WO2024085582A1 - 전극 조립체, 이차 전지, 배터리 팩 및 자동차 - Google Patents

전극 조립체, 이차 전지, 배터리 팩 및 자동차 Download PDF

Info

Publication number
WO2024085582A1
WO2024085582A1 PCT/KR2023/015993 KR2023015993W WO2024085582A1 WO 2024085582 A1 WO2024085582 A1 WO 2024085582A1 KR 2023015993 W KR2023015993 W KR 2023015993W WO 2024085582 A1 WO2024085582 A1 WO 2024085582A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
tab
electrode
core
winding
Prior art date
Application number
PCT/KR2023/015993
Other languages
English (en)
French (fr)
Inventor
윤우진
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230137388A external-priority patent/KR20240053547A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380020318.3A priority Critical patent/CN118765454A/zh
Publication of WO2024085582A1 publication Critical patent/WO2024085582A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs

Definitions

  • the present invention relates to electrode assemblies, secondary batteries, battery packs, and automobiles.
  • Secondary batteries which are easy to apply depending on the product group and have electrical characteristics such as high energy density, are used not only in portable devices but also in electric vehicles (EV, Electric Vehicle) and hybrid vehicles (HEV, Hybrid Electric Vehicle) that are driven by an electrical drive source. It is universally applied.
  • EV Electric Vehicle
  • HEV Hybrid Electric Vehicle
  • These secondary batteries not only have the primary advantage of being able to dramatically reduce the use of fossil fuels, but also have the advantage of not generating any by-products due to energy use, so they are attracting attention as a new energy source for eco-friendliness and improving energy efficiency.
  • Types of secondary batteries currently widely used include lithium ion batteries, lithium polymer batteries, nickel cadmium batteries, nickel hydrogen batteries, and nickel zinc batteries.
  • the operating voltage of these unit secondary battery cells is approximately 2.5V to 4.5V. Therefore, when a higher output voltage is required, a battery pack may be formed by connecting a plurality of secondary batteries in series. Additionally, a battery pack may be constructed by connecting multiple secondary batteries in parallel depending on the charge/discharge capacity required for the battery pack. Accordingly, the number of secondary batteries included in the battery pack and the type of electrical connection can be set in various ways depending on the required output voltage and/or charge/discharge capacity. Meanwhile, as types of secondary batteries, cylindrical, prismatic, and pouch-shaped secondary batteries are known, and the secondary batteries may be cylindrical secondary batteries.
  • the present invention seeks to provide an electrode assembly and a secondary battery that prevent deformation of the core portion of the cathode of the electrode assembly and prevent short circuits due to damage to the separator.
  • Another object of the present invention is to provide a battery pack including a secondary battery having the above improved structure and a vehicle including the same.
  • One embodiment of the present invention is an electrode assembly having a structure in which an anode, a separator, and a cathode are laminated and wound, wherein the cathode is provided at an end located in the core of the two ends in a direction perpendicular to the winding axis of the electrode assembly.
  • An electrode assembly is provided including a tab, wherein the in-tab is provided to surround more than 50% of the surface of the cathode facing the core portion.
  • Another embodiment of the present invention provides a secondary battery including an electrode assembly according to an embodiment of the present invention.
  • Another embodiment of the present invention provides a battery pack including a secondary battery according to the above-described embodiment.
  • Another embodiment of the present invention provides a vehicle including a battery pack according to the above-described embodiment.
  • a secondary battery is formed by interposing an insulating separator between the positive and negative electrodes and winding it to form a jelly roll-shaped electrode assembly, which is then inserted into a battery can along with an electrolyte to form a battery.
  • a jelly roll-shaped electrode assembly has a structure in which the electrode assembly is wound by using a winding core, expansion and contraction of the negative electrode occurs during charging and discharging, thereby generating stress within the electrode assembly.
  • the core portion of the electrode assembly is an empty space, and the stress generated during charging and discharging is suppressed from expanding outward by the battery can, and this force causes deformation in the core portion. If the deformation of the core part becomes severe, stress such as a bent area of the electrode may occur, and as a result, a short circuit may occur inside the electrode assembly due to damage to the separator.
  • the in-tab provided at the end located at the core of the cathode of the electrode assembly is provided to cover more than 50% of the surface facing the core of the cathode, It is possible to prevent expansion stress inside the electrode assembly from operating on the winding core. Accordingly, it is advantageous to ensure battery stability by preventing deformation of the core of the electrode assembly and preventing short circuits due to damage to the separator.
  • Figure 1 (a) is a diagram schematically showing an existing in-tap according to a comparative example of the present invention, and (b) is a diagram schematically showing an in-tap according to an embodiment of the present invention.
  • Figure 2(a) is a diagram schematically showing a cross section perpendicular to the winding axis of the electrode assembly according to a comparative example of the present invention
  • (b) is a cross section perpendicular to the winding axis of the electrode assembly according to an embodiment of the present invention. This is a schematic drawing.
  • Figure 3 shows that in a secondary battery including an electrode assembly according to a comparative example of the present invention, stress is generated within the electrode assembly due to charging and discharging, and the outward expansion force is suppressed by the battery can, causing deformation in the core portion.
  • Figure 4 is a diagram showing an electrode before winding of an electrode assembly according to an embodiment of the present invention.
  • Figure 5 is a diagram showing an electrode assembly according to an embodiment of the present invention.
  • Figure 6 is a diagram schematically showing the cathode and anode of the electrode assembly according to an embodiment of the present invention.
  • Figure 7 is a diagram showing the schematic configuration of a battery pack including secondary batteries according to an embodiment of the present invention.
  • Figure 8 is a diagram showing the schematic configuration of a vehicle including a battery pack according to an embodiment of the present invention.
  • Figures 9 and 10 are diagrams showing problems when the in tab is provided to cover less than 50% of the surface facing the winding core.
  • ...unit and “device” used in the specification refer to a unit that processes at least one function or operation.
  • the expression “on” a specific component is intended to express presence on one side of a specific component, and is not intended to limit the hierarchical relationship, and also refers to physical contact with the component. It is not limited, and means that other members may be additionally provided between the above components.
  • the “wound core portion” is provided at the innermost part of the electrode assembly and refers to an empty space provided by winding a jelly roll-shaped electrode assembly using a winding core.
  • In-tab refers to a tab provided at the end located in the core of the electrode assembly in a direction perpendicular to the winding axis.
  • One embodiment of the present invention is an electrode assembly having a structure in which an anode, a separator, and a cathode are laminated and wound, wherein the cathode is provided at an end located in the core of the two ends in a direction perpendicular to the winding axis of the electrode assembly.
  • An electrode assembly is provided including a tab, wherein the in-tab is provided to surround more than 50% of the surface of the cathode facing the core portion.
  • the core portion is provided at the innermost part of the electrode assembly and refers to an empty space provided by winding a jelly roll-shaped electrode assembly using a core.
  • the empty space may be provided in a cylindrical shape.
  • the surface facing the winding core means a surface that directly contacts the winding core.
  • FIG. 4 is a diagram showing the electrode before winding the electrode assembly according to an embodiment of the present invention
  • FIG. 5 is a diagram showing the electrode assembly according to an embodiment of the present invention.
  • the in tab 31 may be a tab provided at an end located in the core of the electrode assembly 1 among both ends in a direction perpendicular to the winding axis.
  • the in tab 31 is one continuous tab and may be provided to cover more than 50% of the surface 40 of the cathode facing the core portion.
  • the surface 40 of the cathode facing the core portion refers to the hatched portion in FIG. 4, for example, the surface facing the core portion to surround the peripheral portion 41R of the core portion of the electrode assembly 1. means.
  • the surface 40 of the negative electrode facing the core portion may be provided in an uncoated portion 37 of the negative electrode that is not provided with an electrode active material layer.
  • 100% of the surface 40 of the cathode facing the core portion may surround 100% of the peripheral portion 41R of the core portion of the electrode assembly 1.
  • the end located in the winding core may be provided in the innermost winding core of the electrode assembly.
  • the in tab 31 is provided to cover more than 50% of the surface 40 of the cathode 30 facing the core portion, thereby causing expansion inside the electrode assembly 1 due to an increase in the internal rigidity of the core portion. It is possible to prevent stress from acting on the winding core. Accordingly, it is advantageous to ensure battery stability by preventing deformation of the core portion of the electrode assembly 1 and preventing short circuits due to damage to the separator.
  • Figure 1 (a) is a diagram schematically showing the existing in-tap 31' according to a comparative example of the present invention, and (b) is a diagram schematically showing the in-tap 31 of the cathode according to an embodiment of the present invention. It is a drawing.
  • the width of the existing in tab 31' according to the comparative example of the present invention is relatively narrow compared to the in tab 31 according to the embodiment of the present invention, so the tab is negative. Since it cannot be provided to cover more than 50% of the surface facing the winding core, expansion stress inside the electrode assembly cannot be prevented from acting on the winding core.
  • the existing in-tab 31' has a relatively narrow width compared to the in-tab 31 according to the embodiment of the present invention, so it is provided not only in the winding axis direction (C) of the electrode assembly, but also in a diagonal manner. Even in the case where it is wound and formed into a spiral shape, it cannot be provided to cover more than 50% of the surface opposite the winding core of the cathode due to the separator or the opposite side provided with the tab of the cathode, and is not continuous in a spiral shape. Due to the occurrence of an uneven section, the internal rigidity is reduced compared to the continuous in-tap 31 according to the present invention, and the expansion stress inside the electrode assembly cannot be prevented from operating on the core portion. Additionally, due to the spiral shape, burrs may exist in non-continuous sections of the tab, and in this case, the separator may be damaged, making safety vulnerable.
  • the electrode assembly has a structure in which the electrode assembly is wound by using a winding core
  • expansion and contraction of the negative electrode occurs during charging and discharging, thereby generating stress within the electrode assembly.
  • the stress generated by charging and discharging is suppressed by the battery can's outward expansion force, and the empty space of the winding core is deformed by this force. If the deformation of the core part becomes severe, stress such as a bent area of the electrode may occur, and as a result, a short circuit may occur inside the electrode assembly due to damage to the separator.
  • FIGS. 9 and 10 are diagrams showing problems when the in tab 31 is provided to cover less than 50% of the surface facing the winding core.
  • Figure 9 shows the core section deformed after activation and life evaluation.
  • (a) shows the start of deformation after activation
  • (b) shows the deformation intensified after life evaluation.
  • a heat dissipation problem also occurs along with deformation of the core.
  • FIG. 10 it can be seen that after discharging the battery, the temperature of the core portion (b) increased by about 2 to 3°C compared to the outer surface portion (a). That is, it was confirmed that when the in tab 31 covers less than 50% of the surface facing the core, heat is not released from the core and the temperature increases.
  • the in tab 31 according to an embodiment of the present invention may be provided to surround more than 50% of the surface of the cathode facing the core portion, for example, continuously so as to surround the periphery of the core portion of the electrode assembly. It can be provided with
  • the rigidity of the core can be increased to minimize deformation of the core, and the heat trapped in the core can be released from the metal chain in-tab (31). ) and can lower the temperature of the core part.
  • the circumference of the core portion of the electrode assembly refers to the circumference of the core portion, which is an empty space provided by winding a jelly roll-shaped electrode assembly.
  • the in-tab 31 is provided to cover more than 50% of the surface of the cathode facing the core portion, thereby preventing the expansion stress inside the electrode assembly from acting on the core portion, and thus, the It is advantageous for ensuring battery stability by preventing deformation of the core part of the electrode assembly and preventing short circuits due to damage to the separator.
  • the in tab 31 is provided to surround more than 50% of the surface facing the core of the cathode means that it is continuously provided to surround the periphery of the core of the electrode assembly, for example, one tab This means that it can be provided in a continuous shape to cover more than 50% of the surface facing the winding core.
  • a case in which the electrode assembly is not provided continuously to surround the periphery of the core portion is, for example, a case in which the existing in tab is provided diagonally and is wound while being provided on the periphery of the core portion.
  • the existing in-tab 31' is wound and provided on the periphery of the core portion, the rigidity may be reduced compared to the in-tab 31 of the present invention, and while wound in a spiral shape, burrs at the corners of the tab ( Burr) may be located on the outer peripheral surface of the core portion, which may reduce safety due to damage to the separator.
  • Figure 3 shows that in a secondary battery including an electrode assembly according to a comparative example of the present invention, stress is generated within the electrode assembly due to charging and discharging, and the outward expansion force is suppressed by the battery can, causing deformation in the core portion.
  • a secondary battery is formed by interposing an insulating separator between the positive and negative electrodes and winding it to form a jelly roll-shaped electrode assembly, which is then inserted into a battery can along with an electrolyte to form a battery.
  • the secondary battery may be a cylindrical secondary battery.
  • a jelly roll-shaped electrode assembly has a structure in which the electrode assembly is wound by using a core portion
  • expansion and contraction of the negative electrode occurs and stress is generated within the electrode assembly.
  • the core part of the electrode assembly is an empty space, and the stress generated during charging and discharging is suppressed from expanding outwardly by the battery can, and the stress is activated inside the electrode assembly, causing deformation in the core part by this force. do. If the deformation of the core part becomes severe, stress such as a bent area of the electrode may occur, and as a result, a short circuit may occur inside the electrode assembly due to damage to the separator.
  • the negative electrode includes a current collector and an electrode active material layer provided on the current collector, the current collector includes an uncoated portion not provided with the electrode active material layer, and the negative electrode includes the electrode assembly. It provides an electrode assembly that includes the uncoated portion at at least one of the ends in a direction perpendicular to the winding axis, and wherein the in-tab is provided on the uncoated portion provided at an end located in the winding core portion among the uncoated portions.
  • the cathode 30 is provided with the in tab 31 on the uncoated portion 37 provided at the end located in the winding core portion, so that it has high electrical conductivity and is advantageous for electrical connection, and the electrode assembly The resistance is reduced, which is advantageous in terms of energy density.
  • a negative electrode tab 33 may be provided on one or more of both ends of the electrode assembly in a direction perpendicular to the winding axis.
  • Figure 6 is a diagram schematically showing the cathode and anode of the electrode assembly according to an embodiment of the present invention.
  • the cathode 30 according to an exemplary embodiment of the present invention further includes an outer tab 32 provided at an outer end of both ends in a direction perpendicular to the winding axis of the electrode assembly. It can be included. Since the cathode 30 includes one more outer tab 32, the resistance of the electrode assembly can be reduced as the number of tabs increases.
  • the positive electrode 10 which will be described later, has a free edge shape and a middle tab 11 structure in which the end of the positive electrode current collector and the end of the positive electrode active material layer 14 coincide at the end in the direction perpendicular to the winding axis of the electrode assembly. You can.
  • the negative electrode 30 expands and contracts during charging and discharging of the electrode assembly, and stress may increase in the area where the free edge of the positive electrode 10 contacts, but the in tab 31 of the negative electrode 30 ), the internal rigidity of the core portion increases, preventing deformation of the core portion of the electrode assembly 1 and preventing short circuits due to damage to the separator.
  • the resistance of the electrode assembly 1 can be reduced and the energy density can be increased.
  • the positive electrode tab may have a structure located in the core of the winding.
  • the electrode assembly according to the above structure generally has one anode tab and one cathode outer tab, and has a problem in that the resistance of the electrode assembly increases due to a decrease in the number of tabs compared to the structure of the electrode assembly according to the present invention.
  • Figure 2(a) is a diagram schematically showing a cross section perpendicular to the winding axis of the existing electrode assembly 1' according to a comparative example of the present invention
  • (b) is a diagram schematically showing the electrode assembly 1 according to an embodiment of the present invention
  • ) is a drawing schematically showing a cross section perpendicular to the winding axis.
  • the width of the existing in tab 31' according to the comparative example of the present invention is relatively thin compared to the in tab 31 according to the embodiment of the present invention, so that the tab touches the core of the negative electrode. Since it cannot be provided to cover more than 50% of the opposing surface, expansion stress inside the electrode assembly cannot be prevented from acting on the winding core.
  • the existing in-tab 31' has a relatively thin width compared to the in-tab 31 according to the embodiment of the present invention, so not only is it provided in the direction of the winding axis of the electrode assembly, but it is also provided diagonally and wound to form a spiral shape. Even when formed in a shape, a non-continuous section occurs, and the internal rigidity is reduced compared to the continuous in-tab 31 according to the present invention, so that the expansion stress inside the existing electrode assembly 1' acts on the core part. You can't prevent it from happening. Additionally, due to the spiral shape, burrs may exist in non-continuous sections of the tab, and in this case, the separator may be damaged, making safety vulnerable.
  • the in tab 31 is one continuous tab, and is provided to cover more than 50% of the surface facing the winding core of the cathode.
  • the internal rigidity of the core portion increases, thereby preventing the expansion stress inside the electrode assembly 1 from operating on the core portion. Accordingly, it is advantageous to ensure battery stability by preventing deformation of the core portion of the electrode assembly 1 and preventing short circuits due to damage to the separator.
  • the in-tab 31 is provided continuously, so there is no burr, so there is no risk of damage to the separator.
  • One embodiment of the present invention provides an electrode assembly (1) in which the in tab (31) is provided to cover more than 70% of the surface (40) facing the winding core.
  • the in tab 31 may be provided to cover more than 75%, more than 80%, more than 85%, more than 90%, or more than 95% of the surface 40 facing the winding core.
  • the in tab 31 may be provided to cover less than 100%, or 100%, of the surface 40 facing the winding core.
  • the in tab 31 can maintain rigidity and prevent the expansion stress inside the electrode assembly 1 from acting on the core portion. Accordingly, it is possible to prevent deformation of the core portion of the electrode assembly 1 and prevent short circuits due to damage to the separator, thereby ensuring battery stability.
  • the width of the in tab is 80% or more and 100% or less of the length of the peripheral portion of the winding core portion.
  • the width 31W of the in-tab refers to the length of the in-tab in a direction perpendicular to the winding axis of the electrode assembly.
  • the peripheral portion 41R of the core portion refers to the perimeter of the core portion, which is an empty space provided by winding a jelly roll-shaped electrode assembly.
  • the width 31W of the in-tab may be 85% or more, 90% or more, or 95% or more of the length of the peripheral portion 41R of the core portion.
  • the width of the in tab may be 100% or less, or 100%, of the length of the peripheral portion of the core portion.
  • the in-tap 31 is provided to surround the peripheral portion 41R of the core portion of the negative electrode, so that the internal rigidity of the core portion can be increased. , This can prevent the expansion stress inside the electrode assembly from operating on the winding core. Therefore, it is advantageous to ensure battery stability by preventing deformation of the core portion of the electrode assembly and preventing short circuits due to damage to the separator.
  • the width of the in-tab is 15% to 20% of the circumferential length of the electrode assembly.
  • the peripheral portion 51R of the electrode assembly refers to the peripheral portion of the end of the electrode assembly 1 in the winding axis direction.
  • the width 31W of the in tab may be 15.5% or more, or 16% or more of the length of the peripheral portion 51R of the electrode assembly.
  • the width 31W of the in tab may be 19.5% or less, 19% or less, 18.5% or less, or 18% or less of the length of the peripheral portion 51R of the electrode assembly.
  • the in-tap 31 is provided to surround the peripheral portion 41R of the core portion of the negative electrode, so that the internal rigidity of the core portion can be increased, and thus the inner rigidity of the core portion 41R can be increased. It is possible to prevent expansion stress from operating on the winding core.
  • the in tab 31 has a length extending in a direction perpendicular to the winding axis of the electrode assembly of 10 mm to 12 mm.
  • a length extending from the in-tab in a direction perpendicular to the winding axis of the electrode assembly may be the width (31W) of the in-tab.
  • the in tab 31 may have a length extending in a direction perpendicular to the winding axis of the electrode assembly of 10.3 mm or more, 10.6 mm or more, or 10.9 mm or more.
  • the in tab 31 may have a length extending in a direction perpendicular to the winding axis of the electrode assembly of 11.7 mm or less, 11.4 mm or less, or 11.1 mm or less.
  • the in-tap 31 is provided to surround the peripheral portion 41R of the core portion of the negative electrode, so that the internal rigidity of the core portion can be increased, and thus the inner rigidity of the core portion 41R can be increased. It is possible to prevent expansion stress from operating on the winding core. Therefore, it is advantageous to ensure battery stability by preventing deformation of the core portion of the electrode assembly 1 and preventing short circuits due to damage to the separator.
  • the thickness of the in tab is 100 ⁇ m or more.
  • the thickness 31T of the in tab may be 110 ⁇ m or more, 120 ⁇ m or more, 130 ⁇ m or more, or 140 ⁇ m or more.
  • the thickness of the phosphor tab may be 200 ⁇ m or less, 190 ⁇ m or less, 180 ⁇ m or less, or 170 ⁇ m.
  • the in-tap 31 can increase the internal rigidity of the core portion, thereby preventing expansion stress inside the electrode assembly 1 from operating on the core portion. Therefore, it is advantageous to ensure battery stability by preventing deformation of the core portion of the electrode assembly 1 and preventing short circuits due to damage to the separator.
  • the in tab 31 since the in tab 31 has appropriate rigidity within the above thickness range, it is easy to wind the electrode assembly during the winding process.
  • One embodiment of the present invention provides an electrode assembly in which the in-tap has a thermal conductivity of 90 W/(m ⁇ K) or more.
  • the thermal conductivity is the difference in the degree to which heat is transferred from one side to the other, and refers to the inherent property of a material that exhibits heat transfer.
  • the in tab has a thermal conductivity of 91 W/(m ⁇ K) or more, 100 W/(m ⁇ K) or more, 200 W/(m ⁇ K) or more, 300 W/(m ⁇ K) or more, or 400 W/(m ⁇ K) or more. It may be more than (m ⁇ K).
  • the in-tap may have a thermal conductivity of 450 W/(m ⁇ K) or less, 430 W/(m ⁇ K) or less, 410 W/(m ⁇ K) or less, or 405 W/(m ⁇ K) or less.
  • the phosphorus tab may include at least one of copper and nickel, as will be described later.
  • the thermal conductivity of copper is 401 W/(m ⁇ K)
  • the thermal conductivity of Ni is 91 W/(m ⁇ K). K) may be.
  • the phosphor tab may be provided as a clad tab in which a copper layer containing the copper and a nickel layer containing the nickel are bonded.
  • heat generated in the electrode assembly can be transmitted through the copper layer with good thermal conductivity. It can have a thermal conductivity similar to that of copper, making it advantageous for heat conduction.
  • the existing in-tab 31' according to the comparative example of the present invention has a relatively narrow width compared to the in-tab 31 according to the embodiment of the present invention, so it is used as an electrode assembly.
  • the thermal conductivity may be low compared to the in tab 31 according to the embodiment of the present invention.
  • the existing in-tab 31' has a relatively narrow width or has a non-continuous section in a spiral shape, so that heat is transmitted only in a narrow or spiral direction compared to the continuous in-tap 31 according to the present invention.
  • the in tab 31 according to the embodiment of the present invention is advantageous for heat conduction because heat can be transferred in any direction in 2D.
  • the phosphorus tab includes at least one of copper and nickel.
  • the phosphorus tab may include copper.
  • the phosphorus tab may contain between 50% and 100% of copper compared to the total 100%.
  • the phosphorus tab may include nickel.
  • the phosphorus tab may contain 0% or more and 50% or less of nickel compared to the total 100%.
  • the phosphorus tab may be provided as a clad tab in which a copper layer containing copper and a nickel layer containing nickel are bonded.
  • the in tab includes the compound, it may be more advantageous for heat conduction of an electrode assembly including it.
  • One embodiment of the present invention provides an electrode assembly in which the in-tab includes a protrusion on one surface of an end of the electrode assembly in the winding axis direction.
  • the protrusion 311 is a component necessary for welding with a battery can in a secondary battery including the electrode assembly 1.
  • the protrusion 311 is bent to the center of the core portion. By positioning and welding to the center of the inner bottom surface of the battery can, the in tab 31 and the battery can can be electrically connected.
  • the center of the winding core refers to the central area of the cross section perpendicular to the winding axis of the electrode assembly 1 in the winding core
  • the center of the inner bottom surface of the battery can refers to the center area perpendicular to the winding axis of the electrode assembly on the inner bottom surface of the battery can. refers to the central area of the cross section.
  • the in-tab includes a concave portion on the other surface opposite to one surface of the end of the electrode assembly in the winding axis direction.
  • the concave portion 312 is configured for convenience during the assembly process. Generally, when attaching the tab 31 to the electrode assembly 1, the tab 31 of a certain length is cut from a wound tab roll and attached. , If the protrusion 311 exists according to an exemplary embodiment of the present invention, the concave part 312 may inevitably occur when the tab of the predetermined length is cut.
  • the positive electrode includes a current collector and an electrode active material layer provided on the current collector, and the positive electrode current collector is located at at least one of both ends in a direction perpendicular to the winding axis of the electrode assembly. The end of and the end of the positive electrode active material layer coincide.
  • the end of the positive electrode 10, the end of the positive electrode current collector, and the end of the positive electrode active material layer 14 coincide with each other, meaning that the positive electrode 10 in the electrode assembly 1 has a free edge. edge), which may mean that the uncoated area 15 is not formed at both ends of the positive electrode 10 in the direction P perpendicular to the winding axis of the electrode assembly 1.
  • the fact that the end of the positive electrode current collector and the end of the positive electrode active material layer 14 match at the end of the positive electrode 10 means that the length of the positive electrode current collector and the positive electrode active material layer 14 at the end of the positive electrode are the same. This means that the length of the positive electrode current collector and the length of the positive electrode active material layer 14 may be within a general error range in the art. For example, the length of the positive electrode current collector relative to the length of the positive electrode active material layer 14 at the end of the positive electrode may be +0.5% or less.
  • the end of the positive electrode may be provided at the start of the winding of the wound electrode assembly.
  • the positive electrode further includes tabs provided on portions other than both ends in a direction perpendicular to the winding axis of the electrode assembly.
  • the positive electrode has a free edge structure, and therefore, uncoated areas 15 may not be formed at both ends of the positive electrode in the direction P perpendicular to the winding axis of the electrode assembly.
  • the positive electrode may have a middle tab 11 structure, and the middle tab structure includes tabs 11 provided on parts other than both ends in the direction P perpendicular to the winding axis of the electrode assembly 1. It means including more. Accordingly, both ends of the electrode assembly 1 in the direction P perpendicular to the winding axis may have free edges on which the uncoated region 15 is not formed.
  • the middle tab 11 may be provided on the anode uncoated area 15.
  • the positive electrode 10 has a free edge shape and a middle tab where the end of the positive electrode current collector and the end of the positive electrode active material layer 14 coincide at the end in the direction perpendicular to the winding axis of the electrode assembly 1. (11) It may have a structure.
  • the negative electrode expands and contracts during charging and discharging of the electrode assembly 1, and stress may increase in the area where the positive electrode free edge contacts.
  • the negative electrode expands and contracts.
  • the internal rigidity of the core portion is increased to prevent deformation of the core portion of the electrode assembly 1 and prevent short circuits due to damage to the separator.
  • the cathode 30 further includes an outer tab 32, so that the resistance of the electrode assembly can be reduced and the energy density can be increased compared to the case where the anode 10 and the cathode 30 each have one tab. .
  • One embodiment of the present invention provides a secondary battery including an electrode assembly according to the above-described embodiment.
  • the positive electrode active material coated on the positive electrode plate and the negative electrode active material coated on the negative electrode plate can be used without limitation as long as they are active materials known in the art.
  • Non-limiting examples of the positive electrode active material include common positive electrode active materials that can be used in the positive electrode of conventional electrochemical devices, especially lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide, or lithium composites combining these. Oxides can be used.
  • the positive electrode active material has the general formula A [ A Contains at least one element selected from Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, and Cr; 0.1 ⁇ z ⁇ 2; the stoichiometric coefficients of the components included in x, y, z and M are selected so that the compound remains electrically neutral.
  • the positive electrode active material is an alkali metal compound xLiM 1 O 2 -(1-x)Li 2 M 2 O 3 disclosed in US6,677,082, US6,680,143, etc.
  • M 1 is at least one element having an average oxidation state of 3
  • M 2 may include at least one element with an average oxidation state of 0 ⁇ x ⁇ 1).
  • the positive electrode active material has the general formula LiaM 1 xFe 1 -xM 2 yP 1 -yM 3 zO 4-z
  • M 1 is Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd , Al, Mg and Al
  • M 2 contains at least one element selected from Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al, As, Sb, Si, M 3 includes at least one element selected from Ge, V and S; M 3 includes a halogen element optionally including F; 1 ;
  • the stoichiometric coefficients of the components included in a may be lithium metal phosphate represented by [containing at least one element selected from Ti, Si, Mn, Fe, Co, V, Cr, Mo, Ni, Al, Mg and Al].
  • the positive electrode active material may include primary particles and/or secondary particles in which primary particles are aggregated.
  • Non-limiting examples of the negative electrode active material include common negative electrode active materials that can be used in the negative electrode of conventional electrochemical devices, especially lithium metal or lithium alloy, carbon, petroleum coke, activated carbon, Lithium adsorption materials such as graphite or other carbons can be used.
  • the negative electrode active material may be carbon material, lithium metal or lithium metal compound, silicon or silicon compound, tin or tin compound, etc.
  • Metal oxides such as TiO 2 and SnO 2 with a potential of less than 2V can also be used as negative electrode active materials.
  • carbon materials both low-crystalline carbon and high-crystalline carbon can be used.
  • Non-limiting examples of positive electrode current collectors include foils made of aluminum, nickel, or combinations thereof, and non-limiting examples of negative electrode current collectors include foils made of copper, gold, nickel, or copper alloys, or combinations thereof. There are foils, etc.
  • the separator is a porous polymer film, for example, a porous polymer film made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, ethylene/methacrylate copolymer, etc. Alternatively, they can be used by stacking them.
  • the separator may be a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc.
  • At least one surface of the separator may include a coating layer of inorganic particles.
  • the separator itself is made of a coating layer of inorganic particles.
  • Particles constituting the coating layer may have a structure combined with a binder such that an interstitial volume (interstitial volume ⁇ me) exists between adjacent particles.
  • the inorganic particles may be made of an inorganic material with a dielectric constant of 5 or more.
  • the inorganic particles include Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB(Mg 3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), BaTiO 3 , hafnia(HfO 2 ), SrTiO 3 , TiO 2 , Al 2 O 3 , ZrO 2 , SnO 2 , CeO 2 , MgO, CaO, ZnO and Y 2 O 3 It may contain at least one substance selected from the group consisting of
  • the electrolyte may be a salt with a structure such as A + B - .
  • a + includes alkali metal cations such as Li + , Na + , K + or ions consisting of a combination thereof.
  • B - is F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , AlO 4 - , AlCl 4 - , PF 6 - , SbF 6 - , AsF 6 - , BF 2 C 2 O 4 - , BC 4 O 8 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3
  • the electrolyte can also be used by dissolving it in an organic solvent.
  • Organic solvents include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and dipropyl carbonate (DPC). , dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (N-methyl- 2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), gamma butyrolactone, or mixtures thereof may be used.
  • Another embodiment of the present invention provides a battery pack including at least one of the above-described secondary batteries.
  • the cylindrical secondary battery according to the above-described embodiment can be used to manufacture a battery pack.
  • FIG. 7 is a diagram showing a schematic configuration of a battery pack 3 including secondary batteries 2 according to an embodiment of the present invention.
  • the battery pack 3 includes an assembly of electrically connected cylindrical secondary batteries and a pack housing 4 that accommodates the same.
  • the cylindrical secondary battery is the secondary battery 2 according to the above-described embodiment.
  • parts such as bus bars, cooling units, and external terminals for electrical connection of cylindrical secondary batteries are omitted.
  • Another embodiment of the present invention provides a vehicle including at least one of the above-described battery packs.
  • the battery pack can be mounted in a car.
  • the vehicle may be, for example, an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle.
  • Motor vehicles include four-wheeled vehicles or two-wheeled vehicles.
  • FIG. 8 is a diagram for explaining the automobile 5 including the battery pack 3 of FIG. 7.
  • a vehicle 5 according to an embodiment of the present invention includes a battery pack 3 according to an embodiment of the present invention.
  • the vehicle operates by receiving power from the battery pack 3 according to an embodiment of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시상태는 양극, 분리막 및 음극이 적층되어 권취된 구조를 갖는 전극 조립체로서, 상기 음극은 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 권심부에 위치한 단부에 구비된 인 탭을 포함하고, 상기 인 탭은 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비되는 것인 전극 조립체, 이를 포함하는 이차 전지, 배터리 팩 및 자동차를 제공한다.

Description

전극 조립체, 이차 전지, 배터리 팩 및 자동차
본 발명은 전극 조립체, 이차 전지, 배터리 팩 및 자동차에 관한 것이다.
본 출원은 2022년 10월 17일에 한국 특허청에 제출된 한국 특허 출원 제10-2022-0133219호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 2023년 10월 16일에 한국 특허청에 제출된 한국 특허 출원 제10-2023-0137388호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
제품 군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차 전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기 자동차(EV, Electric Vehicle), 하이브리드 자동차(HEV, Hybrid Electric Vehicle) 등에 보편적으로 응용되고 있다.
이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 장점 또한 갖기 때문에 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
현재 널리 사용되는 이차 전지의 종류에는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차 전지 셀의 작동 전압은 약 2.5V ~ 4.5V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 복수 개의 이차 전지를 직렬로 연결하여 배터리 팩을 구성하기도 한다. 또한, 배터리 팩에 요구되는 충방전 용량에 따라 다수의 이차 전지를 병렬 연결하여 배터리 팩을 구성하기도 한다. 따라서, 상기 배터리 팩에 포함되는 이차 전지의 개수 및 전기적 연결 형태는 요구되는 출력 전압 및/또는 충방전 용량에 따라 다양하게 설정될 수 있다. 한편, 이차 전지의 종류로서, 원통형, 각형 및 파우치형 이차 전지가 알려져 있으며, 상기 이차 전지는 원통형 이차 전지일 수 있다.
본 발명은 전극 조립체의 음극에서 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하는 전극 조립체 및 이차전지를 제공하고자 한다.
본 발명의 또 하나의 목적은 상기와 같은 개선된 구조를 가진 이차 전지를 포함하는 배터리 팩과 이를 포함하는 자동차를 제공하는데 있다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는 양극, 분리막 및 음극이 적층되어 권취된 구조를 갖는 전극 조립체로서, 상기 음극은 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 권심부에 위치한 단부에 구비된 인 탭을 포함하고, 상기 인 탭은 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비되는 것인 전극 조립체를 제공한다.
본 발명의 또 하나의 실시상태는 본 발명의 일 실시상태에 따른 전극 조립체를 포함하는 이차 전지를 제공한다.
본 발명의 또 하나의 실시상태는 전술한 실시상태에 따른 이차 전지를 포함하는 배터리 팩을 제공한다.
본 발명의 또 하나의 실시상태는 전술한 실시상태에 따른 배터리 팩을 포함하는 자동차를 제공한다.
이차 전지는 양극과 음극 사이에 절연체인 분리막을 개재하고 이를 권취하여 젤리롤 형태의 전극 조립체를 형성하고, 이를 전해질과 함께 전지 캔 내부에 삽입하여 전지를 구성한다. 젤리롤 형태의 전극 조립체가 권심부를 이용해 와인딩하여 권취된 구조를 가지는 경우, 충방전할 때 음극의 팽창 및 수축이 일어나면서 상기 전극 조립체 내에 응력이 발생하게 된다.
상기 전극 조립체의 권심부는 빈 공간으로서, 충방전으로 발생한 응력은 상기 전지 캔에 의해 외부로 팽창하는 힘이 억제되며 이 힘에 의해 권심부에 변형이 발생하게 된다. 상기 권심부의 변형이 심해지는 경우, 전극이 꺾이는 부위가 발생하는 등의 스트레스가 발생할 수 있으며, 이에 따라 상기 전극 조립체 내부에서 분리막 손상에 의한 쇼트가 발생할 수 있다.
본 발명의 실시상태들에 따르면, 전극 조립체의 음극의 권심부에 위치한 단부에 구비된 인 탭(In-tab)이 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비됨으로써, 상기 전극 조립체 내부의 팽창 응력이 권심부에 작동하는 것을 방지할 수 있다. 이에 따라, 상기 전극 조립체의 권심부 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하여 전지 안정성 확보에 유리하다.
다만, 본 발명을 통해 얻을 수 있는 유리한 효과는 상술한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1 (a)는 본 발명의 비교예에 따른 기존의 인 탭을 개략적으로 나타내는 도면이고, (b)는 본 발명의 실시예에 따른 인 탭을 개략적으로 나타내는 도면이다.
도 2(a)는 본 발명의 비교예에 따른 전극 조립체의 권취 축에 수직인 단면을 개략적으로 나타내는 도면이고, (b)는 본 발명의 실시예에 따른 전극 조립체의 권취 축에 수직인 단면을 개략적으로 나타내는 도면이다.
도 3은 본 발명의 비교예에 따른 전극 조립체를 포함하는 이차 전지에서 충방전으로 인한 전극 조립체 내에 응력이 발생하고, 전지 캔에 의해 외부로 팽창하는 힘이 억제되면서, 권심부에 변형이 발생하는 과정을 나타내는 도면이다.
도 4는 본 발명의 실시예에 따른 전극 조립체의 권취 전 전극을 도시하는 도면이다.
도 5은 본 발명의 실시예에 따른 전극 조립체를 도시하는 도면이다.
도 6은 본 발명의 실시예에 따른 전극 조립체의 음극 및 양극을 개략적으로 나타낸 도면이다.
도 7은 본 발명의 실시예에 따른 이차 전지들을 포함하는 배터리 팩의 개략적 구성을 나타낸 도면이다.
도 8은 본 발명의 실시예에 따른 배터리 팩을 포함하는 자동차의 개략적인 구성을 나타낸 도면이다.
도 9 및 10은 인 탭이 권심부를 대향하는 면의 50% 미만을 감싸도록 구비되었을 때의 문제점을 나타낸 도면이다.
[부호의 설명]
1: 전극 조립체
1': 기존의 전극 조립체
2: 이차 전지
3: 배터리 팩
4: 팩 하우징
5: 자동차
10: 양극
11: 양극 미들 탭
11': 기존의 양극 미들 탭
12: 양극 권심부에 위치한 단부
12': 기존의 양극 권심부에 위치한 단부
13: 양극 외각에 위치한 단부
13': 기존의 양극 외각에 위치한 단부
14: 양극 활물질층
15: 양극 무지부
20: 분리막
30: 음극
31: 음극 인 탭
31': 기존의 음극 인 탭
32: 음극 외각 탭
32': 기존의 음극 외각 탭
33: 음극 탭
34: 음극 권심부에 위치한 단부
34': 기존의 음극 권심부에 위치한 단부
35: 음극 외각에 위치한 단부
35': 기존의 음극 외각에 위치한 단부
36: 음극 활물질층
37: 음극 무지부
38: 전극 조립체의 권취축의 수직인 방향의 양 단부
40: 권심부를 대향하는 면
41R: 권심부의 둘레부
51R: 전극 조립체의 둘레부
31W: 인 탭의 폭
31T: 인 탭의 두께
311: 돌출부
312: 오목부
I: 코어부
O: 최외각부
C: 전극 조립체의 권취축
P: 전극 조립체의 권취축에 수직인 방향
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시상태들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에 있어서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 특정 구성요소가 존재함을 설명하기 위한 것이며, 다른 구성요소들의 존재 또는 부가 가능성을 미리 배제하는 것은 아니다.
또한, 명세서에 기재된 "…부", "장치" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미한다.
본 명세서에 있어서, 특정 구성요소의 "상"에 존재한다는 표현은 특정 구성요소의 일측에 존재함을 표현하기 위한 것이며, 상하 관계를 한정하기 위한 것은 아니며, 또한 상기 구성요소와 물리적으로 접촉하는 것으로 한정되지 아니하고, 상기 구성요소와의 사이에 다른 부재가 추가로 구비될 수 있음을 의미한다.
본 명세서에 있어서, "권심부"란 전극 조립체의 최 내측에 구비되는 것으로, 젤리롤 형태의 전극 조립체가 권심을 이용해 와인딩하여 구비되는 빈 공간을 의미한다.
본 명세서에 있어서, "인 탭(In-tab)"이란 전극 조립체의 권취축에 수직인 방향의 양 단부 중 권심부에 위치한 단부에 구비되는 탭을 의미한다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
발명의 이해를 돕기 위하여, 첨부된 도면은 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다. 또한, 서로 다른 실시예에서 동일한 구성요소에 대해서는 동일한 참조번호가 부여될 수 있다.
이하, 도면을 참고하여 본 발명의 일실시예에 대하여 설명한다.
본 발명의 일 실시상태는 양극, 분리막 및 음극이 적층되어 권취된 구조를 갖는 전극 조립체로서, 상기 음극은 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 권심부에 위치한 단부에 구비된 인 탭을 포함하고, 상기 인 탭은 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비되는 것인 전극 조립체를 제공한다.
상기 권심부란 전극 조립체의 최 내측에 구비되는 것으로, 젤리롤 형태의 전극 조립체가 권심을 이용해 와인딩하여 구비되는 빈 공간을 의미한다. 상기 빈 공간은 원통형으로 구비될 수 있다.
상기 권심부를 대향하는 면이란 상기 권심부에 직접 맞닿는 면을 의미한다.
도 4는 본 발명의 실시예에 따른 전극 조립체의 권취 전 전극을 도시하는 도면이고, 도 5은 본 발명의 실시예에 따른 전극 조립체를 도시하는 도면이다.
도 4 및 5를 참조하면, 상기 인 탭(31)이란 상기 전극 조립체(1)의 권취축에 수직인 방향의 양 단부 중 권심부에 위치한 단부에 구비되는 탭일 수 있다.
일 실시 상태에 따르면, 상기 인 탭(31)은 연속된 하나의 탭으로서, 상기 음극의 상기 권심부를 대향하는 면(40)의 50% 이상을 감싸도록 구비될 수 있다.
상기 음극의 상기 권심부를 대향하는 면(40)이란 도 4에서 빗금친 부분을 의미하는 것으로, 예컨대 전극 조립체(1)의 권심부의 둘레부(41R)를 감싸도록 상기 권심부에 대향하는 면을 의미한다.
상기 음극의 상기 권심부를 대향하는 면(40)은 상기 음극에서 전극 활물질층이 구비되지 않은 무지부(37)에 구비되는 것일 수 있다.
상기 음극의 상기 권심부를 대향하는 면(40)의 100%는 전극 조립체(1)의 권심부의 둘레부(41R)를 100% 감싸는 것일 수 있다.
상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 권심부에 위치한 단부는 상기 전극 조립체의 최 내측인 권심부에 구비될 수 있다.
상기 인 탭(31)이 상기 음극(30)의 상기 권심부를 대향하는 면(40) 50% 이상을 감싸도록 구비됨으로써, 상기 권심부의 내부 강성 증가로 인하여 상기 전극 조립체(1) 내부의 팽창 응력이 상기 권심부에 작동하는 것을 방지할 수 있다. 이에 따라, 상기 전극 조립체(1)의 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하여 전지 안정성 확보에 유리하다.
도 1 (a)는 본 발명의 비교예에 따른 기존의 인 탭(31')을 개략적으로 나타내는 도면이고, (b)는 본 발명의 실시예에 따른 음극의 인 탭(31)을 개략적으로 나타내는 도면이다.
도 1 (a) 및 (b)를 참조하면, 본 발명의 비교예에 따른 기존의 인 탭(31')은 본 발명의 실시예에 따른 인 탭(31)에 비하여 폭이 비교적 좁아서 탭이 음극의 권심부를 대향하는 면의 50% 이상을 감싸도록 구비될 수 없어 상기 전극 조립체 내부의 팽창 응력이 권심부에 작동하는 것을 방지할 수 없다.
상기 기존의 인 탭(31')은 본 발명의 실시예에 따른 인 탭(31)에 비하여 폭이 비교적 좁아 이를 전극 조립체의 권취축 방향(C)으로 구비한 경우뿐 아니라, 사선으로 구비하여 이를 권취하여 나선형 형태로 형성한 경우에도, 상기 음극의 탭이 구비된 반대면 또는 분리막이 개재됨으로 인하여 음극의 권심부를 대향하는 면의 50% 이상을 감싸도록 구비될 수 없고, 나선형 형태에 연속되지 않은 구간이 발생하여 본 발명에 따른 연속적인 인 탭(31) 대비 내부 강성이 감소되어 상기 전극 조립체 내부의 팽창 응력이 권심부에 작동하는 것을 방지할 수 없다. 또한, 나선형 형태로 인하여 탭의 연속적이지 않은 구간에 burr가 존재할 수 있으며, 이 경우 분리막이 손상될 수 있어 안전성에 취약하다.
즉, 상기 전극 조립체가 권심부를 이용해 와인딩하여 권취된 구조를 가지는 경우, 충방전시 음극의 팽창 및 수축이 일어나면서 상기 전극 조립체 내에 응력이 발생하게 된다. 충방전으로 발생한 응력은 전지 캔에 의해 외부로 팽창하는 힘이 억제되면서, 빈 공간인 권심부가 이 힘에 의해 변형이 발생하게 된다. 상기 권심부의 변형이 심해지는 경우, 전극이 꺾이는 부위가 발생하는 등의 스트레스가 발생할 수 있으며, 이에 따라 상기 전극 조립체 내부에서 분리막 손상에 의한 쇼트가 발생할 수 있다.
도 9 및 10은 인 탭(31)이 상기 권심부를 대향하는 면의 50% 미만을 감싸도록 구비되었을 때의 문제점을 나타낸 도이다. 구체적으로, 도 9는 활성화 및 수명평가 이후 변형된 권심부를 나타낸 것으로, (a)는 활성화 이후 변형이 시작된 모습이고, (b)는 수명 평가 이후 변형이 심화된 모습이다. 또한, 인 탭(31)이 상기 권심부를 대향하는 면의 50% 미만을 감싸도록 구비된 원통형 배터리의 경우, 상기 권심부 변형과 함께 열 방출 문제도 나타나게 된다. 구체적으로, 도 10을 보면 배터리 방전 후 (a) 외각 표면부 대비 (b) 권심부의 온도가 약 2~3℃ 상승한 것을 알 수 있다. 즉, 인 탭(31)이 상기 권심부를 대향하는 면의 50% 미만을 감싸는 경우, 권심부에서 열이 방출되지 못하고 온도가 증가하는 현상을 보이는 것을 확인하였다.
반면, 본 발명의 실시예에 따른 인 탭(31)은 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비될 수 있으며, 예컨대 상기 전극 조립체의 권심부의 둘레부를 감싸도록 연속적으로 구비될 수 있다.
인 탭(31)이 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비됨으로써, 권심부 강성을 높여 권심부의 변형을 최소화할 수 있고, 권심부에 갇힌 열이 금속체인 인 탭(31)을 통해 전달되어 권심부의 온도를 낮출 수 있다.
상기 전극 조립체의 권심부의 둘레부란 젤리롤 형태의 전극 조립체가 와인딩하여 구비되는 빈 공간인 권심부의 둘레를 의미한다.
상기 인 탭(31)이 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비됨으로써, 상기 전극 조립체 내부의 팽창 응력이 권심부에 작동하는 것을 방지할 수 있으며, 이에 따라, 상기 전극 조립체의 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하여 전지 안정성 확보에 유리하다.
상기 인 탭(31)이 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비된다는 것은 상기 전극 조립체의 권심부의 둘레부를 감싸도록 연속적으로 구비되는 것으로, 예컨대, 하나의 탭이 연속적인 형상으로 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비될 수 있다는 것을 의미한다.
상기 전극 조립체의 권심부의 둘레부를 감싸도록 연속적으로 구비되지 않는 경우는 예컨대, 기존의 인 탭이 사선으로 구비되고 권취되면서 상기 권심부의 둘레부에 구비되는 형태를 갖는 경우 등이 있다. 상기 기존의 인 탭(31')이 권취되면서 상기 권심부의 둘레부에 구비되는 경우, 본 발명의 인 탭(31)에 비하여, 강성이 저하될 수 있고, 나선형으로 권취되면서 탭 모서리부의 버(burr)가 상기 권심부의 외주면에 위치할 수 있어 이에 따른 분리막 손상 등의 안전성이 저하될 수 있다.
도 3은 본 발명의 비교예에 따른 전극 조립체를 포함하는 이차 전지에서 충방전으로 인한 전극 조립체 내에 응력이 발생하고, 전지 캔에 의해 외부로 팽창하는 힘이 억제되면서, 권심부에 변형이 발생하는 과정을 나타내는 도면이다.
이차 전지는 양극과 음극 사이에 절연체인 분리막을 개재하고 이를 권취하여 젤리롤 형태의 전극 조립체를 형성하고, 이를 전해질과 함께 전지 캔 내부에 삽입하여 전지를 구성한다.
상기 이차 전지는 원통형 이차 전지일 수 있다.
젤리롤 형태의 전극 조립체가 권심부를 이용해 와인딩하여 권취된 구조를 가지는 경우, 이를 포함하는 이차 전지를 충방전 할 때 음극의 팽창 및 수축이 일어나면서 상기 전극 조립체 내에 응력이 발생하게 된다. 상기 전극 조립체의 권심부는 빈 공간으로서, 충방전으로 발생한 응력은 상기 전지 캔에 의해 외부로 팽창하는 힘이 억제되고, 전극 조립체 내부로 응력이 작동되어 이 힘에 의해 권심부에 변형이 발생하게 된다. 상기 권심부의 변형이 심해지는 경우, 전극이 꺾이는 부위가 발생하는 등의 스트레스가 발생할 수 있으며, 이에 따라 상기 전극 조립체 내부에서 분리막 손상에 의한 쇼트가 발생할 수 있다.
본 발명의 일 실시상태는 상기 음극은 집전체 및 상기 집전체 상에 구비된 전극 활물질층을 포함하고, 상기 집전체는 상기 전극 활물질층이 구비되지 않은 무지부를 포함하며, 상기 음극은 상기 전극 조립체의 권취축에 수직인 방향의 단부 중 어느 하나 이상에 상기 무지부를 포함하고, 상기 무지부 중 권심부에 위치한 단부에 구비된 무지부에 상기 인 탭이 구비되는 것인 전극 조립체를 제공한다.
도 4를 참조하면, 상기 음극(30)은 상기 권심부에 위치한 단부에 구비된 무지부(37)에 상기 인 탭(31)이 구비됨으로써, 전기 전도성이 높아 전기적으로 연결되기 유리하며, 전극 조립체의 저항이 감소되어 에너지 밀도상 유리하다.
본 발명의 일 실시상태에 따르면, 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 어느 하나 이상에 음극 탭(33)이 구비될 수 있다.
도 6은 본 발명의 실시예에 따른 전극 조립체의 음극 및 양극을 개략적으로 나타낸 도면이다.
도 4 및 6을 참조하면, 본 발명의 일 실시상태에 따른 상기 음극(30)은 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 외각에 위치한 단부에 구비된 외각 탭(32)을 더 포함할 수 있다. 상기 음극(30)이 상기 외각 탭(32)을 하나 더 포함함으로써, 탭 수가 증가함에 따라 전극 조립체의 저항이 작아지는 효과를 가질 수 있다.
이로써, 후술되는 양극(10)은 전극 조립체의 권취축에 수직인 방향의 단부에서 양극 집전체의 단부 및 양극 활물질층(14)의 단부가 일치하는 프리엣지 형태 및 미들 탭(11) 구조를 가질 수 있다.
상기 양극 프리엣지 구조로 상기 전극 조립체의 충방전시 음극(30)이 팽창 및 수축하며 양극(10) 프리엣지가 맞닿는 부분에 응력이 증가할 수 있으나, 상기 음극(30)의 상기 인 탭(31)으로 인하여 권심부의 내부 강성이 증가되어 전극 조립체(1)의 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지할 수 있다.
또한, 상기 외각 탭(32)을 더 포함하여 상기 전극 조립체(1)의 저항이 작아져 에너지 밀도가 높아질 수 있다.
본 발명의 일 실시상태와 다른 예시로, 양극 탭이 권심부에 위치하는 구조를 가질 수 있다. 상기 구조에 따른 전극 조립체는 일반적으로 양극 인 탭 하나, 및 음극 외각 탭 하나가 적용된 구조로써, 본 발명에 따른 전극 조립체의 구조 대비 탭 수가 감소하여 전극 조립체의 저항이 커지는 문제가 있다.
도 2(a)는 본 발명의 비교예에 따른 기존의 전극 조립체(1')의 권취 축에 수직인 단면을 개략적으로 나타내는 도면이고, (b)는 본 발명의 실시예에 따른 전극 조립체(1)의 권취 축에 수직인 단면을 개략적으로 나타내는 도면이다. 이 때, 양극은 프리엣지 구조로 상기 전극 조립체의 충방전시 음극이 팽창 및 수축하며 양극 프리엣지가 맞닿는 부분에 응력이 증가할 수 있다.
도 2 (a)를 참조하면, 본 발명의 비교예에 따른 기존의 인 탭(31')은 본 발명의 실시예에 따른 인 탭(31)에 비하여 폭이 비교적 얇아서 탭이 음극의 권심부를 대향하는 면의 50% 이상을 감싸도록 구비될 수 없어 상기 전극 조립체 내부의 팽창 응력이 권심부에 작동하는 것을 방지할 수 없다.
상기 기존의 인 탭(31')은 본 발명의 실시예에 따른 인 탭(31)에 비하여 폭이 비교적 얇아 이를 전극 조립체의 권취축 방향으로 구비한 경우뿐 아니라, 사선으로 구비하여 이를 권취하여 나선형 형태로 형성한 경우에도, 이에 연속되지 않은 구간이 발생하여 본 발명에 따른 연속적인 인 탭(31) 대비 내부 강성이 감소되어 상기 기존의 전극 조립체(1') 내부의 팽창 응력이 권심부에 작동하는 것을 방지할 수 없다. 또한, 나선형 형태로 인하여 탭의 연속적이지 않은 구간에 burr가 존재할 수 있으며, 이 경우 분리막이 손상될 수 있어 안전성에 취약하다.
반면, 도 2 (b)를 참조하면, 본 발명의 일 실시 상태에 따른 인 탭(31)은 연속된 하나의 탭으로서, 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비되어, 권심부의 내부 강성 증가로 인하여 상기 전극 조립체(1) 내부의 팽창 응력이 상기 권심부에 작동하는 것을 방지할 수 있다. 이에 따라, 상기 전극 조립체(1)의 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하여 전지 안정성 확보에 유리하다. 또한, 나선형 형태의 탭 대비 상기 인 탭(31)은 연속적으로 구비되어 burr가 존재하지 않아 분리막이 손상될 염려가 없다.
본 발명의 일 실시상태는 상기 인 탭(31)은 상기 권심부를 대향하는 면(40)의 70% 이상 감싸도록 구비되는 것인 전극 조립체(1)를 제공한다. 구체적으로, 상기 인 탭(31)은 상기 권심부를 대향하는 면(40)의 75% 이상, 80% 이상, 85% 이상, 90% 이상, 또는 95% 이상을 감싸도록 구비될 수 있다. 상기 인 탭(31)은 상기 권심부를 대향하는 면(40)의 100% 이하, 또는 100% 를 감싸도록 구비될 수 있다.
상기 범위 내에서, 상기 인 탭(31)은 강성을 유지할 수 있으며, 상기 전극 조립체(1) 내부의 팽창 응력이 권심부에 작동하는 것을 방지할 수 있다. 이에 따라, 상기 전극 조립체(1)의 권심부 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하여 전지 안정성을 확보할 수 있다.
본 발명의 일 실시상태에서, 상기 인 탭의 폭은 상기 권심부의 둘레부의 길이의 80% 이상 100% 이하이다.
도 4 및 5를 참조하면, 상기 인 탭의 폭(31W)이란 전극 조립체의 권취축에 수직인 방향에서의 상기 인 탭의 길이를 의미한다.
상기 권심부의 둘레부(41R)란 젤리롤 형태의 전극 조립체가 와인딩하여 구비되는 빈 공간인 권심부의 둘레를 의미한다.
상기 인 탭의 폭(31W)은 상기 권심부의 둘레부(41R)의 길이의 85% 이상, 90% 이상, 95% 이상일 수 있다. 상기 인 탭의 폭은 상기 권심부의 둘레부의 길이의 100% 이하, 또는 100%일 수 있다.
상기 인 탭의 폭(31W)이 상기 범위를 만족할 때, 상기 인 탭(31)은 상기 음극의 상기 권심부의 둘레부(41R)를 감싸도록 구비되어 상기 권심부의 내부 강성이 증가될 수 있으며, 이에 전극 조립체 내부의 팽창 응력이 상기 권심부에 작동하는 것을 방지할 수 있다. 따라서, 상기 전극 조립체의 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하여 전지 안정성 확보에 유리하다.
본 발명의 일 실시상태에서, 상기 인 탭의 폭은 상기 전극 조립체의 둘레부 길이의 15% 내지 20%이다.
상기 전극 조립체의 둘레부(51R)란 상기 전극 조립체(1)의 권취축 방향의 단부의 둘레부를 의미한다.
상기 인 탭의 폭(31W)은 상기 전극 조립체의 둘레부(51R) 길이의 15.5% 이상, 또는 16% 이상일 수 있다. 상기 인 탭의 폭(31W)은 상기 전극 조립체의 둘레부(51R) 길이의 19.5% 이하, 19% 이하, 18.5% 이하, 또는 18% 이하일 수 있다.
상기 범위를 만족할 때, 상기 인 탭(31)은 상기 음극의 상기 권심부의 둘레부(41R)를 감싸도록 구비되어 상기 권심부의 내부 강성이 증가될 수 있으며, 이에 전극 조립체(1) 내부의 팽창 응력이 상기 권심부에 작동하는 것을 방지할 수 있다.
본 발명의 일 실시상태에서, 상기 인 탭(31)은 상기 전극 조립체의 권취축에 수직인 방향으로 연장된 길이가 10 mm 내지 12 mm이다.
상기 인 탭에서 상기 전극 조립체의 권취축에 수직인 방향으로 연장된 길이는 상기 인 탭의 폭(31W)일 수 있다.
상기 인 탭(31)은 상기 전극 조립체의 권취축에 수직인 방향으로 연장된 길이가 10.3 mm 이상, 10.6 mm 이상, 또는 10.9 mm 이상일 수 있다. 상기 인 탭(31)은 상기 전극 조립체의 권취축에 수직인 방향으로 연장된 길이가 11.7 mm 이하, 11.4 mm 이하, 11.1 mm 이하일 수 있다.
상기 범위를 만족할 때, 상기 인 탭(31)은 상기 음극의 상기 권심부의 둘레부(41R)를 감싸도록 구비되어 상기 권심부의 내부 강성이 증가될 수 있으며, 이에 전극 조립체(1) 내부의 팽창 응력이 상기 권심부에 작동하는 것을 방지할 수 있다. 따라서, 상기 전극 조립체(1)의 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하여 전지 안정성 확보에 유리하다.
본 발명의 일 실시상태에서, 상기 인 탭의 두께는 100 ㎛ 이상이다.
도 2를 참조하면, 상기 인 탭의 두께(31T)는 110 ㎛ 이상, 120 ㎛ 이상, 130 ㎛ 이상, 또는 140 ㎛ 이상일 수 있다. 상기 인 탭의 두께는 200 ㎛ 이하, 190 ㎛ 이하, 180 ㎛ 이하, 또는 170 ㎛ 일 수 있다.
상기 범위를 만족할 때, 상기 인 탭(31)은 상기 권심부의 내부 강성을 증가할 수 있으며, 이에 전극 조립체(1) 내부의 팽창 응력이 상기 권심부에 작동하는 것을 방지할 수 있다. 따라서, 상기 전극 조립체(1)의 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지하여 전지 안정성 확보에 유리하다. 또한, 상기 두께 범위에서 상기 인 탭(31)이 적절한 강성을 가지므로, 전극 조립체의 권취 공정 중에 권취하기에도 용이하다.
본 발명의 일 실시상태는 상기 인 탭은 열전도율이 90 W/(m·K) 이상인 것인 전극 조립체를 제공한다.
상기 열전도율이란 열이 한쪽에서 다른 한쪽으로 전달되는 정도의 차이로서, 열전달을 나타내는 물질의 고유한 성질을 의미한다. 상기 열전도율(k)은 1기압, 293K(=20 ℃) 조건에서 하기 식(1)에 의하여 측정될 수 있다.
P=k×A(△T/L) - 식(1)
P=열류량(W)
A=시료의 면적(m2)
L=시료두께(m)
△T=온도차(K, 또는 ℃)
상기 인 탭은 열전도율이 91 W/(m·K) 이상, 100 W/(m·K) 이상, 200 W/(m·K) 이상, 300 W/(m·K) 이상, 또는 400 W/(m·K) 이상일 수 있다. 상기 인 탭은 열전도율이 450 W/(m·K) 이하, 430 W/(m·K) 이하, 410 W/(m·K) 이하, 또는 405 W/(m·K) 이하일 수 있다.
상기 인 탭은 후술되는 바와 같이 구리 및 니켈 중에서 적어도 하나를 포함할 수 있으며, 이 때, 상기 구리의 열 전도율은 401 W/(m·K)이고, 상기 Ni의 열전도율은 91 W/(m·K)일 수 있다.
상기 인 탭은 상기 구리를 포함하는 구리 층, 및 상기 니켈을 포함하는 니켈 층이 접합된 Clad tab으로서 구비될 수 있으며, 이 경우 전극 조립체에서 발생한 열은 열 전도율이 좋은 구리 층에서 전달될 수 있어 구리의 열 전도율과 유사한 열 전도율을 가질 수 있어 열전도에 유리하다.
도 1 (a) 및 (b)를 참조하면, 본 발명의 비교예에 따른 기존의 인 탭(31')은 본 발명의 실시예에 따른 인 탭(31)에 비하여 폭이 비교적 좁아 이를 전극 조립체(1)의 권취축 방향으로 구비한 경우뿐 아니라, 사선으로 구비하여 이를 권취하여 나선형 형태로 형성한 경우에도, 본 발명의 실시예에 따른 인 탭(31) 대비 열전도율이 낮을 수 있다. 구체적으로, 상기 기존의 인 탭(31')은 폭이 비교적 좁거나 나선형 형태에 연속되지 않은 구간이 발생하여 본 발명에 따른 연속적인 인 탭(31) 대비 좁거나 나선형 방향으로만 열이 전달되는 반면, 상기 본 발명의 실시예에 따른 인 탭(31)은 2D의 어느 방향으로든 열이 전달될 수 있어 열전도에 유리하다.
본 발명의 일 실시상태에서, 상기 인 탭은 구리 및 니켈 중에서 적어도 하나를 포함한다.
상기 인 탭은 구리를 포함할 수 있다. 상기 인 탭은 전체 100% 대비 구리를 50% 이상 100%이하 포함할 수 있다.
상기 인 탭은 니켈을 포함할 수 있다. 상기 인 탭은 전체 100% 대비 니켈을 0% 이상 50% 이하 포함할 수 있다.
상기 인 탭은 상기 구리를 포함하는 구리 층, 및 상기 니켈을 포함하는 니켈 층이 접합된 Clad tab으로서 구비될 수 있다.
상기 인 탭이 상기 화합물을 포함함으로써, 이를 포함하는 전극 조립체의 열전도에 보다 유리할 수 있다.
본 발명의 일 실시상태는 상기 인 탭은 상기 전극 조립체의 권취축 방향의 단부의 일면에 돌출부를 포함하는 것인 전극 조립체를 제공한다.
도 4 및 5 를 참조하면, 상기 돌출부(311)는 상기 전극 조립체(1)를 포함하는 이차 전지에서 전지 캔과의 용접을 위해 필요한 구성으로, 상기 돌출부(311)를 절곡하여 권심부의 중심부에 위치시키고, 상기 전지 캔의 내부 바닥면의 중심부에 용접하여 상기 인 탭(31)과 상기 전지 캔이 전기적으로 연결될 수 있다.
상기 권심부의 중심부란 권심부에서 전극 조립체(1)의 권취축의 수직인 단면의 중심 영역을 의미하고, 상기 전지 캔의 내부 바닥면의 중심부란 전지 캔의 내부 바닥면에서 전극 조립체의 권취축의 수직인 단면의 중심 영역을 의미한다.
본 발명의 일 실시상태는 상기 인 탭은 상기 전극 조립체의 권취축 방향의 단부의 일면에 대향하는 타면에 오목부를 포함한다.
상기 오목부(312)는 조립 공정 상 편의를 위한 구성으로, 일반적으로 전극 조립체(1)에 탭(31)을 부착할 때, 권취된 탭 롤에서 일정 길이의 탭(31)을 절취하여 부착하는데, 본 발명의 일 실시상태에 따라 돌출부(311)가 존재하는 경우 상기 일정 길이의 탭을 절취 시 오목부(312)가 필연적으로 발생할 수 있다.
본 발명의 일 실시상태에서, 상기 양극은 집전체 및 상기 집전체 상에 구비된 전극 활물질층을 포함하고, 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 적어도 어느 하나에서 상기 양극 집전체의 단부 및 상기 양극 활물질층의 단부가 일치한다.
도 6을 참조하면, 상기 양극(10)의 단부에서 상기 양극 집전체의 단부 및 상기 양극 활물질층(14)의 단부가 일치한다는 것은, 전극 조립체(1)에서 양극(10)이 프리엣지(free edge)를 가지며, 상기 양극(10)의 상기 전극 조립체(1)의 권취축에 수직인 방향(P)의 양 단부에서 무지부(15)가 형성되지 않은 것을 의미할 수 있다.
상기 양극(10)의 단부에서 상기 양극 집전체의 단부 및 상기 양극 활물질층(14)의 단부가 일치한다는 것은, 상기 양극의 단부에서 상기 양극 집전체 및 상기 양극 활물질층(14)의 길이가 같다는 것을 의미하며, 이 때, 상기 양극 집전체의 길이 및 상기 양극 활물질층(14)의 길이는 당업계의 일반적인 오차 범위 내 일 수 있다. 예컨대, 상기 양극의 단부에서 상기 양극 활물질층(14)의 길이 대비 상기 양극 집전체의 길이는 + 0.5% 이하일 수 있다.
일 실시상태에 따르면, 상기 양극의 단부는 상기 권취된 전극 조립체의 권취 시작부에 구비될 수 있다.
본 발명의 일 실시상태에서, 상기 양극은 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 이외의 부분에 구비된 탭을 더 포함한다.
상기 양극은 전술한 바와 같이, 프리엣지 구조를 가지며 이에 상기 양극의 상기 전극 조립체의 권취축에 수직인 방향(P)의 양 단부에서 무지부(15)가 형성되지 않을 수 있다.
이에 상기 양극은 미들 탭(11) 구조를 가질 수 있으며, 상기 미들 탭 구조는 상기 전극 조립체(1)의 권취축에 수직인 방향(P)의 양 단부 이외의 부분에 구비된 탭(11)을 더 포함하는 것을 의미한다. 따라서, 상기 전극 조립체(1)의 권취축에 수직인 방향(P)의 양 단부는 무지부(15)가 형성되지 않은 프리엣지를 가질 수 있다. 상기 미들 탭(11)은 양극 무지부(15)에 구비될 수 있다.
도 6을 참조하면, 상기 양극(10)은 전극 조립체(1)의 권취축에 수직인 방향의 단부에서 양극 집전체의 단부 및 양극 활물질층(14)의 단부가 일치하는 프리엣지 형태 및 미들 탭(11) 구조를 가질 수 있다.
상기 양극 프리엣지 구조로 상기 전극 조립체(1)의 충방전시 음극이 팽창 및 수축하며 양극 프리엣지가 맞닿는 부분에 응력이 증가할 수 있으나, 상기 음극(30)의 상기 인 탭(31)으로 인하여 권심부의 내부 강성이 증가되어 전극 조립체(1)의 권심부의 변형을 방지하고, 분리막 손상에 의한 쇼트 발생을 방지할 수 있다. 또한, 상기 음극(30)은 외각 탭(32)을 더 포함하여, 양극(10) 및 음극(30)이 각각 하나의 탭을 갖는 경우 보다 상기 전극 조립체의 저항이 작아져 에너지 밀도가 높아질 수 있다.
본 발명의 일 실시상태는 전술한 실시상태에 따른 전극 조립체를 포함하는 이차 전지를 제공한다.
본 발명에 있어서, 양극판에 코팅되는 양극 활물질과 음극판에 코팅되는 음극 활물질은 당업계에 공지된 활물질이라면 제한없이 사용될 수 있다.
상기 양극활물질의 비제한적인 예로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용할 수 있다.
일 예에서, 양극 활물질은 일반 화학식 A[AxMy]O2+z(A는 Li, Na 및 K 중 적어도 하나 이상의 원소를 포함; M은 Ni, Co, Mn, Ca, Mg, Al, Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, 및 Cr에서 선택된 적어도 하나 이상의 원소를 포함; x ≥ 0, 1 ≤ x+y ≤ 2, -0.1 ≤ z ≤ 2; x, y, z 및 M에 포함된 성분의 화학량론적 계수는 화합물이 전기적 중성을 유지하도록 선택됨)로 표시되는 알칼리 금속 화합물을 포함할 수 있다.
다른 예에서, 양극 활물질은 US6,677,082, US6,680,143 등에 개시된 알칼리 금속 화합물 xLiM1O2-(1-x)Li2M2O3(M1은 평균 산화 상태 3을 갖는 적어도 하나 이상의 원소를 포함; M2는 평균 산화 상태 4를 갖는 적어도 하나 이상의 원소를 포함; 0≤x≤1)일 수 있다.
또 다른 예에서, 양극 활물질은, 일반 화학식 LiaM1xFe1-xM2yP1-yM3zO4-z(M1은Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg 및 Al에서 선택된 적어도 하나 이상의 원소를 포함; M2는 Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al, As, Sb, Si, Ge, V 및 S에서 선택된 적어도 하나 이상의 원소를 포함; M3는 F를 선택적으로 포함하는 할로겐족 원소를 포함; 0 < a ≤ 2, 0 ≤ x ≤ 1, 0 ≤ y < 1, 0 ≤ z < 1; a, x, y, z, M1, M2, 및 M3에 포함된 성분의 화학량론적 계수는 화합물이 전기적 중성을 유지하도록 선택됨), 또는 Li3M2(PO4)3[M은 Ti, Si, Mn, Fe, Co, V, Cr, Mo, Ni, Al, Mg 및 Al에서 선택된 적어도 하나의 원소를 포함]로 표시되는 리튬 금속 포스페이트일 수 있다.
바람직하게, 양극 활물질은 1차 입자 및/또는 1차 입자가 응집된 2차 입자를 포함할 수 있다.
음극활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 사용 가능하다.
일 예에서, 음극 활물질은 탄소재, 리튬금속 또는 리튬금속화합물, 규소 또는 규소화합물, 주석 또는 주석 화합물 등을 사용할 수 있다. 전위가 2V 미만인 TiO2, SnO2와 같은 금속 산화물도 음극 활물질로 사용 가능하다. 탄소재로는 저결정 탄소, 고결정성 탄소 등이 모두 사용될 수 있다.
양극집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
분리막은 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체, 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있다. 다른 예시로서, 분리막은 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있다.
분리막의 적어도 한 쪽 표면에는 무기물 입자의 코팅층을 포함할 수 있다.
또한 분리막 자체가 무기물 입자의 코팅층으로 이루어지는 것도 가능하다. 코팅층을 구성하는 입자들은 인접하는 입자 사이 사이에 인터스티셜 볼륨(interstitial vol㎛e)이 존재하도록 바인더와 결합된 구조를 가질 수 있다.
무기물 입자는 유전율이 5이상인 무기물로 이루어질 수 있다. 비제한적인 예시로서, 상기 무기물 입자는 Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), BaTiO3, hafnia(HfO2), SrTiO3, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO 및 Y2O3로 이루어진 군에서 선택된 적어도 하나 이상의 물질을 포함할 수 있다.
전해질은 A+B-와 같은 구조를 갖는 염일 수 있다. 여기서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함한다. 그리고 B-는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나 이상의 음이온을 포함한다.
전해질은 또한 유기 용매에 용해시켜 사용할 수 있다. 유기 용매로는, 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylenecarbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설프옥사이드 (dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄 (dimethoxyethane), 디에톡시에탄 (diethoxyethane), 테트라하이드로퓨란(tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(γbutyrolactone) 또는 이들의 혼합물이 사용될 수 있다.
본 발명의 또 하나의 실시상태는 전술한 이차 전지를 적어도 하나 포함하는 배터리 팩을 제공한다.
상술한 실시예에 따른 원통형 이차 전지는 배터리 팩을 제조하는데 사용될 수 있다.
도 7은 본 발명의 실시예에 따른 이차 전지(2)들을 포함하는 배터리 팩(3)의 개략적 구성을 나타낸 도면이다.
도 7을 참조하면, 본 발명의 실시예에 따른 배터리 팩(3)은 원통형 이차 전지가 전기적으로 연결된 집합체 및 이를 수용하는 팩 하우징(4)을 포함한다. 원통형 이차 전지는 상술한 실시예에 따른 이차 전지(2)다. 도면에서는, 도면 도시의 편의상 원통형 이차 전지들의 전기적 연결을 위한 버스바, 냉각 유닛, 외부 단자 등의 부품의 도시는 생략되었다.
본 발명의 또 하나의 실시상태는 전술한 배터리 팩을 적어도 하나 포함하는 자동차를 제공한다.
배터리 팩은 자동차에 탑재될 수 있다. 자동차는 일 예로 전기 자동차, 하이브리드 자동차 또는 플러그인 하이브리드 자동차일 수 있다. 자동차는 4륜 자동차 또는 2륜 자동차를 포함한다.
도 8은 도 7의 배터리 팩(3)을 포함하는 자동차(5)를 설명하기 위한 도면이다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 자동차(5)는, 본 발명의 일 실시예에 따른 배터리 팩(3)을 포함한다. 자동차는, 본 발명의 일 실시예에 따른 배터리 팩(3)으로부터 전력을 공급 받아 동작한다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (16)

  1. 양극, 분리막 및 음극이 적층되어 권취된 구조를 갖는 전극 조립체로서,
    상기 음극은 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 권심부에 위치한 단부에 구비된 인 탭을 포함하고,
    상기 인 탭은 상기 음극의 상기 권심부를 대향하는 면의 50% 이상을 감싸도록 구비되는 것인 전극 조립체.
  2. 청구항 1에 있어서, 상기 음극은 집전체 및 상기 집전체 상에 구비된 전극 활물질층을 포함하고,
    상기 집전체는 상기 전극 활물질층이 구비되지 않은 무지부를 포함하며,
    상기 인 탭은 상기 음극의 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 권심부에 위치한 단부에 구비된 무지부에 구비되는 것인 전극 조립체.
  3. 청구항 1에 있어서, 상기 인 탭은 상기 권심부를 대향하는 면의 70% 이상 감싸도록 구비되는 것인 전극 조립체.
  4. 청구항 1에 있어서, 상기 인 탭의 폭은 상기 권심부의 둘레부 길이의 80% 이상 100% 이하인 것인 전극 조립체.
  5. 청구항 1에 있어서, 상기 인 탭의 폭은 상기 전극 조립체의 둘레부 길이의 15% 내지 20%인 것인 전극 조립체.
  6. 청구항 1에 있어서, 상기 인 탭은 상기 전극 조립체의 권취축에 수직인 방향으로 연장된 길이가 10 mm 내지 12 mm인 것인 전극 조립체.
  7. 청구항 1에 있어서, 상기 인 탭의 두께는 100 ㎛ 이상인 것인 전극 조립체.
  8. 청구항 1에 있어서, 상기 인 탭은 열전도율이 90 W/(m·K) 이상인 것인 전극 조립체.
  9. 청구항 1에 있어서, 상기 인 탭은 구리 및 니켈 중에서 적어도 하나를 포함하는 것인 전극 조립체.
  10. 청구항 1에 있어서, 상기 인 탭은 상기 전극 조립체의 권취축 방향의 단부의 일면에 돌출부를 포함하는 것인 전극 조립체.
  11. 청구항 1에 있어서, 상기 인 탭은 상기 전극 조립체의 권취축 방향의 단부의 일면에 대향하는 타면에 오목부를 포함하는 것인 전극 조립체.
  12. 청구항 1에 있어서, 상기 양극은 집전체 및 상기 집전체 상에 구비된 전극 활물질층을 포함하고,
    상기 양극은 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 중 적어도 어느 하나에서 상기 양극 집전체의 단부 및 상기 양극 활물질층의 단부가 일치하는 것인 전극 조립체.
  13. 청구항 1에 있어서, 상기 양극은 상기 전극 조립체의 권취축에 수직인 방향의 양 단부 이외의 부분에 구비된 탭을 더 포함하는 것인 전극 조립체.
  14. 청구항 1 내지 13 중 어느 한 항에 따른 전극 조립체를 포함하는 이차 전지.
  15. 청구항 14에 따른 이차 전지를 포함하는 배터리 팩.
  16. 청구항 15에 따른 배터리 팩을 적어도 하나 포함하는 것인 자동차.
PCT/KR2023/015993 2022-10-17 2023-10-17 전극 조립체, 이차 전지, 배터리 팩 및 자동차 WO2024085582A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380020318.3A CN118765454A (zh) 2022-10-17 2023-10-17 电极组件、二次电池、电池组和车辆

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220133219 2022-10-17
KR10-2022-0133219 2022-10-17
KR1020230137388A KR20240053547A (ko) 2022-10-17 2023-10-16 전극 조립체, 이차 전지, 배터리 팩 및 자동차
KR10-2023-0137388 2023-10-16

Publications (1)

Publication Number Publication Date
WO2024085582A1 true WO2024085582A1 (ko) 2024-04-25

Family

ID=90738073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015993 WO2024085582A1 (ko) 2022-10-17 2023-10-17 전극 조립체, 이차 전지, 배터리 팩 및 자동차

Country Status (1)

Country Link
WO (1) WO2024085582A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP2005056678A (ja) * 2003-08-04 2005-03-03 Sanyo Electric Co Ltd 円筒型アルカリ蓄電池及び円筒型ニッケル水素二次電池
KR100731453B1 (ko) * 2005-12-29 2007-06-21 삼성에스디아이 주식회사 원통형 리튬 이차전지
KR20160085063A (ko) * 2015-01-07 2016-07-15 삼성에스디아이 주식회사 이차 전지
KR20210046337A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 이차 전지 및 이를 포함하는 디바이스
KR20220074498A (ko) * 2020-11-27 2022-06-03 주식회사 엘지에너지솔루션 전극 조립체 및 이를 포함하는 이차전지
KR20220133219A (ko) 2020-02-21 2022-10-04 유니버셜 시티 스튜디오스 엘엘씨 렌즈형 디스플레이 시스템 및 방법
KR20230137388A (ko) 2021-04-13 2023-10-04 디아이씨 가부시끼가이샤 적층체 및 신발 밑창

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP2005056678A (ja) * 2003-08-04 2005-03-03 Sanyo Electric Co Ltd 円筒型アルカリ蓄電池及び円筒型ニッケル水素二次電池
KR100731453B1 (ko) * 2005-12-29 2007-06-21 삼성에스디아이 주식회사 원통형 리튬 이차전지
KR20160085063A (ko) * 2015-01-07 2016-07-15 삼성에스디아이 주식회사 이차 전지
KR20210046337A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 이차 전지 및 이를 포함하는 디바이스
KR20220133219A (ko) 2020-02-21 2022-10-04 유니버셜 시티 스튜디오스 엘엘씨 렌즈형 디스플레이 시스템 및 방법
KR20220074498A (ko) * 2020-11-27 2022-06-03 주식회사 엘지에너지솔루션 전극 조립체 및 이를 포함하는 이차전지
KR20230137388A (ko) 2021-04-13 2023-10-04 디아이씨 가부시끼가이샤 적층체 및 신발 밑창

Similar Documents

Publication Publication Date Title
WO2016080696A1 (ko) 이차전지용 냉각 플레이트 및 이를 포함하는 이차전지 모듈
WO2022177377A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2022139451A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2022177378A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2021206381A1 (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
WO2016093590A1 (ko) 개선된 출력 특성을 가진 이차 전지
WO2023013933A1 (ko) 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2022177355A1 (ko) 이차 전지 및 이를 포함하는 배터리 팩 및 자동차
WO2023163400A1 (ko) 원통형 이차전지, 이를 포함하는 배터리 팩 및 자동차
WO2023013929A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2022177379A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2022191674A1 (ko) 전해액 함침성이 우수한 전극 조립체 및 이를 포함하는 배터리, 배터리 팩 및 자동차
WO2022216092A1 (ko) 전극 조립체, 배터리 셀, 배터리 팩 및 자동차
WO2024085582A1 (ko) 전극 조립체, 이차 전지, 배터리 팩 및 자동차
WO2022177179A2 (ko) 전극 조립체 및 그 제조 방법, 전극 조립체를 포함하는 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2022177360A1 (ko) 이차 전지 및 이를 포함하는 배터리 팩 및 자동차
WO2021085917A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2024005532A1 (ko) 전극 조립체, 이차 전지, 배터리 팩 및 자동차
WO2024106976A1 (ko) 젤리롤, 이차 전지, 배터리 팩 및 자동차
WO2023149688A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2022177356A1 (ko) 전극 단자의 리벳팅 구조 및 이를 포함하는 이차 전지, 배터리 팩 및 자동차
WO2023090963A1 (ko) 집전판, 젤리롤, 이차 전지, 배터리 팩 및 자동차
WO2023149689A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023085665A1 (ko) 전해액 함침성이 우수한 젤리-롤 및 이를 포함하는 원통형 배터리 셀, 배터리 팩 및 자동차
WO2024014939A1 (ko) 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23880159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023880159

Country of ref document: EP

Effective date: 20240729