WO2023045198A1 - 一种增强有机半导体薄膜聚集态稳定性的方法 - Google Patents

一种增强有机半导体薄膜聚集态稳定性的方法 Download PDF

Info

Publication number
WO2023045198A1
WO2023045198A1 PCT/CN2022/074163 CN2022074163W WO2023045198A1 WO 2023045198 A1 WO2023045198 A1 WO 2023045198A1 CN 2022074163 W CN2022074163 W CN 2022074163W WO 2023045198 A1 WO2023045198 A1 WO 2023045198A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
thin film
semiconductor thin
nanoparticles
organic
Prior art date
Application number
PCT/CN2022/074163
Other languages
English (en)
French (fr)
Inventor
李立强
陈小松
戚建楠
胡文平
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to GB2311060.4A priority Critical patent/GB2617975A/en
Priority to JP2023536838A priority patent/JP2023553686A/ja
Priority to KR1020237017747A priority patent/KR20230117568A/ko
Priority to US17/994,349 priority patent/US11696488B2/en
Publication of WO2023045198A1 publication Critical patent/WO2023045198A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the technical field of organic semiconductors, in particular to a method for enhancing the stability of the aggregation state of organic semiconductor thin films.
  • Organic semiconductor thin films have opened up a series of new application scenarios in the electronics field due to their inherent mechanical flexibility, such as flexible displays, sensors, radio frequency tags, and wearable electronic devices, and are the core materials for next-generation flexible electronics.
  • the mobility of organic field effect transistors prepared with organic semiconductor thin films has surpassed that of amorphous silicon field effect transistors.
  • commercial products based on organic field effect transistors have not yet been realized, and the main bottleneck problem is the poor stability of the aggregated structure of organic semiconductor thin films. Under long-term placement and high temperature conditions, the organic semiconductor film will undergo dewetting morphology changes, resulting in instability of the aggregated structure of the organic semiconductor film, which in turn leads to a decline in the electrical performance of the organic field effect transistor or even complete failure.
  • the main form of instability is For the decrease of on-state current, the shift of threshold voltage and the decrease of mobility. Therefore, there is a need to improve the aggregate-state structural stability of organic semiconductor thin films to make organic transistors commercially viable.
  • Organic semiconductor films prepared by traditional methods of preparing organic semiconductor films, such as vacuum thermal deposition or solution method, are usually polycrystalline, and there are a large number of defects such as grain boundaries, dislocations, and stacking faults.
  • the organic molecules in the defects are arranged irregularly and have high energy , compared with the inside of the complete crystal, the shape change is more likely to occur, which adds additional residual stress to the film, which directly affects the stability of the aggregated structure of the film.
  • Organic semiconductor thin films are bonded by weak van der Waals force, and the bonding force is weak. Compared with inorganic semiconductors bonded by covalent bonds, it is easier to release the extra internal energy stored in the film under the drive of stress, which in turn leads to the formation of thin films. Changes in aggregate structure.
  • the object of the present invention is to provide a method for enhancing the stability of the aggregated state structure of organic semiconductor thin films.
  • the barrier to structural change is increased, which in turn improves the operating temperature and storage life of organic semiconductor thin films.
  • the present invention provides the following scheme:
  • the invention provides a method for enhancing the stability of the aggregation state of an organic semiconductor thin film.
  • An organic semiconductor thin film is constructed on the surface of an insulating substrate, and then high-melting-point nanoparticles are introduced on the surface or inside of the constructed organic semiconductor thin-film.
  • the high-melting-point nanoparticles are uniform and Continuously, the introduced high-melting-point nanoparticles are trace amounts, and the volume fraction of the high-melting-point nanoparticles occupies 0.1%-3% of the volume of the organic semiconductor film.
  • the high-melting-point nanoparticles can be introduced on the surface of the organic semiconductor film or inside the organic semiconductor film.
  • the specific upper limit of doping depends on the volume fraction of different high melting point nanoparticles affecting the intrinsic electrical properties, as long as the electrical properties of the organic semiconductor itself are not affected.
  • the introduction method of high melting point nanoparticles is the thermal evaporation method.
  • the nanoparticles By heating the evaporation source, the nanoparticles are transformed from a solid to an atomic-level gaseous state, and re-nucleate on the surface of a sample with a certain rotation speed.
  • the size is on the order of nanometers, and then a high melting point is achieved Introduction of nanoparticles.
  • the aggregation state structure of the organic semiconductor film itself is unstable, and the high-melting point nanoparticles introduced through this process are uniformly and discontinuously distributed on the surface or inside of the organic semiconductor film, and will not aggregate themselves, and will not affect the organic semiconductor film itself. Electrical properties, used to pin dislocations, grain boundaries, stacking faults, surfaces, etc. in organic semiconductor films, thereby stabilizing the aggregated structure of organic semiconductor films, so that organic electronic devices can withstand higher operating temperatures and last longer time.
  • the rotation rate of the substrate during thermal evaporation of nanoparticles is 5 rpm.
  • the organic semiconductor thin film before constructing the organic semiconductor thin film, it also includes preparing a gate conductive electrode.
  • the substrate and insulating layer can be used. It is preferable to use a flexible or hard substrate and insulating layer to prepare the grid conductive electrode, and the grid electrode can be conductive.
  • the commonly used Si++/SiO 2 sheet is a composite of heavily doped silicon (Si++) and SiO 2 insulating layer. This sheet itself has built an insulating layer and a gate, and does not need to prepare a gate, and can be directly used as a Substrate (substrate just acts as a support, carrying material). It is also possible to select a substrate and re-prepare the gate electrode and insulating layer.
  • methods for constructing polycrystalline organic semiconductor films include but are not limited to thermal evaporation, atomic layer deposition, electron beam evaporation, magnetron sputtering, hydrogen arc plasma, laser evaporation, electroplating, Spin coating method, sol-gel method, pulling method or dripping method, etc.
  • the polycrystalline organic semiconductor film is a polycrystalline film with a thickness of 1 nm-1 ⁇ m, preferably 5 nm-200 nm.
  • the polycrystalline organic semiconductor film is an organic small molecule semiconductor or an organic polymer semiconductor.
  • the organic semiconductor includes but not limited to small molecule semiconductor: one of DNTT, DPA, PTCPI-CH 2 C 3 H 7 , pentacene, N1100, PTCDA, and N1200;
  • the organic polymer semiconductor includes but not limited to one of P3HT, N2200 and PBTTT-C14.
  • the diameter of the nanoparticle is between 0.1nm-100nm, preferably about 1-10nm, and its thermal stability is better than that of an organic semiconductor film.
  • the nanoparticles include one of metal conductor particles, organic and inorganic semiconductor particles or insulator particles.
  • the introduction method of the nanoparticles includes but not limited to thermal evaporation method.
  • the nanoparticles include but not limited to metal conductor particles Au, Ag, Al, Cu, Cr, etc.; semiconductor particles C 60 ; insulator particles MoO 3 , WO 3 , Al 2 O 3 .
  • the source and drain electrodes can be electrodes prepared by methods such as thermal evaporation, atomic layer deposition, electron beam evaporation, magnetron sputtering, electroplating, electrode transfer, etc.
  • the electrodes can be conductors, for example, metal Electrodes, conductors such as conductive polymers can also be used as electrodes.
  • the method of the present invention is suitable for enhancing the stability of the aggregation state of all devices prepared by using organic semiconductor thin films, including but not limited to organic thin film transistors, organic heterojunction transistors, organic field effect transistors, organic light-emitting diodes, organic solar energy battery etc.
  • the DNTT field effect transistor obtained by the present invention has a higher working temperature and a longer service life. It can work continuously for 17 days in an environment of 150°C. According to the accelerated aging test at different temperatures, an Arrhenius life prediction model for the aging law of organic field effect transistors is proposed, and the theoretical life at room temperature can reach one million years, far exceeding the reported results. The stability of the performance of organic field effect transistors under high temperature conditions or after being placed for several years.
  • the method of the present invention introduces nanoparticles on the surface or inside of the organic semiconductor thin film, and the grain boundaries, dislocations, stacking faults, and the surface of the organic semiconductor thin film are pinned, so that the aggregated structure is stabilized by the nanoparticles, and the potential for the aggregated structure to change
  • the increase of the barrier suppresses the instability of the organic semiconductor intrinsic aggregation state structure from the source, thereby greatly increasing the operating temperature and storage life of organic electronic devices.
  • the existing methods can only slow down the destabilization of the aggregated structure of the organic semiconductor, but the organic semiconductor film introduced by the method of the present invention has better stability of the aggregated structure than the organic semiconductor film without nanoparticles.
  • the improvement is manifested in: (1) the tolerable operating temperature of different semiconductors is increased by 20°C to 120°C; (2) the morphology and electrical properties of the organic semiconductor thin film devices introduced with nanoparticles are stored at room temperature for 6 years. There was no noticeable change in performance. It ensures the stability of the electrical performance of the organic electronic device prepared with the organic semiconductor thin film at high temperature and in the actual environment.
  • Fig. 1 is the schematic diagram that nanoparticle of the present invention strengthens the stability of organic semiconductor layer aggregation state structure
  • Fig. 2 Structural schematic diagram of organic field effect transistor, in which (a) bottom gate top contact organic field effect transistor, (b) bottom gate bottom contact organic field effect transistor, (c) top gate top contact organic field effect transistor, (d) top gate organic field effect transistor Gate bottom contact organic field effect transistor;
  • Figure 3 is the topography of the organic semiconductor film before and after annealing, in which (a) DNTT film at room temperature, (b) DNTT film at 210 ° C after annealing for 30 minutes, (c) doped Au nanoparticles DNTT film at room temperature, (d ) state of Au nanoparticle DNTT film doped at 210°C for 30 minutes, (e) bulk Au nanoparticle DNTT film at room temperature, (f) bulk Au nanoparticle DNTT film state after annealing at 210°C for 30 minutes , the scale bar is 2 ⁇ m;
  • Figure 4 is a comparison chart of normalized mobility of Au-DNTT with different doping volume fractions at different temperatures
  • Fig. 5 is the mobility change diagram of the organic semiconductor field effect transistor prepared by the pure DNTT thin film and the organic semiconductor field effect transistor prepared by the thin film of embodiment 1 at room temperature for different time;
  • Figure 6 is the topography of the P3HT film before and after annealing, in which (a) the P3HT film is at room temperature, (b) the P3HT film is annealed at 300°C for 1 hour, (c) the Au nanoparticles doped P3HT film is at room temperature, (d) The state of P3HT film doped with Au nanoparticles after annealing at 300°C for 1 hour, the scale bar is 15 ⁇ m;
  • Figure 7 is the topography of the organic semiconductor film before and after annealing, wherein (a) DNTT film at room temperature, (b) DNTT film at 210 ° C for 30 minutes, (c) bulk doped Au nanoparticles DNTT film at room temperature, ( d) The state of bulk doped Au nanoparticles DNTT film after annealing at 210°C for 30 minutes, the scale bar is 15 ⁇ m;
  • Fig. 8 is a comparison chart of the thermal stability temperature of the pure phase film of different semiconductors and the diffusion film enhanced by Au nanoparticles;
  • Figure 9 is the topography before and after annealing of the DNTT organic semiconductor film doped with different nanoparticles, in which (a) is at room temperature, (b) is at 220°C for 30 minutes, and the scale bar is 15 ⁇ m;
  • Figure 10 is a transmission electron microscope image of DNTT organic semiconductor film doped with nanoparticles of different volume fractions, wherein (a) the volume fraction is 0.1%, and the scale bar is 20nm; (b) the volume fraction is 0.5%, and the scale bar is 20nm; (c) the volume Fraction is 1.5%, scale bar is 20 nm; (d) volume fraction is 3%, scale bar is 20 nm.
  • Molybdenum trioxide Molybdenum trioxide (MoO 3 ), purity: 99.998%, source: Alfa Aisha (China) Chemical Co., Ltd.;
  • an organic field-effect transistor prepared by introducing nanoparticles into an organic semiconductor film is used as an example to quantitatively characterize the stability of the electrical properties of the transistor.
  • the organic semiconductor film introduced into nanoparticles is prepared into other devices such as OLEDs as long as the organic semiconductor layer is included.
  • the electronic devices constructed can increase the operating temperature or storage life.
  • a silicon wafer containing 300nm silicon dioxide and 500 ⁇ m heavily doped silicon is selected, with a size of 1cm ⁇ 1cm.
  • 500 ⁇ m heavily doped silicon as the gate, modify octadecyltrichlorosilane (OTS) on 300nm silicon dioxide by vacuum vapor phase method, and modify it at 120°C for 1 hour to obtain a silicon dioxide insulating layer modified with OTS;
  • OTS octadecyltrichlorosilane
  • the metal source and drain electrodes are thermally evaporated on the surface of the DNTT film, and the evaporation rate is The electrode thickness is 30nm, and an organic field effect transistor is obtained.
  • the morphology of the organic field effect transistor of DNTT (Au-DNTT) doped with gold nanoparticles was observed before and after annealing at 210 ° C for 30 minutes by atomic force microscope (c in Fig. 3 , d), after the transistor is prepared, the channel part is the part of the organic film, and it is found that there is no obvious change in its morphology after annealing at 210 ° C for 30 minutes, indicating that the aggregated structure of the organic film can withstand higher temperatures.
  • the Au-DNTT organic field effect transistors prepared by doping Au nanoparticles with different volume fractions can be judged by testing their mobility at different temperatures.
  • Operating temperature Figure 4
  • the test results show that the performance of the organic semiconductor device without nanoparticles is gradually reduced with the increase of the test temperature, while Au-DNTT with different volume fractions has high temperature stability characteristics, and the temperature is less than 210 ° C It has stable electrical properties under high temperature conditions and broadens the operating temperature range of organic transistors.
  • the devices with and without nanoparticles were followed up for 6 years, and the degree of failure was quantitatively characterized by testing the electrical properties.
  • Nanoparticles can not only be introduced into the surface of the organic semiconductor thin film, but also can be introduced into its bulk phase, which can also play a stabilizing role.
  • the preparation methods of nanoparticles and organic semiconductor films include but are not limited to thermal evaporation, atomic layer deposition, electron beam evaporation, magnetron sputtering, hydrogen arc plasma, and laser evaporation. method, electroplating method, spin coating method, sol-gel method, pulling method or infusion method and other methods.
  • a silicon wafer containing 300nm silicon dioxide and 500 ⁇ m heavily doped silicon is selected, with a size of 1cm ⁇ 1cm.
  • Using heavily doped silicon with a thickness of 500 ⁇ m as the gate modify octadecyltrichlorosilane (OTS) on 300 nm silicon dioxide by vacuum gas phase method, and modify it at 120 ° C for 1 hour to obtain a silicon dioxide insulating layer modified with OTS;
  • OTS octadecyltrichlorosilane
  • the metal source and drain electrodes are thermally evaporated on the surface of the DNTT film, and the evaporation rate is The electrode thickness is 30nm, and an organic field effect transistor is obtained.
  • the organic field effect transistor of the bulk phase doped gold nanoparticles DNTT (bulk phase Au-DNTT) prepared in this embodiment was analyzed by atomic force microscope.
  • the morphology was observed before and after annealing at 210°C for 30 minutes (c, d in Figure 7), and it was found that the morphology did not change significantly under the condition of annealing at 210°C for 30 minutes, indicating that its morphology can withstand higher temperatures.
  • the comparative example is Example 5 (a, b in Fig. 3).
  • the local morphology of the DNTT organic field effect transistor was observed before and after annealing at 210°C for 30 minutes using an atomic force microscope (e, f in Figure 3). Under the condition of high temperature, its morphology changes obviously, and the continuity of the semiconductor thin film decreases under high temperature conditions.
  • the morphology of the film after annealing was further characterized using a 3D confocal microscope, and it was found that compared with the continuous and uniform morphology of the film before and after annealing (c, d in Figure 7), the aggregated structure is very stable, introducing Nanoparticle-stabilized semiconducting thin films have good thermal stability.
  • the method of the invention can be used not only for the preparation of organic small molecule semiconductor thin films, but also for the preparation of organic polymer semiconductor thin films, and has the effect of significantly enhancing the stability of the aggregation state structure.
  • a silicon wafer containing 300nm silicon dioxide and 500 ⁇ m heavily doped silicon is selected, with a size of 1cm ⁇ 1cm.
  • Using heavily doped silicon with a thickness of 500 ⁇ m as the gate modify octadecyltrichlorosilane (OTS) on 300 nm silicon dioxide by vacuum gas phase method, and modify it at 120 ° C for 1 hour to obtain a silicon dioxide insulating layer modified with OTS;
  • OTS octadecyltrichlorosilane
  • the evaporation rate is thermally evaporated for 60 seconds.
  • the DNTT film is doped with 1.5% Au by volume.
  • the substrate disk needs to be rotated at a rotation rate of 5 revolutions per minute to obtain a bottom-gate and bottom-electrode organic field-effect transistor.
  • the morphology of the P3HT (Au-P3HT) organic field effect transistor doped with gold nanoparticles was observed before and after annealing at 300 °C for 1 hour using a 3D confocal microscope ( In Figure 6 c, d), it is found that the morphology does not change significantly after annealing at 300°C for 1 hour, indicating that the morphology can withstand higher temperatures.
  • a silicon wafer containing 300nm silicon dioxide and 500 ⁇ m heavily doped silicon is selected, with a size of 1cm ⁇ 1cm.
  • Using heavily doped silicon with a thickness of 500 ⁇ m as the gate modify octadecyltrichlorosilane (OTS) on 300 nm silicon dioxide by vacuum gas phase method, and modify it at 120 ° C for 1 hour to obtain a silicon dioxide insulating layer modified with OTS;
  • OTS octadecyltrichlorosilane
  • the atomic force microscope DNTT organic field effect transistor was used to observe the local morphology before and after annealing at 210 ° C for 30 minutes (a, b in Figure 3), and found that after annealing at 210 ° C for 30 minutes, its The morphology changes significantly, and the continuity of the semiconductor film decreases under high temperature conditions.
  • the 3D confocal microscope was used to further characterize the morphology of the film after annealing, and it was found that compared with the continuous and uniform morphology of the film before annealing (Figure 7a), the entire film was no longer continuous ( Figure 7b), and the aggregation state Structural instability.
  • a silicon wafer containing 300nm silicon dioxide and 500 ⁇ m heavily doped silicon is selected, with a size of 1cm ⁇ 1cm.
  • Using heavily doped silicon with a thickness of 500 ⁇ m as the gate modify octadecyltrichlorosilane (OTS) on 300 nm silicon dioxide by vacuum gas phase method, and modify it at 120 ° C for 1 hour to obtain a silicon dioxide insulating layer modified with OTS;
  • OTS octadecyltrichlorosilane
  • the morphology of the P3HT (Au-P3HT) organic field effect transistor doped with gold nanoparticles was observed before and after annealing at 300 °C for 1 hour using a 3D confocal microscope (Fig. In a and b) of 6, it was found that the dewetting phenomenon occurred in the organic semiconductor film under the condition of annealing at 300°C for 1 hour. The specific performance was that the film was no longer uniform, the substrate coverage decreased, and the continuity decreased, which indicated that its morphology was easy to absorb at high temperature. change.
  • Embodiments 1-4 are high-temperature operating temperature and long-life organic semiconductor thin films and corresponding organic field-effect transistors of the present invention, and implementations 5 and 6 are for comparison with the high-temperature operating temperature and long-life organic field-effect transistors of the present invention .
  • the organic field effect transistor keeps its appearance and electrical properties stable under high temperature conditions and continuous thermal stress conditions; The morphology exhibits thermal instability under continuous thermal stress conditions.
  • the volume fraction of nanoparticles is not lower than 3%, the nanoparticles will attract each other due to the interaction and cause clusters, and the uniformity will decrease to a certain extent, so the uniformity of nanoparticles in the organic film can be improved by controlling the volume fraction , It also ensures that the nanoparticles will not affect the electrical properties of the organic semiconductor film itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明涉及有机半导体技术领域,公开了一种增强有机半导体薄膜聚集态稳定性的方法:构筑有机半导体薄膜,然后在构筑的有机半导体薄膜表面或薄膜内部引入微量的纳米粒子,纳米粒子均匀且不连续,不会影响有机半导体薄膜本身的电学性能。有机半导体薄膜的晶界、位错、层错以及表面等被纳米粒子钉扎,导致有机半导体薄膜聚集态结构变化的势垒增加,从而增强其聚集态稳定性,进而大幅增加有机场效应晶体管的最高工作温度以及储存寿命。在常温储存条件下,引入纳米粒子稳定的有机半导体形貌几乎不会发生变化,保证了以有机半导体薄膜所制备的有机晶体管器件在高温工作环境和实际大气环境中电学性能的稳定。

Description

一种增强有机半导体薄膜聚集态稳定性的方法 技术领域
本发明涉及有机半导体技术领域,特别是涉及一种增强有机半导体薄膜聚集态稳定性的方法。
背景技术
有机半导体薄膜因其固有的机械柔性在电子领域开辟了一系列新的应用场景,如柔性显示器、传感器、射频标签以及可穿戴电子设备等,是下一代柔性电子技术的核心材料。经过三十多年的发展,目前以有机半导体薄膜所制备的有机场效应晶体管的迁移率已经超越了无定形硅场效应晶体管。然而,基于有机场效应晶体管的商业化产品还未实现,其主要瓶颈问题在于有机半导体薄膜的聚集态结构稳定性差。在长时间放置以及高温条件下有机半导体薄膜会发生去浸润的形貌变化,导致有机半导体薄膜的聚集态结构不稳定,进而导致有机场效应晶体管的电学性能下降甚至完全失效,主要失稳形式表现为开态电流的下降,阈值电压的漂移以及迁移率的下降。因此,需要改善有机半导体薄膜的聚集态结构稳定性来使有机晶体管具备商用潜质。
传统制备有机半导体薄膜的方法如真空热沉积或溶液法所制备的有机半导体薄膜通常都为多晶体,本身存在大量晶界、位错、层错等缺陷,缺陷处有机分子排列不规则、能量高,相比完整晶体内部更容易发生形貌变化,使薄膜增加了额外的残余应力,直接影响了薄膜的聚集态结构稳定性。有机半导体薄膜以弱的范德华力结合,本身结合力弱,相较于对于以共价键结合的无机半导体来说,更容易在应力 的驱动下释放薄膜内存储的额外内能,进而导致薄膜发生聚集态结构的改变。即使在常温条件下,有机半导体薄膜的聚集态结构也会发生变化,表现出本征的聚集态结构不稳定。因此,探究有机半导体薄膜的聚集态结构的失稳机制,进而开发有效的增强有机半导体薄膜的聚集态结构稳定性的方法对于设计稳定可商用的有机场效应晶体管是必须的。目前提高半导体薄膜稳定的方法有分子设计、封装、低温存储、增加膜厚等,虽然减缓了聚集态不稳定所带来的形貌变化,但均无法有效改变有机半导体薄膜本征聚集态不稳定特性,无法从根本上解决有机半导体薄膜器件失效的问题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种增强有机半导体薄膜聚集态结构稳定性的方法,该方法采用弥散增强的策略,通过抑制缺陷处的分子扩散,使有机半导体薄膜的聚集态结构变化的势垒增加,进而提高有机半导体薄膜的工作温度和储存寿命。
为实现上述目的,本发明提供了如下方案:
本发明提供一种增强有机半导体薄膜聚集态稳定性的方法,在绝缘衬底表面构筑有机半导体薄膜,然后在构筑的有机半导体薄膜表面或薄膜内部引入高熔点纳米粒子,高熔点纳米粒子均匀且不连续,引入的高熔点纳米粒子是微量的,高熔点纳米粒子体积分数占有机半导体薄膜体积的0.1%-3%,高熔点纳米粒子可以引入在有机半导体薄膜表面,也可以在有机半导体薄膜内部。具体掺杂上限视不同高熔点纳 米粒子影响本征电学性能的体积分数为准,只要不影响有机半导体本身的电学性能即可。
高熔点纳米粒子的引入方法为热蒸发法,通过加热蒸发源使纳米粒子由固体达到原子级的气态,在具有一定旋转速度的样品表面重新成核,尺寸在纳米量级,进而实现了高熔点纳米粒子的引入。有机半导体薄膜其本身聚集态结构不稳定,通过该过程所引入的高熔点纳米粒子在有机半导体薄膜表面或内部分布是均匀且不连续的,本身不会发生聚集,不会影响有机半导体薄膜本身的电学性能,用于钉扎有机半导体薄膜中的位错、晶界、层错、表面等,进而稳定有机半导体薄膜的聚集态结构,从而使有机电子器件可以承受更高的工作温度和保存更长的时间。
进一步地,热蒸镀的速率为
Figure PCTCN2022074163-appb-000001
进一步地,热蒸镀纳米粒子时衬底的旋转速率为5转/分。
进一步地,构筑有机半导体薄膜之前,还包括制备栅极导电电极。只要是目前商用或者文献报道的能用的基底及绝缘层均可,优选用柔性或硬质基底及绝缘层,制备栅极导电电极,栅极电极导电即可。常用的Si++/SiO 2片是重掺杂的硅(Si++)与SiO 2绝缘层复合的,这种片子本身构筑好了绝缘层和栅极,可以不需要制备栅极,而且本身就可以直接作为基底(基底只是起到一个支撑,承载材料的作用)。也可以选一个基板,重新制备栅极电极以及绝缘层。
进一步地,多晶有机半导体薄膜的构筑方法包括但不限于热蒸镀法、原子层沉积法、电子束蒸镀法、磁控溅射法、氢电弧等离子体法、 激光蒸发法、电镀法、旋涂法、溶胶-凝胶法、提拉法或滴注法等。
进一步地,所述多晶有机半导体薄膜为多晶薄膜,厚度在1nm-1μm之间,优选厚度为5nm-200nm。
进一步地,所述多晶有机半导体薄膜是有机小分子半导体或有机聚合物半导体。
进一步地,所述有机半导体包括但不限于小分子半导体:DNTT、DPA、PTCPI-CH 2C 3H 7、并五苯、N1100、PTCDA、N1200中的一种;
所述有机聚合物半导体包括但不限于P3HT、N2200和PBTTT-C14中的一种。
进一步地,所述纳米粒子直径在0.1nm-100nm之间,优选直径在1-10nm左右,其热稳定性优于有机半导体薄膜。
进一步地,所述纳米粒子包括金属导体粒子、有机及无机半导体粒子或绝缘体粒子中的一种。所述纳米粒子的引入方法包括但不限于热蒸镀法。所述纳米粒子包括但不限于金属导体粒子Au、Ag、Al、Cu、Cr等;半导体粒子C 60;绝缘体粒子MoO 3、WO 3、Al 2O 3
进一步地,还包括图案化制备源、漏电极。对源、漏电极的形状以及两者之间的距离无要求。源、漏电极可以是通过热蒸镀法、原子层沉积法、电子束蒸镀法、磁控溅射法、电镀法、电极转移等方法制备的电极,电极是导体即可,例如可以是金属电极,导电聚合物等导体也可以做电极。
本发明的方法适用于增强所有利用有机半导体薄膜所制备的器件的聚集态结构稳定性,包括但不限于有机薄膜晶体管、有机异质结晶体管、有机场效应晶体管、有机发光二级管、有机太阳能电池等。
本发明公开了以下技术效果:
本发明所获得的DNTT场效应晶体管相比未处理的DNTT场效应晶体管具有更高的工作温度和更长的使用寿命,具体表现为:可以在210℃加热30分钟,240℃加热5分钟,在150℃环境中可连续工作17天。根据不同温度下的加速老化测试,提出了针对有机场效应晶体管老化规律的阿伦尼乌斯寿命预测模型,得到常温下的理论寿命可达百万年,远超已报道的结果,保证了基于有机场效应晶体管在高温条件下或放置数年后性能的稳定性。
本发明的方法通过在有机半导体薄膜表面或内部引入纳米粒子,有机半导体薄膜的晶界、位错、层错、表面等被钉扎,使聚集态结构被纳米粒子稳定,聚集态结构变化的势垒增加,从源头上抑制了有机半导体本征聚集态结构的不稳定性,从而大幅增加有机电子器件的工作温度以及储存寿命。目前现有的方法只能减缓有机半导体聚集态结构失稳,而本发明中的方法所得的引入纳米粒子的有机半导体薄膜相较于未引入纳米粒子的有机半导体薄膜,其聚集态结构稳定性得到了提高,具体表现在:(1)不同半导体可耐受的工作温度被提高20℃到120℃不等;(2)引入纳米粒子的有机半导体薄膜器件常温下保存6年后其形貌及电学性能无明显变化。其保证了以有机半导体薄膜所制备的有机电子器件在高温和实际环境中电学性能的稳定。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明方法纳米粒子增强有机半导体层聚集态结构稳定性的示意图;
图2有机场效应晶体管结构示意图,其中(a)底栅顶接触有机场效应晶体管,(b)底栅底接触有机场效应晶体管,(c)顶栅顶接触有机场效应晶体管,(d)顶栅底接触有机场效应晶体管;
图3为有机半导体薄膜退火前后的形貌图,其中(a)DNTT薄膜常温状态,(b)DNTT薄膜210℃退火30分钟后状态,(c)掺杂Au纳米颗粒DNTT薄膜常温状态,(d)掺杂Au纳米颗粒DNTT薄膜210℃退火30分钟后状态,(e)体相掺杂Au纳米颗粒DNTT薄膜常温状态,(f)体相掺杂Au纳米颗粒DNTT薄膜210℃退火30分钟后状态,比例尺为2μm;
图4为不同掺杂体积分数的Au-DNTT在不同温度下的归一化迁移率对比图;
图5为纯DNTT薄膜制备的有机半导体场效应晶体管和实施例1的薄膜制备的有机半导体场效应晶体管室温条件下放置不同时间的迁移率变化图;
图6为P3HT薄膜退火前后的形貌图,其中(a)P3HT薄膜常温状态,(b)P3HT薄膜300℃退火1小时后状态,(c)掺杂Au纳米颗粒P3HT薄膜常温状态,(d)掺杂Au纳米颗粒P3HT薄膜300℃退火1小时后状态,比例尺为15μm;
图7为有机半导体薄膜退火前后的形貌图,其中(a)DNTT薄膜常温状态,(b)DNTT薄膜210℃退火30分钟状态,(c)体相掺杂Au纳米颗粒DNTT薄膜常温状态,(d)体相掺杂Au纳米颗粒DNTT薄膜210℃退火30分钟后状态,比例尺为15μm;
图8为不同半导体的纯相膜与Au纳米颗粒增强的弥散膜的热稳定温度对比统计图;
图9为DNTT有机半导体薄膜掺杂不同纳米粒子后退火前后形貌图,其中(a)常温状态,(b)220℃退火30分钟状态,比例尺为15μm;
图10为DNTT有机半导体薄膜掺杂不同体积分数纳米粒子的透射电镜图,其中(a)体积分数为0.1%,比例尺为20nm;(b)体积分数为0.5%,比例尺为20nm;(c)体积分数为1.5%,比例尺为20nm;(d)体积分数为3%,比例尺为20nm。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非 用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
下述实施例中药品的购买源如下:
有机半导体分子:DNTT
Figure PCTCN2022074163-appb-000002
纯度:99%,
来源:上海大然化学有限公司;
DPA(2,6-二苯基蒽):
Figure PCTCN2022074163-appb-000003
纯度:99%,
来源:上海大然化学有限公司;
PTCDA:
Figure PCTCN2022074163-appb-000004
纯度:99%
来源:上海大然化学有限公司。
PTCPI-CH 2C 3H 7
Figure PCTCN2022074163-appb-000005
纯度:99%,
来源:上海大然化学有限公司。
并五苯(Pentacene):
Figure PCTCN2022074163-appb-000006
纯度:99%,
来源:上海大然化学有限公司。
N1100:
Figure PCTCN2022074163-appb-000007
纯度:99%。
N1200:
Figure PCTCN2022074163-appb-000008
聚合物半导体:
聚(3-己基噻吩-2,5-二基)(P3HT)
Figure PCTCN2022074163-appb-000009
平均分子量:40,000-100,000,来源:西格玛奥德里奇(上海) 贸易有限公司。
N2200:
Figure PCTCN2022074163-appb-000010
平均分子量≥30,000。
PBTTT-C14:
Figure PCTCN2022074163-appb-000011
平均分子量>20000。
纳米粒子:
金属:
金(Au),纯度:99.999%;
银(Ag),纯度:99.999%;
铝(Al),纯度:99.999%;
铬(Cr),纯度:99.99%。
半导体:
富勒烯(C 60),纯度:99%,来源:上海大然化学有限公司;
绝缘体:
三氧化钼(MoO 3),纯度:99.998%,来源:阿法埃莎(中国)化学有限公司;
本发明方法纳米粒子增强有机半导体层聚集态结构稳定性的示意图见图1。
本发明实施例以引入纳米粒子的有机半导体薄膜制备成有机场效应晶体管为例,定量表征晶体管的电学性能的稳定性,引入纳米粒子的有机半导体薄膜制备成其他的如OLED等只要包括有机半导体层构筑成的电子器件均可以提高工作温度或存储寿命。
实施例1
(1)选用含300nm二氧化硅及500μm重掺杂硅的硅片,尺寸为1cm×1cm,以500μm重掺杂硅为栅极,在300nm二氧化硅上以真空气相法修饰十八烷基三氯硅烷(OTS),120℃修饰1小时,得到修饰OTS的二氧化硅绝缘层;
(2)用热蒸镀法在修饰OTS的二氧化硅绝缘层表面蒸镀金属源、漏电极,蒸镀速率为
Figure PCTCN2022074163-appb-000012
厚度为20nm;
(3)在含源、漏电极的绝缘层上热蒸镀DNTT薄膜20nm,蒸镀速率为
Figure PCTCN2022074163-appb-000013
(4)在DNTT薄膜表面热蒸镀Au纳米颗粒,以
Figure PCTCN2022074163-appb-000014
的蒸镀速率热蒸镀60秒,在DNTT薄膜中掺杂1.5%体积分数的Au,引入纳米粒子过程中,衬底盘需要旋转,旋转速率为5转/min,得到底栅底接触有机场效应晶体管(Au-DNTT有机场效应晶体管,图2中b)。
实施例2
(1)选用含300nm二氧化硅及500μm重掺杂硅的硅片,尺寸为1cm×1cm。以500μm重掺杂硅为栅极,在300nm二氧化硅上以真空 气相法修饰十八烷基三氯硅烷(OTS),120℃修饰1小时,得到修饰OTS的二氧化硅绝缘层;
(2)用热蒸镀法在修饰OTS的二氧化硅绝缘层表面蒸镀金属源漏电极,蒸镀速率为
Figure PCTCN2022074163-appb-000015
厚度为20nm;在衬底上热蒸镀DNTT薄膜30nm,同时以
Figure PCTCN2022074163-appb-000016
的蒸镀速率热蒸镀120秒在DNTT薄膜中掺杂2%体积分数的Au,引入纳米粒子时,旋转衬底盘,旋转速率为5转/min,使薄膜体相内均匀掺入Au纳米粒子;
(3)在DNTT薄膜表面热蒸镀金属源、漏电极,蒸镀速率为
Figure PCTCN2022074163-appb-000017
电极厚度为30nm,得到有机场效应晶体管。
为了验证有机半导体薄膜形貌的稳定性,利用原子力显微镜对掺杂金纳米粒子的DNTT(Au-DNTT)的有机场效应晶体管在210℃,30分钟退火前后的形貌进行观察(图3中c,d),制备成晶体管后沟道部分即有机薄膜部分,发现在210℃退火30分钟条件下其形貌无明显变化,表明了有机薄膜的聚集态结构能够承受更高的温度。进一步对Au-DNTT有机场效应晶体管的电学性能进行测试,对掺杂不同体积分数的Au纳米颗粒所制备的Au-DNTT的有机场效应晶体管通过在不同温度下的测试其迁移率来判断其最高工作温度(图4),测试结果表明未引入纳米粒子的有机半导体器件随着测试温度的升高其性能逐渐下降,而不同体积分数的Au-DNTT均有高温稳定的特性,在小于210℃的高温条件下具有稳定的电学性能,拓宽了有机晶体管的工作温度范围。对引入纳米粒子的器件与未引入纳米粒子的器件并进行长达6年的跟踪测试,通过测试电学性能来定量表征其失效程度, 结果表明未引入纳米粒子的有机半导体场效应晶体管在常温下性能逐渐下降,6年后几乎完全失效,而引入纳米粒子的有机半导体场效应晶体管在常温下保存6年后其电学性能保持稳定(图5),意味着在常温储存条件下,引入纳米粒子稳定的有机半导体薄膜的形貌很难发生变化,保证了以有机半导体薄膜所制备的有机场效应晶体管器件在高温和实际环境中电学性能的稳定。
纳米粒子不仅可以引入到有机半导体薄膜的表面,还可以引入在其体相内,同样可以起到稳定作用。具体可以参照实施例3,纳米粒子与有机半导体薄膜的制备方式包括但不限于热蒸镀法、原子层沉积法、电子束蒸镀法、磁控溅射法、氢电弧等离子体法、激光蒸发法、电镀法、旋涂法、溶胶-凝胶法、提拉法或滴注法等方法。
实施例3
(1)选用含300nm二氧化硅及500μm重掺杂硅的硅片,尺寸为1cm×1cm。以500μm重掺杂硅为栅极,在300nm二氧化硅上以真空气相法修饰十八烷基三氯硅烷(OTS),120℃修饰1小时,得到修饰OTS的二氧化硅绝缘层;
(2)用热蒸镀法在修饰OTS的二氧化硅绝缘层表面蒸镀金属源漏电极,蒸镀速率为
Figure PCTCN2022074163-appb-000018
厚度为20nm;在衬底上热蒸镀DNTT薄膜30nm,同时以
Figure PCTCN2022074163-appb-000019
的蒸镀速率热蒸镀60秒在DNTT薄膜中掺杂1.5%体积分数的Au,引入纳米粒子时需要旋转衬底盘,旋转速率为5转/分钟,使薄膜体相内均匀掺入Au纳米粒子;
(3)在DNTT薄膜表面热蒸镀金属源、漏电极,蒸镀速率为
Figure PCTCN2022074163-appb-000020
电极厚度为30nm,得到有机场效应晶体管。
为了验证DNTT体相掺杂Au纳米粒子所得到的半导体薄膜形貌的稳定性,利用原子力显微镜对本实施例制备的体相掺杂金纳米粒子的DNTT(体相Au-DNTT)的有机场效应晶体管在210℃,30分钟退火前后的形貌进行观察(图7中c,d),发现在210℃退火30min条件下其形貌无明显变化,表明了其形貌可以承受更高的温度,其对比实施例为实施例5(图3中a,b)。
为了验证有机半导体薄膜形貌的稳定性,利用原子力显微镜DNTT有机场效应晶体管在210℃,30分钟退火前后的局部形貌进行观察(图3中e,f),发现在210℃退火30分钟条件下其形貌发生明显变化,在高温条件下半导体薄膜的连续性下降。除此之外,利用3d共聚焦显微镜对退火后的薄膜形貌进一步表征,发现相较于退火前后薄膜均为连续均匀的形貌(图7中c,d),聚集态结构非常稳定,引入纳米粒子稳定的半导体薄膜具有良好的热稳定性。
本发明方法不仅可用于有机小分子半导体薄膜的制备,还可用于有机聚合物半导体薄膜的制备,其具有显著的增强聚集态结构稳定性的效果。
实施例4
(1)选用含300nm二氧化硅及500μm重掺杂硅的硅片,尺寸为1cm×1cm。以500μm重掺杂硅为栅极,在300nm二氧化硅上以真空气相法修饰十八烷基三氯硅烷(OTS),120℃修饰1小时,得到修饰OTS的二氧化硅绝缘层;
(2)用热蒸镀法在修饰OTS的二氧化硅绝缘层表面蒸镀金属源、漏电极,蒸镀速率为
Figure PCTCN2022074163-appb-000021
厚度为20nm;
(3)在含源、漏电极的衬底上旋涂P3HT薄膜,P3HT浓度为8mg/mL,以甲苯为溶剂;在SiO 2上滴30μL,3000转/秒旋转50秒,100℃加热5分钟使多余溶剂挥发得到P3HT聚合物薄膜;
(4)在P3HT薄膜表面以
Figure PCTCN2022074163-appb-000022
的蒸镀速率热蒸镀60秒在DNTT薄膜中掺杂1.5%体积分数的Au,引入纳米粒子时需要旋转衬底盘,旋转速率为5转/分钟,得到底栅底电极有机场效应晶体管。
为了验证P3HT聚合物半导体形貌的稳定性,利用3D共聚焦显微镜对掺杂金纳米粒子的P3HT(Au-P3HT)的有机场效应晶体管在经过300℃,1小时退火前后的形貌进行观察(图6中c,d),发现在300℃退火1小时后其形貌无明显变化,表明了其形貌可以承受更高的温度。
为证明本发明方法具有优异的效果,设置了实施例5、6作为对比,具体实施方式如下:
实施例5
(1)选用含300nm二氧化硅及500μm重掺杂硅的硅片,尺寸为1cm×1cm。以500μm重掺杂硅为栅极,在300nm二氧化硅上以真空气相法修饰十八烷基三氯硅烷(OTS),120℃修饰1小时,得到修饰OTS的二氧化硅绝缘层;
(2)用热蒸镀法在修饰OTS的二氧化硅绝缘层表面蒸镀金属源漏电极,蒸镀速率为
Figure PCTCN2022074163-appb-000023
厚度为20nm;
(3)在含源漏电极的绝缘层上热蒸镀DNTT薄膜30nm,蒸镀速率为
Figure PCTCN2022074163-appb-000024
为了验证有机半导体形貌的稳定性,利用原子力显微镜DNTT有机场效应晶体管在210℃,30分钟退火前后的局部形貌进行观察(图3中a,b),发现在210℃退火30分钟后其形貌发生明显变化,在高温条件下半导体薄膜的连续性下降。除此之外,利用3d共聚焦显微镜对退火后的薄膜形貌进一步表征,发现相较于退火前薄膜连续均匀的形貌(图7a),整个薄膜已不再连续(图7b),聚集态结构失稳。进一步对DNTT有机场效应晶体管的电学性能进行测试,通过在不同温度下测试其转移曲线来判断其最高工作温度及150℃退火温度下测试寿命来表征其高温寿命,发现两种测试条件下的转移曲线在高温条件下表现出电学性能不稳定的特性,由实施例4与实施例1的阈值电压漂移值和开关比变化对比值可知,实施例4具体表现在阈值电压的漂移,开关比下降,实施例1表现出稳定的阈值电压及开关比。图4给出了实施例1与实施例4的归一化迁移率对比图,可以发现引入纳米粒子稳定的半导体薄膜(实施例1)的迁移率非常稳定,而实施例4的迁移率在下降。
实施例6
(1)选用含300nm二氧化硅及500μm重掺杂硅的硅片,尺寸为1cm×1cm。以500μm重掺杂硅为栅极,在300nm二氧化硅上以真空气相法修饰十八烷基三氯硅烷(OTS),120℃修饰1小时,得到修饰OTS的二氧化硅绝缘层;
(2)用热蒸镀法在修饰OTS的二氧化硅绝缘层表面蒸镀金属源漏电极,蒸镀速率为
Figure PCTCN2022074163-appb-000025
厚度为20nm;
(3)在含源漏电极的衬底上旋涂P3HT薄膜,P3HT浓度为8mg/mL,以甲苯为溶剂;在SiO 2上滴30μL,3000转/秒旋转50秒,100℃加热5分钟使多余溶剂挥发得到底栅底电极P3HT聚合物薄膜有机场效应晶体管。
为了验证P3HT聚合物半导体形貌的稳定性,利用3D共聚焦显微镜对掺杂金纳米粒子的P3HT(Au-P3HT)的有机场效应晶体管在300℃,1小时退火前后的形貌进行观察(图6中a,b),发现在300℃退火1小时条件下有机半导体薄膜发生去浸润现象,具体表现为薄膜不再均匀,基底覆盖率下降,连续性下降,表明了其形貌在高温下容易发生变化。
实施例1-4为本发明的高温工作温度及长寿命的有机半导体薄膜及相应的有机场效应晶体管,实施5、6为用于与本发明的高工作温度及长寿命有机场效应晶体管进行对比。实施例1-4通过引入纳米粒子,使有机场效应晶体管在高温条件及持续热应力条件下保持形貌及电学性质的稳定;实施例5、6中的有机场效应晶体管的电学性能在高温及持续热应力条件下形貌表现为热不稳定性。
将DNTT薄膜中Au纳米颗粒更换成其他的弥散相纳米颗粒(Ag、Al、Cr、C60、MoO 3)来验证弥散相颗粒的普适性,分别制备为Ag NP-DNTT薄膜、AlNP-DNTT薄膜、CrNP-DNTT薄膜、C60NP-DNTT薄膜、MoO 3NP-DNTT薄膜,纯DNTT薄膜作为对比,不同半导体 的纯相膜与Au纳米颗粒增强的弥散膜的热稳定温度对比统计图见图8,通过3d共聚焦显微镜观察220℃退火前后的薄膜形貌变化(图9a,b),图9a为退火前常温下的形貌图,可以发现薄膜均为均匀连续的,图9b为220℃退火后的形貌图,发现对比样纯DNTT薄膜已经不再连续,而其他弥散膜的连续性要优于纯DNTT薄膜,证明换用其他弥散颗粒依然适用。
按照与实施例1相同的方法掺杂不同分数的Au纳米粒子,DNTT有机半导体薄膜掺杂不同体积分数纳米粒子的透射电镜图见图10,其中(a)体积分数为0.1%,比例尺为20nm;(b)体积分数为0.5%,比例尺为20nm;(c)体积分数为1.5%,比例尺为20nm;(d)体积分数为3%,比例尺为20nm。由图10可知,不同体积分数会使纳米粒子的直径略有不同,但都在纳米量级,均匀且不连续,作用效果无明显区别。当纳米粒子的体积分数不低于3%时,纳米粒子由于相互作用将互相吸引导致团簇,均匀性会在一定程度上下降,因此通过控制体积分数可以提升纳米粒子在有机薄膜中的均匀性,也保证纳米粒子不会影响有机半导体薄膜本身的电学性质。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (7)

  1. 一种增强有机半导体薄膜聚集态稳定性的方法,其特征在于,在绝缘衬底表面构筑有机半导体薄膜,然后在构筑的有机半导体薄膜表面或薄膜内部引入纳米粒子,所述纳米粒子均匀且不连续,所述纳米粒子体积分数占有机半导体薄膜体积的0.1%-3%。
  2. 根据权利要求1所述的方法,其特征在于,包括制备栅极导电电极。
  3. 根据权利要求1所述的方法,其特征在于,所述有机半导体薄膜为多晶薄膜。
  4. 根据权利要求3所述的方法,其特征在于,所述有机半导体薄膜是有机小分子半导体或有机聚合物半导体。
  5. 根据权利要求1所述的方法,其特征在于,所述纳米粒子直径在0.01nm-100nm之间。
  6. 根据权利要求5所述的方法,其特征在于,所述纳米粒子包括金属导体粒子、有机及无机半导体粒子或绝缘体粒子中的一种。
  7. 根据权利要求1所述的方法,其特征在于,还包括图案化制备源、漏电极。
PCT/CN2022/074163 2021-09-23 2022-01-27 一种增强有机半导体薄膜聚集态稳定性的方法 WO2023045198A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB2311060.4A GB2617975A (en) 2021-09-23 2022-01-27 Method for enhancing aggregation state stability of organic semiconductor thin film
JP2023536838A JP2023553686A (ja) 2021-09-23 2022-01-27 有機半導体薄膜の凝集状態の安定性を強化する方法
KR1020237017747A KR20230117568A (ko) 2021-09-23 2022-01-27 유기 반도체 박막 응집 상태 안정성을 강화하는 방법
US17/994,349 US11696488B2 (en) 2021-09-23 2022-11-27 Method for enhancing stability of aggregation state of organic semiconductor film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111110113.3 2021-09-23
CN202111110113.3A CN113571638B (zh) 2021-09-23 2021-09-23 一种增强有机半导体薄膜聚集态稳定性的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,349 Continuation US11696488B2 (en) 2021-09-23 2022-11-27 Method for enhancing stability of aggregation state of organic semiconductor film

Publications (1)

Publication Number Publication Date
WO2023045198A1 true WO2023045198A1 (zh) 2023-03-30

Family

ID=78173965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074163 WO2023045198A1 (zh) 2021-09-23 2022-01-27 一种增强有机半导体薄膜聚集态稳定性的方法

Country Status (6)

Country Link
US (1) US11696488B2 (zh)
JP (1) JP2023553686A (zh)
KR (1) KR20230117568A (zh)
CN (2) CN114420843A (zh)
GB (1) GB2617975A (zh)
WO (1) WO2023045198A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420843A (zh) * 2021-09-23 2022-04-29 天津大学 一种有机场效应晶体管
CN115064641B (zh) * 2022-08-18 2022-10-28 天津大学 一种利用电润湿提高有机半导体高温稳定性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058267A (ja) * 1998-08-03 2000-02-25 Minolta Co Ltd 有機エレクトロルミネセンス素子
CN101916825A (zh) * 2010-08-02 2010-12-15 复旦大学 一种聚合物基的纳米晶存储器电容及其制作方法
WO2015177541A1 (en) * 2014-05-20 2015-11-26 The University Of Manchester Dielectric materials for low voltage ofet operation
CN106953010A (zh) * 2017-03-07 2017-07-14 南京邮电大学 一种基于聚合物掺杂半导体纳米粒子的有机场效应晶体管存储器
CN110767806A (zh) * 2019-10-31 2020-02-07 西安建筑科技大学 一种有机薄膜晶体管及其制备方法和显示器件
CN113571638A (zh) * 2021-09-23 2021-10-29 天津大学 一种增强有机半导体薄膜聚集态稳定性的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070298242A1 (en) * 2006-06-26 2007-12-27 University Of Central Florida Research Foundation, Inc. Lenses having dispersed metal nanoparticles for optical filtering including sunglasses
CN102723437A (zh) * 2011-03-29 2012-10-10 中国科学院微电子研究所 光存储单元、光存储器及其制备方法
CN103682099B (zh) * 2012-09-21 2016-12-21 中国科学院理化技术研究所 印刷式半导体器件及制作方法
CN104882541B (zh) * 2015-05-28 2017-10-20 福州大学 一种金属量子点/有机半导体复合导电沟道薄膜晶体管的制备方法
CN108258116A (zh) * 2017-12-28 2018-07-06 南京邮电大学 一种半导体纳米阵列有机场效应晶体管多位存储器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058267A (ja) * 1998-08-03 2000-02-25 Minolta Co Ltd 有機エレクトロルミネセンス素子
CN101916825A (zh) * 2010-08-02 2010-12-15 复旦大学 一种聚合物基的纳米晶存储器电容及其制作方法
WO2015177541A1 (en) * 2014-05-20 2015-11-26 The University Of Manchester Dielectric materials for low voltage ofet operation
CN106953010A (zh) * 2017-03-07 2017-07-14 南京邮电大学 一种基于聚合物掺杂半导体纳米粒子的有机场效应晶体管存储器
CN110767806A (zh) * 2019-10-31 2020-02-07 西安建筑科技大学 一种有机薄膜晶体管及其制备方法和显示器件
CN113571638A (zh) * 2021-09-23 2021-10-29 天津大学 一种增强有机半导体薄膜聚集态稳定性的方法

Also Published As

Publication number Publication date
GB2617975A (en) 2023-10-25
JP2023553686A (ja) 2023-12-25
US20230103127A1 (en) 2023-03-30
CN113571638B (zh) 2021-12-28
CN113571638A (zh) 2021-10-29
CN114420843A (zh) 2022-04-29
US11696488B2 (en) 2023-07-04
KR20230117568A (ko) 2023-08-08
GB202311060D0 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
Tang et al. Micrometer‐and nanometer‐sized organic single‐crystalline transistors
WO2023045198A1 (zh) 一种增强有机半导体薄膜聚集态稳定性的方法
Ha et al. High mobility top-gate and dual-gate polymer thin-film transistors based on diketopyrrolopyrrole-naphthalene copolymer
US10784353B2 (en) Lateral heterojunctions between a first layer and a second layer of transition metal dichalcogenide
Umeda et al. High-mobility and air-stable organic thin-film transistors with highly ordered semiconducting polymer films
Oh Organic thin-film transistors using pentacene and SiOC film
Ball et al. Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability
Wang et al. Controlled growth of large-area aligned single-crystalline organic nanoribbon arrays for transistors and light-emitting diodes driving
Mativenga et al. Ambient Air Stability of Hybrid Perovskite Thin‐Film Transistors by Ambient Air Processing
Huang et al. 2-V operated flexible vertical organic transistor with good air stability and bias stress reliability
Kwon et al. Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes
Kurihara et al. High-Mobility Organic Thin-Film Transistors Over 10 cm2 V-1 s-1 Fabricated Using Bis (benzothieno) naphthalene Polycrystalline Films
Xu et al. Organic transistor nonvolatile memory with an integrated molecular floating-gate/tunneling layer
Diallo et al. Towards solution-processed ambipolar hybrid thin-film transistors based on ZnO nanoparticles and P3HT polymer
Onojima et al. Influence of phase-separated morphology on small molecule/polymer blend organic field-effect transistors fabricated using electrostatic spray deposition
Ishiura et al. Study on energy level bending at heterojunction of solution-processed phthalocyanine thin film and n-Si by Kelvin probe force microscopy
KR20180070773A (ko) 도핑된 유기물 박막을 포함한 트랜지스터
Chu et al. Enhancement of organic field-effect transistor performance by incorporating functionalized double-walled carbon nanotubes
CN110854268B (zh) 一种消除有机场效应晶体管光响应的方法
Hong et al. Preparation of highly oriented copper phthalocyanine film by molecular templating effects for organic field-effect transistor
Chen et al. N-Channel zinc oxide nanowire: Perylene diimide blend organic thin film transistors
Lin et al. Germanium nanowire/conjugated semiconductor nanocomposite field effect transistors
US10170629B2 (en) Field-effect transistor and the manufacturing method
WO2023217034A1 (zh) 一种有机场效应晶体管及其制备方法
Lee et al. Exfoliated Graphite Electrodes for Organic Single-Crystal Field-Effect Transistor Devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023536838

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 202311060

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220127

NENP Non-entry into the national phase

Ref country code: DE