WO2024087700A1 - 一种电容芯子电容值自动检测方法及系统 - Google Patents

一种电容芯子电容值自动检测方法及系统 Download PDF

Info

Publication number
WO2024087700A1
WO2024087700A1 PCT/CN2023/103387 CN2023103387W WO2024087700A1 WO 2024087700 A1 WO2024087700 A1 WO 2024087700A1 CN 2023103387 W CN2023103387 W CN 2023103387W WO 2024087700 A1 WO2024087700 A1 WO 2024087700A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
core
capacitance
capacitance value
tested
Prior art date
Application number
PCT/CN2023/103387
Other languages
English (en)
French (fr)
Inventor
邹海仁
Original Assignee
上海思源电力电容器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海思源电力电容器有限公司 filed Critical 上海思源电力电容器有限公司
Publication of WO2024087700A1 publication Critical patent/WO2024087700A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to the technical field of capacitance detection, and in particular to a method and system for automatically detecting the capacitance value of a capacitor core.
  • the capacitor core is a semi-finished capacitor core made by insulating and encapsulating a single capacitor element, bonding fuses, pressing the core, and finally welding the two capacitors in parallel.
  • the capacitor core In order to promptly discover quality problems of the capacitor core and avoid quality accidents after the finished product arrives at the site, according to the industrial requirements of capacitor production, the capacitor core must be subjected to an overvoltage test after production is completed, and then the capacitance test must be carried out immediately to see whether the capacity is stable after the ultra-high voltage impact. Only products with qualified capacity can flow to the next process.
  • the power capacitor industry relies on quality inspectors to test and judge the quality of capacitors. After the UHV power capacitors are tested, the semi-finished products move linearly and flow to the next process.
  • the quality inspectors hold a capacitance meter, manually test the capacitance value, record the data, and make judgments on the quality of the semi-finished core.
  • This requires quality inspectors to be very proficient in product process knowledge, otherwise it is difficult to make a 100% accurate identification of the quality of the product. In other words, manual inspections are prone to omissions, false detections, and other errors.
  • the purpose of the present invention is to provide a method and system for automatically detecting the capacitance value of a capacitor core, so as to realize the automation of capacitance value detection, avoid missed detection and false detection errors in manual detection, and avoid safety risks during manual detection.
  • a method for automatically detecting the capacitance value of a capacitor core comprises the following steps:
  • S1 Obtain parameter information including length, height, and number of series-connected segments of a capacitor core to be tested, which is formed by connecting multiple capacitor elements in series, and set the single moving distance, number of moves, and height of positive and negative electrodes when testing the withstand voltage and measuring the capacitance according to the parameter information;
  • S2 Control the electrode to move linearly according to the parameter information, and perform high voltage impact, short circuit discharge and capacitance value measurement operations on each capacitor element in the capacitor core to be tested in turn;
  • S3 Determine the capacitance value of each section of the capacitor element. When the capacitance value of each section of the capacitor element is qualified, the capacitor core to be tested is qualified.
  • the method for automatically detecting the capacitance value of a capacitor core further includes:
  • step S1 the parameter information of the capacitor core to be tested, including the length, height, and number of series-connected sections, is searched in the core early stage database by using the unique core number corresponding to the capacitor core to be tested.
  • an identifiable mark including a barcode and a QR code is generated corresponding to the unique core number; the identifiable mark is set on the capacitor core to be tested, and the unique core number is obtained by scanning the identifiable mark.
  • step S2 the electrodes are controlled to move according to the parameter information, and each segment of the capacitor element in the capacitor core to be tested is subjected to high voltage impact, short circuit discharge and capacitance value measurement operations in sequence, specifically:
  • Three contactors including a high-voltage contactor, a short-circuit discharge contactor, and a test capacitor contactor are set, and the electrodes are controlled to move according to the parameter information, and the positive electrode of each section of the capacitor element in the capacitor core to be tested is sequentially attracted to the high-voltage contactor to receive high-voltage impact, attracted to the short-circuit discharge contactor for short-circuit discharge, and attracted to the test capacitor contactor to measure the current capacitance value of the capacitor element;
  • the positive electrode of the capacitor element is connected to the short-circuit discharge contactor.
  • step S3 the capacitance value of each section of the capacitor element is determined.
  • the capacitor core to be tested is qualified.
  • the capacitance judgment parameter is less than a preset judgment value, all the capacitance elements are qualified and the capacitance core to be tested is qualified; otherwise, at least one of the capacitance elements is unqualified and the capacitance core to be tested is unqualified.
  • a capacitor core capacitance value automatic detection system for executing the above capacitor core capacitance value automatic detection method, comprising: a host computer, a barcode scanning gun, a core preliminary database, a logic controller PLC and a linear motion control device;
  • the host computer is configured to obtain a unique core number of the capacitor core to be tested through the barcode scanner, and obtain parameter information including length, height, and number of series-connected sections of the capacitor core to be tested, which is formed by connecting multiple sections of capacitor elements in series, from the core early database through the unique core number, and set the single movement distance, movement number, and positive and negative electrode heights of the electrodes when testing the withstand voltage and measuring the capacitance according to the parameter information;
  • the logic controller PLC is configured to control the electrodes of the capacitor core to be tested to move linearly on the linear motion control device according to the parameter information, and to perform high voltage shock, short circuit discharge and capacitance value measurement operations on each section of the capacitor element in the capacitor core to be tested in turn, and to judge the capacitance value of each section of the capacitor element.
  • the capacitor core to be tested is qualified.
  • the capacitor core capacitance value automatic detection system also includes: a withstand voltage machine;
  • the withstand voltage machine integrates the withstand voltage test and capacitance measurement functions.
  • Three contactors including a high-voltage contactor, a short-circuit discharge contactor, and a test capacitor contactor are arranged inside the withstand voltage machine.
  • the electrodes are controlled to move according to the parameter information, and the positive electrode of each section of the capacitor element in the capacitor core to be tested is sequentially attracted to the high-voltage contactor to receive the high-voltage impact, attracted to the short-circuit discharge contactor for short-circuit discharge, and attracted to the test capacitor contactor to measure the current capacitance value of the capacitor element;
  • the positive electrode of the capacitor element is connected to the short-circuit discharge contactor.
  • the capacitor core capacitance value automatic detection system also includes: a human-machine interface;
  • the human-machine interface is used to reflect the current real-time action and abnormal alarm screen of the automatic detection system of the capacitance value of the capacitor core.
  • a computer device comprises a memory and one or more processors, wherein the memory stores computer codes, and when the computer codes are executed by the one or more processors, the one or more processors execute the above method.
  • a computer-readable storage medium stores computer codes. When the computer codes are executed, the above method is executed.
  • the present invention has at least one of the following beneficial effects:
  • Capacitance data is recorded in the database, and historical data can be traced: Each piece of capacitance data measured by the automatic detection method of the present invention will be recorded in the database in a timely manner. In the future, the historical data of capacitance values after the product leaves the factory can be traced, which can provide better after-sales data support in the later stage and provide a reference for the future production of similar products.
  • the automatic detection method proposed in the present invention quickly compares the capacitance values of each segment after testing a complete semi-finished product. If the difference between all capacitance values exceeds a certain range, an alarm is triggered to determine that the product is defective and needs to be reworked and inspected. This is considered to be more accurate.
  • FIG1 is an overall flow chart of a method for automatically detecting capacitance of a capacitor core according to the present invention
  • FIG2 is a schematic diagram of a modified pressure-resistant machine according to the present invention.
  • FIG3 is an overall structural diagram of a capacitor core capacitance automatic detection system of the present invention.
  • FIG4 is a schematic diagram of a display interface of a host computer according to the present invention.
  • FIG5 is a schematic diagram showing a specific example of storing parameter information in the core early stage database of the present invention.
  • FIG6 is a front view of the linear motion control device of the present invention.
  • FIG. 7 is a side view of the linear motion control device of the present invention.
  • Reference numerals 1 Host computer; 2: Barcode scanner; 3: Core preliminary database; 4: Logic controller PLC; 5: Linear motion control equipment; 6: Pressure machine; 7: Human-machine interface; 51: roller transmission line; 52: pressure-resistant slide fixture; 53: first upper dotting fixture; 54: second upper dotting fixture; 55: first lower left dotting fixture; 56: second lower left dotting fixture; 57: first lower right dotting fixture; 58: second lower right dotting fixture; 59: servo-driven transverse movement device; 510: air source triplex; 511: product detection sensor; 512: product centering mechanism; 513: product entry detection sensor; 514: product exit detection sensor; 515: pallet in-place detection sensor; 516: air path control valve guide; 517: transmission line drive; 518: drag chain; 519: 20 profile main frame; 520: battery pack; 61: high-voltage contactor; 62: short-circuit discharge contactor; 63: test capacitor contactor.
  • the present invention patent proposes a method and system for automatically detecting the capacitance value of capacitors.
  • China's ultra-high voltage transmission technology leads the world, and the application of power capacitors is an indispensable part of it.
  • the production of capacitor cores is the most important process.
  • the capacitor core is a semi-finished product of the capacitor core formed by insulating and encapsulating the wound single capacitor element, bonding the fuse, pressing the core, and finally welding the two poles of the capacitor in parallel.
  • the capacitor core In order to timely discover the quality problems of the capacitor core and avoid quality accidents after the finished product arrives at the site, according to the process requirements of capacitor production, the capacitor core must be tested for overvoltage after production, and then the capacitance capacity test must be carried out immediately to see whether the capacity is stable after the ultra-high voltage impact. Only products with qualified capacity can flow to the next process. If they fail, the reasons must be analyzed and corrected before high-voltage testing is carried out again. Only when the product withstands the high-voltage impact and the capacitance value does not deviate from the technical parameter range can it be released; so the capacity of the capacitor is the ultimate key point of product quality.
  • the present invention proposes a method and system for automatic detection of capacitor capacitance value: when the power capacitor to be tested is transferred to the automatic detection process, the automation equipment will automatically locate it, and then extend the measuring electrode to measure the capacitance value, and collect the actual data obtained from each measurement for comparison, and then extract the standard capacitance data of the model from the database for comparison, and judge whether it is qualified, and finally output a judgment result; the whole process is operated by machine automation in conjunction with the upper computer, and there is no omission or false judgment, so that the judgment result is stable and reliable, and the data are automatically recorded in the database for archiving, which greatly reduces the uncertainty caused by manual operation.
  • the present invention proposes a method for automatically detecting the capacitance value of a capacitor core, which is characterized by comprising the following steps:
  • S1 Obtain parameter information including length, height, and number of series-connected segments of a capacitor core to be tested, which is composed of multiple capacitor elements connected in series, and set the single movement distance, number of movements, and height of positive and negative electrodes of the electrodes when testing the withstand voltage and measuring the capacitance according to the parameter information.
  • the semi-finished cores that make up the capacitors are also diverse.
  • parameter information including length, height, and number of series sections, and set the single movement distance, number of movements, and positive and negative electrode heights of the electrodes when testing the withstand voltage and measuring the capacitance based on the specific parameter information.
  • the present invention also includes: establishing a core preliminary database, storing the parameter information of the capacitor core to be measured including the length, height, and number of series-connected sections through the core preliminary database, and generating a unique core number corresponding to the current capacitor core to be measured.
  • the parameter information of the capacitor core to be measured has been stored in the core preliminary database during the product design stage.
  • step S1 the parameter information of the capacitor core to be measured including the length, height, and number of series-connected sections is searched in the core preliminary database through the unique core number corresponding to the capacitor core to be measured.
  • the present invention further includes: based on the unique core number of the capacitor core to be tested, generating an identifiable mark including a barcode and a QR code corresponding to the unique core number; setting the identifiable mark on the capacitor core to be tested, and obtaining the unique core number by scanning the identifiable mark.
  • the significance of setting the identifiable mark on the capacitor core to be tested and obtaining the unique core number by scanning the identifiable mark is as follows: Since technicians have various non-standard customization requirements when designing products, these parameter information needs to be entered into the core preliminary database, and a barcode corresponding to the unique core number is generated, which will follow the product for life; the production line produces according to the order requirements, and when the semi-finished capacitor core is made and placed on the assembly line, it will be mixed with other types of products, and the tooling used for each type of product is different. Only by scanning the identifiable mark to obtain the unique core number, and then using the unique identification number to find the parameter information of the current product including length, height, and number of serial segments in the core preliminary database.
  • the information is transmitted to the logic controller PLC through the communication between the host computer and the logic controller PLC, and the logic controller PLC adjusts the tooling position on the linear motion control device, and automatically transports the product to the withstand voltage machine to perform corresponding withstand voltage and capacitance measurement actions.
  • the main control part of the system adopts an industrial control host computer
  • the programming software adopted is labview2018 version
  • the stored database software is SQL2012.
  • the capacitor core to be measured has two heights (125 mm and 165 mm), so the height also has to define a variable X2 (0 to 1), when X2 is 0, it represents that the capacitor core height is 125 mm, and when X2 is 1, it represents that the capacitor core height is 165 mm; the length of each series segment is different, which determines the position of the withstand voltage and the capacitance measurement, so a variable X3 (200 mm to 1100 mm) must be designed. For example, if a product is 900 mm long and 165 mm high, and the three ends are connected in parallel, then the logic controller PLC controls the height of the positive and negative electrodes to be adjusted to 165 mm. The electrodes move a total of three times, each time by 300 mm. After the process is completed, the electrodes are controlled to return to the origin.
  • S2 Control the electrode to move linearly according to the parameter information, and perform high voltage impact, short circuit discharge and capacitance value measurement operations on each capacitor element in the capacitor core to be tested in turn.
  • the capacitance value of the capacitor core to be tested After obtaining the parameter information, it is necessary to measure the capacitance value of the capacitor core to be tested, specifically: set up three contactors including a high-voltage contactor, a short-circuit discharge contactor, and a test capacitor contactor, control the electrodes to move according to the parameter information, and respectively make the positive pole of each section of the capacitor element in the capacitor core to be tested be attracted to the high-voltage contactor to receive the high-voltage impact, attracted to the short-circuit discharge contactor for short-circuit discharge, and attracted to the test capacitor contactor to measure the current capacitance value of the capacitor element; the positive pole of the capacitor element is connected to the short-circuit discharge contactor.
  • FIG. 2 it includes a high-voltage contactor 61, a short-circuit discharge contactor 62, and a test capacitor contactor 63.
  • the high-voltage contactor 61 When normally accepting a high-voltage impact, the high-voltage contactor 61 is energized, and the short-circuit discharge contactor 62 and the test capacitor contactor 63 are disconnected.
  • the product is connected to the high-voltage output bridge through the high-voltage contactor 61 to accept the high-voltage impact for 3 seconds. After 3 seconds, the high-voltage contactor 61 is disconnected, and at the same time, the short-circuit discharge contactor 62 is energized to short-circuit the positive and negative poles of the product.
  • the purpose is to perform short-circuit discharge to prevent the high voltage electricity stored in the capacitor from damaging the capacitor tester.
  • the short-circuit discharge contactor 62 is disconnected, and at the same time, the test capacitor contactor 63 is energized.
  • the product is only connected to the capacitor tester through the test capacitor contactor 63, and the instrument automatically displays the current capacitance value.
  • the host computer reads the current data on the capacitor tester through serial communication.
  • S3 Determine the capacitance value of each section of the capacitor element. When the capacitance value of each section of the capacitor element is qualified, the capacitor core to be tested is qualified.
  • the maximum capacitance and the minimum capacitance of the capacitor elements connected in series to form the capacitor core to be tested are obtained, and a capacitance judgment parameter is obtained by subtracting the minimum capacitance from the maximum capacitance and dividing the capacitance difference by the maximum capacitance; when the capacitance judgment parameter is less than a preset judgment value, all the capacitor elements are qualified and the capacitor core to be tested is qualified; otherwise, at least one of the capacitor elements is unqualified and the capacitor core to be tested is unqualified.
  • a capacitor core product to be tested has a length of 900 mm and a height of 165 mm. Three sections of capacitor elements are connected in parallel. According to the steps in step S2, high voltage impact, short circuit discharge and capacitance value measurement operations are performed on each section of the capacitor element in turn.
  • the host computer will eventually obtain three capacitance values.
  • the host computer selects the maximum and minimum values from these three values, and divides the difference between the maximum value and the minimum value by the maximum value.
  • the capacitance value of each section of a normal product is not much different.
  • the result obtained by the above calculation is less than 0.01 (the preset value in this example is If there is a large deviation in the capacitance value, the result will be a value greater than 0.01.
  • the capacitance value of the capacitor element is 0 after the breakdown in the withstand voltage stage. Assume that the capacitance value of the other two sections is 10 micro-fat under normal circumstances, the maximum value 10 minus the minimum value 0 equals 10, and then the difference 10 divided by the maximum value 10 is 1, which is obviously greater than 0.01. Therefore, it can be judged that at least one section of the semi-finished capacitor core has been broken down. At this time, the control device outputs a buzzer sound, prompting the product to be checked for rework.
  • this embodiment provides a capacitor core capacitance value automatic detection system for executing the capacitor core capacitance value automatic detection method as in the first embodiment, including: a host computer 1, a barcode scanner 2, a core preliminary database 3, a logic controller PLC 4 and a linear motion control device 5;
  • the host computer 1 is configured to obtain the unique core number of the capacitor core to be tested through the barcode scanner 2, and obtain parameter information including length, height, and number of series-connected segments of the capacitor core to be tested, which is composed of multiple segments of capacitor elements connected in series, from the core preliminary database 3 through the unique core number, and set the single movement distance, number of movements, and positive and negative electrode heights of the electrodes when testing the withstand voltage and measuring the capacitance according to the parameter information.
  • FIG4 a specific example of a display interface of the host computer 1 in this embodiment is shown.
  • FIG5 a specific example of parameter information stored in the core preliminary database is shown.
  • the logic controller PLC4 is configured to control the electrodes of the capacitor core to be tested to move in the linear motion control
  • the control device 5 moves linearly according to the parameter information, and performs high-voltage impact, short-circuit discharge and capacitance value measurement operations on each section of the capacitor element in the capacitor core to be tested in turn, and judges the capacitance value of each section of the capacitor element. When the capacitance value of each section of the capacitor element is qualified, the capacitor core to be tested is qualified.
  • system of this embodiment further includes: a pressure-resistant machine 6;
  • the withstand voltage machine 6 integrates the functions of withstand voltage testing and capacitance measurement.
  • Three contactors including a high-voltage contactor 61, a short-circuit discharge contactor 62, and a test capacitor contactor 63 are arranged inside the withstand voltage machine.
  • the electrodes are controlled to move according to the parameter information, and the positive pole of each section of the capacitor element in the capacitor core to be tested is respectively attracted to the high-voltage contactor 61 to receive the high-voltage impact, attracted to the short-circuit discharge contactor 62 for short-circuit discharge, and attracted to the test capacitor contactor 63 to measure the current capacitance value of the capacitor element; the positive pole of the capacitor element is connected to the short-circuit discharge contactor.
  • the existing withstand voltage machine 6 only has the function of withstand voltage testing, and the original withstand voltage machine 6 cannot meet the requirement of automatically reading the capacitance value.
  • the existing withstand voltage machine 6 is modified, and the function of automatically detecting the capacitance value is directly compatible with the automatic withstand voltage equipment. After the withstand voltage is tested, the contactor is switched immediately, so that the semi-finished capacitor element is switched to the capacitance test mode.
  • system of the present invention further comprises a human-machine interface 7;
  • the human-machine interface 7 is used to reflect the current real-time action and abnormal alarm screen of the automatic detection system of the capacitance value of the capacitor core.
  • the capacitor core to be tested is transmitted from the left side of the linear motion control device 5 through the roller transmission line 51 to the pressure-resistant slide tooling 52 on the right side for pressure-resistant and capacitance-measuring operations, and a first upper dotting tooling 53, a second upper dotting tooling 54, a first lower left dotting tooling 55, a second lower left dotting tooling 56, a first lower right dotting tooling 57 and a second lower right dotting tooling 58 are provided on the pressure-resistant slide tooling 52 to adjust the tooling position according to the parameter information of the capacitor core to be tested to meet the needs of capacitance measurement.
  • the linear motion control device 5 also includes a servo-driven transverse movement device 59, an air source triplet 510 that functions as a transformer, a product detection sensor 511, a product centering mechanism 512, a product entry detection sensor 513, a product exit detection sensor 514, a pallet in-place detection sensor 515, an air path control valve guide 516, a transmission line drive 517, a drag chain 518 and a 20-profile main base frame 519, and a battery pack 520.
  • the linear frame body of the linear motion control device 5 is made of heavy aluminum profiles, which are easy to process and install.
  • An acrylic door is installed on the frame, and the door opening and closing signals are output to prevent abnormal door opening triggering signals.
  • the roller transmission line 51 is made of PVC material. Because the roller line is required to withstand voltage, the roller insulation value is required to be no less than 5000 V.
  • the transmission line drive 516 uses a 2.2 kW motor and a chain drive to convey the semi-finished core into the track for positioning.
  • the withstand voltage machine 6 adopts a 1 kW Delta servo driven transverse moving device 59.
  • the servo driven transverse moving device 59 controls the electrodes of the test capacitor to move precisely into position, and after reaching the position, the withstand voltage test and capacitance measurement are performed.
  • the control system of the present invention adopts Siemens SIMATIC S7-1200plc, and the communication module is CSM1277, which is mainly used to communicate with the host computer and the human-machine interface 7. Since the entire system has 46 input points and 39 output points, and there is also a pressure machine analog input module. Therefore, two SM 1223 modules (32 points) and one SM 1223 module (16 points) are expanded.
  • the software used for PLC programming is Siemens TIA Portal V16.
  • the HMI touch screen (human-machine interface 7) uses Siemens KTP700, with F1 defined as a manual key and F2 defined as an automatic key.
  • the main function of the touch screen is to display the product information and alarm information to be printed.
  • a computer-readable storage medium stores computer code. When the computer code is executed, the above method is executed. A person skilled in the art can understand that all or part of the steps in the various methods of the above embodiments can be completed by instructing related hardware through a program.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium may include: a read-only memory (ROM), a random access memory (RAM), a disk or an optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种电容芯子电容值自动检测方法及系统,涉及电容检测技术领域,该方法包括以下步骤:S1:获取由多段电容元件串接而成的待测电容芯子的包括长度、高度、串接段数在内的参数信息,依据参数信息设置打耐压和测电容时电极的单次移动距离、移动次数及正负电极高度;S2:控制电极依据参数信息线性移动,分别将待测电容芯子中的每一段电容元件依次进行高压冲击、短路放电和电容值测量操作;S3:判断每一段电容元件的电容值,当每一段电容元件的电容值均合格时,待测电容芯子合格。该方法实现了电容值检测的自动化,避免人为检测出现漏检、误检的过失,并能够规避人为检测时的安全风险。

Description

一种电容芯子电容值自动检测方法及系统 技术领域
本发明涉及电容检测的技术领域,尤其涉及一种电容芯子电容值自动检测方法及系统。
背景技术
中国特高压输电技术领先世界,其中电力电容器的应用就是不可或缺的一环,在高压电力电容器制作过程中,电容芯子制作是其中最重要的一道工序,该电容芯子是将卷绕好的单个电容元件通过绝缘包封、熔丝粘接、芯子压装、最后对电容两级进行并联焊接,形成电容芯子半成品;为了能及时发现电容器芯子质量问题,避免成品到现场后发生质量事故,根据电容器制作的工业要求,电容芯子制作完成后必须先进行过压试验,然后马上进行电容容量测试,看看容量在经过超高压冲击之后是否稳定,只有容量合格的产品才能够流向下一道工序,没有通过的,要分析原因,纠正后在进行高压测试,直到产品经受住高压冲击且电容值没有偏离技术参数范围才能放行;所以电容器的容量是产品质量的最终关键点。
目前电力电容器行业检测电容好坏都是靠质检人员进行测试判断,在特高压电力电容器打完耐压之后半成品随着线性运动,流转到下一道工序时质检人员手持电容表,人工测试电容值记录数据并对半成品芯子好坏做出判断,造成电容值不合格主要有以下两个因素:一是芯子没有经受住耐压测试,电容芯子被击穿了,那么电容值肯定为零;二是上一个压装工序放置的芯子型号或者数量不对,造成电容值和规定的生产型号不符,这就需要质检人员对产品工艺知识要非常熟练,否则很难对产品好坏做出百分百的准确甄别。也就是说人为检测很容易出现漏检、误检等过失。
发明内容
针对上述问题,本发明的目的在于提供一种电容芯子电容值自动检测方法及系统,实现电容值检测的自动化,避免人为检测出现漏检、误检的过失,并能够规避人为检测时的安全风险。
本发明的上述发明目的是通过以下技术方案得以实现的:
一种电容芯子电容值自动检测方法,包括以下步骤:
S1:获取由多段电容元件串接而成的待测电容芯子的包括长度、高度、串接段数在内的参数信息,依据所述参数信息设置打耐压和测电容时电极的单次移动距离、移动次数及正负电极高度;
S2:控制所述电极依据所述参数信息线性移动,分别将所述待测电容芯子中的每一段所述电容元件依次进行高压冲击、短路放电和电容值测量操作;
S3:判断每一段所述电容元件的电容值,当每一段所述电容元件的电容值均合格时,所述待测电容芯子合格。
进一步地,电容芯子电容值自动检测方法,还包括:
建立芯子前期数据库,通过所述芯子前期数据库存储所述待测电容芯子的包括长度、高度、串接段数在内的所述参数信息,并生成与当前所述待测电容芯子对应的唯一芯子编号;
在步骤S1中,通过与所述待测电容芯子对应的所述唯一芯子编号在所述芯子前期数据库中查找所述待测电容芯子的包括长度、高度、串接段数在内的所述参数信息。
进一步地,基于所述待测电容芯子的所述唯一芯子编号,生成与所述唯一芯子编号对应的包括条码、二维码在内的可识别标记;将所述可识别标记设置于所述待测电容芯子上,通过扫描所述可识别标记获取所述唯一芯子编号。
进一步地,在步骤S2中,控制所述电极依据所述参数信息移动,分别将所述待测电容芯子中的每一段所述电容元件依次进行高压冲击、短路放电和电容值测量操作,具体为:
设置包括高压接触器、短路放电接触器、测试电容接触器在内的三个接触器,控制所述电极依据所述参数信息移动,分别将所述待测电容芯子中的每一段所述电容元件的正极依次与所述高压接触器吸合接受高压冲击、与所述短路放电接触器吸合进行短路放电、与所述测试电容接触器吸合测量当前所述电容元件的电容值;
所述电容元件的正极与所述短路放电接触器连接。
进一步地,所述步骤S3,判断每一段所述电容元件的电容值,当每一段所述电容元件的电容值均合格时,所述待测电容芯子合格,具体为:
获取串接成所述待测电容芯子的所述电容元件中的电容最大值和电容最小值,使用所述电容最大值减去所述电容最小值所得的电容差值除以所述电容电容最大值得到电容判断参数;
当所述电容判断参数小于预设判断数值时,所有所述电容元件合格,所述待测电容芯子合格,否则至少一个所述电容元件不合格,所述待测电容芯子不合格。
一种用于执行如上述的电容芯子电容值自动检测方法的电容芯子电容值自动检测系统,包括:上位机、扫码枪、芯子前期数据库、逻辑控制器PLC和线性运动控制设备;
所述上位机被设置为通过所述扫码枪获取待测电容芯子的唯一芯子编号,并通过所述唯一芯子编号从所述芯子前期数据库中获取由多段电容元件串接而成的所述待测电容芯子的包括长度、高度、串接段数在内的参数信息,依据所述参数信息设置打耐压和测电容时电极的单次移动距离、移动次数及正负电极高度;
所述逻辑控制器PLC被设置为控制所述待测电容芯子的电极在所述线性运动控制设备上依据所述参数信息线性移动,分别将所述待测电容芯子中的每一段所述电容元件依次进行高压冲击、短路放电和电容值测量操作,并判断每一段所述电容元件的电容值,当每一段所述电容元件的电容值均合格时,所述待测电容芯子合格。
进一步地,电容芯子电容值自动检测系统,还包括:耐压机;
所述耐压机集成了打耐压和测电容功能,在所述耐压机内部设置有高压接触器、短路放电接触器、测试电容接触器在内的三个接触器,控制所述电极依据所述参数信息移动,分别将所述待测电容芯子中的每一段所述电容元件的正极依次与所述高压接触器吸合接受高压冲击、与所述短路放电接触器吸合进行短路放电、与所述测试电容接触器吸合测量当前所述电容元件的电容值;
所述电容元件的正极与所述短路放电接触器连接。
进一步地,电容芯子电容值自动检测系统,还包括:人机界面;
所述人机界面用于反映所电容芯子电容值自动检测系统的当前实时动作和异常报警画面。
一种计算机设备,包括存储器和一个或多个处理器,所述存储器中存储有计算机代码,所述计算机代码被所述一个或多个处理器执行时,使得所述一个或多个处理器执行如上述的方法。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机代码,当所述计算机代码被执行时,如上述的方法被执行。
与现有技术相比,本发明包括以下至少一种有益效果是:
(1)实现电容值检测自动化:行业内已经实现机器人元件自动包封,小端面焊接,芯子自动打耐压等自动化工艺;但是该行业内目前还没有实现电容器芯子电容值自动检测工艺,都是靠质检人员进行人工检测,如果压装工序放置的芯子型号或者数量不对,就会造成半成品芯子电容值和规定的生产型号不符,这就需要质检人员对产品工艺知识要非常熟练,否则很难对产品好坏做出百分百的准确甄别。基于以上问题,本发明提出的电容芯子电容值自动检测方法及系统,不需要质检人员人工检测,完全实现了芯子电容的电容值的自动检测。
(2)减员增效:处于经营成本考虑,由于近年来人力成本不断上升,并且招工也越来越困难。基于以上问题,本发明提出的电容芯子电容值自动检测方法及系统实现了自动化检测代替了人工检测,从而达到了节省人力成本。
(3)规避安全风险:出于安全考虑,因为特高压芯子按工艺要求是先打耐压后测电容值,如果半成品芯子存在余电没有释放赶紧,人为测试电容就有一定电击风险。本发明的本发明提出的电容芯子电容值自动检测方法及系统实现了自动化检测代替了人工检测,有效规避了人为测试时被电击的风险。
(4)电容测试精准:本发明提出的电容芯子电容值自动检测方法及系统,通过自动化检测代替人工检测,比人为手持电容表测量更加精准。
(5)电容数据计入数据库,历史数据可追踪:针对本发明的自动检测方法测量的每段电容数据,将及时计入数据库保存,将来产品出厂后电容值历史数据可追踪,后期能提供更好的售后数据支持,也为今后生产同类型产品提供参考。
(6)第一时间判定不合格品:本发明提出的自动检测方法在每测试完一个完整的半成品后,迅速将每段电容值进行比较,如果所有电容值差值超过一定范围,则报警判定为不合格品,需要返工检查,相比较认为判定更加准确。
附图说明
图1为本发明一种电容芯子电容值自动检测方法整体流程图;
图2为本发明改造后的耐压机的示意图;
图3为本发明一种电容芯子电容值自动检测系统整体结构图;
图4为本发明一种上位机显示界面示意图;
图5为本发明芯子前期数据库中存储参数信息的具体举例示意图;
图6为本发明线性运动控制设备正视图;
图7为本发明线性运动控制设备侧视图。
附图标记
1:上位机;2:扫码枪;3:芯子前期数据库;4:逻辑控制器PLC;5:线性运动控制设
备;6:耐压机;7:人机界面;
51:滚筒传输线;52:耐压滑台工装;53:第一上部打点工装;54:第二上部打点工
装;55:第一左下打点工装;56:第二左下打点工装;57:第一右下打点工装;58:第二右下打点工装;59:伺服驱动横移装置;510:气源三联件;511:产品检测传感器;512:产品对中机构;513:产品进站检测传感器;514:产品出站检测传感器;515:托盘到位检测传感器;516:气路控制阀导;517:传输线驱动;518:拖链;519:20型材主基架;520:电池组;61:高压接触器;62:短路放电接触器;63:测试电容接触器。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
本发明专利提出了一种电容器电容值自动检测方法及系统。中国特高压输电技术领先世界,其中电力电容器的应用就是不可或缺的一环;在高压电力电容器制作过程中,电容芯子制作是其中最重要的一道工序,该电容芯子是将卷绕好的单个电容元件通过绝缘包封、熔丝粘接、芯子压装、最后对电容两极进行并联焊接,形成电容芯子的半成品;为了能及时发现电容器芯子质量问题,避免成品到现场后发生质量事故,根据电容器制作的工艺要求,电容芯子制作完成后必须先进行过压试验,然后马上进行电容容量测试,看看容量在经过超高压冲击之后是否稳定,只有容量合格的产品才能流向下道工序,没有通过的,要分析原因,纠正后再进行高压测试,直到产品经受住高压冲击且电容值没有偏离技术参数范围才能放行;所以电容器的容量是产品质量的最终关键点。
目前电力电容器行业检测电容好坏都是靠质检人员进行测试判断,人为检验就有可能出现漏检,误检等过失,针对该情况本发明提出了一种电容器电容值自动检测方法及系统:当待测电力电容器流转至自动检测工序时,自动化设备会自动对其进行定位,然后伸出测量电极进行电容值测量,同时收集每段测量得到的实际数据进行比较,然后从数据库里提取该型号的标准电容容量数据进行比对,并判断是否合格,最后输出一个判定结果;全程由机器自动化配合上位机电脑操作,不存在漏测和误判,使判定结果稳定可靠,同时数据都自动记入数据库存档,大大降低人为操作带来的不确定性。
第一实施例
如图1所示,本发明提出了一种电容芯子电容值自动检测方法,其特征在于,包括以下步骤:
S1:获取由多段电容元件串接而成的待测电容芯子的包括长度、高度、串接段数在内的参数信息,依据所述参数信息设置打耐压和测电容时电极的单次移动距离、移动次数及正负电极高度。
具体的,由于每个产品的电容等级不同,以及一些客户特殊要求不同,造成电容品种有很多种,组成电容器的半成品芯子也随之多种多样。在对电容芯子的电容值进行测量之前,需要获取包括长度、高度、串接段数在内的参数信息,依据具体的参数信息设置打耐压和测电容时电极的单次移动距离、移动次数及正负电极高度。
为了方便在对待测电容芯子的电容值进行测量时能够快速获取当前待测电容芯子的参数信息。本发明还包括:建立芯子前期数据库,通过所述芯子前期数据库存储所述待测电容芯子的包括长度、高度、串接段数在内的所述参数信息,并生成与当前所述待测电容芯子对应的唯一芯子编号。在产品的设计阶段已经将待测电容芯子的参数信息存储进芯子前期数据库。在步骤S1中,通过与所述待测电容芯子对应的所述唯一芯子编号在所述芯子前期数据库中查找所述待测电容芯子的包括长度、高度、串接段数在内的所述参数信息。
为了在对待测电容芯子的电容值进行测量时,能够快速识别出当前待测电容芯子的参数信息。本发明还包括:基于所述待测电容芯子的所述唯一芯子编号,生成与所述唯一芯子编号对应的包括条码、二维码在内的可识别标记;将所述可识别标记设置于所述待测电容芯子上,通过扫描所述可识别标记获取所述唯一芯子编号。
对于将可识别标记设置于待测电容芯子上,通过扫描可识别标记获取所述唯一芯子编号的意义:由于技术人员在设计产品时,会有各种非标定制的需求,这些参数信息都需要录入芯子前期数据库,并生成与唯一芯子编号对应的条码,终身跟随该产品;产线根据订单要求来生产,当制作成半成品电容芯子后放在流水线上会跟随其他类型的产品混在一起,而且各类型的产品使用的工装都有所差别,只有通过扫描可识别标记获取唯一芯子编号,再通过唯一识别编号在芯子前期数据库里查找到当前产品的包括长度、高度、串接段数在内的参数信息。扫码读取参数信息成功后,再通过上位机与逻辑控制器PLC之间的通讯,将此信息传递给逻辑控制器PLC,由逻辑控制器PLC再去调整线性运动控制设备上的工装位置,将产品自动输送到耐压机里执行对应的打耐压和测电容等动作。
通过扫描可识别标记获取参数信息的意义:在本实施例中,通过一个具体例子来进行说明,在本例中系统主控部分是采用一台工控上位机电脑,采用的编程软件是labview2018版本,存储的数据库软件为SQL2012。我们根据不同的芯子类型进行分类编号(不同的唯一识别编号),由于测电容值与待测电容芯子的串接段数有关,有几个串接段数就得测量几次电容,所以在上位机上定义一个变量X1(2到8)用于表示串接段数,它是一个2到8段的整数。在本例中待测电容芯子有两种高度(125毫米和165毫米),所以高度也得定义一个变量X2(0到1),当X2为0代表电容芯子高度为125毫米,当X2为1时,代表电容芯子高度为165毫米;每个串联段的长度各不相同,它决定了打耐压和测电容的位置,所以得设计一个变量X3(200毫米到1100毫米)。例如一个产品的长度是900毫米,高度165毫米,3端并联串接,那么逻辑控制器PLC控制正负电极高度调整为165毫米,电极一共移动3次,每次移动300毫米;待流程走完后再控制电极回归原点。
S2:控制所述电极依据所述参数信息线性移动,分别将所述待测电容芯子中的每一段所述电容元件依次进行高压冲击、短路放电和电容值测量操作。
在获取到参数信息之后,就需要对待测电容芯子的电容值进行测量,具体为:设置包括高压接触器、短路放电接触器、测试电容接触器在内的三个接触器,控制所述电极依据所述参数信息移动,分别将所述待测电容芯子中的每一段所述电容元件的正极依次与所述高压接触器吸合接受高压冲击、与所述短路放电接触器吸合进行短路放电、与所述测试电容接触器吸合测量当前所述电容元件的电容值;所述电容元件的正极与所述短路放电接触器连接。
如图2所示,包括高压接触器61、短路放电接触器62、测试电容接触器63,正常接受高压冲击时,高压接触器61吸合,短路放电接触器62和测试电容接触器63断开,产品通过高压接触器61连接高压输出电桥,接受高压冲击3秒,3秒后高压接触器61断开,同时短路放电接触器62吸合将产品正负极短接起来,目的是进行短路放电,防止电容储存的高压电损坏电容测试仪,待放电结束后短路放电接触器62断开,同时测试电容接触器63吸合,产品通过测试电容接触器63只连接电容测试仪,仪表自动显示当前电容值,上位机通过串口通讯在电容测试仪上读取当前数据。
S3:判断每一段所述电容元件的电容值,当每一段所述电容元件的电容值均合格时,所述待测电容芯子合格。
获取串接成所述待测电容芯子的所述电容元件中的电容最大值和电容最小值,使用所述电容最大值减去所述电容最小值所得的电容差值除以所述电容电容最大值得到电容判断参数;当所述电容判断参数小于预设判断数值时,所有所述电容元件合格,所述待测电容芯子合格,否则至少一个所述电容元件不合格,所述待测电容芯子不合格。
举个例子来说,一个待测电容芯子产品的产品长度是900毫米,高度165毫米,3段电容元件并联,依照步骤S2中的步骤对每一段电容元件依次进行高压冲击、短路放电和电容值测量操作,上位机最终将获取到3个电容值,上位机在这3个值中筛选选出最大值和最小值,用最大值减去最小值所得的差值再除以最大值,正常的产品每段的电容值都相差不大,按以上计算得出的结果是一小于0.01(本例中预设的预设判断数值)的小数,如果其中有一段电容值偏差很大,那么得到的结果将是一个大于0.01的数值,例如电容元件在耐压阶段击穿后电容值就是0,其他两段正常的情况假设电容值为10微发,最大值10减去最小值0等于10,再用差值10除以最大值10得出结果为1,1明显大于0.01这个数值,所以可以判断该半成品电容芯子至少有一段被击穿了,这时候控制设备输出蜂鸣器响声,提示要检查产品进行返工。
第二实施例
如图3所示,本实施例提供了一种用于执行如第一实施例中的电容芯子电容值自动检测方法的电容芯子电容值自动检测系统,包括:上位机1、扫码枪2、芯子前期数据库3、逻辑控制器PLC4和线性运动控制设备5;
所述上位机1被设置为通过所述扫码枪2获取待测电容芯子的唯一芯子编号,并通过所述唯一芯子编号从所述芯子前期数据库3中获取由多段电容元件串接而成的所述待测电容芯子的包括长度、高度、串接段数在内的参数信息,依据所述参数信息设置打耐压和测电容时电极的单次移动距离、移动次数及正负电极高度。如图4所示为本实施例中一种上位机1显示界面的具体举例。如图5所示为芯子前期数据库中存储参数信息的具体举例。
所述逻辑控制器PLC4被设置为控制所述待测电容芯子的电极在所述线性运动控 制设备5上依据所述参数信息线性移动,分别将所述待测电容芯子中的每一段所述电容元件依次进行高压冲击、短路放电和电容值测量操作,并判断每一段所述电容元件的电容值,当每一段所述电容元件的电容值均合格时,所述待测电容芯子合格。
进一步地,本实施例的系统还包括:耐压机6;
如图2所示,所述耐压机6集成了打耐压和测电容功能,在所述耐压机内部设置有高压接触器61、短路放电接触器62、测试电容接触器63在内的三个接触器,控制所述电极依据所述参数信息移动,分别将所述待测电容芯子中的每一段所述电容元件的正极依次与所述高压接触器61吸合接受高压冲击、与所述短路放电接触器62吸合进行短路放电、与所述测试电容接触器63吸合测量当前所述电容元件的电容值;所述电容元件的正极与所述短路放电接触器连接。
具体的,在本实施例中,我们对现有的耐压机6进行了改造,现有的耐压机6只有打耐压的功能,原先的耐压机6满足不了自动读取电容值的要求。为了节省系统开发成本,对现有的耐压机6进行改造,将自动检测电容值的功能直接兼容在自动耐压设备里面,在打完耐压后马上切换接触器,使得半成品电容元件切换到电容测试模式。
进一步地,本发明的系统还包括,人机界面7;
所述人机界面7用于反映所电容芯子电容值自动检测系统的当前实时动作和异常报警画面。
进一步地,在本实施例中,对于线性运动控制设备5,如图6和7所示,当对待测电容芯子进行电容值测试时,待测电容芯子从线性运动控制设备5的左侧通过滚筒传输线51传输到右侧的耐压滑台工装52进行打耐压和测电容的操作,在耐压滑台工装52上设置有第一上部打点工装53、第二上部打点工装54、第一左下打点工装55、第二左下打点工装56、第一右下打点工装57和第二右下打点工装58以根据待测电容芯子的参数信息调整工装位置以适应测电容时的需要。此外,线性运动控制设备5还包括了伺服驱动横移装置59、作为变压器功能的气源三联件510、产品检测传感器511、产品对中机构512、产品进站检测传感器513、产品出站检测传感器514、托盘到位检测传感器515、气路控制阀导516、传输线驱动517、拖链518和20型材主基架519,电池组520。
对于线性运动控制设备5的线性框架主体由重型铝形材制成,它加工方便,并且安装方便。且在框架上安装亚克力门,门开与关有信号输出,防止异常开门触发信号。
滚筒传输线51,采用PVC材料,因为要求要在滚筒线打耐压,所以要求滚筒绝缘值不小于5000V。传输线驱动516采用2.2千瓦的电机,采用链条传动,用于传送半成品芯子进入轨道定位。
耐压机6采用1千瓦台达伺服驱动横移装置59,当半成品芯子定位完成后,伺服驱动横移装置59控制测试电容的电极精准移动到位,到位后进行打耐压和测电容动作。
本发明的控制系统采用西门子SIMATIC S7-1200plc,通讯模块为CSM1277,主要是和上位机和人机界面7进行通讯。由于整个系统输入点有46点和39个输出点,并且还有一个耐压机模拟量输入模块。所以扩展了两个SM 1223模块(32点的),一个SM 1223模块(16点)。PLC编程使用的软件是西门子的博途V16。
HMI触摸屏(人机界面7)采用是西门子KTP700,将F1定义为手动键,F2定义为自动键。触摸屏主要功能显示要打的产品信息和报警信息。
一种计算机可读存储介质,计算机可读存储介质存储有计算机代码,当计算机代码被执行时,如上述方法被执行。本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种电容芯子电容值自动检测方法,其特征在于,包括以下步骤:
    S1:获取由多段电容元件串接而成的待测电容芯子的包括长度、高度、串接段数在内的参数信息,依据所述参数信息设置打耐压和测电容时电极的单次移动距离、移动次数及正负电极高度;
    S2:控制所述电极依据所述参数信息线性移动,分别将所述待测电容芯子中的每一段所述电容元件依次进行高压冲击、短路放电和电容值测量操作;
    S3:判断每一段所述电容元件的电容值,当每一段所述电容元件的电容值均合格时,所述待测电容芯子合格。
  2. 根据权利要求1所述的电容芯子电容值自动检测方法,其特征在于,还包括:
    建立芯子前期数据库,通过所述芯子前期数据库存储所述待测电容芯子的包括长度、高度、串接段数在内的所述参数信息,并生成与当前所述待测电容芯子对应的唯一芯子编号;
    在步骤S1中,通过与所述待测电容芯子对应的所述唯一芯子编号在所述芯子前期数据库中查找所述待测电容芯子的包括长度、高度、串接段数在内的所述参数信息。
  3. 根据权利要求2所述的电容芯子电容值自动检测方法,其特征在于,还包括:
    基于所述待测电容芯子的所述唯一芯子编号,生成与所述唯一芯子编号对应的包括条码、二维码在内的可识别标记;
    将所述可识别标记设置于所述待测电容芯子上,通过扫描所述可识别标记获取所述唯一芯子编号。
  4. 根据权利要求1所述的电容芯子电容值自动检测方法,其特征在于,在步骤S2中,控制所述电极依据所述参数信息移动,分别将所述待测电容芯子中的每一段所述电容元件依次进行高压冲击、短路放电和电容值测量操作,具体为:
    设置包括高压接触器、短路放电接触器、测试电容接触器在内的三个接触器,控制所述电极依据所述参数信息移动,分别将所述待测电容芯子中的每一段所述电容元件的正极依次与所述高压接触器吸合接受高压冲击、与所述短路放电接触器吸合进行短路放电、与所述测试电容接触器吸合测量当前所述电容元件的电容值;
    所述电容元件的正极与所述短路放电接触器连接。
  5. 根据权利要求1所述的电容芯子电容值自动检测方法,其特征在于,所述步骤S3,判断每一段所述电容元件的电容值,当每一段所述电容元件的电容值均合格时,所述待测电容芯子合格,具体为:
    获取串接成所述待测电容芯子的所述电容元件中的电容最大值和电容最小值,使用所述电容最大值减去所述电容最小值所得的电容差值除以所述电容电容最大值得到电容判断参数;
    当所述电容判断参数小于预设判断数值时,所有所述电容元件合格,所述待测电容芯子合格,否则至少一个所述电容元件不合格,所述待测电容芯子不合格。
  6. 一种用于执行如权利要求1-6所述的电容芯子电容值自动检测方法的电容芯子电容值自动检测系统,其特征在于,包括:上位机、扫码枪、芯子前期数据库、逻辑控制器PLC和线性运动控制设备;
    所述上位机被设置为通过所述扫码枪获取待测电容芯子的唯一芯子编号,并通过所述 唯一芯子编号从所述芯子前期数据库中获取由多段电容元件串接而成的所述待测电容芯子的包括长度、高度、串接段数在内的参数信息,依据所述参数信息设置打耐压和测电容时电极的单次移动距离、移动次数及正负电极高度;
    所述逻辑控制器PLC被设置为控制所述待测电容芯子的电极在所述线性运动控制设备上依据所述参数信息线性移动,分别将所述待测电容芯子中的每一段所述电容元件依次进行高压冲击、短路放电和电容值测量操作,并判断每一段所述电容元件的电容值,当每一段所述电容元件的电容值均合格时,所述待测电容芯子合格。
  7. 根据权利要求6所述的电容芯子电容值自动检测系统,其特征在于,还包括:耐压机;
    所述耐压机集成了打耐压和测电容功能,在所述耐压机内部设置有高压接触器、短路放电接触器、测试电容接触器在内的三个接触器,控制所述电极依据所述参数信息移动,分别将所述待测电容芯子中的每一段所述电容元件的正极依次与所述高压接触器吸合接受高压冲击、与所述短路放电接触器吸合进行短路放电、与所述测试电容接触器吸合测量当前所述电容元件的电容值;
    所述电容元件的正极与所述短路放电接触器连接。
  8. 根据权利要求6所述的电容芯子电容值自动检测系统,其特征在于,还包括:人机界面;
    所述人机界面用于反映所电容芯子电容值自动检测系统的当前实时动作和异常报警画面。
  9. 一种计算机设备,包括存储器和一个或多个处理器,所述存储器中存储有计算机代码,所述计算机代码被所述一个或多个处理器执行时,使得所述一个或多个处理器执行如权利要求1至5中任一项所述的方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机代码,当所述计算机代码被执行时,如权利要求1至5中任一项所述的方法被执行。
PCT/CN2023/103387 2022-10-27 2023-06-28 一种电容芯子电容值自动检测方法及系统 WO2024087700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211328884.4 2022-10-27
CN202211328884.4A CN115586378A (zh) 2022-10-27 2022-10-27 一种电容芯子电容值自动检测方法及系统

Publications (1)

Publication Number Publication Date
WO2024087700A1 true WO2024087700A1 (zh) 2024-05-02

Family

ID=84782947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103387 WO2024087700A1 (zh) 2022-10-27 2023-06-28 一种电容芯子电容值自动检测方法及系统

Country Status (2)

Country Link
CN (1) CN115586378A (zh)
WO (1) WO2024087700A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115586378A (zh) * 2022-10-27 2023-01-10 上海思源电力电容器有限公司 一种电容芯子电容值自动检测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980069341A (ko) * 1997-02-27 1998-10-26 배순훈 전해콘덴서 자동검사장치 및 방법
CN107300652A (zh) * 2017-06-07 2017-10-27 深圳市智胜新电子技术有限公司 铝电解电容器测试装置及测试方法
CN109212388A (zh) * 2018-08-20 2019-01-15 上海思源电力电容器有限公司 电容器芯子自动耐压电容测试机
CN110609511A (zh) * 2019-09-24 2019-12-24 南京国电南自电网自动化有限公司 电力自动化装置插件全自动测试系统、方法及存储介质
CN111505431A (zh) * 2020-06-16 2020-08-07 东莞市仟泰自动化设备有限公司 一种超级电容器的检测设备
CN215813176U (zh) * 2021-09-22 2022-02-11 上海佳特高电压电气设备有限公司 一种电容器的测试系统
CN115586378A (zh) * 2022-10-27 2023-01-10 上海思源电力电容器有限公司 一种电容芯子电容值自动检测方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980069341A (ko) * 1997-02-27 1998-10-26 배순훈 전해콘덴서 자동검사장치 및 방법
CN107300652A (zh) * 2017-06-07 2017-10-27 深圳市智胜新电子技术有限公司 铝电解电容器测试装置及测试方法
CN109212388A (zh) * 2018-08-20 2019-01-15 上海思源电力电容器有限公司 电容器芯子自动耐压电容测试机
CN110609511A (zh) * 2019-09-24 2019-12-24 南京国电南自电网自动化有限公司 电力自动化装置插件全自动测试系统、方法及存储介质
CN111505431A (zh) * 2020-06-16 2020-08-07 东莞市仟泰自动化设备有限公司 一种超级电容器的检测设备
CN215813176U (zh) * 2021-09-22 2022-02-11 上海佳特高电压电气设备有限公司 一种电容器的测试系统
CN115586378A (zh) * 2022-10-27 2023-01-10 上海思源电力电容器有限公司 一种电容芯子电容值自动检测方法及系统

Also Published As

Publication number Publication date
CN115586378A (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2024087700A1 (zh) 一种电容芯子电容值自动检测方法及系统
CN106940420A (zh) 一种pcba自动并行绝缘耐压测试系统和装置
CN111308018A (zh) 一种氮氧传感器标定测试系统及操作方法
CN110625220B (zh) 电焊机智能检验调试装置及调试方法
CN103308808A (zh) 智能变电站二次设备自动测试系统及测试方法
CN110763979A (zh) 一种基于mes系统的led晶圆点测自动化系统
CN110146158A (zh) 一种检测紫外光固化能量系统和方法
CN110919144A (zh) 一种焊接电源自动检测装置及其检测方法
CN103197245B (zh) 伺服电机定子检测装置及工艺
CN112924842B (zh) 降压测试拓扑电路、测试系统/方法、存储介质
CN111346844A (zh) 电池组检测筛选系统及方法
CN116796261A (zh) 一种基于人工智能的封闭开关设备机械特性预测方法
CN106341679A (zh) 一种用于摄像头模组的测试设备
CN115356674A (zh) 一种互感器智能测试方法
CN217193789U (zh) 一种转盘式工件检测装置
CN114325550B (zh) 一种电能表检定流水线异常表位的自动诊断系统及方法
CN201622924U (zh) 一种柔性化的氙气高压放电灯镇流器通用型生产线
CN115047311A (zh) 卡件的全寿命周期管理方法、系统、计算机产品及存储介质
CN112305466B (zh) 基于光纤磁场传感器和漏感的变压器绕组变形检测方法
CN210487936U (zh) 单体动力电池在线检测系统
CN212567494U (zh) 转辙机控制电路监测分析系统
CN220773223U (zh) 一种继电器及开关器件特性参数自动化检测装置
CN217112682U (zh) 实验室电测量设备检测用夹具功能失效监控装置
KR100190657B1 (ko) 배터리 검사시스템
CN204953378U (zh) 基于电感器使用的磁芯电感检测装置