WO2024087238A1 - 用于Mini LED显示的玻璃基背光板及制作方法 - Google Patents

用于Mini LED显示的玻璃基背光板及制作方法 Download PDF

Info

Publication number
WO2024087238A1
WO2024087238A1 PCT/CN2022/129200 CN2022129200W WO2024087238A1 WO 2024087238 A1 WO2024087238 A1 WO 2024087238A1 CN 2022129200 W CN2022129200 W CN 2022129200W WO 2024087238 A1 WO2024087238 A1 WO 2024087238A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
circuit
circuit board
film layer
layer
Prior art date
Application number
PCT/CN2022/129200
Other languages
English (en)
French (fr)
Inventor
陈旺寿
吴贵华
Original Assignee
陈旺寿
吴贵华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈旺寿, 吴贵华 filed Critical 陈旺寿
Publication of WO2024087238A1 publication Critical patent/WO2024087238A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4046Through-connections; Vertical interconnect access [VIA] connections using auxiliary conductive elements, e.g. metallic spheres, eyelets, pieces of wire

Definitions

  • the present invention relates to the technical field of Mini LED backlight panels, and in particular to a glass-based backlight panel for Mini LED display and a manufacturing method thereof.
  • Mini LED refers to LED chips with a size of 100-300um, a chip pitch between 0.1-1mm, and a micro-LED device module in the form of SMD, COB or IMD packaging.
  • the application of Mini LED is mainly divided into: 1 Using Mini LED chip + LCD backlight solution; 2 Directly using the self-luminous solution of Mini RGB display.
  • Mini LED is the mainstream technology form for LCD upgrades in the future. Compared with OLED, it has many advantages.
  • Mini LED substrates include PCB solutions and glass-based solutions, both of which are carriers of LED chips. Glass-based has its own cost, strong heat dissipation, low thermal expansion rate, higher flatness, and is conducive to Mini LED welding and other performance advantages. In the future, it will have greater market potential in the field of Mini LED.
  • PCB and FPC substrates are relatively easy to implement multi-layer circuit structures because they are pressure-resistant, not easy to break, and easy to punch.
  • glass-based Mini LED backlight is different from PCB (Printed Circuit Board) or FPC (Flexible Printed Circuit) based backlight boards.
  • Chinese patent application CN202010990249.7 discloses a display circuit board suitable for a micro-pitch display screen, wherein the display circuit board includes a glass substrate and a plurality of electronic components disposed on the glass substrate; the front and back sides of the glass substrate are provided with circuit boards.
  • the circuit layers on the front or back side is a multi-layer circuit layer, wherein an insulating layer is provided between each circuit layer of the multi-layer circuit layer, and the insulating layer is provided with windows to achieve electrical connection between the circuit layers and electrical connection between the circuit layers and the electronic components; each circuit layer of the multi-layer circuit layer is also provided with windows, and the windows of each circuit layer and the windows of the insulating layer constitute cross-layer windows, and the pads on each circuit layer are exposed from the windows, and the pins of the electronic components are welded to the pads on different circuit layers through the cross-layer windows to achieve electrical connection between the electronic components and different circuit layers; however, in this patent application, an insulating layer is required between each circuit layer of the multi-layer circuit layer to separate the circuit layers, and the circuit layers of the multi-layer circuit layer need to be electrically connected by pressing, but because the glass substrate is fragile, not resistant to strong pressure, and not suitable for too many holes , resulting in complex processes and low yields when forming multi-layer circuits.
  • the pins of the electronic components need to pass through the cross-layer windows formed by the windows of each circuit layer and the windows of the insulating layer before they can be welded to the pads on different circuit layers to achieve electrical connection between the electronic components and the different circuit layers.
  • This structure requires multiple conductive holes to be provided on the glass substrate, which can easily lead to the breakage of the glass substrate and the problem of low yields.
  • the insulating materials that can be used to set the circuit layer are mostly organic substances that are not resistant to heat and ultraviolet radiation, long-term use may cause the circuit on the insulating layer to fall off and cause it to be scrapped.
  • the insulating layer is mostly screen-printed or coated, the surface flatness is poor and the heat resistance is low, it is impossible to align the lamp beads when welding and the high-temperature reflow soldering process cannot be used, which is not suitable for industrial applications.
  • the present invention provides a glass-based backlight panel for Mini LED display and a method for manufacturing the same.
  • the present invention provides a glass-based backlight panel for Mini LED display, wherein the glass-based backlight panel comprises two glass circuit boards, both sides of the glass circuit boards are circuit surfaces, the two glass circuit boards are bonded together by a bonding adhesive layer, the circuit surface of the glass circuit board that is not bonded is a control circuit surface, and among the control circuit surfaces included in the glass-based backlight panel, there is a control circuit surface for bonding Mini LED chips;
  • the glass-based backlight panel also comprises through-hole leads, the through-hole leads comprise a first through-hole lead arranged in the glass circuit board for electrically connecting the two circuit surfaces of each of the glass circuit boards, and a second through-hole lead arranged in the glass circuit board for electrically connecting the circuits of the two glass circuit boards;
  • the circuit surface of the glass circuit board is formed by a metal layer formed on a glass carrier after a circuit pattern is made; the metal layer comprises a first metal film layer, a second copper film layer and a third metal film layer in sequence from the glass carrier to
  • the bonding adhesive used in the bonding adhesive layer is one or more of RGB adhesive, BM adhesive, OC adhesive, PS adhesive, and TFT adhesive; and/or the thickness of the bonding adhesive layer is 10 to 50 ⁇ m.
  • the thickness of the first metal film layer is 10 to 200 nm; the thickness of the second copper film layer is 5 to 100 ⁇ m; the thickness of the third metal film layer is 0.5 to 10 ⁇ m; the material used for the first metal film layer is copper or a copper alloy, in which the mass percentage of copper atoms is 10% to 95%, preferably, the copper alloy is one or more of a copper-nickel alloy, a copper-titanium alloy, a copper-molybdenum alloy, and a copper-chromium alloy; the material used for the second copper film layer is copper; the material used for the third metal film layer is one or more of nickel, tin, and silver; and/or the first metal film layer is formed by a magnetron sputtering method, the second copper film layer is formed by an acid electroplating method, and the third metal film layer is formed by a magnetron sputtering method or an acid electroplating method.
  • leads are also provided on the circuit surface of the glass circuit board; and/or the glass circuit boards are bonded together by providing bonding glue between the two glass circuit boards and curing to form a bonding glue layer, the curing pressure is 0.15 to 0.3 MPa, the curing temperature is 80 to 200°C, and the curing time is 1 to 5 minutes.
  • the first through-hole lead and the second through-hole lead are both formed by curing a through-hole filled with conductive paste opened in a glass circuit board.
  • the conductive paste is filled by glue injection, the glue injection pressure is 0.15-0.3MPa, the curing temperature is 80-200°C, and the curing time is 1-5min; and/or the conductive paste is one or more of copper paste, aluminum paste or silver paste.
  • the thickness of each glass carrier is 0.02 to 8.0 mm; the thickness of the circuit surface on the glass circuit board is not less than 1 ⁇ m, preferably not less than 5 ⁇ m; and/or the circuit surface on each glass circuit board includes a plurality of evenly distributed circuit units, and the width of each circuit unit is not greater than 5000 ⁇ m, preferably not greater than 30 ⁇ m.
  • each circuit surface of each glass circuit board includes a plurality of evenly distributed circuit units, the width of the circuit units included in the circuit surface for bonding is greater than the width of the circuit units included in the control circuit surface; the width of the circuit units included in the two circuit surfaces located between the two control circuit surfaces decreases from the control circuit surface not used for bonding the Mini LED chip to the control circuit surface used for bonding the Mini LED chip; the width of the circuit units included in the control circuit surface not used for bonding the Mini LED chip is greater than the width of the circuit units included in the control circuit surface used for bonding the Mini LED chip.
  • the present invention provides a method for manufacturing a glass-based backlight panel for Mini LED display according to the first aspect of the present invention, the manufacturing method comprising the following steps:
  • Conductive paste is injected into the through holes of the glass-based circuit board module, and after curing, a glass-based backlight panel for Mini LED display is obtained.
  • step (2) it also includes setting leads on the circuit surface of the glass circuit board; and/or after step (4), it also includes the step of bonding the Mini LED chip to a control circuit surface of a glass-based backlight panel for Mini LED display through SMT or a die bonding machine.
  • the present invention has at least the following beneficial effects:
  • the present invention is different from PCB (Printed Circuit Board) or FPC (Flexible Printed Circuit) based backlight panels for glass-based Mini LED backlight panels.
  • PCB Printed Circuit Board
  • FPC Flexible Printed Circuit
  • a solution of bonding two glass circuit boards is provided to achieve the requirements of Mini LED display for multi-layer circuits.
  • the glass-based backlight panel for Mini LED display in the present invention includes two glass circuit boards bonded together by bonding adhesive, and the bonding adhesive layer can serve as an insulating layer, and only one layer is provided on the front and back sides of each glass circuit board.
  • the circuit layer avoids the problem that when multiple circuit layers are arranged on one side or both sides of a single glass substrate, an insulating layer is required between each circuit layer to separate the circuit layers, and windows need to be opened, conductive holes are set, and pressing is used between each circuit layer to achieve electrical connection, thereby avoiding the problem that the glass substrate is not resistant to strong pressure and is easy to break during the pressing process.
  • the present invention significantly simplifies the manufacturing process of the glass-based backlight panel for Mini LED display, significantly improves the yield rate of the glass-based backlight panel for Mini LED display, and solves the problems of difficulty in mass production.
  • the structure of the glass-based backlight panel for Mini LED display in the present invention solves the problem that a single piece of glass cannot realize multi-dimensional circuit control and the problem that a multi-layer bridging structure needs to be made on the glass surface, thereby greatly improving the LED dot matrix control accuracy, control quantity and yield, and avoiding the difficulties in mass production and high costs caused by bridging.
  • the structure of the glass-based backlight panel for Mini LED display in the present invention can be derived into a glass-based backlight panel for Mini LED display with more layers of circuit control, such as a 3-layer glass circuit board, a 4-layer glass circuit board, a 5-layer glass circuit board, etc., which can realize dot matrix control in more dimensions.
  • FIG1 is a schematic diagram of the structure of a glass-based backlight panel for Mini LED display provided in Example 1 of the present invention
  • FIG2 is a schematic structural diagram of a first glass circuit board included in FIG1 ;
  • FIG3 is a schematic structural diagram of a second glass circuit board included in FIG1 ;
  • FIG4 is a schematic diagram of the structure of a glass-based backlight panel for Mini LED display provided in Example 2 of the present invention.
  • Figure 5 is a schematic diagram of the structure of a glass-based backlight panel for Mini LED display provided in Example 3 of the present invention.
  • the present invention provides a glass-based backlight panel for Mini LED display (referred to as a glass-based backlight panel for short).
  • the glass-based backlight panel includes two glass circuit boards, both sides of the glass circuit boards are circuit surfaces, the two glass circuit boards are bonded together by a bonding adhesive layer, the circuit surface of the glass circuit board that is not bonded is a control circuit surface, and among the control circuit surfaces included in the glass-based backlight panel, there is a control circuit surface for bonding a Mini LED chip; in some specific embodiments, a Mini LED is also bonded to a control circuit surface included in the glass-based backlight panel.
  • the glass-based backlight panel also includes through-hole leads, the through-hole leads include a first through-hole lead arranged in the glass circuit board for electrically connecting the two circuit surfaces of each of the glass circuit boards and a second through-hole lead arranged in the glass circuit board for electrically connecting the circuits of the two glass circuit boards, the second through-hole lead electrically connects the circuits of the two glass circuit boards to achieve linkage control;
  • the circuit on each glass circuit board is a control circuit, and the second through-hole lead is used to electrically connect the two control circuits;
  • the circuit surface of the glass circuit board is composed of a metal layer formed on a glass carrier after a circuit pattern is made, that is, the two circuit surfaces of each of the glass circuit boards are composed of metal layers formed on both sides of the glass carrier after a circuit pattern is made;
  • the metal layers include a first metal film layer, a second copper film layer and a third metal film layer in sequence from the glass carrier to the outside; in the present invention, the first metal film layer serves as a seed
  • the glass-based backlight panel for Mini LED display in the prior art usually has multiple circuit layers on one side or both sides of a glass substrate, and the formation of each circuit layer requires the conductive material to be pressed together under high pressure to form a conductive layer, and in addition, an insulating layer is required between each circuit layer to separate the circuit layers, and the formation of the insulating layer also requires pressing under high pressure to form, and the cross-layer openings formed by the openings of each circuit layer and the openings of the insulating layer can be welded with the pads on different circuit layers to achieve electrical connection between electronic components and different circuit layers.
  • This structure requires a plurality of conductive holes to be provided on the glass substrate.
  • the glass-based backlight panel in the prior art has the problems of low yield rate and difficulty in mass production due to the problem that the glass substrate is not resistant to strong pressure and is easy to break during the pressing process.
  • this structure requires the production of a multi-layer bridging structure on the glass surface, which is not conducive to improving the control accuracy and control quantity of the LED dot matrix, and there is a problem of high cost of multi-layer bridging.
  • each glass circuit board used in the present invention provides for the first time a solution of bonding two glass circuit boards, realizing the requirements of Mini LED display for multi-layer circuits.
  • the two circuit surfaces of each glass circuit board used in the present invention are composed of metal layers formed on both sides of a glass carrier after circuit patterns are made; the metal layers include a first metal film layer, a second copper film layer and a third metal film layer in sequence from the glass carrier to the outside.
  • the present invention uses such glass circuit boards to bond directly through bonding adhesive to obtain a glass-based backlight panel structure for Mini LED display including two glass circuit boards, wherein the bonding adhesive layer can serve as an insulating layer, and each glass Only one circuit layer is arranged on both sides of the circuit board, which avoids the problem that when multiple circuit layers are arranged on both sides of the glass substrate, an insulating layer is required between each circuit layer to separate the circuit layers, and the circuit layers of the multiple circuit layers need to be pressed together with high pressure to achieve electrical connection, thereby avoiding the problem that the glass substrate is not resistant to strong pressure and is easy to break during the pressing process; between each layer of circuits, only the main control line position needs to be connected, and the other positions do not need to be connected, thereby greatly reducing the number of holes; the structure of the glass-based backlight panel for Mini LED display in the present invention solves the problem that a single piece of glass cannot achieve multi-dimensional circuit control and the problem that a multi-layer bridging structure needs to be made on the glass surface,
  • the structure of the glass-based backlight panel for Mini LED display in the present invention can be derived into a glass-based backlight panel for Mini LED display with more layers of circuit control, such as a 3-layer glass circuit board, a 4-layer glass circuit board, a 5-layer glass circuit board, etc., which can achieve more dimensional dot matrix control.
  • the glass-based backlight panel includes a first glass circuit board and a second glass circuit board; the glass-based backlight panel is a sandwich structure with a bonding adhesive layer sandwiched between the two glass circuit boards; specifically, both the front and back sides of the first glass circuit board are circuit surfaces; the first glass circuit board is provided with a first through-hole lead for electrically connecting the front and back circuit surfaces of the first glass circuit board, one of the circuit surfaces of the first glass circuit board is a control circuit surface, and the other circuit surface (circuit surface for bonding) provides power for the circuits on the front and back sides of the first glass circuit board, and the first glass circuit board is used for The circuit surface for bonding provides power and ground lead introduction for the control circuit surface of the first glass circuit board through the first through-hole lead arranged in the first glass circuit board; the front and back sides of the second glass circuit board are both circuit surfaces, and the second glass circuit board is provided with a first through-hole lead for electrical
  • the bonding glue used in the bonding glue layer is one or more of RGB glue, BM glue, OC glue (i.e., OCA glue), PS glue, and TFT glue.
  • the bonding glue used in the bonding glue layer is OC glue.
  • the present invention does not specifically limit the sources of these bonding glues, and products that can be directly purchased on the market can be used; and/or the thickness of the bonding glue layer is 10 to 50 ⁇ m (for example, 10, 15, 20, 25, 30, 35, 40, 45 or 50 ⁇ m).
  • the thickness of the first metal film layer is 10 to 200 nm (e.g., 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or 200 nm); the thickness of the second copper film layer is 5 to 100 ⁇ m (e.g., 5, 10, 15, 20, 25, 30 , 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 ⁇ m); and/or the third metal film layer has a thickness of 0.5 to 10 ⁇ m (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 or 10 ⁇ m); in the present invention, it is preferred that the third metal film layer has a thickness of 0.5 to 10 ⁇ m (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8,
  • the thickness of the first metal film layer is 10 to 200 nm.
  • the first metal film layer with this thickness can well meet the adhesion requirements between the glass carrier and the second copper film layer, improve the adhesion between the glass carrier and the conductive copper, so as to realize the electroplating of 5 to 100 ⁇ m thick copper foil on the glass carrier; and, the setting of the first metal film layer with a thickness of 10 to 200 nm in the present invention can make it possible to load a sufficiently large current when electroplating the second copper film layer to realize the electroplating process of the second copper film layer; the present invention preferably has a thickness of 5 to 100 ⁇ m for the second copper film layer.
  • the second copper film layer with this thickness can effectively meet the low resistance or low impedance requirements of the glass circuit board and reduce the current loss of the glass circuit board; the present invention preferably has a thickness of 0.5 to 10 ⁇ m for the third metal film layer.
  • the inventors have found that the third metal film layer with this thickness can ensure sufficient Good anti-oxidation and anti-corrosion effects; copper circuits are easily oxidized when exposed to air, and there is also an adhesion problem between copper and solder.
  • the present invention makes a layer of nickel, silver or tin on the surface of the second copper film layer as a protective layer (anti-oxidation layer) to prevent copper from being oxidized and reducing its lifespan, while also improving the adhesion between the soldering pad and the LED lamp bead, thereby improving the welding pull-out force.
  • the material used for the first metal film layer is copper or a copper alloy, in which the mass percentage of copper atoms is 10% to 95%.
  • the copper alloy is one or more of a copper-nickel alloy, a copper-titanium alloy, a copper-molybdenum alloy, and a copper-chromium alloy;
  • the material used for the second copper film layer is copper;
  • the material used for the third metal film layer is one or more of nickel, tin, and silver.
  • the first metal film layer is formed by a magnetron sputtering method
  • the second copper film layer is formed by an acid electroplating method
  • the third metal film layer is formed by a magnetron sputtering method or an acid electroplating method.
  • the process conditions for forming the first metal film layer by magnetron sputtering are: the total power of the sputtering power supply is 1-20 kW, the argon pressure is 0.2-1.0 Pa, and the temperature of the glass carrier is 50-200°C; the process conditions for forming the second copper film layer by acid electroplating are: pH value is 3-6, CuSO 4 concentration is 20-200 g/L, H 2 SO 4 concentration is 100-300 g/L, chloride ion concentration is 10-200 ppm, and temperature is 20-80°C; when the third metal film layer is formed by magnetron sputtering, the process conditions for forming the third metal film layer by magnetron sputtering are: the total power of the sputtering power supply is 2-100 kW, the argon pressure is 0.6-1.0 Pa, and the temperature of the glass carrier is 50-300°C; when the third metal film layer is formed by acid electroplating, the process conditions for forming the third metal film layer
  • the glass carrier before forming the first metal film layer, is first cleaned and dried.
  • the present invention does not specifically limit the cleaning and drying conditions, and conventional operations may be used.
  • a lead is further provided on the circuit surface of the glass circuit board.
  • the electrical connection between the two control circuits is realized through the lead and the second through-hole lead to realize interactive control.
  • the circuits of the two glass circuit boards are electrically connected through the lead and the second through-hole lead to realize linkage control.
  • the lead and the second through-hole lead can be arranged on the same side of the circuit surface of the glass circuit board, for example, the lead is arranged on the left side as shown in Figures 1, 2, 3, 4 and 5, and the lead and the second through-hole lead can also be arranged on both the left and right sides of the circuit surface of the glass circuit board as needed.
  • the bonding between the glass circuit boards is achieved by arranging a bonding glue between the two glass circuit boards and curing to form a bonding glue layer, the curing pressure is 0.15-0.3 MPa, the curing temperature is 80-200°C (for example, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C or 200°C), and the curing time is 1-5 min (for example, 1, 2, 3, 4 or 5 min).
  • the bonding between the two glass circuit boards of the present invention does not need to be pressed under high pressure, and can be achieved by placing bonding glue between the first glass circuit board and the second glass circuit board and curing it at 80-200° C. for 1-5 minutes under a pressure of only 0.15-0.3 MPa.
  • the first through-hole lead and the second through-hole lead are both formed by curing a through-hole filled with a conductive paste opened in a glass circuit board.
  • the conductive paste when forming the first through-hole lead and the second through-hole lead, the conductive paste is filled by glue injection, the glue injection pressure is 0.15-0.3MPa, the curing temperature is 80-200°C, and the curing time is 1-5min; and/or the conductive paste is one or more of copper paste, aluminum paste or silver paste.
  • the present invention When forming the first through-hole lead and the second through-hole lead, the present invention also only needs to fill the conductive paste by dispensing and injecting under the condition of a pressure of only 0.15-0.3 MPa, and then cure at 80-200° C. for 1-5 minutes.
  • the thickness of each glass carrier is 0.02 to 8.0 mm; the thickness of the circuit surface on the glass circuit board is not less than 1 ⁇ m, preferably not less than 5 ⁇ m; and/or the circuit surface on each glass circuit board includes a plurality of evenly distributed circuit units, and the width of each circuit unit is not greater than 5000 ⁇ m, preferably not greater than 30 ⁇ m; in the present invention, the thickness of the circuit units included in the circuit surface is consistent with the thickness of the circuit surface, and the thickness of each circuit surface may be the same or different, preferably the same.
  • each circuit surface of each glass circuit board includes a plurality of evenly distributed circuit units, and the width W of the circuit units included in the circuit surface for bonding is greater than the width W of the circuit units included in the control circuit surface; the present invention does not specifically limit the gaps between the plurality of circuit units included in each circuit surface, and a conventional gap may be used, which may be the same or different, as long as the plurality of circuit units included in each circuit surface are evenly distributed; the width W of the circuit units included in the two circuit surfaces located between the two control circuit surfaces decreases from the control circuit surface that is not used for bonding the Mini LED chip to the control circuit surface that is used for bonding the Mini LED chip; the width W of the circuit units included in the control circuit surface that is not used for bonding the Mini LED chip is greater than the width W of the circuit units included in the control circuit surface that is used for bonding the Mini LED chip; the present invention does not specifically limit the length of the circuit units included in each circuit surface of the glass circuit board
  • the length of the glass circuit board can be any; in the present invention, it is preferred to adopt such a circuit unit distribution method to form the circuit surface of the glass circuit board.
  • the preferred circuit unit distribution method of the glass-based backlight panel of the present invention can more effectively avoid the problem of easy breakage of the glass carrier during punching as a whole, and further improve the overall structural stability and pressure resistance of the glass-based backlight panel, thereby further improving the yield rate of the glass-based backlight panel used for Mini LED display and solving the problems of mass production difficulties; and it is precisely because of this setting method that the overall pressure resistance of the glass-based backlight panel can be better improved, so that the glass carrier included in the glass-based backlight panel is not easy to break, so that the glass-based backlight panel for Mini LED display in the present invention has the advantages of higher mass production and higher yield rate when it needs to include circuit control of more layers such as 3-layer (three pieces) glass
  • the present invention provides a method for manufacturing a glass-based backlight panel for Mini LED display according to the first aspect of the present invention, the manufacturing method comprising the following steps:
  • the bonding adhesive layer is provided, for example, by screen printing;
  • Conductive paste is injected into the through holes of the glass-based circuit board module, and after curing, a glass-based backlight panel for Mini LED display is obtained.
  • the circuit pattern is produced according to the circuit structure diagram, which can be specifically carried out according to the following method:
  • Exposure exposing the photoresist layer designed with film circuits:
  • the circuit in the present invention, for example, can be etched in an acidic etching solution;
  • the present invention does not specifically limit the process conditions of steps (a) to (f) in making the circuit pattern, which are conventional operations.
  • step (2) it also includes setting leads on the circuit surface of the glass circuit board; and/or after step (4), it also includes the step of bonding the Mini LED chip to a control circuit surface of a glass-based backlight panel for Mini LED display through SMT or a die bonding machine.
  • the present embodiment provides a glass-based backlight panel for Mini LED display, as shown in FIG1 , the glass-based backlight panel comprises a first glass circuit board and a second glass circuit board; the glass-based backlight panel is a sandwich structure with a bonding adhesive layer (OC bonding adhesive layer) sandwiched between two glass circuit boards; both the front and back sides of the first glass circuit board are circuit surfaces; a first through-hole lead for electrically connecting the front and back circuit surfaces of the first glass circuit board is provided in the first glass circuit board, and one of the circuit surfaces of the first glass circuit board is a control circuit surface; both the front and back sides of the second glass circuit board are circuit surfaces, and a first through-hole lead for electrically connecting the front and back circuit surfaces of the second glass circuit board is provided in the second glass circuit board, and one of the circuit surfaces of the second glass circuit board is a control circuit surface, and a Mini LED chip is bonded to the control circuit surface; leads are provided on the circuit surfaces of the first glass circuit board and the second glass circuit board; finally, the
  • the through-hole leads are electrically connected for linkage control;
  • the two circuit surfaces of the first glass circuit board and the second glass circuit board are both composed of metal layers formed on both sides of a glass carrier body after circuit patterns are made;
  • the metal layers include a first metal film layer, a second copper film layer and a third metal film layer in sequence from the glass carrier body to the outside;
  • each circuit surface of each glass circuit board includes a plurality of evenly distributed circuit units, the width of the circuit units included in the circuit surface for bonding is greater than the width of the circuit units included in the control circuit surface;
  • the width of the circuit units included in the two circuit surfaces located between the two control circuit surfaces decreases from the control circuit surface not used for bonding the Mini LED chip to the control circuit surface for bonding the Mini LED chip;
  • the width of the circuit units included in the control circuit surface not used for bonding the Mini LED chip is greater than the width of the circuit units included in the control circuit surface for bonding the Mini LED chip.
  • a first metal film layer, a second copper film layer and a third metal film layer are sequentially formed on both sides of two glass carriers to obtain two glass circuit boards with metal layers on both sides;
  • the first metal film layer is made of copper-nickel alloy (copper mass percentage 50%), has a thickness of 10nm, and is formed by sputtering by magnetron sputtering process, and the process conditions are: the total power of the sputtering power supply is 2kW, the argon pressure is 0.6Pa, and the temperature of the glass carrier is 150°C;
  • the second copper film layer is made of copper, has a thickness of 25 ⁇ m, and is formed by acid electroplating method, and the process conditions are: CuSO4 concentration is 75g/L, H2SO4 concentration is 240g /L, chloride ion ( Cl- ) concentration is 50ppm, and temperature is 30°C;
  • the third metal film layer is made of silver, has a thickness of 5 ⁇ m, and is formed by acid electroplating process electropla
  • a circuit pattern is made on a glass circuit board with metal layers on both sides, and through holes and leads are set on the glass circuit board.
  • the first through-hole leads and the second through-hole leads of the glass-based backlight panel are formed by curing the through-holes filled with conductive paste opened in the glass circuit board.
  • the conductive paste (copper paste) is filled by dispensing glue, and the pressure of the dispensing glue injection is 0.15MPa, the curing temperature is 120°C, and the curing time is 3min.
  • the yield rate is 99.8%.
  • the glass-based backlight panel used for Mini LED display in this embodiment can control tens of thousands of lamp beads on a 12-inch display screen, and can realize the control of tens of thousands of lamp beads on the X-Y axis (that is, both the X-axis and the Y-axis can realize the control of tens of thousands of lamp beads), and can realize the individual control of hundreds of control partitions.
  • This embodiment provides a glass-based backlight panel for Mini LED display, as shown in FIG4 ; this embodiment is basically the same as Embodiment 1, except that:
  • each circuit surface of each glass circuit board includes a plurality of evenly distributed circuit units, and the widths of the circuit units included in the circuit surfaces of the same glass circuit board are all equal and their distribution positions correspond, but the width of the circuit units included in the circuit surface of the first glass circuit board is greater than the width of the circuit units included in the circuit surface of the second glass circuit board.
  • the yield rate is 98.6%.
  • the glass-based backlight panel used for Mini LED display in this embodiment can control tens of thousands of lamp beads on a 12-inch display screen, and can realize the control of tens of thousands of lamp beads on the X-Y axis, and can realize the individual control of hundreds of control partitions.
  • This embodiment provides a glass-based backlight panel for Mini LED display, as shown in FIG5 ; this embodiment is basically the same as Embodiment 1, except that:
  • each circuit surface of each glass circuit board includes a plurality of evenly distributed circuit units, and the widths of the circuit units included in the circuit surfaces of the two glass circuit boards are equal, and the distribution positions correspond.
  • the yield rate was 98.1%.
  • the glass-based backlight panel used for Mini LED display in this embodiment can control tens of thousands of lamp beads on a 12-inch display screen, and can realize the control of tens of thousands of lamp beads on the X-Y axis, and can realize the individual control of hundreds of control partitions.
  • the present comparative example provides a glass-based backlight panel for Mini LED display, wherein the glass-based backlight panel comprises only one glass circuit board; both the front and back sides of the glass circuit board are circuit surfaces, one of the circuit surfaces is a control circuit surface, and a Mini LED chip is bonded to the control circuit surface; through-hole leads for electrically connecting the front and back circuit surfaces are provided in the glass circuit board; the two circuit surfaces of the glass circuit board are both composed of metal layers formed on both sides of a glass carrier body after circuit patterns are made; the metal layers sequentially comprise a first metal film layer, a second copper film layer and a third metal film layer from the glass carrier body to the outside; the circuit surface of the glass circuit board comprises a plurality of evenly distributed circuit units, and the widths of the circuit units included in the two circuit surfaces of the glass circuit board are equal and the distribution positions are corresponding.
  • the manufacturing method of the glass-based backlight plate in this comparative example is:
  • a first metal film layer, a second copper film layer and a third metal film layer are sequentially formed on both sides of a glass carrier to obtain a glass circuit board with metal layers on both sides;
  • the first metal film layer is made of copper-nickel alloy (copper mass percentage 50%), has a thickness of 10nm, and is formed by sputtering by magnetron sputtering process, and the process conditions are: the total power of the sputtering power supply is 2kW, the argon pressure is 0.6Pa, and the temperature of the glass carrier is 150°C;
  • the second copper film layer is made of copper, has a thickness of 25 ⁇ m, and is formed by acid electroplating method, and the process conditions are: CuSO4 concentration is 75g/L, H2SO4 concentration is 240g /L, chloride ion ( Cl- ) concentration is 50ppm, and temperature is 30°C;
  • the third metal film layer is made of silver, has a thickness of 5 ⁇ m, and is formed by acid electroplating process
  • a circuit pattern is made on a glass circuit board with metal layers on both sides, and through holes are provided on the glass circuit board.
  • conductive paste (copper paste) into the through holes included in the glass-based circuit board by dispensing glue, and after curing, obtain a glass-based backlight panel for Mini LED display, and attach the Mini LED chip to the control circuit surface of the glass circuit board through SMT technology; the through-hole leads of the glass-based backlight panel are formed by curing the through holes opened in the glass circuit board and filling the conductive paste.
  • the conductive paste (copper paste) is filled by dispensing glue.
  • the pressure of the dispensing glue injection is 0.15MPa
  • the curing temperature is 120°C
  • the curing time is 3min.
  • the yield rate was 99.8%.
  • the glass-based backlight panel used for Mini LED display in this comparative example can control tens of thousands of lamp beads on a 12-inch display screen, but it cannot achieve X-Y axis lamp bead control and cannot achieve precise partition control.
  • a display circuit board is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

本发明涉及用于Mini LED显示的玻璃基背光板及制作方法,所述玻璃基背光板包括两块两面均为电路面的玻璃电路板,两块玻璃电路板通过贴合胶层贴合,玻璃电路板未进行贴合的电路面为控制电路面;玻璃基背光板还包括设置在玻璃电路板中用于电连接每块玻璃电路板的两个电路面的第一通孔引线和设置在玻璃电路板中用于将两块玻璃电路板的线路电连接起来的第二通孔引线;玻璃电路板的电路面均由形成在玻璃承载体的金属层经制作电路图案后构成;金属层自玻璃承载体向外依次包括第一金属膜层、第二铜膜层和第三金属膜层。本发明极大的提高了LED点阵控制精度、控制数量,提高了良率、避免了量产困难等问题。

Description

用于Mini LED显示的玻璃基背光板及制作方法 技术领域
本发明涉及Mini LED背光板技术领域,尤其涉及一种用于Mini LED显示的玻璃基背光板及制作方法。
背景技术
Mini LED是指100-300um大小的LED芯片,芯片间距在0.1-1mm之间,采用SMD、COB或IMD封装形式的微型LED器件模块,Mini LED的应用主要分为:①使用Mini LED芯片+LCD背光方案;②直接使用Mini RGB显示屏的自发光方案。Mini LED是未来LCD升级主流技术形式,相较于OLED具有较多优势,目前Mini LED基板包括PCB方案和玻璃基方案,均为LED芯片的载体。玻璃基由于自身成本、散热性强,受热膨胀率低,平坦性更高,有利于Mini LED焊接等性能等优势,未来在Mini LED领域具备更大的市场潜力。
然而,由于Mini LED驱动单元模块多,电路较复杂,需采用多维度扫描、进行不同模块电流电压控制以实现不同显示效果,因此对控制电路要求多层电路结构,以实现控制需要。不同于PCB或FPC基板方案,由于PCB板和FPC基板可以耐压、不易破碎且易于实现打孔等,PCB和FPC基板比较容易实现多层电路结构。但玻璃基Mini LED背光区别于PCB(Printed CircuitBoard,印制电路板)或FPC(Flexible Printed Circuit,柔性电路板)基背光板,对于玻璃基背光板而言,由于玻璃基材存在易碎、不耐强压、不宜过多打孔等原因,在制作多层电路时,存在着工艺复杂、LED芯片焊接困难、良率非常低的问题,导致无法大面积产业化应用。中国专利申请CN202010990249.7公开了一种显示电路板,适用于微间距显示屏,所述显示电路板包括玻璃基板以及设于所述玻璃基板上的多个电子元件;所述玻璃基板的正面及反面均设有电路 层,所述正面或反面的电路层至少有一个采用多层电路层,其中,所述多层电路层的各电路层之间均设有绝缘层,所述绝缘层设有开窗,以实现电路层之间的电连接以及电路层与电子元器件之间的电连接;所述多层电路层的各电路层也设有开窗,各电路层的开窗与所述绝缘层的开窗构成跨层开窗,所述各电路层上的焊盘从开窗中露出,所述电子元器件的引脚通过所述跨层开窗与不同电路层上的焊盘焊接,实现所述电子元器件与不同电路层的电连接;但是该专利申请中,多层电路层的各电路层之间均需要设有绝缘层将电路层隔开,多层电路层的各电路层之间是需要采用压合的方式实现电连接的,而由于玻璃基材存在易碎、不耐强压、不宜过多打孔的问题,导致其在形成多层电路时,存在着工艺复杂、良率较低的问题,并且该专利申请中,所述电子元器件的引脚需要通过各电路层的开窗与绝缘层的开窗构成的跨层开窗才可以与不同电路层上的焊盘焊接,实现电子元器件与不同电路层的电连接,这种构造就需要在玻璃基板上设有多个导电孔,容易导致玻璃基材破碎,存在良品率较低的问题;同时由于需要在多层绝缘层上设置电路层,而这种可以设置电路层的绝缘材料多为不耐热和紫外照射的有机物,因此存在长时间使用时,会导致绝缘层上面电路脱落,导致报废;并且由于绝缘层多采用丝印或涂布方式,表面平整度差,耐热低,在焊接灯珠时无法对位和不能采用高温回流焊工艺,不适用于产业化应用。
综上,非常有必要提供一种新的可以实现多层电路结构的用于Mini LED显示的玻璃基背光板及其制作方法。
发明内容
为了解决现有技术中存在的一个或者多个技术问题,本发明提供了一种用于Mini LED显示的玻璃基背光板及其制作方法。
本发明在第一方面提供了一种用于Mini LED显示的玻璃基背光板,所述玻璃基背光板包括两块玻璃电路板,所述玻璃电路板的两面均为电路面,两块玻璃电路板之间通过贴合胶层贴合,所述玻璃电路板未 进行贴合的电路面为控制电路面,在所述玻璃基背光板包括的控制电路面中,有一个控制电路面用于贴合Mini LED芯片;所述玻璃基背光板还包括通孔引线,所述通孔引线包括设置在玻璃电路板中用于电连接每块所述玻璃电路板的两个电路面的第一通孔引线和设置在玻璃电路板中用于将两块玻璃电路板的线路电连接起来的第二通孔引线;所述玻璃电路板的电路面由形成在玻璃承载体的金属层经制作电路图案后构成;所述金属层自玻璃承载体向外依次包括第一金属膜层、第二铜膜层和第三金属膜层。
优选地,所述贴合胶层采用的贴合胶为RGB胶、BM胶、OC胶、PS胶、TFT胶中的一种或多种;和/或所述贴合胶层的厚度为10~50μm。
优选地,所述第一金属膜层的厚度为10~200nm;所述第二铜膜层的厚度为5~100μm;第三金属膜层厚度为0.5~10μm;所述第一金属膜层采用的材料为铜或铜合金,在铜合金中,铜原子的质量百分含量为10%~95%,优选的是,所述铜合金为铜镍合金、铜钛合金、铜钼合金、铜铬合金中的一种或多种;所述第二铜膜层采用的材料为铜;所述第三金属膜层采用的材料为镍、锡、银中的一种或多种;和/或所述第一金属膜层通过磁控溅射方法形成,所述第二铜膜层通过酸性电镀方法形成,所述第三金属膜层通过磁控溅射方法或酸性电镀方法形成。
优选地,所述玻璃电路板的电路面上还设置有引线;和/或通过在两块玻璃电路板之间设置贴合胶并经固化形成贴合胶层实现玻璃电路板之间的贴合,所述固化的压力为0.15~0.3MPa,所述固化的温度为80~200℃,所述固化的时间为1~5min。
优选地,所述第一通孔引线和所述第二通孔引线均由开设在玻璃电路板中的通孔填充导电浆料经固化形成。
优选地,在形成第一通孔引线和第二通孔引线时,通过点胶注入的方式填充导电浆料,点胶注入的压力为0.15~0.3MPa,进行固化的温度为80~200℃,进行固化的时间为1~5min;和/或所述导电浆料为铜浆、铝浆或银浆中的一种或多种。
优选地,每块玻璃承载体的厚度为0.02~8.0mm;所述玻璃电路板上的电路面的厚度不低于1μm,优选为不低于5μm;和/或每块玻璃电路板上的电路面包括多个均匀分布的线路单元,每个线路单元的宽度不大于5000μm,优选为不大于30μm。
优选地,每块玻璃电路板的每个电路面包括多个均匀分布的线路单元,用于贴合的电路面包括的线路单元的宽度大于控制电路面包括的线路单元的宽度;位于两个控制电路面之间的两个电路面包括的线路单元的宽度从不用于贴合Mini LED芯片的控制电路面至用于贴合Mini LED芯片的控制电路面的方向递减;不用于贴合Mini LED芯片的控制电路面包括的线路单元的宽度大于用于贴合Mini LED芯片的控制电路面包括的线路单元的宽度。
本发明在第二方面提供了本发明在第一方面所述的用于Mini LED显示的玻璃基背光板的制作方法,所述制作方法包括如下步骤:
(1)在两块玻璃承载体的两面依次形成第一金属膜层、第二铜膜层和第三金属膜层,得到两块两面均为金属层的玻璃电路板;
(2)在两面均为金属层的玻璃电路板上制作电路图案,并在玻璃电路板上设置通孔;
(3)将两块玻璃电路板进行对位并在两块玻璃电路板之间设置一层贴合胶层,经固化,得到玻璃基电路板模组;
(4)往所述玻璃基电路板模组包括的通孔中点胶注入导电浆料,经固化,得到用于Mini LED显示的玻璃基背光板。
优选地,在步骤(2)中,还包括往玻璃电路板的电路面上设置引线;和/或在步骤(4)之后,还包括通过SMT或固晶机往用于Mini LED显示的玻璃基背光板包括的一面控制电路面上贴合Mini LED芯片的步骤。
本发明与现有技术相比至少具有如下有益效果:
(1)本发明针对玻璃基Mini LED背光区别于PCB(Printed CircuitBoard,印制电路板)或FPC(Flexible Printed Circuit,柔性电路板) 基背光板,对于玻璃基背光板而言,由于玻璃基材存在易碎、不耐强压、不宜过多打孔等原因,在形成多层电路时,存在着工艺复杂、LED芯片焊接困难、良率非常低等的问题,提供了一种采用两块玻璃电路板贴合的方案,实现了Mini LED显示对多层电路的要求,本发明中的用于Mini LED显示的玻璃基背光板中包括的两块玻璃电路板之间通过贴合胶贴合而成,该贴合胶层可以充当绝缘层,并且每块玻璃电路板的正反两面均只设置了一层电路层,避免了在单块玻璃基板的一侧或者两侧设置多层电路层时,多层电路层的各电路层之间均需要设有绝缘层将电路层隔开,并且多层电路层的各电路层之间是需要开窗、设置导电孔以及采用压合的方式才能实现电连接的问题,从而避免了玻璃基材在压合过程中不耐强压和易破碎的问题,本发明明显简化了用于Mini LED显示的玻璃基背光板的制作工艺,明显提高了用于Mini LED显示的玻璃基背光板的良品率,解决了量产困难等问题。
(2)本发明中的用于Mini LED显示的玻璃基背光板的结构解决了单块玻璃无法实现多维电路控制问题和需要在玻璃表面制作多层搭桥结构问题,从而极大的提高了LED点阵控制精度、控制数量和良率以及避免了量产困难以及搭桥引起的成本高等问题,并且本发明中的用于Mini LED显示的玻璃基背光板的结构例如可以为衍生为3层玻璃电路板、4层玻璃电路板、5层玻璃电路板等更多层的电路控制的用于Mini LED显示的玻璃基背光板,可以实现更多维度的点阵控制。
附图说明
本发明附图仅仅为说明目的提供,图中各部分的比例、尺寸以及数量不一定与实际产品一致。
图1是本发明实施例1提供的用于Mini LED显示的玻璃基背光板的结构示意图;
图2是图1包括的第一玻璃电路板的结构示意图;
图3是图1包括的第二玻璃电路板的结构示意图;
图4是本发明实施例2提供的用于Mini LED显示的玻璃基背光板的结构示意图;
图5是本发明实施例3提供的用于Mini LED显示的玻璃基背光板的结构示意图。
图中:1:第一玻璃电路板;2:贴合胶层;3:第二玻璃电路板;4:第一通孔引线;5:第二通孔引线;6:Mini LED芯片;7:线路单元;8:引线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明在第一方面提供了一种用于Mini LED显示的玻璃基背光板(简记为玻璃基背光板),例如,如图1、图4和图5所示,所述玻璃基背光板包括两块玻璃电路板,所述玻璃电路板的两面均为电路面,两块玻璃电路板之间通过贴合胶层贴合,所述玻璃电路板未进行贴合的电路面为控制电路面,在所述玻璃基背光板包括的控制电路面中,有一个控制电路面用于贴合Mini LED芯片;在一些具体实施例中,所述玻璃基背光板包括的一个控制电路面上还贴合有Mini LED芯片;所述玻璃基背光板还包括通孔引线,所述通孔引线包括设置在玻璃电路板中用于电连接每块所述玻璃电路板的两个电路面的第一通孔引线和设置在玻璃电路板中将两块玻璃电路板的线路电连接起来的第二通孔引线,所述第二通孔引线将两块玻璃电路板的线路电连接,实现联动控制;在本发明中,每块玻璃电路板上的线路为一个控制线路,所述第二通孔引线用于电连接两个控制线路;玻璃电路板的电路面由形成在玻璃承载体的金属层经制作电路图案后构成,即每块所述玻璃电路板的两个 电路面由形成在玻璃承载体的两面的金属层经制作电路图案后构成;所述金属层自玻璃承载体向外依次包括第一金属膜层、第二铜膜层和第三金属膜层;在本发明中,所述第一金属膜层作为后面镀第二铜膜层的种子层;所述第二铜膜层作为导电层,传导电流;所述第三金属膜层作为防氧化层,用于保护铜导电层被氧化。
对于玻璃基背光板而言,由于玻璃基材存在易碎、不耐强压、不宜过多打孔等原因,在形成多层电路时,存在着工艺复杂、LED芯片焊接困难、良率非常低等的问题,而正因为玻璃基材存在易碎、不耐强压、不宜过多打孔等不可克服的问题,现有技术中未见有将两块玻璃基材引入用于Mini LED显示的玻璃基背光板结构中的相关报道;现有技术中的用于Mini LED显示的玻璃基背光板,通常是在一块玻璃基板的一侧或两侧设置多层电路层,各电路层的形成均是需要通过将导电原料在大压力作用下压合的方式才能形成导电层,并且各电路层之间均需要设有绝缘层将电路层隔开,而绝缘层的形成同样是需要在大压力作用下压合才能形成,且需要通过各电路层的开窗与绝缘层的开窗构成的跨层开窗才可以与不同电路层上的焊盘焊接,实现电子元器件与不同电路层的电连接,这种构造就需要在玻璃基板上设有多个导电孔,现有技术中的这种玻璃基背光板由于玻璃基材在压合过程中不耐强压和易破碎的问题,存在良品率较低、量产困难等问题,此外这种结构需要在玻璃表面制作多层搭桥结构,不利于LED点阵控制精度、控制数量的提高以及存在多层搭桥成本较高的问题。
与现有技术不同,本发明首次提供了一种采用两块玻璃电路板贴合的方案,实现了Mini LED显示对多层电路的要求,本发明采用的每块玻璃电路板的两个电路面均由形成在玻璃承载体的两面的金属层经制作电路图案后构成;所述金属层自玻璃承载体向外依次包括第一金属膜层、第二铜膜层和第三金属膜层,本发明采用这样的玻璃电路板直接通过贴合胶贴合,即可得到包括两块玻璃电路板的用于Mini LED显示的玻璃基背光板结构,其中贴合胶层可以充当绝缘层,并且每块玻璃 电路板的正反两面均只设置了一层电路层,避免了在玻璃基板的两侧设置多层电路层时,多层电路层的各电路层之间均需要设有绝缘层将电路层隔开,并且多层电路层的各电路层之间是需要采用大压力作用压合的方式才能实现电连接的问题,从而避免了玻璃基材在压合过程中不耐强压和易破碎的问题;每层电路之间,只需要在总控制线位置进行连接,其余位置无需连接,因此极大的降低了打孔的数量;本发明中的用于Mini LED显示的玻璃基背光板的结构解决了单块玻璃无法实现多维电路控制问题和需要在玻璃表面制作多层搭桥结构问题,从而极大的提高了LED点阵控制精度、控制数量和良率以及避免了量产困难以及搭桥引起的成本高等问题,并且本发明中的用于Mini LED显示的玻璃基背光板的结构例如可以为衍生为3层玻璃电路板、4层玻璃电路板、5层玻璃电路板等更多层的电路控制的用于Mini LED显示的玻璃基背光板,可以实现更多维度的点阵控制。
根据一些优选的实施方式,例如,如图1、图2、图3、图4和图5所示;所述玻璃基背光板包括第一玻璃电路板和第二玻璃电路板;所述玻璃基背光板为两块玻璃电路板之间夹设有一层贴合胶层的三明治结构;具体地,所述第一玻璃电路板的正反两面均为电路面;所述第一玻璃电路板中设置有用于电连接第一玻璃电路板的正反两个电路面的第一通孔引线,所述第一玻璃电路板的其中一个电路面为控制电路面,另一个电路面(用于贴合的电路面)为第一玻璃电路板的正反两面电路提供电源,所述第一玻璃电路板的用于贴合的电路面通过设置在第一玻璃电路板中的第一通孔引线为所述第一玻璃电路板的控制电路面提供电源和地线引入;所述第二玻璃电路板的正反两面均为电路面,所述第二玻璃电路板中设置有用于电连接第二玻璃电路板的正反两个电路面的第一通孔引线,所述第二玻璃电路板的其中一个电路面为控制电路面,该控制电路面用于贴合Mini LED芯片;所述第二玻璃电路板的另一个电路面(用于贴合的电路面)为第二玻璃电路板的正反两面电路提供电源,所述第二玻璃电路板的用于贴合的电路面通过设置在第二 玻璃电路板中的第一通孔引线为所述第二玻璃电路板的控制电路面提供电源和地线引入;最后,所述第一玻璃电路板的线路和所述第二玻璃电路板的线路通过第二通孔引线电连接,进行联动控制。
特别说明的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性;对于本领域的普通技术人员而言,可视具体情况理解上述术语在本发明中的具体含义。
根据一些优选的实施方式,所述贴合胶层采用的贴合胶为RGB胶、BM胶、OC胶(即OCA胶)、PS胶、TFT胶中的一种或多种,优选的是,所述贴合胶层采用的贴合胶为OC胶,本发明对这些贴合胶的来源不做具体的限定,采用市面上可以直接购买的产品即可;和/或所述贴合胶层的厚度为10~50μm(例如10、15、20、25、30、35、40、45或50μm)。
根据一些优选的实施方式,所述第一金属膜层的厚度为10~200nm(例如10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190或200nm);所述第二铜膜层的厚度为5~100μm(例如5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95或100μm);和/或第三金属膜层厚度为0.5~10μm(例如0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5或10μm);在本发明中,优选为所述第一金属膜层的厚度为10~200nm,这一厚度的第一金属膜层能很好地满足玻璃承载体与第二铜膜层之间的附着力要求,提高玻璃承载体与导电铜之间的附着力,从而实现可以在玻璃承载体上电镀5~100μm厚的铜箔;并且,本发明中厚度为10~200nm的第一金属膜层的设置,可以使得在电镀第二铜膜层时,可以加载足够大的电流来实现第二铜膜层的电镀工艺;本发明优选为所述第二铜膜层的厚度为5~100μm,本发明人发现这一厚度的第二铜膜层可以有效满足玻璃电路板需要低电阻或低阻抗要求,减少玻璃电路板的电流损失;本发明优选为所述第三金属膜层的厚度为0.5~10μm,本发明人发现这一厚度的第三金属膜层能保证足 够好的防氧化防腐蚀效果;铜电路暴露在空气中容易氧化,同时铜与焊锡之间也存在附着力的问题,本发明在第二铜膜层的表面制作一层镍或银或锡作为保护层(防氧化层),以防止铜被氧化,降低寿命,同时也提高焊盘与LED灯珠的附着力,从而提高焊接拉拔力。
根据一些优选的实施方式,所述第一金属膜层采用的材料为铜或铜合金,在铜合金中,铜原子的质量百分含量为10%~95%,优选的是,所述铜合金为铜镍合金、铜钛合金、铜钼合金、铜铬合金中的一种或多种;所述第二铜膜层采用的材料为铜;和/或所述第三金属膜层采用的材料为镍、锡、银中的一种或多种。
根据一些优选的实施方式,所述第一金属膜层通过磁控溅射方法形成,所述第二铜膜层通过酸性电镀方法形成,所述第三金属膜层通过磁控溅射方法或酸性电镀方法形成。
根据一些优选的实施方式,磁控溅射形成所述第一金属膜层的工艺条件为:溅射电源的总功率为1~20kW,氩气压力为0.2~1.0Pa,玻璃承载体的温度为50~200℃;酸性电镀形成所述第二铜膜层的工艺条件为:pH值为3~6,CuSO 4浓度为20~200g/L,H 2SO 4浓度为100~300g/L,氯离子浓度为10~200ppm,温度为20~80℃;当通过磁控溅射方法形成所述第三金属膜层时,磁控溅射形成所述第三金属膜层的工艺条件为:溅射电源的总功率为2~100kW,氩气压力为0.6~1.0Pa,玻璃承载体的温度为50~300℃;当通过酸性电镀法形成所述第三金属膜层时,酸性电镀法形成所述第三金属膜层的工艺条件为:pH值为3~6,NiSO 4或SnSO 4或AgSO 4浓度为20~200g/L,H 2SO 4浓度为100~300g/L,氯离子浓度为10~200ppm,温度为20~80℃。
根据一些优选的实施方式,在形成所述第一金属膜层之前,先对玻璃承载体进行清洗与干燥的步骤,本发明对清洗和干燥的条件不做具体的限定,采用常规操作即可。
根据一些优选的实施方式,所述玻璃电路板的电路面上还设置有引线,在本发明中,通过所述引线与所述第二通孔引线实现两个控制线 路的电连接,实现互动控制,换言之,即通过所述引线和所述第二通孔引线将两块玻璃电路板的线路电连接起来,实现联动控制;在本发明中,例如可以在所述玻璃电路板的电路面的同一侧设置引线与第二通孔引线,例如,如图1、图2、图3、图4和图5所示的左侧设置引线,也可以根据需要在玻璃电路板的电路面的左右两侧均设置引线和第二通孔引线。
根据一些优选的实施方式,通过在两块玻璃电路板之间设置贴合胶并经固化形成贴合胶层实现玻璃电路板之间的贴合,所述固化的压力为0.15~0.3MPa,所述固化的温度为80~200℃(例如80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃或200℃),所述固化的时间为1~5min(例如1、2、3、4或5min)。
本发明两块玻璃电路板之间的贴合无需在大压力作用下压合,通过在第一玻璃电路板和第二玻璃电路板之间设置贴合胶并在压力仅为0.15~0.3MPa条件下于80~200℃固化1~5min即可。
根据一些优选的实施方式,所述第一通孔引线和所述第二通孔引线均由开设在玻璃电路板中的通孔填充导电浆料经固化形成。
根据一些优选的实施方式,在形成第一通孔引线和第二通孔引线时,通过点胶注入的方式填充导电浆料,点胶注入的压力为0.15~0.3MPa,进行固化的温度为80~200℃,进行固化的时间为1~5min;和/或所述导电浆料为铜浆、铝浆或银浆中的一种或多种。
本发明在形成第一通孔引线和第二通孔引线时,同样只需在压力仅为0.15~0.3MPa条件下通过点胶注入的方式填充导电浆料后,并于80~200℃固化1~5min即可。
根据一些优选的实施方式,每块玻璃承载体的厚度为0.02~8.0mm;所述玻璃电路板上的电路面的厚度不低于1μm,优选为不低于5μm;和/或每块玻璃电路板上的电路面包括多个均匀分布的线路单元,每个线路单元的宽度不大于5000μm,优选为不大于30μm;在本发明中,所述电路面包括的线路单元的厚度与电路面的厚度一致,各电路面的 厚度可以相同或者不相同,优选为相同。
根据一些优选的实施方式,例如,如图1所示,每块玻璃电路板的每个电路面包括多个均匀分布的线路单元,用于贴合的电路面包括的线路单元的宽度W大于控制电路面包括的线路单元的宽度W;本发明对各电路面包括的多个线路单元之间的间隙不做具体的限定,采用常规间隙即可,可以相同或者不相同,只要每个电路面包括的多个线路单元均匀分布即可;位于两个控制电路面之间的两个电路面包括的线路单元的宽度W从不用于贴合Mini LED芯片的控制电路面至用于贴合Mini LED芯片的控制电路面的方向递减;不用于贴合Mini LED芯片的控制电路面包括的线路单元的宽度W大于用于贴合Mini LED芯片的控制电路面包括的线路单元的宽度W;本发明对玻璃电路板的各电路面包括的线路单元的长度不做具体限定,与玻璃电路板的长度一致或者小于玻璃电路板的长度均可;在本发明中,优选为采用这种线路单元分布方式形成玻璃电路板的电路面,相比玻璃电路板的电路图案的线路单元逐层分布位置相对应且宽度相等的方案,本发明的玻璃基背光板优选的线路单元分布方式,可以从整体上更有效避免玻璃承载体的打孔时易于破碎的问题,以及进一步提高玻璃基背光板整体的结构稳定性和耐压性,从而可以进一步提高用于Mini LED显示的玻璃基背光板的良品率,解决了量产困难等问题;而正是因为这种设置方式,可以更好地提高玻璃基背光板整体上的耐压性,使得玻璃基背光板包括的玻璃承载体不易破碎,使得本发明中的用于Mini LED显示的玻璃基背光板在需要包括3层(三块)玻璃电路板、4层(四块)玻璃电路板、5层(五块)玻璃电路板等更多层的电路控制时,具有量产更高、良品率更高等优势。
本发明在第二方面提供了本发明在第一方面所述的用于Mini LED显示的玻璃基背光板的制作方法,所述制作方法包括如下步骤:
(1)在两块玻璃承载体的两面依次形成第一金属膜层、第二铜膜层和第三金属膜层,得到两块两面均为金属层的玻璃电路板;
(2)在两面均为金属层的玻璃电路板上制作电路图案,并在玻璃电路板上设置通孔;
(3)将两块玻璃电路板进行对位并在两块玻璃电路板之间设置一层贴合胶层,经固化,得到玻璃基电路板模组;在本发明中,所述贴合胶层例如通过丝网印刷的方式设置;
(4)往所述玻璃基电路板模组包括的通孔中点胶注入导电浆料,经固化,得到用于Mini LED显示的玻璃基背光板。
在本发明中,根据电路结构图制作电路图案,具体可以按照如下方法进行:
(a)涂布光刻胶;例如在第三金属膜层上涂布光刻胶层:
(b)设计符合要求的菲林线路;例如在光刻胶层上设计符合要求的菲林线路;
(c)曝光;对设计有菲林线路的光刻胶层进行曝光:
(d)显影;将经过曝光的光刻胶层进行显影;
(e)蚀刻;在本发明中,例如可以置于酸性蚀刻液内蚀刻线路;
(f)脱胶。
本发明对制作电路图案包括的步骤(a)至(f)的工艺条件不做具体限定,为现有常规操作。
根据一些优选的实施方式,在步骤(2)中,还包括往玻璃电路板的电路面上设置引线;和/或在步骤(4)之后,还包括通过SMT或固晶机往用于Mini LED显示的玻璃基背光板包括的一面控制电路面上贴合Mini LED芯片的步骤。
下面结合实施例对本发明作进一步说明。这些实施例只是就本发明的优选实施方式进行举例说明,本发明的保护范围不应解释为仅限于这些实施例。
实施例1
本实施例提供了一种用于Mini LED显示的玻璃基背光板,如图1所示,所述玻璃基背光板包括第一玻璃电路板和第二玻璃电路板;所述 玻璃基背光板为两块玻璃电路板之间夹设有一层贴合胶层(OC贴合胶层)的三明治结构;所述第一玻璃电路板的正反两面均为电路面;所述第一玻璃电路板中设置有用于电连接第一玻璃电路板的正反两个电路面的第一通孔引线,所述第一玻璃电路板的其中一个电路面为控制电路面;所述第二玻璃电路板的正反两面均为电路面,所述第二玻璃电路板中设置有用于电连接第二玻璃电路板的正反两个电路面的第一通孔引线,所述第二玻璃电路板的其中一个电路面为控制电路面,该控制电路面贴合有Mini LED芯片;所述第一玻璃电路板和第二玻璃电路板的电路面上均设置引线;最后,所述第一玻璃电路板的线路和所述第二玻璃电路板的线路通过引线和设置在玻璃电路板中的第二通孔引线电连接,进行联动控制;第一玻璃电路板和第二玻璃电路板的两个电路面均由形成在玻璃承载体的两面的金属层经制作电路图案后构成;所述金属层自玻璃承载体向外依次包括第一金属膜层、第二铜膜层和第三金属膜层;每块玻璃电路板的每个电路面包括多个均匀分布的线路单元,用于贴合的电路面包括的线路单元的宽度大于控制电路面包括的线路单元的宽度;位于两个控制电路面之间的两个电路面包括的线路单元的宽度从不用于贴合Mini LED芯片的控制电路面至用于贴合Mini LED芯片的控制电路面的方向递减;不用于贴合Mini LED芯片的控制电路面包括的线路单元的宽度大于用于贴合Mini LED芯片的控制电路面包括的线路单元的宽度。
本实施例中的玻璃基背光板的制作方法为:
①在两块玻璃承载体的两面依次形成第一金属膜层、第二铜膜层和第三金属膜层,得到两块两面均为金属层的玻璃电路板;所述第一金属膜层采用铜镍合金(铜质量百分含量50%)制成,厚度为10nm,通过磁控溅射工艺溅镀形成,工艺条件为:溅射电源的总功率为2kW,氩气压力为0.6Pa,玻璃承载体的温度为150℃;第二铜膜层采用铜制成,厚度为25μm,通过酸性电镀法形成,工艺条件为:CuSO 4浓度为75g/L,H 2SO 4浓度为240g/L,氯离子(Cl -)浓度为50ppm,温度为30℃; 所述第三金属膜层采用银制成,厚度为5μm,通过酸性电镀工艺电镀法形成,工艺条件为:AgSO 4浓度为75g/L,H 2SO 4浓度为240g/L,氯离子(Cl -)浓度为50ppm,温度为30℃。
②在两面均为金属层的玻璃电路板上制作电路图案,并在玻璃电路板上设置通孔和引线。
③将两块玻璃电路板进行对位并在两块玻璃电路板之间通过丝网印刷的方式设置一层贴合胶层(OC贴合胶层),经固化,得到玻璃基电路板模组;所述固化的压力为0.15MPa,所述固化的温度为120℃,所述固化的时间为3min。
④往所述玻璃基电路板模组包括的通孔中点胶注入导电浆料(铜浆),经固化,得到用于Mini LED显示的玻璃基背光板,并通过SMT技术将Mini LED芯片贴合在第二玻璃电路板的控制电路面上;玻璃基背光板的第一通孔引线和第二通孔引线均由开设在玻璃电路板中的通孔填充导电浆料经固化形成,在形成第一通孔引线和第二通孔引线时,通过点胶注入的方式填充导电浆料(铜浆),点胶注入的压力为0.15MPa,进行固化的温度为120℃,进行固化的时间为3min。
在形成1000个本实施例所述的用于Mini LED显示的玻璃基背光板时,良品率为99.8%。
本实施例中的用于Mini LED显示的玻璃基背光板在12寸的显示屏上,可实现控制上万颗灯珠,且可实现X-Y轴的上万颗灯珠控制(即X轴和Y轴均可以实现上万颗灯珠控制),可实现上百个控制分区单独控制。
实施例2
本实施例提供了一种用于Mini LED显示的玻璃基背光板,如图4所示;本实施例与实施例1基本相同,不同之处在于:
本实施例中的用于Mini LED显示的玻璃基背光板的第一玻璃电路板和第二玻璃电路板的电路面包括的线路单元的分布方式不同,即在本实施例中,每块玻璃电路板的每个电路面包括多个均匀分布的线 路单元,对于同一块玻璃电路板的电路面包括的线路单元的宽度均相等,且分布的位置相对应,但第一玻璃电路板的电路面包括的线路单元的宽度大于第二玻璃电路板的电路面包括的线路单元的宽度。
在形成1000个本实施例所述的用于Mini LED显示的玻璃基背光板时,良品率为98.6%。
本实施例中的用于Mini LED显示的玻璃基背光板在12寸的显示屏上,可实现控制上万颗灯珠,且可实现X-Y轴的上万颗灯珠控制,可实现上百个控制分区单独控制。
实施例3
本实施例提供了一种用于Mini LED显示的玻璃基背光板,如图5所示;本实施例与实施例1基本相同,不同之处在于:
本实施例中的用于Mini LED显示的玻璃基背光板的第一玻璃电路板和第二玻璃电路板的电路面包括的线路单元的分布方式相同,即在本实施例中,每块玻璃电路板的每个电路面包括多个均匀分布的线路单元,并且两块玻璃电路板的电路面包括的线路单元的宽度均相等,且分布的位置相对应。
在形成1000个本实施例所述的用于Mini LED显示的玻璃基背光板时,良品率为98.1%。
本实施例中的用于Mini LED显示的玻璃基背光板在12寸的显示屏上,可实现控制上万颗灯珠,且可实现X-Y轴的上万颗灯珠控制,可实现上百个控制分区单独控制。
对比例1
本对比例提供了一种用于Mini LED显示的玻璃基背光板,所述玻璃基背光板仅包括一块玻璃电路板;所述玻璃电路板的正反两面均为电路面,其中一个电路面为控制电路面,且该控制电路面贴合有Mini LED芯片;所述玻璃电路板中设置有用于电连接正反两个电路面的通孔引线;所述玻璃电路板的两个电路面均由形成在玻璃承载体的两面的金属层经制作电路图案后构成;所述金属层自玻璃承载体向外依次 包括第一金属膜层、第二铜膜层和第三金属膜层;所述玻璃电路板的电路面包括多个均匀分布的线路单元,且玻璃电路板的两个电路面包括的线路单元的宽度均相等,且分布的位置相对应。
本对比例中的玻璃基背光板的制作方法为:
①在一块玻璃承载体的两面依次形成第一金属膜层、第二铜膜层和第三金属膜层,得到一块两面均为金属层的玻璃电路板;所述第一金属膜层采用铜镍合金(铜质量百分含量50%)制成,厚度为10nm,通过磁控溅射工艺溅镀形成,工艺条件为:溅射电源的总功率为2kW,氩气压力为0.6Pa,玻璃承载体的温度为150℃;第二铜膜层采用铜制成,厚度为25μm,通过酸性电镀法形成,工艺条件为:CuSO 4浓度为75g/L,H 2SO 4浓度为240g/L,氯离子(Cl -)浓度为50ppm,温度为30℃;所述第三金属膜层采用银制成,厚度为5μm,通过酸性电镀工艺电镀法形成,工艺条件为:AgSO 4浓度为75g/L,H 2SO 4浓度为240g/L,氯离子(Cl -)浓度为50ppm,温度为30℃。
②在两面均为金属层的玻璃电路板上制作电路图案,并在玻璃电路板上设置通孔。
③往所述玻璃基电路板包括的通孔中点胶注入导电浆料(铜浆),经固化,得到用于Mini LED显示的玻璃基背光板,并通过SMT技术将Mini LED芯片贴合在玻璃电路板的控制电路面上;玻璃基背光板的通孔引线由开设在玻璃电路板中的通孔填充导电浆料经固化形成,在形成通孔引线时,通过点胶注入的方式填充导电浆料(铜浆),点胶注入的压力为0.15MPa,进行固化的温度为120℃,进行固化的时间为3min。
在形成1000个本对比例所述的用于Mini LED显示的玻璃基背光板时,良品率为99.8%。
本对比例中的用于Mini LED显示的玻璃基背光板在12寸的显示屏上,可控制上万颗灯珠,但是无法实现X-Y轴的灯珠控制,无法实现精确的分区控制。
对比例2
参考中国专利CN202010990249.7提供一种了显示电路板。
在形成1000个本对比例所述的显示电路板时,由于工艺复杂,生产过程存在对位不准、各电路层、绝缘层等均需要开窗、打孔相对较多、无法高温过回流焊等问题,导致良品率较低,良品率仅为93%;并且该对比例中的产品在使用过程中,由于绝缘层不耐热和紫外照射,因此存在长时间使用时,会导致绝缘层上面电路脱落,导致报废,使用寿命相对较短的问题。
本发明未详细说明部分为本领域技术人员公知技术。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种用于Mini LED显示的玻璃基背光板,其特征在于:
    所述玻璃基背光板包括两块玻璃电路板,所述玻璃电路板的两面均为电路面,两块玻璃电路板之间通过贴合胶层贴合,所述玻璃电路板未进行贴合的电路面为控制电路面,在所述玻璃基背光板包括的控制电路面中,有一个控制电路面用于贴合Mini LED芯片;
    所述玻璃基背光板还包括通孔引线,所述通孔引线包括设置在玻璃电路板中用于电连接每块所述玻璃电路板的两个电路面的第一通孔引线和设置在玻璃电路板中用于将两块玻璃电路板的线路电连接起来的第二通孔引线;
    所述玻璃电路板的电路面由形成在玻璃承载体的金属层经制作电路图案后构成;所述金属层自玻璃承载体向外依次包括第一金属膜层、第二铜膜层和第三金属膜层。
  2. 根据权利要求1所述的玻璃基背光板,其特征在于:
    所述贴合胶层采用的贴合胶为RGB胶、BM胶、OC胶、PS胶、TFT胶中的一种或多种;和/或
    所述贴合胶层的厚度为10~50μm。
  3. 根据权利要求1所述的玻璃基背光板,其特征在于:
    所述第一金属膜层的厚度为10~200nm;
    所述第二铜膜层的厚度为5~100μm;
    所述第三金属膜层厚度为0.5~10μm;
    所述第一金属膜层采用的材料为铜或铜合金,在铜合金中,铜原子的质量百分含量为10%~95%,优选的是,所述铜合金为铜镍合金、铜钛合金、铜钼合金、铜铬合金中的一种或多种;
    所述第二铜膜层采用的材料为铜;
    所述第三金属膜层采用的材料为镍、锡、银中的一种或多种;和/或
    所述第一金属膜层通过磁控溅射方法形成,所述第二铜膜层通过酸性电镀方法形成,所述第三金属膜层通过磁控溅射方法或酸性电镀方法形成。
  4. 根据权利要求1所述的玻璃基背光板,其特征在于:
    所述玻璃电路板的电路面上还设置有引线;和/或
    通过在两块玻璃电路板之间设置贴合胶并经固化形成贴合胶层实现玻璃电路板之间的贴合,所述固化的压力为0.15~0.3MPa,所述固化的温度为80~200℃,所述固化的时间为1~5min。
  5. 根据权利要求1所述的玻璃基背光板,其特征在于:
    所述第一通孔引线和所述第二通孔引线均由开设在玻璃电路板中的通孔填充导电浆料经固化形成。
  6. 根据权利要求5所述的玻璃基背光板,其特征在于:
    在形成第一通孔引线和第二通孔引线时,通过点胶注入的方式填充导电浆料,点胶注入的压力为0.15~0.3MPa,进行固化的温度为80~200℃,进行固化的时间为1~5min;和/或
    所述导电浆料为铜浆、铝浆或银浆中的一种或多种。
  7. 根据权利要求1所述的玻璃基背光板,其特征在于:
    每块玻璃承载体的厚度为0.02~8.0mm;
    所述玻璃电路板上的电路面的厚度不低于1μm,优选为不低于5μm;和/或
    每块玻璃电路板上的电路面包括多个均匀分布的线路单元,每个线路单元的宽度不大于5000μm,优选为不大于30μm。
  8. 根据权利要求1至7中任一项所述的玻璃基背光板,其特征在于:
    每块玻璃电路板的每个电路面包括多个均匀分布的线路单元,用于贴合的电路面包括的线路单元的宽度大于控制电路面包括的线路单元的宽度;
    位于两个控制电路面之间的两个电路面包括的线路单元的宽度从 不用于贴合Mini LED芯片的控制电路面至用于贴合Mini LED芯片的控制电路面的方向递减;
    不用于贴合Mini LED芯片的控制电路面包括的线路单元的宽度大于用于贴合Mini LED芯片的控制电路面包括的线路单元的宽度。
  9. 根据权利要求1至8中任一项所述的用于Mini LED显示的玻璃基背光板的制作方法,其特征在于,所述制作方法包括如下步骤:
    (1)在两块玻璃承载体的两面依次形成第一金属膜层、第二铜膜层和第三金属膜层,得到两块两面均为金属层的玻璃电路板;
    (2)在两面均为金属层的玻璃电路板上制作电路图案,并在玻璃电路板上设置通孔;
    (3)将两块玻璃电路板进行对位并在两块玻璃电路板之间设置一层贴合胶层,经固化,得到玻璃基电路板模组;
    (4)往所述玻璃基电路板模组包括的通孔中点胶注入导电浆料,经固化,得到用于Mini LED显示的玻璃基背光板。
  10. 根据权利要求9所述的制作方法,其特征在于:
    在步骤(2)中,还包括往玻璃电路板的电路面上设置引线;和/或
    在步骤(4)之后,还包括通过SMT或固晶机往用于Mini LED显示的玻璃基背光板包括的一面控制电路面上贴合Mini LED芯片的步骤。
PCT/CN2022/129200 2022-10-28 2022-11-02 用于Mini LED显示的玻璃基背光板及制作方法 WO2024087238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211338672.4A CN115576136B (zh) 2022-10-28 2022-10-28 用于Mini LED显示的玻璃基背光板及制作方法
CN202211338672.4 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024087238A1 true WO2024087238A1 (zh) 2024-05-02

Family

ID=84587833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129200 WO2024087238A1 (zh) 2022-10-28 2022-11-02 用于Mini LED显示的玻璃基背光板及制作方法

Country Status (2)

Country Link
CN (1) CN115576136B (zh)
WO (1) WO2024087238A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206993477U (zh) * 2017-06-27 2018-02-09 广东上普壹明实业有限公司 一种多层的led电路板
CN108055790A (zh) * 2017-12-06 2018-05-18 陈旺寿 一种电路板及其制作方法和应用
JP2019036607A (ja) * 2017-08-10 2019-03-07 リード・エレクトロニクス株式会社 回路付きガラス基板含有多層配線板及びその製造方法
CN112164326A (zh) * 2020-09-18 2021-01-01 深圳集简设计有限公司 一种显示电路板及其制造方法、led显示屏
CN113873788A (zh) * 2021-10-09 2021-12-31 深圳市百柔新材料技术有限公司 一种多层玻璃基板的制备方法、玻璃基板及Mini-LED玻璃基板
CN114253030A (zh) * 2021-12-21 2022-03-29 重庆惠科金渝光电科技有限公司 背光模组及其显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221181A (zh) * 2020-01-20 2020-06-02 深圳市华星光电半导体显示技术有限公司 背光源及其制备方法
CN113183566B (zh) * 2021-04-25 2021-11-26 合肥达视光电科技有限公司 一种具有贴膜线路的光电玻璃及生产工艺
CN216957348U (zh) * 2021-12-28 2022-07-12 昇印光电(昆山)股份有限公司 一种玻璃基底Mini LED背光模组
CN114942539A (zh) * 2022-06-10 2022-08-26 昆山弗莱吉电子科技有限公司 用于液晶显示器的玻璃基板及其生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206993477U (zh) * 2017-06-27 2018-02-09 广东上普壹明实业有限公司 一种多层的led电路板
JP2019036607A (ja) * 2017-08-10 2019-03-07 リード・エレクトロニクス株式会社 回路付きガラス基板含有多層配線板及びその製造方法
CN108055790A (zh) * 2017-12-06 2018-05-18 陈旺寿 一种电路板及其制作方法和应用
CN112164326A (zh) * 2020-09-18 2021-01-01 深圳集简设计有限公司 一种显示电路板及其制造方法、led显示屏
CN113873788A (zh) * 2021-10-09 2021-12-31 深圳市百柔新材料技术有限公司 一种多层玻璃基板的制备方法、玻璃基板及Mini-LED玻璃基板
CN114253030A (zh) * 2021-12-21 2022-03-29 重庆惠科金渝光电科技有限公司 背光模组及其显示装置

Also Published As

Publication number Publication date
CN115576136B (zh) 2023-04-14
CN115576136A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN111328192A (zh) 加法制造玻璃基板pcb板及led显示器的方法
CN111642081A (zh) 一种pcb阻焊生产工艺
US10893618B2 (en) Method for manufacturing multilayer substrate
CN104882531A (zh) 一种led集成发光模组
WO2024087238A1 (zh) 用于Mini LED显示的玻璃基背光板及制作方法
CN112996239A (zh) 一种侧边带smt焊盘的pcb板及制备方法
KR100797716B1 (ko) 회로기판이 없는 led-백라이트유닛 및 그 제조방법
CN109195363B (zh) 一种z向互连的pcb的制作方法及pcb
JPH07221422A (ja) プリント配線基板およびその製造方法
TW556453B (en) PCB with inlaid outerlayer circuits and production methods thereof
WO2022089269A1 (zh) 一种柔性灯带
TW202334714A (zh) 一種軟膜顯示幕、顯示器及顯示幕製造工藝
KR20130033851A (ko) 다층 인쇄회로기판 및 그 제조방법
KR20120050834A (ko) 반도체 패키지 기판의 제조방법
CN101616534A (zh) 多层印刷配线板及其制造方法
CN2922382Y (zh) 一种表面安装的印制电路板电路模块
CN220087561U (zh) 线路板、背光模组及显示装置
JP3601455B2 (ja) 液晶表示装置
CN108811337A (zh) 一种双面pcb板的制作方法
CN214256747U (zh) 一种应用于led黑色半固化片的叠层结构
CN219876257U (zh) 一种pcb板及led显示模组
JP2959641B2 (ja) 液晶表示装置
CN216752239U (zh) 一种复合电极结构的过渡载片
CN116504771B (zh) 一种Micro-LED驱动面板及其制备方法
TWI748623B (zh) 透明電路板的製作方法以及透明電路板