WO2024087378A1 - 一种热管理集成模块 - Google Patents
一种热管理集成模块 Download PDFInfo
- Publication number
- WO2024087378A1 WO2024087378A1 PCT/CN2022/142898 CN2022142898W WO2024087378A1 WO 2024087378 A1 WO2024087378 A1 WO 2024087378A1 CN 2022142898 W CN2022142898 W CN 2022142898W WO 2024087378 A1 WO2024087378 A1 WO 2024087378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal management
- vapor
- valve
- valve plate
- sov
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims description 92
- 238000000926 separation method Methods 0.000 claims description 39
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- 238000007726 management method Methods 0.000 description 39
- 239000007789 gas Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 15
- 238000009434 installation Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000004378 air conditioning Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000005219 brazing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000013316 zoning Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
Definitions
- the present invention relates to the field of vehicle technology, and more particularly to a thermal management integrated module.
- the traditional thermal management system includes powertrain thermal management and air-conditioning system.
- the thermal management of the powertrain is mainly cooling, which is cooled by oil cooling, water cooling and air cooling.
- the air-conditioning system is relatively simple, and the heating is to introduce the engine waste heat into the passenger compartment.
- the air-conditioning system only needs a single cooling mode;
- the current thermal management of electric vehicles includes battery thermal management, passenger compartment air conditioning system, and motor electronic control thermal management. Its design needs to meet the heat demand distribution under various working conditions. Therefore, the complexity of the entire thermal management system is relatively high, and the number of thermal management components has also greatly increased.
- these components are arranged in a dispersed or low-integrated manner, resulting in: first, they occupy a large layout space; second, a large number of pipelines and pressure plates are required to connect the components.
- a large number of pipelines make the pipelines complicated, difficult to arrange, increase costs, and have risks in identification and error prevention.
- the distribution of pipelines will cause long flow paths, large flow resistance, and increase the risk of leakage.
- the thermal management integrated module includes a mounting bracket, a heat exchanger and at least one flow distribution component, and the heat exchanger and the flow distribution component are both mounted on the mounting bracket; a flow distribution cavity is provided in the mounting bracket, and the heat exchanger and the flow distribution component are respectively connected to the flow distribution cavity, and the flow distribution component is used to divert the coolant after passing through the heat exchanger.
- the thermal management integrated module has heat exchange and waterway flow distribution functions, with a simple and compact structure, small space occupation, and easy installation. It has shortcomings such as many pipelines, heavy weight, and high cost.
- the purpose of the present invention is to overcome the above-mentioned shortcomings in the prior art and to provide a thermal management integrated module, which can achieve the advantages of a small number of thermal management system pipelines, small layout space, low flow resistance, light weight and low cost.
- a thermal management integrated module including a reagent side valve plate, a plurality of connecting pipelines are formed on the reagent side valve plate, and the reagent side valve plate is configured as a load-bearing connector of the thermal management integrated system; there are at least two installation ports on the reagent side valve plate, the two installation ports are connected by connecting pipelines, and thermal management components are arranged in the installation ports.
- the present invention is to develop a thermal management integrated module by highly integrating all the components of the thermal management integrated system except the compressor, front-end module, and air conditioning box module through existing process schemes and assembly methods.
- the thermal management system has a small number of pipelines, a small layout space, low flow resistance, light weight, and low cost.
- the vapor-liquid separator is referred to as "vapor separator”.
- the thermal management components include at least two of the following components: vapor-liquid separator, electronic expansion valve, SOV valve, PT sensor, temperature sensor, evaporator (Chiller), water-cooled condenser (LCC).
- this thermal management integrated module solution focuses on highly integrating the vapor separator, 3 electronic expansion valves, 4 SOV valves, 2 PT sensors, 2 temperature sensors, 1 chiller, and 1 LCC.
- the thermal management system achieves the purpose of having a small number of pipelines, a small layout space, low flow resistance, light weight, and low cost.
- the agent side valve plate includes a refrigerant side valve plate 1 and a refrigerant side valve plate 2, and the refrigerant side valve plate 1 and the refrigerant side valve plate 2 are connected through a connecting pipeline arranged at the back; the refrigerant side valve plate 1 and the refrigerant side valve plate 2 are welded and connected to the vapor-liquid separator.
- the agent side valve plate adopts a modular design, and the main purpose of the refrigerant side valve plate 1 and the refrigerant side valve plate 2 is to achieve heat insulation in high and low temperature areas; since the thermal conductivity of air is relatively low, after the middle of the high and low temperature areas is filled with air, natural heat insulation can be achieved between the two plates; at the same time, large-area wire cutting is avoided to reduce process costs; the agent side valve plate is realized by a forging process, and then welded to the vapor-liquid separator by a brazing process, and the connecting pipe at the back realizes the connection between the upper and lower plates; the agent side valve plate is connected to the agent side assembly module by an assembly process; the PT sensor is connected to the electronic expansion valve through a connecting pipe welded on the back.
- the vapor-liquid separator comprises an outer cylinder, an end cover arranged at the end of the outer cylinder and a vapor-liquid separation assembly arranged in the outer cylinder.
- An upper cover plate and a lower cover plate are arranged at the end of the cylinder to form a sealed cavity for the outer cylinder; the vapor-liquid separation assembly is used for vapor-liquid separation.
- a circular cylinder and a special-shaped cylinder are provided in the outer cylinder, a vapor-liquid separation chamber is provided in the circular cylinder, a special-shaped chamber is provided in the special-shaped cylinder, one side of the outer cylinder outer wall is stepped, a vapor-liquid mixing inlet and a gas outlet are provided on the stepped outer wall, the vapor-liquid mixing inlet is connected to the vapor-liquid separation chamber, the gas outlet is connected to the special-shaped chamber, a vapor-liquid separation assembly is provided on the circular cylinder for vapor-liquid separation, and the gap between the assembly and the outer end cover is used for the connection between the gas-liquid separation chamber and the special-shaped chamber.
- the outer cylinder of the vapor-liquid separator is formed by profile stretching; the vapor-liquid separator is welded to the agent-side valve plate plane to form an integral body; the interior of the gas-liquid separation chamber is divided into two chambers, which are independent of each other, and the purpose of the vapor-liquid separation chamber is vapor-liquid separation and liquid storage, and the special-shaped chamber is the outlet flow channel for the separated gas.
- the circular cylinder and the special-shaped cylinder have a certain height difference.
- the structure uses a finishing process to mill out a certain height difference between the circular cylinder and the special-shaped cylinder, in order to change the cavity to be formed in the direction of the gas outlet.
- the gas-liquid separation component includes an inner cylinder cover arranged at the end of the circular cylinder, an umbrella cap and a return air pipe arranged in the gas-liquid separation chamber, the umbrella cap and the return air pipe are both connected to the inner cylinder cover, the umbrella cap is an umbrella-shaped structure, and the umbrella cap is provided with an umbrella opening facing the gas-liquid mixing inlet, and the return air pipe connects the gas separated from the gas-liquid separation chamber with the heterogeneous chamber.
- An outlet pipe is fixedly provided on the inner cylinder cover to connect the gas-liquid separation chamber with the heterogeneous chamber, the umbrella cap is connected to the outlet pipe in the gas-liquid separation chamber, and the whole is welded and assembled to the circular cylinder; the two phases of the gas-liquid separation chamber collide with the umbrella cap at the inlet, and due to the difference in density, the gas can be considered to have a very small mass and be negligible, with only velocity but no momentum, while the liquid has both velocity and momentum, and the momentum of the liquid is zero after the collision, and it flows along the wall, while the gas enters the heterogeneous chamber through the return pipe and flows out the gas.
- the gas return pipe comprises a U-shaped pipe and a connecting pipe.
- the connecting pipe is fixedly connected to the inner cylinder cover, and the gas enters the heterogeneous cavity through the inlet of the U-shaped pipe and flows out of the steam fraction.
- a compressor outlet is provided on the agent side valve plate, and the compressor outlet is connected to a water-cooled condenser, and the water-cooled condenser is respectively connected to SOV valve 1 and SOV valve 2, SOV valve 1 is connected to the outdoor heat exchanger inlet; SOV valve 2 is connected to the indoor condenser inlet.
- the flow channel arrangement on the agent side valve plate should be compact while considering the cold and hot zoning design, as shown in Figure 9. The process described in Figure 9 is mostly in the high temperature and high pressure area during system operation (the outdoor heat exchanger inlet is high temperature and high pressure under refrigeration conditions, and low temperature and low pressure under heat pump conditions).
- the valve plate on the agent side is also provided with an outdoor heat exchanger outlet, which is respectively connected to SOV valve 3 and SOV valve 4, SOV valve 3 is connected to the inlet of the vapor-liquid separator; SOV valve 4 is connected to the PT2 temperature and pressure sensor; the PT2 temperature and pressure sensor is respectively connected to the electronic expansion valve 1, the electronic expansion valve 2, the electronic expansion valve 3 and the indoor condenser outlet; the electronic expansion valve 1 is connected to the inlet of the outdoor heat exchanger; the electronic expansion valve 2 is connected to the evaporator of the air-conditioning box; the electronic expansion valve 3 is connected to the chiller.
- the flow channel arrangement on the valve plate on the agent side should be compact while considering the cold and hot zone design, as shown in Figure 10.
- the process described in Figure 10 is in a medium temperature or low temperature condition under different working conditions; therefore, the cold and hot zone design of a large area is realized by two valve plates.
- the expansion valve 1 is set on the valve plate 2 on the refrigerant side, and the PT2 temperature and pressure sensor is connected to the expansion valve 1 through an external welding connecting pipe; the upper and lower plates have installation ports, which can be adjusted according to the specific position and are not limited to the current position.
- the present invention has the following beneficial effects: (1) The present invention can achieve the goals of fewer system pipelines, smaller layout space, lower flow resistance, lighter weight, and lower cost while ensuring the realization of various functions by highly integrating the agent-side valve plate, vapor-liquid separator, plate heat exchanger, and PT sensor; (2) The agent-side valve plate adopts a modular design to achieve thermal insulation, avoid large-area wire cutting, and reduce process costs; (3) The vapor-liquid separator adopts multiple chambers to meet various installation requirements and switching, and has strong versatility; (4) The external interface connection positions are concentrated, which is conducive to the design and installation of pipeline directions; (5) The installation orientation of all valve components, PT sensors, and other matching ports is consistent, which is conducive to later industrialization.
- FIG1 is an axial schematic diagram of a thermal management integrated module of the present invention.
- FIG2 is an exploded view of a thermal management integrated module of the present invention.
- FIG3 is a front view of a thermal management integrated module of the present invention.
- FIG4 is a rear view of a thermal management integrated module of the present invention.
- FIG. 5 is a schematic structural diagram of the combination of the agent-side valve plate and the vapor-liquid separator of the present invention.
- FIG6 is an axial schematic diagram of a vapor-liquid separator of the present invention.
- FIG7 is an exploded view of a vapor-liquid separator of the present invention.
- FIG8 is a schematic structural diagram of an outer cylinder of the present invention.
- Example 9 is a flow chart of the working condition in Example 1 of the present invention.
- agent side valve plate 1 outdoor heat exchanger outlet 101; indoor condenser outlet 102; indoor evaporator inlet 103; indoor evaporator outlet 104; compressor inlet 105; compressor outlet 106; outdoor heat exchanger inlet 107; indoor condenser inlet 108; refrigerant side valve plate 1 2; refrigerant side valve plate 2 3; vapor-liquid separator 4; outer cylinder 401; end cover 402; vapor-liquid separation component 403; round cylinder 404; special-shaped cylinder 405; vapor-liquid separation chamber 406; special-shaped chamber 407; vapor-liquid combination inlet Port 408; gas outlet 409; inner cylinder cover 410; umbrella cap 411; return air pipe 412; umbrella mouth 413; U-shaped tube 414; connecting tube 415; electronic expansion valve one 5; electronic expansion valve two 6; electronic expansion valve three 7; SOV valve one 8; SOV valve two 9; SOV valve three 10; SOV valve four 11; low pressure PT1 sensor 12; low
- a thermal management integrated module includes a valve plate 1 on the agent side, a plurality of connecting pipelines are formed on the valve plate 1 on the agent side, and the valve plate 1 on the agent side is configured as a load-bearing connector of the thermal management integrated system;
- the valve plate 1 on the agent side includes a refrigerant side valve plate 2 and a refrigerant side valve plate 3, the refrigerant side valve plate 2 and the refrigerant side valve plate 3 are connected by welding, and are connected by connecting pipelines at the back; there are at least two mounting ports on the valve plate 1 on the agent side, the two mounting ports are connected by connecting pipelines, and thermal management components are arranged in the mounting ports.
- the thermal management components include at least two of the following components: a vapor-liquid separator, an electronic expansion valve, a SOV valve, a PT sensor, an evaporator (Chiller), and a water-cooled condenser (LCC).
- Embodiment 1 Referring to Figures 1-8, the thermal management integrated module solution in the present invention is to highly integrate a vapor-liquid separator 4, three electronic expansion valves (i.e., electronic expansion valve one 5, electronic expansion valve two 6 and electronic expansion valve three 7), four SOV valves (i.e., SOV valve one 8, SOV valve two 9, SOV valve three 10 and SOV valve four 11), two low-pressure PT sensors (low-pressure PT1 sensor 12 and low-pressure PT2 sensor 13), two high-pressure PT sensors (high-pressure PT1 sensor 14 and high-pressure PT2 sensor 15), an evaporator (Chiller) 16, and a water-cooled condenser 17 (LCC); wherein, the refrigerant side valve plate one 2 and the refrigerant side valve plate two 3 are both welded to the vapor-liquid separator 4; the evaporator 16 (Chiller) and the water-cooled condenser 17 (LCC) are respectively installed on the refrigerant side valve plate one 2 and the refrig
- the agent side valve plate 1 adopts a modular design, which can achieve heat insulation, avoid large-area wire cutting, and reduce process costs; the agent side valve plate 1 is realized by a forging process, and then welded to the gas-liquid separator 4 by a brazing process, and the connecting pipeline at the back realizes the connection between the upper and lower plates; the agent side valve plate 1 is connected to the agent side assembly module by an assembly process.
- a high-pressure PT2 sensor 15 is provided at the lower position between the SOV valve 4 11 and the electronic expansion valve 3 7, a low-pressure PT1 sensor 12 is provided on the right side of the electronic expansion valve 2 6, and an evaporator 16 (Chiller) is installed on the upper side of the refrigerant side valve plate 2; an outdoor heat exchanger outlet 101 is provided on the lower side of the refrigerant side valve plate 2 between the SOV valve 3 10 and the SOV valve 4 11, and an indoor condenser outlet 102, an indoor evaporator inlet 103 and an indoor evaporator outlet 104 are provided in sequence from left to right on the refrigerant side valve plate 2 at the lower side of the electronic expansion valve 2 6.
- the present invention is to integrate all the components of the thermal management integrated system except the compressor, front-end module, and air conditioning box module through existing process solutions and assembly methods to develop a thermal management integrated module.
- the thermal management system Through the internal design of the flow channels of components such as the agent side valve plate and the vapor-liquid separator, the thermal management system has a small number of pipelines, a small layout space, low flow resistance, light weight, and low cost.
- the vapor-liquid separator 4 is referred to as "vapor separator".
- the gas-liquid separator 4 comprises an outer cylinder 401, an end cover 402 arranged at the end of the outer cylinder 401, and a gas-liquid separation assembly 403 arranged in the outer cylinder.
- An upper cover plate and a lower cover plate are arranged at the end of the outer cylinder, so that the outer cylinder forms a sealed cavity; the gas-liquid separation assembly 403 is used for gas-liquid separation.
- a circular cylinder 404 and a special-shaped cylinder 405 are arranged in the outer cylinder 401, a gas-liquid separation cavity 406 is arranged in the circular cylinder 404, and a special-shaped cavity 407 is arranged in the special-shaped cylinder 405.
- One side of the outer wall of the outer cylinder is stepped, and a gas-liquid mixing inlet 408 and a gas outlet 409 are respectively arranged on the stepped L-shaped outer wall surface, the gas-liquid mixing inlet is connected to the gas-liquid separation cavity, and the gas outlet is connected to the special cavity.
- the gas-liquid separation assembly is arranged on the circular cylinder for gas-liquid separation, and the gap between the assembly and the outer end cover is used for the connection between the gas-liquid separation cavity and the special cavity.
- the outer cylinder of the gas-liquid separator is formed by stretching the profile; the gas-liquid separator 4 is welded with the agent-side valve plate 1 to form an integral body; the interior is divided into two chambers, which are independent of each other, and the purpose of the gas-liquid separation chamber is gas-liquid separation and liquid storage, and the heterogeneous chamber is the outlet flow channel for the separated gas.
- the circular cylinder and the heterogeneous cylinder have a certain height difference.
- the structure uses a fine machining process to mill a certain height difference between the circular cylinder and the heterogeneous cylinder; the purpose is to change the chamber formed by the gas outlet direction.
- the gas-liquid separation component 403 includes an inner cylinder cover 410 arranged at the end of the circular cylinder, an umbrella cap 411 arranged in the gas-liquid separation chamber, and a return air pipe 412.
- the umbrella cap and the return air pipe are both connected to the inner cylinder cover.
- the umbrella cap is an umbrella-shaped structure, and the umbrella cap is provided with an umbrella mouth 413 with an opening facing the gas-liquid mixed inlet, and the return air pipe connects the gas-liquid mixed inlet with the heterogeneous chamber.
- the end cover of the inner cylinder cover fixes the outlet pipe and the umbrella cap, and is welded and assembled to the inner cylinder cover as a whole; the two phases of the gas-liquid separation chamber collide with the umbrella cap at the inlet.
- the return pipe 412 includes a U-shaped pipe 414 and a connecting pipe 415.
- the connecting pipe is fixedly connected to the inner cylinder cover, and the gas enters the heterogeneous cavity through the inlet of the U-shaped pipe and flows out the vapor.
- working condition 1 the flow channel layout on the agent side valve plate should be compact while considering the cold and hot zone design.
- the compressor outlet is connected to the water-cooled condenser, and the water-cooled condenser is connected to SOV valve 1 and SOV valve 2 respectively.
- SOV valve 1 is connected to the outdoor heat exchanger inlet; SOV valve 2 is connected to the indoor condenser inlet.
- the above process is mostly in the high temperature and high pressure area (the outdoor heat exchanger inlet is high temperature and high pressure under refrigeration conditions, and low temperature and low pressure under heat pump conditions).
- the agent side valve plate is also provided with an outdoor heat exchanger outlet, which is connected to SOV valve three and SOV valve four respectively, and SOV valve three is connected to the vapor-liquid separator inlet; SOV valve four is connected to the PT2 temperature and pressure sensor; the PT2 temperature and pressure sensor is respectively connected to the electronic expansion valve one, the electronic expansion valve two, the electronic expansion valve three and the indoor condenser outlet; the electronic expansion valve one is connected to the outdoor heat exchanger inlet; the electronic expansion valve two is connected to the air conditioner evaporator and the vapor-liquid separator in sequence, and the electronic expansion valve three is connected to the evaporator (Chiller) and the vapor-liquid separator in sequence.
- the process is in a medium temperature or low temperature condition under different working condition switching; therefore, the cold and hot zone design of a large area is realized by two valve plates.
- the expansion valve one is set on the refrigerant side valve plate two, and the PT2 temperature and pressure sensor is connected to the expansion valve one through an external welding connecting pipe; the upper and lower plates have installation ports, which can be adjusted according to the specific position and are not limited to the current position.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
一种热管理集成模块,包括剂侧阀板(1),剂侧阀板(1)上形成多个连接管路,剂侧阀板(1)被配置作为热管理集成系统的承载连接件;剂侧阀板(1)上至少有两个安装口,两安装口之间通过连接管路连通,安装口内设置有热管理部件。
Description
本发明涉及车辆技术领域,更具体地说,它涉及一种热管理集成模块。
随着新能源电动汽车的应用越来越普遍,电动车热管理的研究越发受重视,相比较传统的燃油车热管理,其要复杂的多,传统热管理系统包括动力总成热管理和空调系统,其动力总成的热管理主要是冷却,通过油冷,水冷和风冷等方式降温,空调系统相对简单,制热采用发动机余热引入乘员舱即可,空调系统只需单制冷模式;
而当前电动汽车热管理包括电池热管理,乘员舱空调系统,电机电控热管理,其设计需满足各个工况下的热量需求分配,故其整个热管理系统复杂程度相比较要高,热管理的零部件也随之大大增多;
现有技术中,这些零部件分散布置,或者低集成布置,导致:一,占据布置空间大,二,零部件之间需要大量管路和压板连接,大量管路带来管路错综复杂,布置困难,成本增加,识别防错有风险,且管路的分布会造成流路长,流阻大,增加泄露的风险。
中国专利公告号CN211764805U,公告日2020年10月27日,该申请案公开了一种热管理集成模块,涉及车辆热管理技术领域。该热管理集成模块包括安装支架、热交换器和至少一个流量分配组件,热交换器与流量分配组件均安装在安装支架上;安装支架内设有流量分配腔,热交换器和流量分配组件分别与流量分配腔连通,流量分配组件用于对经过热交换器后的冷却液进行分流。该热管理集成模块具有热交换和水路流量分配功能,结构简单、紧凑,占用空间小,方便安装。它存在管路多、重量大、成本较高等不足。
发明内容
本发明的目的是为了克服现有技术中的上述缺点,提供了一种热管理集成模块,它能实现热管理系统管路数量少、布置空间小、流阻低、轻量化、低成本的优点。
为了解决上述技术问题,本发明采用以下技术方案:一种热管理集成模块,包括剂侧阀板,剂侧阀板上形成多个连接管路,剂侧阀板被配置作为热管理集成系统的承载连接件;剂侧阀板上至少有两个安装口,两安装口之间通过连接管路连通,安装口内设置有热管理部件。
本发明是将热管理集成系统中除压缩机、前端模块、空调箱模块之外的所有零部件通过现有工艺方案和装配方式高度集成在一起,开发一种热管理集成模块。通过剂侧阀板和汽液分离器等零部件流道内部设计,实现热管理系统管路数量少,布置空间小,流阻低,轻量 化,低成本等目的;汽液分离器的简称为“汽分”。
作为优选,热管理部件包括下列部件之中的至少两个:汽液分离器、电子膨胀阀、SOV阀、PT传感器、温度传感器、蒸发器(Chiller)、水冷冷凝器(LCC)。结合热管理系统原理图,本热管理集成模块方案重点将汽分,3个电子膨胀阀,4个SOV阀,2个PT传感器,2个温度传感器,1个chiller,1个LCC,高度集成在一起,通过阀板和汽液分离器等零部件流道内部设计,实现热管理系统管路数量少,布置空间小,流阻低,轻量化,低成本的目的。
作为优选,剂侧阀板包括冷媒侧阀板一和冷媒侧阀板二,冷媒侧阀板一和冷媒侧阀板二通过背后设置的连接管路连通;冷媒侧阀板一和冷媒侧阀板二与汽液分离器焊接连接。剂侧阀板采用分模块化设计,冷媒侧阀板一和冷媒侧阀板二的主要目的是实现高低温区域的隔热;由于空气导热系数比较低,在使得高低温区域中间充满空气后,两板之间可实现自然隔热;同时,避免大面积线切割,降低工艺成本;剂侧阀板通过锻造工艺实现,之后通过钎焊工艺,与汽液分离器实现焊接,背后连接管实现上下板的连接;剂侧阀板通过装配工艺方式连接到剂侧总成模块上;PT传感器通过背部外焊接的连接管连接电子膨胀阀。
作为优选,汽液分离器包括外筒体、设置在外筒体端部的端盖和设置于外筒体内的汽液分离组件。筒体端部设有上盖板和下盖板,使外筒体形成密封腔;汽液分离组件用于汽液分离。
作为优选,外筒体内设有圆形筒体和异形筒体,圆形筒体内设有汽液分离腔,异型筒体内设有异性腔,外筒体外壁一侧呈阶梯型,阶梯型外壁面上分别设有汽液混合进口和气体出口,汽液混合进口与汽液分离腔连通,气体出口与异性腔连通,汽液分离组件设置在圆形筒体上,用于汽液分离,并且组件与外端盖之间的间隙,用于气液分离腔和异性腔的连通。汽液分离器外筒体采用型材拉伸的方式成型;汽液分离器与剂侧阀板平面焊接形成一体;气液分离腔内部分为两个腔室,相互独立,且汽液分离腔的目的是汽液分离及储液,异性腔为分离出来气体的出口流道。
作为优选,圆形筒体和异形筒体具有一定的高度差。该结构通过精加工工艺将圆形筒体与异形筒体铣出一定的高度差;目的为更改出气方向需形成的腔室。
作为优选,汽液分离组件包括设置在圆形筒体端部的内筒体盖、设置在汽液分离腔内的伞帽和回气管,伞帽和回气管均与内筒体盖连接,伞帽呈伞型结构,且伞帽上设有开口朝向汽液混合进口的伞口,回气管使得汽液分离腔分离出来的气体与异性腔连通。内筒体盖上固定设有使汽液分离腔与异性腔体连通的出气管,汽液分离腔内的出气管上连接伞帽,整体焊接装配到圆形筒体上;汽液分离腔两相在进口处撞击伞帽,由于密度的差异,气体可认为 质量很小忽略,只有速度,没有动量,而液体既有速度又有动量,撞击之后液体动量为零,沿着壁面流动,气体则通过回去管进入异性腔流出汽分。
作为优选,回气管包括U型管和连接管。连接管与内筒体盖固定连接,气体则通过U型管进口进入异性腔流出汽分。
作为优选,剂侧阀板上设有压缩机出口,压缩机出口连接水冷冷凝器,水冷冷凝器分别连接SOV阀一和SOV阀二,SOV阀一连接室外换热器入口;SOV阀二连接室内冷凝器入口。剂侧阀板上流道布置在考虑紧凑的同时,也要考虑冷热分区设计,如图9,图9所述流程在系统工作中,多数处于高温高压区域(制冷工况下室外换热器入口高温高压,热泵工况下为低温低压)。
作为优选,剂侧阀板上还设有室外换热器出口,室外换热器出口分别连接SOV阀三和SOV阀四,SOV阀三连接汽液分离器入口;SOV阀四连接PT2温度压力传感器;PT2温度压力传感器分别连接电子膨胀阀一、电子膨胀阀二、电子膨胀阀三和室内冷凝器出口;电子膨胀阀一连接室外换热器入口;电子膨胀阀二连接空调箱蒸发器;电子膨胀阀三连接chiller。剂侧阀板上流道布置在考虑紧凑的同时,也要考虑冷热分区设计,如图10,图10所述流程在不同工况切换下处于中温或者低温工况;故通过两块阀板实现大区域的冷热区域设计,考虑到两个阀板重量,振动等因素,将膨胀阀一设置在冷媒侧阀板二上,PT2温度压力传感器通过外焊接连接管与膨胀阀一连接;上下板都有安装口,可根据具体位置调整,不受限当前位置。
与现有技术相比,本发明的有益效果是:(1)本发明通过高度集成剂侧阀板,汽液分离器,板式换热器,PT传感器,可在保证各个功能实现的同时,达到系统管路数量少,布置空间小,流阻低,轻量化,低成本等目的;(2)剂侧阀板采用分模块化设计,可实现隔热,避免大面积线切割,降低工艺成本;(3)汽液分离器采用多腔室,可满足各种位置安装要求和切换,通用型强;(4)外接口连接位置集中,有利于管路走向设计和安装;(5)所有的阀件,PT传感器等配合口安装朝向一致,有利于后期工业化实现。
图1是本发明的一种热管理集成模块的轴侧示意图;
图2是本发明的一种热管理集成模块的爆炸图;
图3是本发明的一种热管理集成模块的正视图;
图4是本发明的一种热管理集成模块的后视图;
图5是本发明的剂侧阀板和汽液分离器组合的结构示意图;
图6是本发明的汽液分离器的轴侧示意图;
图7是本发明的汽液分离器的爆炸图;
图8是本发明的外筒体的结构示意图;
图9是本发明的实施例1中工况一下的流程图;
图10是本发明的实施例1中工况二下的流程图;
图中:剂侧阀板1;室外换热器出口101;室内冷凝器出口102;室内蒸发器入口103;室内蒸发器出口104;压缩机入口105;压缩机出口106;室外换热器入口107;室内冷凝器入口108;冷媒侧阀板一2;冷媒侧阀板二3;汽液分离器4;外筒体401;端盖402;汽液分离组件403;圆形筒体404;异形筒体405;汽液分离腔406;异性腔407;汽液合进口408;气体出口409;内筒体盖410;伞帽411;回气管412;伞口413;U型管414;连接管415;电子膨胀阀一5;电子膨胀阀二6;电子膨胀阀三7;SOV阀一8;SOV阀二9;SOV阀三10;SOV阀四11;低压PT1传感器12;低压PT2传感器13;高压PT1传感器14;高压PT2传感器15;蒸发器(Chiller)16;水冷冷凝器17。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步的具体描述:
一种热管理集成模块,参见附图1-5,包括剂侧阀板1,剂侧阀板1上形成多个连接管路,剂侧阀板1被配置作为热管理集成系统的承载连接件;剂侧阀板1包括冷媒侧阀板一2和冷媒侧阀板二3,冷媒侧阀板一2和冷媒侧阀板二3通过焊接连接,且背后通过连接管路连通;剂侧阀板1上至少有两个安装口,两安装口之间通过连接管路连通,安装口内设置有热管理部件。热管理部件包括下列部件之中的至少两个:汽液分离器、电子膨胀阀、SOV阀、PT传感器、蒸发器(Chiller)、水冷冷凝器(LCC)。
实施例1:参见附图1-8,本发明中热管理集成模块方案是将1个汽液分离器4、3个电子膨胀阀(即电子膨胀阀一5、电子膨胀阀二6和电子膨胀阀三7)、4个SOV阀(即SOV阀一8、SOV阀二9、SOV阀三10和SOV阀四11)、2个低压PT传感器(低压PT1传感器12和低压PT2传感器13)、2个高压PT传感器(高压PT1传感器14和高压PT2传感器15)、1个蒸发器(Chiller)16、1个水冷冷凝器17(LCC)等高度集成在一起;其中,冷媒侧阀板一2和冷媒侧阀板二3均与汽液分离器4焊接连接;蒸发器16(Chiller)和水冷冷凝器17(LCC)通过装配的方式分别安装在冷媒侧阀板一2和冷媒侧阀板二3上,且相互之间通过拧紧固定。剂侧阀板1采用分模块化设计,可实现隔热,避免大面积线切割,降低工艺成本;剂侧阀板 1通过锻造工艺实现,之后通过钎焊工艺,与汽液分离器4实现焊接,背后连接管路实现上下板的连通;剂侧阀板1通过装配工艺方式连接到剂侧总成模块上。
参见附图1-5,在冷媒侧阀板一2上,由左至右依次安装有SOV阀三10、SOV阀四11、电子膨胀阀三7、电子膨胀阀二6,在SOV阀四11和电子膨胀阀三7之间的下侧位置设有高压PT2传感器15,电子膨胀阀二6右侧设有低压PT1传感器12,蒸发器16(Chiller)安装在冷媒侧阀板一2上侧;SOV阀三10和SOV阀四11之间的冷媒侧阀板一2下侧设有室外换热器出口101,电子膨胀阀二6下侧的冷媒侧阀板一2上由左到右依次设有室内冷凝器出口102、室内蒸发器入口103和室内蒸发器出口104。
参见附图1-5,在冷媒侧阀板二3上,由左至右依次安装有电子膨胀阀一5、SOV阀一8、SOV阀二9,水冷冷凝器17(LCC)安装在冷媒侧阀板二3下侧,汽液分离器4和水冷冷凝器17(LCC)之间从左到右依次设有低压PT2传感器13和高压PT1传感器14;低压PT2传感器13上侧设有压缩机入口105,高压PT1传感器14上侧设有压缩机出口106,SOV阀一8和SOV阀二9之间的冷媒侧阀板二3上侧设有室外换热器入口107。高压PT2传感器15通过背部外焊接的连接管路连通过电子膨胀阀一5,冷媒侧阀板二3右侧设有室内冷凝器入口108。
本发明是将热管理集成系统中除压缩机,前端模块,空调箱模块之外的所有零部件通过现有工艺方案和装配方式高度集成在一起,开发一种热管理集成模块。通过剂侧阀板和汽液分离器等零部件流道内部设计,实现热管理系统管路数量少,布置空间小,流阻低,轻量化,低成本等目的;汽液分离器4的简称为“汽分”。
参见附图1,参见附图6-8汽液分离器4包括外筒体401、设置在外筒体401端部的端盖402和设置于外筒体内的汽液分离组件403。外筒体端部设有上盖板和下盖板,使外筒体形成密封腔;汽液分离组件403用于汽液分离。外筒体401内设有圆形筒体404和异形筒体405,圆形筒体404内设有汽液分离腔406,异型筒体405内设有异性腔407,外筒体外壁一侧呈阶梯型,阶梯型L形外壁面上分别设有汽液混合进口408和气体出口409,汽液混合进口与汽液分离腔连通连通,气体出口与异性腔连通,汽液分离组件设置在圆形筒体上,用于汽液分离,并且组件与外端盖之间的间隙,用于气液分离腔和异性腔的连通。汽液分离器外筒体采用型材拉伸的方式成型;汽液分离器4与剂侧阀板1平面焊接形成一体;内部分为两个腔室,相互独立,且汽液分离腔目的是汽液分离及储液,异性腔为分离出来气体的出口流道。圆形筒体和异形筒体具有一定的高度差。该结构通过精加工工艺将圆形筒体与异形筒体铣出一定的高度差;目的为更改出气方向需形成的腔室。汽液分离组件403包括设置于圆形 筒体端部内筒体盖410、设置在汽液分离腔内的伞帽411和回气管412,伞帽和回气管均与内筒体盖连接,伞帽呈伞型结构,且伞帽上设有开口朝向汽液混合进口的伞口413,回气管使汽液混合进口与异性腔连通。内筒体盖端盖固定出气管和伞帽,整体焊接装配到内筒体盖;汽液分离腔两相在进口处撞击伞帽,由于密度的差异,气体可认为质量很小忽略,只有速度,没有动量,而液体既有速度又有动量,撞击之后液体动量为零,沿着壁面流动,气体则通过回去管进入异性腔流出汽分。回气管412包括U型管414和连接管415。连接管与内筒体盖固定连接,气体则通过U型管进口进入异性腔流出汽分。
参见附图9-10,工况一,剂侧阀板上流道布置在考虑紧凑的同时,也要考虑冷热分区设计,压缩机出口连接水冷冷凝器,水冷冷凝器分别连接SOV阀一和SOV阀二,SOV阀一连接室外换热器入口;SOV阀二连接室内冷凝器入口。上述流程在系统工作中,多数处于高温高压区域(制冷工况下室外换热器入口高温高压,热泵工况下为低温低压)。
参见附图9-10,工况二,剂侧阀板上流道布置在考虑紧凑的同时,也要考虑冷热分区设计,剂侧阀板上还设有室外换热器出口,室外换热器出口分别连接SOV阀三和SOV阀四,SOV阀三连接汽液分离器入口;SOV阀四连接PT2温度压力传感器;PT2温度压力传感器分别连接电子膨胀阀一、电子膨胀阀二、电子膨胀阀三和室内冷凝器出口;电子膨胀阀一连接室外换热器入口;电子膨胀阀二依次连接空调箱蒸发器和汽液分离器,电子膨胀阀三依次连接蒸发器(Chiller)和汽液分离器。所述流程在不同工况切换下处于中温或者低温工况;故通过两块阀板实现大区域的冷热区域设计,考虑到两个阀板重量,振动等因素,将膨胀阀一设置在冷媒侧阀板二上,PT2温度压力传感器通过外焊接连接管与膨胀阀一连接;上下板都有安装口,可根据具体位置调整,不受限当前位置。
以上所述的实施例只是本发明较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。
Claims (10)
- 一种热管理集成模块,其特征是,包括剂侧阀板,剂侧阀板上形成多个连接管路,剂侧阀板被配置作为热管理集成系统的承载连接件;剂侧阀板上至少有两个安装口,两安装口之间通过连接管路连通,安装口内设置有热管理部件。
- 根据权利要求1所述的一种热管理集成模块,其特征是,热管理部件包括下列部件之中的至少两个:汽液分离器、电子膨胀阀、SOV阀、PT传感器、蒸发器、水冷冷凝器。
- 根据权利要求1所述的一种热管理集成模块,其特征是,剂侧阀板包括冷媒侧阀板一和冷媒侧阀板二,冷媒侧阀板一和冷媒侧阀板二通过背后设置的连接管路连通;冷媒侧阀板一和冷媒侧阀板二与汽液分离器焊接连接。
- 根据权利要求2所述的一种热管理集成模块,其特征是,汽液分离器包括外筒体、设置在外筒体端部的端盖和设置于外筒体内的汽液分离组件。
- 根据权利要求4所述的一种热管理集成模块,其特征是,外筒体内设有圆形筒体和异形筒体,圆形筒体内设有汽液分离腔,异型筒体内设有异侧腔,外筒体外壁一侧呈阶梯型,阶梯型外壁面上分别设有汽液混合进口和气体出口,汽液混合进口与异侧腔连通,气体出口与汽液分离腔连通,汽液分离组件设置于圆形筒体上,用于汽液分离腔和异侧腔的连通。
- 根据权利要求5所述的一种热管理集成模块,其特征是,圆形筒体和异形筒体具有一定的高度差。
- 根据权利要求6所述的一种热管理集成模块,其特征是,汽液分离组件包括设置于圆形筒体端部内筒体、设置在汽液分离腔内的伞帽和回气管,伞帽和回气管均与内筒体连接,伞帽呈伞型结构,且伞帽上设有开口朝向汽液混合进口的伞口,回气管使汽液混合进口与异侧腔连通。
- 根据权利要求7所述的一种热管理集成模块,其特征是,回气管包括U型管和连接管。
- 根据权利要求1-8任意一项所述的一种热管理集成模块,其特征是,剂侧阀板上设有压缩机出口,压缩机出口连接水冷冷凝器,水冷冷凝器分别连接SOV阀一和SOV阀二,SOV阀一连接室外换热器;SOV阀二连接室内冷凝器入口。
- 根据权利要求9所述的一种热管理集成模块,其特征是,剂侧阀板上还设有有室外换热器出口,室外换热器出口分别连接SOV阀三和SOV阀四,SOV阀三连接汽液分离器入口;SOV阀四连接PT2温度压力传感器;PT2温度压力传感器分别连接电子膨胀阀一、电子膨胀阀二、电子膨胀阀三和室内冷凝器出口;电子膨胀阀一连接室内冷凝器出口;电子膨胀阀二依次连接蒸发器和汽液分离器;电子膨胀阀一依次连接蒸发器和汽液分离器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211313303.XA CN115782506A (zh) | 2022-10-25 | 2022-10-25 | 一种热管理集成模块 |
CN202211313303.X | 2022-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024087378A1 true WO2024087378A1 (zh) | 2024-05-02 |
Family
ID=85433774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/142898 WO2024087378A1 (zh) | 2022-10-25 | 2022-12-28 | 一种热管理集成模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115782506A (zh) |
WO (1) | WO2024087378A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200143787A (ko) * | 2019-06-17 | 2020-12-28 | 한온시스템 주식회사 | 공조 시스템 |
CN112569698A (zh) * | 2020-11-27 | 2021-03-30 | 亚普汽车部件股份有限公司 | 一种气液分离装置 |
CN113276628A (zh) * | 2021-06-16 | 2021-08-20 | 广州小鹏新能源汽车有限公司 | 热管理集成单元、热管理系统和车辆 |
CN113276630A (zh) * | 2021-06-24 | 2021-08-20 | 浙江吉利控股集团有限公司 | 一种热管理集成模块和电动车辆 |
CN215552421U (zh) * | 2021-05-11 | 2022-01-18 | 宁波拓普集团股份有限公司 | 一种电动汽车用热管理系统 |
CN216033602U (zh) * | 2021-05-31 | 2022-03-15 | 比亚迪股份有限公司 | 阀组集成模块 |
-
2022
- 2022-10-25 CN CN202211313303.XA patent/CN115782506A/zh active Pending
- 2022-12-28 WO PCT/CN2022/142898 patent/WO2024087378A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200143787A (ko) * | 2019-06-17 | 2020-12-28 | 한온시스템 주식회사 | 공조 시스템 |
CN112569698A (zh) * | 2020-11-27 | 2021-03-30 | 亚普汽车部件股份有限公司 | 一种气液分离装置 |
CN215552421U (zh) * | 2021-05-11 | 2022-01-18 | 宁波拓普集团股份有限公司 | 一种电动汽车用热管理系统 |
CN216033602U (zh) * | 2021-05-31 | 2022-03-15 | 比亚迪股份有限公司 | 阀组集成模块 |
CN113276628A (zh) * | 2021-06-16 | 2021-08-20 | 广州小鹏新能源汽车有限公司 | 热管理集成单元、热管理系统和车辆 |
CN113276630A (zh) * | 2021-06-24 | 2021-08-20 | 浙江吉利控股集团有限公司 | 一种热管理集成模块和电动车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN115782506A (zh) | 2023-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5910517B2 (ja) | 熱交換器 | |
EP0709643B1 (en) | Evaporator for a refrigerant | |
US20130061630A1 (en) | Heat exchanger | |
US11364770B2 (en) | Refrigeration system for a vehicle, comprising a refrigerant circuit having a heat exchanger, and heat exchanger for such a refrigeration system | |
CN101403553A (zh) | 蒸发器单元 | |
CN117177871A (zh) | 集成冷却模块 | |
WO2020174705A1 (ja) | ヒートポンプシステム | |
WO2024087378A1 (zh) | 一种热管理集成模块 | |
US20240017587A1 (en) | Valve set integrated module, vehicle thermal management system, and vehicle | |
WO2024093590A1 (zh) | 空调系统及其内部换热器、整车热管理系统、车辆 | |
KR20220157543A (ko) | 통합 쿨링 모듈 | |
CN113175768A (zh) | 流体控制组件 | |
CN218343216U (zh) | 一种热管理集成基板、集成模块、系统及车辆 | |
KR20240048019A (ko) | 히트펌프 공조 시스템 및 자동차 | |
CN215295918U (zh) | 一种换热器 | |
CN108397573B (zh) | 一种空调装置以及汽车空调 | |
CN114593618A (zh) | 一种换热组件及热管理系统 | |
KR20110100002A (ko) | 상변화 물질을 포함하는 이중 증발기 | |
JP2009257692A (ja) | 二重管熱交換器 | |
CN218935367U (zh) | 阀组集成模块及汽车 | |
CN219687016U (zh) | 阀组集成模块、热管理系统和车辆 | |
US12097746B2 (en) | Heat exchanger and refrigerant module of integrated thermal management system for vehicle including same | |
CN217624174U (zh) | 一种飞机地面空调机组冷凝器v型布置结构 | |
CN221005565U (zh) | 一种一体式双工况蒸发系统 | |
CN220809061U (zh) | 用于电动车辆的间接可逆空调系统及车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22963354 Country of ref document: EP Kind code of ref document: A1 |