition effects of MXene-based conductive inks prepared in Examples 1 to 4 of the present invention and Comparative Example 1 on a semiconductor film, which correspond to Comparative Example 1, Example 1, Example 2, Example 3 and Example 4 from left to right and from top to bottom;
  • FIG7 is a scanning electron microscope image (SEM) of a cross-sectional device structure of a thin film transistor prepared using the MXene-based conductive ink prepared in Example 4 as an electrode layer of the present invention
  • FIG8 is a graph showing the transfer characteristic curve and output characteristic curve of a thin film transistor prepared using the MXene-based conductive ink prepared in Example 4 as an electrode layer according to the present invention, wherein a is the transfer characteristic curve and b is the output characteristic curve.
  • the preparation method of the titanium carbide MXene dispersion described in the following embodiment is as follows: 2 g of lithium fluoride is added to 30 mL of 9 M hydrochloric acid and dissolved for 30 minutes, then 2 g of MAX phase powder is added to the mixed solution, and etched at 35°C for 24 hours to obtain the MXene phase, which is then washed to neutrality, ultrasonically peeled for 15 minutes, and then centrifuged for 30 minutes to collect the supernatant to obtain a titanium carbide dispersion.
  • a MXene-based conductive ink M-APTES was prepared, and the specific steps are as follows:
  • APTES 3-aminopropyltriethoxysilane
  • the titanium carbide MXene dispersion was added to the APTES solution obtained in step (1), and the mixed system was placed in a vortex mixer for 40 minutes to obtain a uniformly dispersed MXene-based conductive ink, which was named M-APTES.
  • a MXene-based conductive ink M-PSSNa was prepared, and the specific steps are as follows:
  • PSSNa poly(4-styrene sulfonic acid) sodium salt
  • the titanium carbide MXene dispersion was added to the PSSNa solution obtained in step (1), and the mixed system was placed in a vortex mixer for 40 min and shaken to obtain a uniformly dispersed MXene-based conductive ink, named M-PSSNa.
  • a MXene-based conductive ink M-PEDOT:PSS was prepared by the following steps:
  • MXene dispersion 100 mg was added to 100 ⁇ l of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) solution (solid content: 2%, purchased from Shanghai Jingnian Chemical Co., Ltd.), placed in a vortex mixer for 40 minutes and shaken to obtain a uniformly dispersed MXene-based conductive ink, named M-PEDOT:PSS.
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)
  • a MXene-based conductive ink M-PFN-Br was prepared by the following steps:
  • the titanium carbide MXene dispersion was added to the PFN-Br methanol solution obtained in step (1), and the mixed system was placed in a vortex mixer for 40 minutes for shaking to obtain a uniformly dispersed MXene-based conductive ink, named M-PFN-Br.
  • the titanium carbide MXene dispersion was placed in a centrifuge and centrifuged at 1000 rpm for 35 min. The supernatant was discarded to collect the precipitated ink, which was named MXene.
  • the ink samples prepared in Examples 1 to 4 and Comparative Example 1 were subjected to Kelvin probe force microscopy (KPFM) testing.
  • KPFM Kelvin probe force microscopy
  • a, b, c, d, and e are surface potential diagrams of the ink samples of M-PEDOT:PSS (Example 3), MXene (Comparative Example 1), M-PSSNa (Example 2), M-APTES (Example 1), and M-PFN-Br (Example 4), respectively.
  • the surface potential difference between the gold standard and the sample is V CPD
  • the results are shown in FIG. 2 .
  • the work function of MXene-based conductive ink can be regulated by selecting different types of dopants, and the regulation range is in a wide range of 4.88 to 5.66 eV, which greatly expands the types of substrate materials that can be used for printing MXene-based conductive ink.
  • the silane can undergo a hydroxyl co-condensation reaction with the MXene surface, thereby affecting the proportion of terminals on the surface of the MXene material and affecting the work function of the MXene-based conductive ink.
  • the surface of the MXene material after the surface of the MXene material is functionalized, it can be used as a protective layer to prevent spontaneous oxidation of MXene nanosheets.
  • the dopants containing conjugated group molecules added in Examples 2 to 4 will cause changes in the dipole surface of the MXene material, thereby causing changes in the work function.
  • Example 5 The content of Example 5 is substantially the same as that of Example 4, except that in step (2), the mass ratio of MXene to dopant is 1:2 ⁇ 10 -4 .
  • Example 6 The content of Example 6 is substantially the same as that of Example 4, except that in step (2), the mass ratio of MXene to dopant is 1:2 ⁇ 10 -3 .
  • Example 7 The content of Example 7 is substantially the same as that of Example 4, except that in step (2), the mass ratio of MXene to dopant is 1:2 ⁇ 10 -2 .
  • the work function test results need to fully consider the mass error of MXene ink and the test calculation error, including the interlamellar spacing, size, oxidation degree, and potential difference calculation method of MXene nanosheets. Therefore, there is an error between the measured value of the work function of Comparative Example 1 and the value in Figure 2.
  • the work function of MXene-based conductive ink shows a gradually increasing trend with the increase of the amount of dopant. This is because the introduction of conjugated group molecules causes the change of the dipole on the surface of the material, which leads to a change in its work function.
  • PFN- Br in methanol solution has a large degree of spatial freedom. Compared with N + , Br - is easier to stay away from the surface of the oily active layer, thus forming a permanent dipole layer on the surface of the active layer, resulting in an increase in the work function.
  • the amount of dopant added is small, the effect on the dipole on the surface of the material is small, and the work function increases with the increase of the doping ratio. If the dopant ratio continues to increase, the work function of the ink after doping will gradually increase until it reaches saturation at around 5.7eV (this value is the work function of the PFN-Br molecule).
  • a silicon oxide/silicon wafer having a surface oxide layer with a thickness of 300 nm is selected, and a semiconductor crystal film is grown on the silicon oxide/silicon wafer by a meniscus growth method.
  • the MXene-based conductive ink prepared by the present invention is deposited on the semiconductor film by screen printing to obtain an integrated printed thin film transistor device, wherein the screen printing speed is 100 mm/s.
  • (c) is the relationship curve between the storage modulus (G′) and loss modulus (G′′) of MXene and M-APTES inks and the oscillation strain;
  • (d) is the relationship curve between the viscosity and shear rate of 3 mg/ml MXene dispersion;
  • (e) is the relationship curve between the viscosity and shear rate of the inks of Example 2 (M-PSSNa), Example 3 (M-PEDOT:PSS) and Example 4 (M-PFN-Br).
  • the apparent viscosities of the ink samples of M-APTES (Example 1) and MXene (Comparative Example 1) are 27107.3Pa ⁇ s and 6608Pa ⁇ s, respectively.
  • the viscosity of the ink sample M-APTES with the addition of the dopant increases significantly. This is because the addition of the dopant APTES causes the silane to undergo a hydroxyl co-condensation reaction with the MXene surface, resulting in the agglomeration of the MXene.
  • the present invention can adjust the viscosity of the obtained ink to a range of 0.03-30000 Pa ⁇ s by adjusting the solid content and doping ratio of the MXene material, so that it can be applied to various printing methods.
  • the MXene-based conductive ink samples prepared in Examples 1 to 7 of the present invention were printed on PET, PEN, and fiber paper, respectively.
  • the printing effect diagram of the M-PFN-Br ink prepared in Example 4 is shown in the left part of Figure 5, which is PET, PEN, and fiber paper from top to bottom.
  • the M-PFN-Br conductive ink prepared in Example 4 of the present invention was used to print an electrode array on a flexible substrate (PET), and the effect diagram is shown in the right part of FIG5 , and the printing area is 10 cm ⁇ 10 cm.
  • the ink samples prepared in Examples 1 to 4 of the present invention and Comparative Example 1 were deposited on a semiconductor film by screen printing, and the deposition effect is shown in FIG6 , which corresponds to Comparative Example 1 (MXene), Example 1 (M-APTES), Example 2 (M-PSSNa), Example 3 (M-PEDOT:PSS) and Example 4 (M-PFN-Br) from left to right and from top to bottom.
  • the method for preparing the semiconductor film is: a silicon oxide/silicon wafer having a surface oxide layer of 300 ⁇ m thickness is selected, and a semiconductor crystal film is grown on the silicon oxide/silicon wafer by meniscus growth.
  • FIG. 7 is a scanning electron microscope image (SEM) of a cross-sectional device structure of a thin film transistor prepared using the M-PFN-Br conductive ink prepared in Example 4 as an electrode layer.
  • FIG8 is a transfer characteristic curve and an output characteristic curve of a thin film transistor integrated with conductive ink prepared in Example 4 and Comparative Example 1.
  • the mobility calculation formula is:
  • the mobilities of transistor devices with channel length and width of 100 ⁇ m and 300 ⁇ m are 0.7 and 17cm2 ⁇ v -1 ⁇ s -1 respectively, the switching ratios are 105 and 108 respectively, the subthreshold swings are 1500 and 300mv ⁇ dec -1 respectively, and the turn-on voltages are 4.5 and 2.5V respectively.
  • the M-PFN-Br doped ink with adjustable work function forms a more matching energy band structure, which reduces the carrier transport barrier between the electrode and the semiconductor and enhances the density of the electrode and its affinity with the semiconductor crystalline film, resulting in a significant improvement in various indicators of transistor performance.
  • the MXene-based conductive ink with adjustable work function prepared by the present invention has great application potential in the preparation of printed flexible portable electronic devices based on thin film transistors in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用。所述功函数可调的MXene基导电墨水包括二维MXene材料和掺杂剂,其中二维MXene材料在二维MXene材料和掺杂剂中的质量百分比大于等于98%,掺杂剂在二维MXene材料和掺杂剂中的质量百分比为0.02%~2%。该MXene基导电墨水的功函数可调控在4.88~5.66eV的较宽范围内,极大地拓宽了MXene基导电墨水在印刷时可选用的基底材料种类。同时,该功函数可调的MXene基导电墨水还可以通过丝网印刷印制高分辨电极阵列,制备过程简单易操作,将在印刷柔性薄膜晶体管中获得广泛应用。

Description

一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用 技术领域
本发明属于纳米材料及光电子学领域,具体涉及一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用。
背景技术
金属电极和半导体材料接触处形成的界面是现代电子和光电子器件设备的关键组成部分,电极和半导体的电荷传输会经过一个称为势垒的能量屏障。在固体物理中,功函数定义为把一个电子从固体内部刚好移动到物体表面所需要的最少能量。载流子注入势垒可以通过导体的功函数和半导体的电子亲和力(或真空电离能)之间的差来估计。金属与半导体在接触平衡后由于两侧的载流子浓度差产生的势垒区对于电子传输来说是高阻的,此时的势垒为肖特基势垒。反之,接触平衡后由于电子盈余形成的低阻层,无论电子沿何方向传输,都没有形成势垒的情况表明形成了欧姆接触。因此,对于包含金-半接触的电子器件来说,具有宽调控功函数的电极为形成更低的势垒提供了更大的可能,从而有效的提高载流子注入效率。
MXene材料丰富的表面官能团赋予其宽泛的功函数可调性。MXene材料的功函数主要受到不同比例的表面官能团引起的表面偶极矩变化的影响。目前作为电极材料的MXene墨水的功函数调控方法有化学接枝、真空退火、热蒸发、UV臭氧处理等。例如,中国专利CN109904326B公开了一种MXene掺杂PEDOT:PSS为阳极修饰层材料的有机太阳能电池及其制备方法,该专利将MXene溶液(功函数5.0eV)滴加在PEDOT:PSS溶液中搅拌均匀,在太阳能电池的阳极基底上(功函数4.7eV)旋涂后以130~170℃退火处理5~15分钟得到阳极修饰层,通过降低阳极与活性层之间的界面能力,最终集成的太阳能电池光电转换效率从3.48%提高到4.43%,转换效率提高了27.30%。但是其共混物中掺杂固含量为MXene质量百分比的2~6.5%,较高的掺杂含量会影响MXene的本征特性(导电性、亲水性等),并且相对较高的退火温度会限制其在柔性基底上的应用;中国专利CN112670365A公开了一种GaAs/MXene异质结太阳电池及其制备方法,在MXene膜表面蒸镀Ag、Cr、Ti、Ni、Au中的一种或几种复合电极,在制备GaAs/MXene异质结太阳电池中,MXene转移完成后真空退火温度为30℃~300℃。最终有助于提高电池的开路电压以及转换效率。但该专利的蒸镀过程相对复杂,后续的退火过程需要严格无氧保证MXene的质量,高温环境同时也限制了在柔性基底上的应用。
电极材料的图案化是电子器件加工过程中的关键技术。印刷法是一种类似于“加成”的工艺,选择合适的印刷方法,能够实现在各种柔性基底上完成图案化沉积、操作更简单,成本更低。然而,为了制备拥有合适流变特性以满足印刷要求的墨水,大多数MXene墨水都以水作为溶剂,这会导致MXene墨水与有机半导体分子的表面能相差较大,导致印刷适性急速下降。综上,为了在薄膜晶体管中形成良好的金属-半导体接触界面,并提高MXene墨水与有机半导体的接触亲和性,能够在常温下制备兼具优异印刷适性与功函数可调性的电子墨水具有重要意义。
发明内容
针对现有技术中存在的问题和不足,本发明的目的旨在提供一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用。
为实现发明目的,本发明采用的技术方案如下:
本发明第一方面提供一种功函数可调的MXene基导电墨水,包括二维MXene材料、掺杂剂,所述二维MXene材料在二维MXene材料和掺杂剂中的质量百分比大于等于98%,所述掺杂剂在二维MXene材料和掺杂剂中的质量百分比为0.02%~2%。
优选地,所述掺杂剂选自3-氨丙基三乙氧基硅烷(APTES)、支化聚乙烯亚胺(BPEI)、十二烷基三甲氧基硅烷、聚(4-苯乙烯磺酸)钠盐(PSSNa)、聚[(9,9-双(3’-(N,N-二甲基氨基)丙基)-2,7-芴)-ALT-2,7-(9,9-二辛基芴)](PFN)、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)、聚[(9,9-二(3′-(N,N-二甲氨基)丙基)芴基-2,7-二基)-ALT-[(9,9-二正辛基芴基2,7-二基)-溴(PFN-Br)、聚[N-(4-磺酰基苯基)-4,4′-二苯胺-氮-(对三氟甲基)苯基-4,4′-二苯胺]钠盐(PTFTS)、聚季铵盐-2、聚季铵盐-11中的任意一种。
优选地,所述MXene基导电墨水中还包括溶剂,所述溶剂选自水、甲醇、乙醇、异丙醇和氯仿中的任意一种。
优选地,所述二维MXene材料为MXene纳米片,所述MXene纳米片的化学式为Mn+1XnTx,其中M表示过渡金属Sc、Ti、V、Cr、Zr、Nb、Mo、Hf或Ta;X表示C或N或C-N;Tx表示表面官能团为=O、-F和-OH。
优选地,所述MXene纳米片选自Ti4C3、Ti3C2、Ti2C中的任意一种。
更加优选地,所述MXene纳米片为单层或多层MXene纳米片。
更加优选地,所述单层MXene纳米片的厚度为0.5~2nm,面积为1μm2~50μm2
本发明第二方面提供一种上述功函数可调的MXene基导电墨水的制备方法,将掺杂剂溶于溶剂后与MXene分散液混合混匀,即可得到功函数可调的MXene基导电墨水。
本发明第三方面提供一种第一方面所述的功函数可调的MXene基导电墨水利用印刷法和涂布法在导电电极、电子线路印刷中的应用。
优选地,所述印刷及涂布方式包括喷墨印刷、丝网印刷、3D打印、转移印刷、滴涂、旋涂、棒涂、喷涂、真空过滤。
更加优选地,所述印刷及涂布过程用到的坚硬基底材料包括玻璃、二氧化硅、陶瓷、氮化铝玻璃纤维环氧树脂压合板或覆铜板。
更加优选地,所述印刷及涂布过程用到的柔性基底材料包括打印纸、铜版纸、胶版纸、凸版纸、凹版纸、白版纸、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚碳酸酯或聚醚酮。
本发明第三方面提供一种第一方面所述的功函数可调的MXene基导电墨水在制备薄膜晶体管中的应用。
优选地,所述制备薄膜晶体管的半导体薄膜包括2,7-二苯基[1]苯并噻吩[3,2-B][1]苯并噻吩(DPh-BTBT)、2-癸基-7-苯基[1]苯并噻吩并[3,2-B][1]苯并噻吩(Ph-BTBT-C10)、2,7-二辛基[1]苯并噻吩并[3,2-B]苯并噻吩(C8-BTBT)、二萘并[2,3-b:2′,3′-f]噻吩并[3,2-b]噻吩(DNTT)、DNTT-10、并五苯、6,13-双(三异丙硅基乙炔基)-并五苯(TIPS-Pentacene)。
与现有技术相比,本发明的有益效果如下:
(1)本发明通过采用不同的掺杂剂与MXene分散液进行共混,制备了功函数可调的MXene基导电墨水,该墨水由二维MXene材料、掺杂剂和溶剂组成,其中掺杂剂的质量仅占二维MXene材料和掺杂剂总质量的0.02%~2%,不仅解决了现有技术中因掺杂剂固含量太高影响MXene材料导电性、亲水性等问题,还实现了MXene基导电墨水功函数的有效调控。
(2)本发明选用APTES、PSSNa、PSS:PEDOT和PFN-Br四种不同的掺杂剂制备的碳化钛MXene基导电墨水的功函数可调控在4.88~5.66eV的较宽范围内,极大地拓宽了MXene基导电墨水在印刷时可选用的基底材料种类。
(3)本发明制备的功函数可调的MXene基导电墨水可以通过调节MXene二维材料的固含量及掺杂剂比例来调节墨水粘度在0.003-30000Pa·s范围内,使其能够与各种印刷(如喷墨印刷、丝网印刷、3D打印和转移印刷等)及涂布方式(滴涂、旋涂、棒涂、喷涂、真空过滤)结合实现图案化沉积,在不同基底如纤维质、PU或PET上的印刷最小分辨率达到10μm,印刷墨水的电导率最高达8000S/cm。
(4)本发明在MXene材料中引入了不同的掺杂剂,相较于未掺杂的MXene基墨水,由 于功能基团的引入,本发明制备的MXene基导电墨水在半导体上的沉积图案更加规整,这也表明本发明制备的MXene基导电墨水与半导体薄膜的亲和性有较明显的提升,为未来制备大面积的柔性电子器件提供了制备方法和保障。
(5)本发明制备MXene基导电墨水的方法与印刷工艺过程均在可室温下完成,避免了现有技术中因高温沉积对半导体层的破坏,可以使其在柔性电子器件领域有更加广阔的应用。
(6)本发明制备的功函数可调的MXene基导电墨水通过引入不同掺杂剂改变材料的表面偶极,使其在与半导体接触时,根据能带结构设计能够形成势垒更小的接触界面,有效地提升了薄膜晶体管的性能。
(7)以本发明制备的可调功函数的MXene基导电墨水作为电极层的电子器件显示出较高的载流子迁移率(1~20cm2v-1s-1),远高于未掺杂的MXene集成的电子器件。另外,开关比在105~108,开启电压在0.2~4.5V,亚阈值摆幅只有300mv/dec。这在未来的基于薄膜晶体管的印刷柔性便携式电子器件的制备方面具有很大的应用潜力。
附图说明
图1为本发明实施例1~4和对比例1制备的MXene基导电墨水的开尔文探针力显微镜(KPFM)图像;
图2为本发明实施例1、2、3、4和对比例1制备的MXene基导电墨水的功函数图;
图3为本发明实施例1~4与对比例1制备的MXene基导电墨水的电导率测试图;
图4为本发明实施例1~4和对比例1制备的MXene基导电墨水的流变特性图;
图5为本发明以实施例4制备的MXene基导电墨水分别在PET、PEN、纤维纸(由上到下)上的印刷标识展示(左);以实施例4制备的碳化钛-PFN-Br导电墨水在柔性基底(PET)上的电极阵列印刷展示图(右);
图6为本发明实施例1~4和对比例1制备的MXene基导电墨水在半导体薄膜上的沉积效果图,从左到右,从上到下依次对应对比例1,实施例1、实施例2、实施例3和实施例4;
图7为本发明以实施例4制备的MXene基导电墨水为电极层制备的薄膜晶体管的断面器件结构扫描电子显微镜图(SEM);
图8为本发明以实施例4制备的MXene基导电墨水为电极层制备的薄膜晶体管的转移特性曲线和输出特性曲线图,其中a为转移特性曲线,b为输出特性曲线。
具体实施方式
以下实施例仅适用于对本发明进行进一步阐述。应该说明的是,本发明所使用的所有技术以及科学术语除另有说明外具有与本发明所属技术领域相同的含义。下列实施例中未注明具体条件的实验方法,均采用本技术领域常规技术,或按照生产厂商所建议的条件;所用试 剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
(一)探讨不同掺杂剂制备的MXene基导电墨水对功函数的影响
为了探讨掺杂剂种类对MXene基导电墨水功函数的影响,本发明进行了实施例1~4和对比例1实验。
以下实施例中所述的碳化钛MXene分散液的制备方法为:将2g氟化锂加入到30mL的9M盐酸中,溶解30min,随后将2g的MAX相粉末加入到混合溶液中,在35℃下刻蚀24h得到MXene相,随后洗涤至中性,超声15min剥离后再离心30min,收集上层清液,得到碳化钛分散液。
实施例1:制备MXene基导电墨水M-APTES
制备一种MXene基导电墨水M-APTES,具体步骤如下:
(1)将3-氨丙基三乙氧基硅烷(APTES)加入去离子水中,搅拌,直至APTES完全溶解,得到APTES溶液;
(2)按照MXene与APTES的质量比为1∶8×10-3,向步骤(1)得到的APTES溶液中加入碳化钛MXene分散液,将混合体系置于涡旋混匀仪中震荡40min,即得到均匀分散的MXene基导电墨水,命名为M-APTES。
实施例2:制备MXene基导电墨水M-PSSNa
制备一种MXene基导电墨水M-PSSNa,具体步骤如下:
(1)将聚(4-苯乙烯磺酸)钠盐(PSSNa,分子量:70000,购于美国Sigma-Aldrich公司)加入去离子水中,搅拌,直至PSSNa完全溶解,得到PSSNa溶液;
(2)按照MXene与PSSNa的质量比为1∶1×10-2,向步骤(1)得到的PSSNa溶液中加入碳化钛MXene分散液,将混合体系置于涡旋混匀仪中40min,震荡,即得到均匀分散的MXene基导电墨水,命名为M-PSSNa。
实施例3:制备MXene基导电墨水M-PEDOT:PSS
制备一种MXene基导电墨水M-PEDOT:PSS,具体步骤如下:
将100mg碳化钛MXene分散液加入到100μl聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)溶液(固含量:2%,购于上海经年化工有限公司)中,置于涡旋混匀仪中40min,震荡,即得到均匀分散的MXene基导电墨水,命名为M-PEDOT:PSS。
实施例4:制备MXene基导电墨水M-PFN-Br
制备一种MXene基导电墨水M-PFN-Br,具体步骤如下:
(1)将聚[(9,9-二(3′-(N,N-二甲氨基)丙基)芴基-2,7-二基)-ALT-[(9,9-二正辛基芴基2,7-二基)-溴(PFN-Br,分子量为30000-50000,购于上海大然化学有限公司)加入甲醇中,搅拌,直至PFN-Br完全溶解,得到M-PFN-Br溶液;
(2)按照MXene与PFN-Br的质量比为1∶6×10-3,向步骤(1)得到的PFN-Br甲醇溶液中加入碳化钛MXene分散液,将混合体系置于涡旋混匀仪中40min,震荡,即得到均匀分散的MXene基导电墨水,命名为M-PFN-Br。
对比例1:制备MXene基导电墨水
将碳化钛MXene分散液放入离心机中以1000rpm离心35min,倒掉上清液,即可收集得到沉淀墨水,将该墨水命名为MXene。
对实施例1~4和对比例1制得的墨水样品进行开尔文探针力显微镜(KPFM)测试,首先测试金标样(Φ1功函数为5.1eV)的表面电势,之后测量样品表面电势,结果如图1所示,其中a、b、c、d、e依次为M-PEDOT:PSS(实施例3)、MXene(对比例1)、M-PSSNa(实施例2)、M-APTES(实施例1)和M-PFN-Br(实施例4)墨水样品的表面电势图。
金标样与样品的表面电势差值为VCPD,再利用公式Φ2=Φ1-eVCPD计算各样品的功函数Φ2,结果如图2所示。
从图2中可以看出,通过选用不同种类的掺杂剂可以实现对MXene基导电墨水的功函数调控,调控范围在4.88~5.66eV的较宽范围,大大拓展了MXene基导电墨水在印刷时可选用的基底材料种类。其中,实施例1中添加的含有氨基的APTES分子发生连续水解后,硅烷可以与MXene表面发生羟基共缩聚反应,从而影响MXene材料表面终端的比例,影响MXene基导电墨水的功函数。而且MXene材料表面功能化后又可以作为保护层来防止MXene纳米薄片的自发氧化。实施例2~4添加的含有共轭基团分子的掺杂剂,会造成MXene材料表面偶极的变化从而导致功函数发生变化。
(二)探讨掺杂剂用量对MXene基导电墨水功函数的影响
为了探讨掺杂剂用量对MXene基导电墨水功函数的影响,本发明进行了实施例5~7实验。
实施例5
实施例5的内容与实施例4基本相同,其不同之处在于:步骤(2)中MXene与掺杂剂的质量比为1∶2×10-4
实施例6
实施例6的内容与实施例4基本相同,其不同之处在于:步骤(2)中MXene与掺杂剂的质量比为1∶2×10-3
实施例7
实施例7的内容与实施例4基本相同,其不同之处在于:步骤(2)中在MXene与掺杂剂的质量比为1∶2×10-2
对实施例5~7和对比例1制得的墨水样品进行开尔文探针力显微镜(KPFM)测试,首先测试金标样(Φ1功函数为5.1eV)的表面电势,之后测量样品表面电势,二者的表面电势差值为VCPD,再利用公式Φ2=Φ1-eVCPD计算各样品的功函数Φ2。结果参见表1。
功函数测试结果需要充分考虑MXene墨水的质量误差、测试计算误差,包括MXene纳米片的片层间距、尺寸大小、氧化程度、电势差计算方法,因此对比例1在此次功函数的测定值与图2中的数值存在误差。
表1掺杂剂用量对墨水样品功函数的影响
从表1中可以看出,MXene基导电墨水的功函数随着掺杂剂用量的增加呈现逐渐递增的趋势,这是因为共轭基团分子的引入造成材料表面偶极的变化从而导致其功函数发生变化。PFN-Br在甲醇溶液中的Br-具有极大的空间自由度,相对于N+来说,Br-更易远离油性活性层表面,从而在活性层表面形成了一层永久偶极层,导致功函数提高。掺杂剂添加量较少的情况下,对于材料表面偶极的影响较小,随着掺杂比例增加,功函数递增。若继续增大掺杂剂比例,掺杂后油墨的功函数逐渐增加,直至增大为5.7eV(该数值为PFN-Br分子的功函数)左右达到饱和。
实施例8:薄膜晶体管的制备
选用表层含有300nm厚度氧化层的氧化硅/硅片,通过弯月面生长的方式在氧化硅/硅片上生长半导体晶体薄膜,将本发明制备的MXene基导电墨水采用丝网印刷沉积在半导体薄膜上,即可得到集成的印刷薄膜晶体管器件,其中丝网印刷速度:100mm/s。
(三)性能测试或表征
1.本发明制备的MXene基导电墨水的电导率测试:
用电导率仪对实施例1~4和对比例1制备的墨水样品进行电导率测试,其测试结果如图3所示,结果表明:相较于未添加掺杂剂的MXene导电墨水,添加了不同掺杂剂的导电墨水的电导率均没有下降。这是因为碳化钛材料本身就具有优异的导电性,其导电性超过了大多数碳基材料,而且,实施例1~4中的掺杂剂均是电荷传输能力较好的掺杂剂。
2.本发明制备的MXene基导电墨水的流变性测试:
对本发明实施例1~4与对比例1(MXene)制备的导电墨水样品进行流变特性表征,其结果如图4所示,其中(a)为对比例1(MXene)与实施例1(M-APTES)墨水的粘度与剪切速率的关系曲线;(b)为模拟印刷过程中MXene与M-APTES墨水挤出过程的粘度与时间关系的关系曲线。(c)为MXene与M-APTES墨水的储能模量(G′)和损耗模量(G″)与振荡应变的关系曲线;(d)为3mg/ml MXene分散液的粘度与剪切速率的关系曲线;(e)为实施例2(M-PSSNa)、实施例3(M-PEDOT:PSS)和实施例4(M-PFN-Br)墨水的粘度与剪切速率的关系曲线。
从图中(a)可知,M-APTES(实施例1)和MXene(对比例1)墨水样品的表观粘度分别为27107.3Pa·s和6608Pa·s。显然,加入掺杂剂的墨水样品M-APTES的粘度显著升高,这是由于掺杂剂APTES的加入,使硅烷与MXene表面发生羟基共缩聚反应,导致MXene发生团聚。当然,若使用含有氨基的掺杂剂,其中的氨基也可以与MXene表面的羟基形成氢键作用,增大表面张力阻碍液体的流动,从而得到高粘度的墨水。此外从图(a)和(e)中还可以观察到,随着剪切速率的不断增高,掺杂墨水粘度在不断降低,这是典型的非牛顿流体行为,这种剪切变稀特性对于丝网印刷、挤出式3D打印非常关键。从图中(d)可以看出,3mg/ml MXene分散液的表观粘度为0.0009Pa·s,没有剪切变稀特性。
因此,本发明可以通过调节MXene材料的固含量以及掺杂比例来调节所得墨水的粘度使其范围在0.03-30000Pa·s,从而可以应用于各种印刷方式。
3.本发明制备的MXene基导电墨水的印刷效果
将本发明实施例1~7制备的MXene基导电墨水样品分别在PET、PEN、纤维纸上进行印刷,其中实施例4制备的M-PFN-Br墨水的印刷效果图如图5中左部分所示,由上到下依次为PET、PEN、纤维纸。
将本发明实施例4制备的M-PFN-Br导电墨水在柔性基底(PET)上进行电极阵列印刷,效果图如图5中右部分所示,其印刷面积为10cm×10cm。
4.本发明制备的MXene基导电墨水与半导体薄膜的亲和性
将本发明实施例1~4和对比例1制备的墨水样品采用丝网印刷沉积在半导体薄膜上,沉积效果如图6所示,图中从左到右,从上到下依次对应对比例1(MXene)、实施例1(M-APTES)、实施例2(M-PSSNa)、实施例3(M-PEDOT:PSS)和实施例4(M-PFN-Br)。所述半导体薄膜的制备方法为:选用表层含有300m厚度氧化层的氧化硅/硅片,通过弯月面生长的方式在氧化硅/硅片上生长半导体晶体薄膜。
从图6中可以看到,由于水与有机半导体的表面能差异,对比例1未添加掺杂剂的MXene墨水印刷适性较差,而添加了掺杂剂的墨水(实施例1、2、3、4)起到了表面活性剂的作用, 通过改善表面能增强了墨水与半导体的亲和性,印刷电极更加规整。
5.本发明实施例4制备的薄膜晶体管的性能表征
图7为以实施例4制备的M-PFN-Br导电墨水为电极层制备的薄膜晶体管的断面器件结构扫描电子显微镜图片(SEM)。
图8为采用实施例4、对比例1制备的导电墨水集成的薄膜晶体管的转移特性曲线与输出特性曲线。其中迁移率计算公式为:
经计算,沟道长宽分别为100μm,300μm的晶体管器件的迁移率分别为0.7、17cm2·v-1·s-1,开关比分别为105、108,亚阈值摆幅分别为1500、300mv·dec-1,开启电压分别为4.5、2.5V,可以看出,功函可调的M-PFN-Br掺杂墨水形成了更加匹配的能带结构,由于减少了电极与半导体之间的载流子传输势垒,同时增强了电极的致密性及与半导体结晶薄膜的亲和性,导致晶体管性能的各项指标均有大幅度提升。
因此,本发明制备的功函数可调的MXene基导电墨水在未来基于薄膜晶体管的印刷柔性便携式电子器件的制备方面具有很大的应用潜力。
上述实施例为本发明的具体实施方式,但本发明的实施方式并不受上述实施例的限制,其它任何不超出本发明设计思路组合、改变、修饰、替代、简化,均落入本发明的保护范围之内。

Claims (8)

  1. 一种功函数可调的MXene基导电墨水,包括二维MXene材料和掺杂剂,其特征在于,所述二维MXene材料在二维MXene材料和掺杂剂中的质量百分比大于等于98%,所述掺杂剂在二维MXene材料和掺杂剂中的质量百分比为0.02%~2%;
    所述掺杂剂选自3-氨丙基三乙氧基硅烷、聚(4-苯乙烯磺酸)钠盐、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)、聚[(9,9-二(3′-(N,N-二甲氨基)丙基)芴基-2,7-二基)-ALT-[(9,9-二正辛基芴基2,7-二基)-溴中的任意一种;
    所述二维MXene材料为MXene纳米片,所述MXene纳米片的化学式为Mn+1XnTx,其中M表示过渡金属Sc、Ti、V、Cr、Zr、Nb、Mo、Hf或Ta;X表示C或N或C-N;Tx表示表面官能团为=O、-F和-OH。
  2. 根据权利要求1所述的功函数可调的MXene基导电墨水,其特征在于,所述MXene基导电墨水中还包括溶剂,所述溶剂选自水、甲醇、乙醇、异丙醇和氯仿中的任意一种。
  3. 根据权利要求2所述的功函数可调的MXene基导电墨水,其特征在于,所述MXene纳米片选自Ti4C3、Ti3C2、Ti2C中的任意一种。
  4. 权利要求1~3任一所述的功函数可调的MXene基导电墨水的制备方法,其特征在于,将掺杂剂溶于溶剂后与MXene分散液混合均匀,即可得到功函数可调的MXene基导电墨水。
  5. 权利要求1~3任一所述的功函数可调的MXene基导电墨水利用印刷法和/或涂布法在导电电极、电子线路印刷中的应用。
  6. 根据权利要求5所述的应用,其特征在于,所述印刷及涂布方式包括喷墨印刷、丝网印刷、3D打印、转移印刷、滴涂、旋涂、棒涂、喷涂、真空过滤。
  7. 权利要求1~3任一所述的功函数可调的MXene基导电墨水在制备薄膜晶体管中的应用。
  8. 根据权利要求7所述的应用,其特征在于,制备薄膜晶体管的半导体薄膜包括2,7-二苯基[1]苯并噻吩[3,2-B][1]苯并噻吩、2-癸基-7-苯基[1]苯并噻吩并[3,2-B][1]苯并噻吩、2,7-二辛基[1]苯并噻吩并[3,2-B]苯并噻吩、二萘并[2,3-b:2′,3′-f]噻吩并[3,2-b]噻吩、DNTT-10、并五苯、6,13-双(三异丙硅基乙炔基)-并五苯。
PCT/CN2023/125093 2022-10-24 2023-10-18 一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用 WO2024088117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211307763.1A CN115537073B (zh) 2022-10-24 2022-10-24 一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用
CN202211307763.1 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024088117A1 true WO2024088117A1 (zh) 2024-05-02

Family

ID=84719587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125093 WO2024088117A1 (zh) 2022-10-24 2023-10-18 一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用

Country Status (2)

Country Link
CN (1) CN115537073B (zh)
WO (1) WO2024088117A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537073B (zh) * 2022-10-24 2023-09-01 郑州大学 一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904326A (zh) * 2019-01-18 2019-06-18 华南理工大学 一种MXene掺杂PEDOT:PSS为阳极修饰层材料的有机太阳能电池及其制备方法
CN111463296A (zh) * 2020-03-13 2020-07-28 嘉兴学院 一种Mxenes-PEDOT:PSS复合柔性电极及太阳能电池器件
US20210344287A1 (en) * 2020-05-04 2021-11-04 Korea Advanced Institute Of Science And Technology MXene COATED HYDROPHILIC FIBER MEMBRANE-BASED COMPLEX GENERATOR AND MANUFACTURING METHOD THEREOF
CN114551111A (zh) * 2022-01-17 2022-05-27 江南大学 一种墨水直写3d打印导电聚合物基微型超级电容器及其制备方法
CN114752248A (zh) * 2022-05-21 2022-07-15 郑州大学 一种用于丝网印刷和3D打印的MXene纳米片胶体及其制备方法
CN115180623A (zh) * 2022-08-11 2022-10-14 南京信息工程大学 一种用于3D打印的MXene浆料的制备方法及应用
CN115537073A (zh) * 2022-10-24 2022-12-30 郑州大学 一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430154A (zh) * 2020-03-20 2020-07-17 北京化工大学 一种自支撑三维多孔MXene电极及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904326A (zh) * 2019-01-18 2019-06-18 华南理工大学 一种MXene掺杂PEDOT:PSS为阳极修饰层材料的有机太阳能电池及其制备方法
CN111463296A (zh) * 2020-03-13 2020-07-28 嘉兴学院 一种Mxenes-PEDOT:PSS复合柔性电极及太阳能电池器件
US20210344287A1 (en) * 2020-05-04 2021-11-04 Korea Advanced Institute Of Science And Technology MXene COATED HYDROPHILIC FIBER MEMBRANE-BASED COMPLEX GENERATOR AND MANUFACTURING METHOD THEREOF
CN114551111A (zh) * 2022-01-17 2022-05-27 江南大学 一种墨水直写3d打印导电聚合物基微型超级电容器及其制备方法
CN114752248A (zh) * 2022-05-21 2022-07-15 郑州大学 一种用于丝网印刷和3D打印的MXene纳米片胶体及其制备方法
CN115180623A (zh) * 2022-08-11 2022-10-14 南京信息工程大学 一种用于3D打印的MXene浆料的制备方法及应用
CN115537073A (zh) * 2022-10-24 2022-12-30 郑州大学 一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用

Also Published As

Publication number Publication date
CN115537073B (zh) 2023-09-01
CN115537073A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
TWI292633B (zh)
US7755081B2 (en) Dielectric materials for electronic devices
JP4572543B2 (ja) 電界効果型トランジスタ並びにそれを用いた液晶表示装置
US7553706B2 (en) TFT fabrication process
JP4812079B2 (ja) 有機半導体ダイオード
US20060273303A1 (en) Organic thin film transistors with multilayer electrodes
WO2024088117A1 (zh) 一种功函数可调的MXene基导电墨水及其制备方法和在薄膜晶体管中的应用
US20060231829A1 (en) TFT gate dielectric with crosslinked polymer
US20070145453A1 (en) Dielectric layer for electronic devices
CN108831904A (zh) 一种垂直结构有机薄膜晶体管阵列及其制备方法
EP2117059B1 (en) Organic Thin Film Transistors
JP2004006782A (ja) 有機半導体材料、これを用いた有機トランジスタ、電界効果トランジスタ及びスイッチング素子
WO2023045198A1 (zh) 一种增强有机半导体薄膜聚集态稳定性的方法
JP2007273594A (ja) 電界効果トランジスタ
Li et al. Low-Voltage Operated Organic Thin-Film Transistors With Mobility Exceeding 10 cm²/vs
JP2011003852A (ja) 硫黄原子を含有する縮合多環芳香族化合物のシート状結晶が基板上に積層された有機半導体薄膜、及びその製法
JP5576611B2 (ja) 縮合多環芳香族化合物のシート状結晶を基板上に積層することを含む新規有機半導体薄膜の製造方法、及び液状分散体
US8134144B2 (en) Thin-film transistor
KR20100021977A (ko) 반도체성 중합체
WO2013065276A1 (en) Organic single crystal film, organic single crystal film array, and semiconductor device including an organic single crystal film
US20100123124A1 (en) Organic thin-film transistors
US20100038631A1 (en) Electronic device comprising semiconducting polymers
KR101200582B1 (ko) 코로나 방전을 이용한 유기박막트랜지스터의 제조방법
Wang et al. Fluorosurfactant-Improved Wettability of Low-Viscosity Organic Semiconductor Solution on Hydrophobic Surfaces for High-Mobility Solution-Processed Organic Transistors
KR100976572B1 (ko) 유기 박막 트랜지스터의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881696

Country of ref document: EP

Kind code of ref document: A1