WO2023149689A1 - 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 - Google Patents
배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 Download PDFInfo
- Publication number
- WO2023149689A1 WO2023149689A1 PCT/KR2023/001075 KR2023001075W WO2023149689A1 WO 2023149689 A1 WO2023149689 A1 WO 2023149689A1 KR 2023001075 W KR2023001075 W KR 2023001075W WO 2023149689 A1 WO2023149689 A1 WO 2023149689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- housing
- spacer
- cap
- electrode assembly
- Prior art date
Links
- 125000006850 spacer group Chemical group 0.000 claims abstract description 111
- 238000002788 crimping Methods 0.000 claims description 26
- 238000013022 venting Methods 0.000 claims description 25
- 230000008878 coupling Effects 0.000 claims description 20
- 238000010168 coupling process Methods 0.000 claims description 20
- 238000005859 coupling reaction Methods 0.000 claims description 20
- 230000002265 prevention Effects 0.000 claims description 7
- 238000003466 welding Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- 235000015110 jellies Nutrition 0.000 description 12
- 239000008274 jelly Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 239000012212 insulator Substances 0.000 description 10
- 230000006378 damage Effects 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000006182 cathode active material Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000010954 inorganic particle Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910020213 PB(Mg3Nb2/3)O3-PbTiO3 Inorganic materials 0.000 description 2
- 229910020210 Pb(Mg3Nb2/3)O3—PbTiO3 Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- SSUBAQORPAUJGD-UHFFFAOYSA-N 1-methylpyrrolidin-2-one;pyrrolidin-2-one Chemical compound O=C1CCCN1.CN1CCCC1=O SSUBAQORPAUJGD-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000001609 comparable effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/064—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces the packing combining the sealing function with other functions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
- F16J15/104—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by structure
- F16J15/106—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by structure homogeneous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/107—Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/148—Lids or covers characterised by their shape
- H01M50/152—Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/166—Lids or covers characterised by the methods of assembling casings with lids
- H01M50/167—Lids or covers characterised by the methods of assembling casings with lids by crimping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/186—Sealing members characterised by the disposition of the sealing members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/213—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/533—Electrode connections inside a battery casing characterised by the shape of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/538—Connection of several leads or tabs of wound or folded electrode stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
- H01M50/593—Spacers; Insulating plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery, a battery pack including the same, and a vehicle. More specifically, the present invention relates to a battery having a structure capable of minimizing movement of an internal electrode assembly, a battery pack including the same, and a vehicle.
- a jelly roll having a shape in which a positive electrode tab and a negative electrode tab are respectively extended upward and downward along a height direction of a housing may be applied to maximize power collection efficiency.
- a current collector may be used as an intermediate medium for connecting each of the positive electrode tab and the negative electrode tab to the terminal and the housing.
- the positive current collector covers one side of the jelly roll and is combined with the positive tab
- the negative current collector covers the other side of the jelly roll and is combined with the negative tab.
- the positive current collector may be electrically connected to the terminal
- the negative current collector may be electrically connected to the housing.
- a relatively large empty space may be formed between the anode current collector and the cap.
- an empty space may be formed between the bottom surface of the housing opposite to the cap and the cathode current collector.
- the present invention has been devised in consideration of the above-described problems, and an object of the present invention is to prevent damage to electrical coupling parts caused by movement of a jelly roll in a housing.
- the present invention prevents the movement of jelly rolls by utilizing previously applied parts, thereby preventing the complexity of the manufacturing process and the increase in manufacturing costs caused by the application of additional parts. may be for a purpose.
- an object of the present invention may be to prevent abnormal deformation of the spacer assembly due to force applied to the spacer assembly during the manufacturing process of the battery.
- a battery according to an embodiment of the present invention for solving the above problems is an electrode assembly including a first uncoated portion and a second uncoated portion; a housing having an opening formed on one side and accommodating the electrode assembly through the opening; a first current collector coupled to the first uncoated portion and positioned within the housing; a cap covering the opening; and a spacer portion interposed between the first current collector and the cap to prevent movement of the electrode assembly, a gasket portion interposed between the housing and the cap to seal the cap and the housing, and a spacer assembly including a connecting portion connecting the spacer portion and the gasket portion and having a bent portion for converting an extending direction between the spacer portion and the gasket portion; includes
- the connecting part may include a plurality of bridges spaced apart from each other along a circumferential direction of the electrode assembly.
- the bent portion may have a convex shape in a direction opposite to a direction toward the first current collector.
- the connecting portion may include a notch portion configured to partially reduce a cross-sectional area of the connecting portion.
- the notch portion may be formed to a predetermined depth on a surface facing the first current collector.
- the notch part may be positioned between the bent part and the spacer part.
- the spacer part may have a height corresponding to a distance between the first current collector and the cap.
- the spacer part may be located at a central portion on one surface of the electrode assembly.
- the spacer part may have a spacer hole formed at a position corresponding to the winding center hole of the electrode assembly.
- the spacer assembly may include an ejection preventing part configured to cross the spacer hole.
- the housing includes a beading portion formed by press-fitting an outer circumference; and a crimping part extended and bent so that an end defining the opening under the beading part surrounds an edge of the cap.
- the gasket portion may be bent along the crimping portion to surround an edge of the cap.
- the plurality of bridges may be configured not to contact the first current collector.
- the plurality of bridges may be configured not to contact the cap.
- the first current collector may include a support part positioned at a center on one surface of the electrode assembly; an uncoated portion coupling portion extending from the support portion and coupled to the first uncoated portion; and a housing contact portion extending from the support portion or extending from an end of the uncoated portion coupling portion and interposed between the housing and the gasket portion.
- the housing includes a beading portion in which a portion of a sidewall thereof is press-fitted toward the inside; and a crimping part extended and bent so that an end defining the opening under the beading part surrounds an edge of the cap.
- a beading portion in which a portion of a sidewall thereof is press-fitted toward the inside; and a crimping part extended and bent so that an end defining the opening under the beading part surrounds an edge of the cap.
- the housing contact part may contact one surface of the beading part facing the cap.
- the cap may have a venting portion having a thinner thickness compared to the surrounding area
- the spacer part may be located further inside the venting part so as not to cover the venting part.
- connection part may be positioned so as not to overlap with the housing contact part along a height direction of the battery.
- a battery pack according to an embodiment of the present invention for solving the above problems includes the battery according to an embodiment of the present invention as described above.
- a vehicle according to an embodiment of the present invention for solving the above problems includes a battery pack according to an embodiment of the present invention.
- the motion of the jelly roll within the housing is minimized, thereby preventing damage to the electrical connection portion.
- the complexity of the manufacturing process and the increase in manufacturing cost can be prevented by using the previously applied parts instead of additionally applying parts for preventing the flow of the jelly roll.
- abnormal deformation of the spacer assembly due to force applied to the spacer assembly during the battery manufacturing process can be prevented. Meanwhile, since abnormal deformation of the spacer assembly is prevented, it is possible to effectively prevent product defects due to force being applied to the current collector and/or the electrode assembly due to deformation of the spacer assembly.
- FIG. 1 is a perspective view showing the appearance of a cylindrical battery according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing the internal structure of a cylindrical battery according to an embodiment of the present invention.
- FIG 3 is a perspective view showing an exemplary form of a first current collector applied to the present invention.
- FIG. 4 is a partial cross-sectional view showing a region to which the spacer assembly of the present invention is applied.
- FIG 5 and 6 are views showing an exemplary form of a spacer assembly according to the present invention.
- FIGS. 5 and 6 are partial cross-sectional views of the spacer assembly shown in FIGS. 5 and 6;
- FIG. 8 is a photograph of the internal structure showing that in a cylindrical battery to which a spacer according to the present invention is applied, even if force is applied to the spacer assembly according to a crimping process, abnormal deformation of the spacer does not occur, and thus abnormal deformation of the current collector does not occur. It is a picture.
- FIG. 9 is a view showing a spacer having no stress relaxation structure unlike the spacer of the present invention.
- FIG. 10 is a photograph of the internal structure of a cylindrical battery to which a spacer having no stress relief structure is applied, showing that the spacer is deformed by the force transmitted according to the crimping process and the collector is also deformed as a result.
- FIG. 11 is a plan view showing the bottom surface of the cylindrical battery of the present invention.
- FIG. 12 is a partial cross-sectional view showing a region to which an insulator of the present invention is applied.
- FIG. 13 is a view showing an electrode assembly on which segments are formed according to the present invention.
- FIG. 14 is an upper plan view showing a state in which a plurality of cylindrical batteries are connected in series and parallel using bus bars according to an embodiment of the present invention.
- 15 is a schematic diagram illustrating a battery pack according to an embodiment of the present invention.
- 16 is a conceptual diagram illustrating a vehicle according to an embodiment of the present invention.
- references to the same of two comparables means 'substantially the same'. Therefore, 'substantially the same' may include a case having a deviation that is considered to be a low level in the art, for example, a deviation of 5% or less.
- uniformity of a certain parameter in a predetermined region may mean uniformity in terms of average.
- first, second, etc. are used to describe various components, these components are not limited by these terms, of course. These terms are only used to distinguish one component from another component, and unless otherwise stated, the first component may be the second component, of course.
- Arrangement of an arbitrary element on the "upper (or lower)" or “upper (or lower)” of a component means that an arbitrary element is disposed in contact with the upper (or lower) surface of the component, as well as , may mean that other components may be interposed between the component and any component disposed on (or under) the component.
- ком ⁇ онент when a component is described as “connected”, “coupled” or “connected” to another component, the components may be directly connected or connected to each other, but other components may be “interposed” between each component. ", or each component may be “connected”, “coupled” or “connected” through other components.
- a battery 1 may be, for example, a cylindrical battery.
- the cylindrical battery 1 includes an electrode assembly 10, a housing 20, a first current collector 30, a cap 40, and a spacer assembly 50.
- the cylindrical battery 1 may further include a terminal 60 .
- the cylindrical battery 1 may further include an insulating gasket G and/or a second current collector 70 and/or an insulator 80 in addition to the components described above.
- the present invention is not limited by the shape of the battery, and is applicable to batteries of other shapes, such as prismatic batteries.
- the electrode assembly 10 includes a first uncoated portion 11 and a second uncoated portion 12 .
- the electrode assembly 10 includes a first electrode having a first polarity, a second electrode having a second polarity, and a separator interposed between the first electrode and the second electrode.
- the first electrode is a cathode or an anode
- the second electrode corresponds to an electrode having a polarity opposite to that of the first electrode.
- the electrode assembly 10 may have, for example, a jelly-roll shape. That is, the electrode assembly 10 may be manufactured by winding a laminate formed by sequentially stacking the first electrode, the separator, and the second electrode at least once.
- the jelly-roll type electrode assembly 10 may have a winding center hole C formed at its center and extending along a height direction (a direction parallel to the Z-axis). Meanwhile, an additional separator may be provided on the outer circumferential surface of the electrode assembly 10 for insulation from the housing 20 .
- the first electrode includes a first conductive substrate and a first electrode active material layer formed by being coated on one or both surfaces of the first conductive substrate.
- a first electrode uncoated portion to which the first electrode active material is not applied is present at one end of the first conductive substrate in the width direction (direction parallel to the Z-axis).
- the first electrode uncoated portion has a shape extending from one end to the other end along the longitudinal direction of the first electrode when viewed from the unfolded state of the first electrode.
- the first electrode uncoated portion 11 may function as a first electrode tab.
- the first uncoated portion 11 is provided on one surface of the electrode assembly 10 . More specifically, the first uncoated portion 11 is provided below the electrode assembly 10 accommodated in the housing 20 in a height direction (direction parallel to the Z-axis).
- the second electrode includes a second conductive substrate and a second electrode active material layer formed by being coated on one or both surfaces of the second conductive substrate.
- An uncoated portion to which the second electrode active material is not coated exists at the end of the other side of the second conductive substrate in the width direction (direction parallel to the Z-axis).
- the second electrode uncoated portion has a shape extending from one end to the other end along the longitudinal direction of the second electrode when viewed from the unfolded state of the second electrode.
- the second electrode uncoated portion 12 may function as a second electrode tab.
- the second uncoated portion 12 is provided on the other surface of the electrode assembly 10 . More specifically, the second uncoated portion 12 is provided above the electrode assembly 10 accommodated in the housing 20 in a height direction (direction parallel to the Z-axis).
- first uncoated portion 11 and the second uncoated portion 12 are disposed in opposite directions along the height direction of the electrode assembly 10 (parallel to the Z-axis), that is, along the height direction of the cylindrical battery 1. It extends and protrudes and is exposed to the outside of the separator.
- At least a portion of the first uncoated portion 11 and/or the second uncoated portion 12 is a plurality of segment segments F divided along the winding direction of the electrode assembly 10.
- the plurality of segments may be bent along the radial direction of the electrode assembly 10 .
- the plurality of segment segments that are bent may be overlapped in several layers.
- the first current collector 30 and/or the second current collector 70 which will be described later, may be coupled to a region where a plurality of segments F overlap in several layers.
- the electrode assembly 10 may include a welding target region, which is an area in which the number of overlapping layers of the segments F of the first uncoated portion 11 is maintained constant along the radial direction of the electrode assembly 10. there is.
- a welding target region which is an area in which the number of overlapping layers of the segments F of the first uncoated portion 11 is maintained constant along the radial direction of the electrode assembly 10.
- welding target region which is an area in which the number of overlapping layers of the segments F of the first uncoated portion 11 is maintained constant along the radial direction of the electrode assembly 10.
- welding target region which is an area in which the number of overlapping layers of the segments F of the first uncoated portion 11 is maintained constant along the radial direction of the electrode assembly 10. there is.
- welding target region which is an area in which the number of overlapping layers of the segments F of the first uncoated portion 11 is maintained constant along the radial direction of the electrode assembly 10.
- the positive electrode active material coated on the positive electrode current collector and the negative electrode active material coated on the negative electrode current collector may be used without limitation as long as they are known in the art.
- the cathode active material has the general formula A[A x M y ]O 2+z (A includes at least one element of Li, Na, and K; M is Ni, Co, Mn, Ca, Mg, Al, including at least one element selected from Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, and Cr; x ⁇ 0, 1 ⁇ x+y ⁇ 2, - 0.1 ⁇ z ⁇ 2; the stoichiometric coefficients of the components included in x, y, z and M are selected such that the compound remains electrically neutral).
- the cathode active material is an alkali metal compound disclosed in US6,677,082, US6,680,143, etc. xLiM 1 O 2 -(1-x)Li 2 M 2 O 3 (M 1 is at least one element having an average oxidation state of 3). contains; M 2 contains at least one element having an average oxidation state of 4; 0 ⁇ x ⁇ 1).
- the cathode active material has the general formula Li a M 1 x Fe 1-x M 2 y P 1-y M 3 z O 4-z
- M 1 is Ti, Si, Mn, Co, Fe, V, Includes at least one element selected from Cr, Mo, Ni, Nd, Al, Mg, and Al
- M 2 is Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al , As, Sb, Si, Ge, includes at least one element selected from V and S
- M 3 includes a halogen group element optionally including F; 0 ⁇ a ⁇ 2, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1; the stoichiometric coefficients of the components included in a, x, y, z, M 1 , M 2 , and M 3 are selected such that the compound remains electrically neutral), or Li 3 M 2 It may be a lithium metal phosphate represented by (PO 4
- the cathode active material may include primary particles and/or secondary particles in which the primary particles are aggregated.
- the negative electrode active material may use a carbon material, lithium metal or a lithium metal compound, silicon or a silicon compound, tin or a tin compound, or the like.
- Metal oxides such as TiO 2 and SnO 2 having a potential of less than 2 V can also be used as an anode active material.
- the carbon material both low crystalline carbon and high crystalline carbon may be used.
- the separator is a porous polymer film, for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer. Alternatively, they may be laminated and used. As another example, the separator may use a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like.
- At least one surface of the separator may include a coating layer of inorganic particles. It is also possible that the separation membrane itself is made of a coating layer of inorganic particles. Particles constituting the coating layer may have a structure combined with a binder so that an interstitial volume exists between adjacent particles.
- the inorganic particles may be made of an inorganic material having a dielectric constant of 5 or more.
- the inorganic particles are Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB(Mg 3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), BaTiO 3 , hafnia(HfO 2 ), SrTiO 3 , TiO 2 , Al 2 O 3 , ZrO 2 , SnO 2 , CeO 2 , MgO, CaO, ZnO and Y 2 O 3 It may include at least one or more materials selected from the group consisting of.
- the electrolyte may be a salt having a structure such as A + B - .
- a + includes alkali metal cations such as Li + , Na + , and K + or ions made of combinations thereof.
- B - is F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , AlO 4 - , AlCl 4 - , PF 6 - , SbF 6 - , AsF 6 - , BF 2 C 2 O 4 - , BC 4 O 8 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3 CF 2
- the electrolyte can also be used by dissolving it in an organic solvent.
- organic solvent propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) , dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone 2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), ⁇ -butyrolactone, or mixtures thereof may be used.
- the housing 20 accommodates the electrode assembly 10 through an opening formed at a lower end thereof.
- the housing 20 is a substantially cylindrical container in which an open part is formed at the lower end and a closed part is formed at the upper end.
- the housing 20 may be made of a conductive material such as metal.
- the material of the housing 20 may be aluminum, for example.
- a side surface (outer circumferential surface) and an upper surface of the housing 20 may be integrally formed.
- An upper surface (parallel to the X-Y plane) of the housing 20 may have a substantially flat shape.
- the housing 20 also accommodates the electrolyte together with the electrode assembly 10 through an opening formed at the lower end.
- the housing 20 is electrically connected to the electrode assembly 10 .
- the housing 20 is connected to the first uncoated portion 11 of the electrode assembly 10 . Accordingly, the housing 20 has the same polarity as the first uncoated portion 11 electrically.
- the housing 20 may include a beading portion 21 and a crimping portion 22 formed at a lower end thereof.
- the beading part 21 is provided on the lower side of the electrode assembly 10 accommodated inside the housing 20 .
- the beading part 21 is formed by press fitting around the outer circumferential surface of the housing 20 .
- the beading part 21 partially reduces the inner diameter of the housing 20, so that the electrode assembly 10, which may have a size substantially corresponding to the width of the housing 20, is formed at the lower end of the housing 20. Don't let your wealth escape you.
- the beading portion 21 may also function as a support portion on which the cap 40 is seated.
- the crimping part 22 is formed below the beading part 21 .
- the crimping portion 22 has an extended and bent shape so that the end defining the opening of the housing 20 surrounds the periphery of the cap 40 while the periphery of the spacer assembly 50 is interposed therebetween.
- the first current collector 30 is coupled to the first uncoated portion 11 of the electrode assembly 10 and is located within the housing 20 .
- the first current collector 30 covers at least a portion of one surface of the lower end of the electrode assembly 10 .
- An assembly including the electrode assembly 10 and the first current collector 30 may be inserted into the housing 20 through an opening formed at a lower end of the housing 20 .
- the first current collector 30 is electrically connected to the housing 20 . That is, the first current collector 30 may function as a medium for electrical connection between the electrode assembly 10 and the housing 20 .
- the first current collector 30 may include, for example, a support part 31 , an uncoated part coupling part 32 , and a housing contact part 33 .
- the support part 31 is located approximately at the center on one surface formed at the lower end of the electrode assembly 10 .
- a first current collector hole H1 may be provided in the support part 31 .
- the first collector hole H1 may be formed at a position corresponding to the winding center hole C of the electrode assembly 10 .
- the first current collector hole H1 may function as a passage for insertion of a welding rod or laser irradiation for coupling between the terminal 60 and the second current collector 70 to be described later.
- the first current collector hole H1 may also function as a passage through which electrolyte can be smoothly impregnated into the electrode assembly 10 when electrolyte is injected.
- the uncoated portion coupling portion 32 extends from the support portion 31 and is coupled to the first uncoated portion 11 .
- the uncoated part coupling part 32 may be provided with a plurality of, for example. In this case, each of the plurality of uncoated part coupling parts 32 may have a shape extending radially from the support part 31 .
- the housing contact portion 33 may extend from the support portion 31 as shown in FIG. 3 or may extend from an end of the uncoated portion coupling portion 32 unlike that shown in FIG. 3 .
- the end of the housing contact portion 33 may be interposed between the gasket portion 52 of the spacer assembly 50 and the housing 20 to be described later, and may come into contact with the housing 20, thereby contacting the housing 20 and the first house. An electrical connection between the whole 30 may be made.
- An end of the housing contact portion 33 may contact, for example, one surface of the beading portion 21 facing the cap 40 .
- the housing contact portion 33 may be provided in plural numbers, for example.
- the plurality of housing contact portions 33 may have a shape extending radially from the support portion 31, and at least one intervening portion between adjacent uncoated portion coupling portions 32 may be formed.
- a housing contact portion 33 may be located.
- the plurality of housing contact portions 33 may have a shape extending from the respective ends of the plurality of uncoated portion coupling portions 32 .
- the cap 40 covers an opening formed in the housing 20 .
- the cap 40 may be made of, for example, a metal material to ensure rigidity.
- the cap 40 forms the lower surface of the cylindrical battery 1 .
- the cap 40 may not have a polarity even if it is made of a conductive metal material. Having no polarity may mean that the cap 40 is electrically insulated from the housing 20 and the terminal 60 . Therefore, the cap 40 does not function as a positive or negative terminal. Therefore, the cap 40 does not need to be electrically connected to the electrode assembly 10 and the housing 20, and the material does not necessarily have to be a conductive metal.
- the cap 40 When the housing 20 of the present invention includes the beading part 21 , the cap 40 may be seated on the beading part 21 formed in the housing 20 . In addition, when the housing 20 of the present invention includes the crimping part 22, the cap 40 is fixed by the crimping part 22. Between the cap 40 and the crimping portion 22 of the housing 20, a peripheral portion of the spacer assembly 50 is interposed to ensure airtightness of the housing 20.
- the cap 40 may further include a venting portion 41 to prevent internal pressure from increasing beyond a predetermined value due to gas generated inside the housing 20 .
- the venting portion 41 corresponds to an area of the cap 40 having a smaller thickness than the surrounding area.
- the venting part 41 is structurally weak compared to the surrounding area. Therefore, when an abnormality occurs in the cylindrical battery 1 and the internal pressure of the housing 20 increases to a certain level or more, the venting part 41 is broken and the gas generated inside the housing 20 can be discharged. there is.
- the venting portion 41 may be formed by partially reducing the thickness of the housing 20 by, for example, notching on one side or both sides of the cap 40 .
- the lower end of the cap 40 is preferably positioned higher than the lower end of the housing 20 .
- the cap 40 does not come into contact with the ground or the bottom surface of the housing. Therefore, it is possible to prevent a phenomenon in which the pressure required for breaking the venting part 41 differs from a design value due to the weight of the cylindrical battery 1, and thus, the smoothness of breaking the venting part 41 can be secured.
- the venting part 41 has a closed loop shape as shown in FIGS. 4 and 11 , the longer the distance from the center of the cap 40 to the venting part 41 is, the more advantageous it is in terms of ease of breakage. do. This is because, when the same venting pressure is applied, as the distance from the center of the cap 40 to the bent portion 41 increases, the force acting on the bent portion 41 increases, making it easy to break the cap 40 . In addition, in terms of smoothness of venting gas discharge, it is advantageous as the distance from the center of the cap 40 to the venting part 41 increases. From this point of view, the venting portion 41 is formed along the periphery of a substantially flat area protruding downward from the periphery of the cap 40 (in a downward direction with reference to FIG. 4 ). can be advantageous
- venting part 41 is continuously formed in a substantially circular shape, but the present invention is not limited thereto.
- the venting part 41 may be discontinuously formed on the cap 40 in a substantially circular shape, or may be formed in a substantially straight line shape or other shapes.
- the spacer assembly 50 is configured to prevent the electrode assembly 10 from moving and to enhance the sealing force of the housing 20 . That is, the spacer assembly 50 is disposed between the cap 40 and the electrode assembly 10 to fix the electrode assembly 10 and seal the housing 20 .
- the spacer assembly 50 may include a central portion supporting the bottom of the first current collector 30 and a peripheral portion contacting the housing 20 . In this case, the upper surface of the central portion may be located higher than the upper surface of the peripheral portion. The upper surface of the central portion may contact the lower surface of the first current collector 30 , and the lower surface of the central portion may contact the inner surface of the cap 40 .
- the central portion may include a spacer hole H2 formed at a position corresponding to the winding center hole C of the electrode assembly 10 .
- the peripheral portion may extend toward the inner surface of the housing 20 .
- the spacer assembly 50 may further include a flange extending downward from an outer edge of the periphery. In this case, the flange may be bent along with the housing 20 during crimping of the housing 20 to cover the edge of the cap 40 .
- the spacer assembly 50 may include, for example, a spacer part 51 , a gasket part 52 and a connection part 53 .
- the spacer assembly 50 may further include an ejection preventing unit 54 in addition to the above-described components.
- the spacer part 51 may be interposed between the first current collector 30 and the cap 40 to prevent the electrode assembly 10 from moving.
- the spacer part 51 may have a height corresponding to a distance between the first current collector 30 and the cap 40 . In this case, the spacer part 51 can effectively prevent the electrode assembly 10 from moving within the housing 20 due to the gap formed between the first current collector 30 and the cap 40 . Therefore, the spacer part 51 prevents damage to the joint between the electrode assembly 10 and the first current collector 30 and/or the joint between the first current collector 30 and the housing 20. It can be prevented.
- the spacer part 51 may be positioned approximately at the center on one surface of the lower end of the electrode assembly 10 .
- the spacer part 51 may have a spacer hole H2 formed at a position corresponding to the winding center hole C of the electrode assembly 10 .
- the spacer hole H2 may function as a passage for inserting a welding rod or a passage for laser irradiation, similarly to the first current collector hole H1 described above.
- the spacer hole H2 can also function as a passage through which electrolyte can be smoothly impregnated into the electrode assembly 10 when electrolyte is injected.
- the spacer part 51 may cover the support part 31 of the first current collector 30 so that the support part 31 is not exposed to the outside of the spacer part 51 . That is, the outer diameter of the upper end of the spacer part 51 may be substantially equal to or greater than the outer diameter of the support part 31 . In this case, the spacer part 51 can effectively press the first current collector 30 .
- the spacer portion 51 may be configured to cover at least a portion of a welded portion formed by welding the uncoated portion coupling portion 32 of the first current collector 30 and the first uncoated portion 11. there is. That is, the radius of the upper end of the spacer part 51 may be formed larger than the distance from the welding part closest to the core of the electrode assembly 10 to the core of the electrode assembly 10 . In this case, the spacer part 51 effectively prevents damage to the welded portion between the first current collector 30 and the first uncoated part 11 during a crimping process or a sizing process, for example. can prevent
- the spacer part 51 may be located more inward in the core direction than the bent part 41 so as not to cover the bent part 41 formed in the cap 40 . That is, the radius measured at the upper end of the spacer part 51 may be smaller than the distance from the center of the cap 40 to the bent part 41 . This is to prevent the breaking pressure of the venting part 41 from being different from the designed value because the bent part 41 is covered by the spacer assembly 50 .
- the gasket part 52 is interposed between the housing 20 and the cap 40 .
- the gasket part 52 may have a shape extending along the circumference of the inner circumferential surface of the housing 20 .
- the gasket part 52 may be bent together along the bent shape of the crimping part 22 to cover the edge circumferential area of the cap 40 .
- the gasket portion 52 may be bent along the crimping portion 22 to cover an edge of the cap 40 and fill a gap between the housing contact portion 33 and the cap 40 . As such, the gasket portion 52 may improve the fixing force of the cap 40 and the sealing force of the housing 20 .
- the thickness between the housing contact portion 33 and the cap 40 may be smaller than the thickness between the beading portion 21 and the cap 40. This is because the gasket portion 52 can be compressed more in an area where the housing contact portion 33 is interposed between the housing 20 and the beading portion 21 than in other areas. Accordingly, in the gasket portion 52, the compression rate between the housing contact portion 33 and the cap 40 may be greater than that between the beading portion 21 and the cap 40.
- the gasket portion 52 may be configured so that the compression rate between the housing contact portion 33 and the cap 40 is substantially the same as that between the beading portion 21 and the cap 40 . In this case, it is possible to prevent a phenomenon in which the sealing force is partially lowered as the compression rate of the gasket part 52 varies for each region.
- connection part 53 connects the spacer part 51 and the gasket part 52.
- the connecting portion 53 is configured to relieve stress applied to the connecting portion 53 when force is applied from the gasket portion 52 toward the spacer portion 51 by an external force.
- the connection part 53 has a structure capable of relieving stress, so that the spacer assembly 50 is abnormally deformed by an external force, thereby undesirably affecting the first current collector 30 and the electrode assembly 10 can prevent
- the connecting portion 53 may include a bent portion B whose extension direction is switched between the spacer portion 51 and the gasket portion 52 .
- a groove having a predetermined depth may be formed on one side of the connecting portion 53, and a protrusion having a shape corresponding to the groove may be formed on the opposite side.
- the bent portion B may be formed by changing the extension direction of the connecting portion 53, for example, twice. However, this does not limit the number of times of changing the extension direction of the connecting portion 53 for forming the bent portion B.
- the connecting portion 53 may buffer a force acting from the gasket portion 52 toward the spacer portion 51 by an external force.
- shape deformation of the connecting portion 53 may naturally occur in the region where the bending portion B is formed in a direction in which the bending angle of the bending portion B increases, so that the external force is not transmitted toward the spacer portion 51. and can be absorbed in the bent portion (B). That is, the bent portion (B) may act as a shock absorber, for example, like a bellows or a spring.
- the bent part (B) may be provided with a plurality so as to effectively buffer even under the action of a large external force.
- the bent portion B may further protrude in one direction in the process of absorbing the external force when it is applied. Accordingly, to prevent contact between the bent portion B and the first current collector 30 and/or the electrode assembly 10, the bent portion B is bent in a direction opposite to the direction toward the first current collector 30. It may have a convex shape.
- the connecting portion 53 may further include a notch portion N in addition to the bent portion B described above.
- the notch portion N may be configured to partially reduce the cross-sectional area of the connecting portion 53 .
- the notch portion N may have a groove shape formed on at least one surface of the connection portion 53 .
- the notch portion N may be formed to a predetermined depth, for example, on one surface of the connection portion 53 facing the first current collector 30 . In this way, when the notch portion N is formed on a surface facing the first current collector 30, shape deformation of the connection portion 53 due to external force occurs in a direction opposite to the direction toward the first current collector 30. This reduces the risk of interference between the spacer assembly 50 and the first current collector 30 and/or the electrode assembly 10 .
- the notch portion N may be positioned between the bent portion B and the spacer portion 51 on the connection portion 53 . Like the bent portion (B), the notch portion (N) may also be provided with a plurality if necessary.
- the connection part 53 may include, for example, a plurality of bridges 53a spaced apart from each other along the circumferential direction of the electrode assembly 10 .
- the space formed between the adjacent bridges 53a may function as a passage for smooth electrolyte circulation.
- the space formed between adjacent bridges 53a may function as a passage through which internal gas is smoothly discharged when venting occurs due to an increase in internal pressure.
- the connecting portion 53 includes a plurality of bridges 53a
- the bent portion B for forming the stress relieving structure of the present invention as described above may be provided on each of the bridges 53a.
- the notch portion N may also be provided on each of the plurality of bridges 53a.
- the blowout prevention part 54 may be configured to cross the spacer hole H2.
- the blowout prevention unit 54 may be configured to reduce an open area of the spacer hole H2.
- the blowout prevention part 54 may have, for example, an approximate cross shape. However, this is only an exemplary form of the ejection preventing part 54 and the shape of the ejection preventing part 54 is not limited thereto.
- the blowout prevention part 54 may be provided at a position corresponding to the winding center hole of the electrode assembly 10 and the first current collector hole H1 of the first current collector 30 .
- the ejection preventing part 54 may prevent the winding center of the electrode assembly 10 from ejecting to the outside of the housing 20 when venting occurs due to an increase in pressure inside the housing 20 .
- the bridge 53a is connected to the housing contact portion 33 of the first current collector 30 except for the portion inserted into the crimping portion 22 and/or the cap 40. It can be configured not to touch.
- the connection part 53 may be positioned so as not to overlap with the housing contact part 33 along the height direction (direction parallel to the Z-axis) of the cylindrical battery 1 .
- the plurality of bridges 53a and the plurality of housing contact parts 33 are perpendicular to each other (in the Z axis). parallel directions) may be arranged staggered from each other so as not to overlap.
- the housing contact portion 33 may be provided at a position corresponding to a space formed between adjacent bridges 53a. In this case, even if the shape of the parts is deformed due to the external force applied to the housing 20, the possibility of interference between the bridge 53a and the housing contact part 33 can be significantly lowered, thereby damaging the coupling part between the parts. can significantly reduce the possibility of problems.
- the shape deformation of the spacer assembly 50 occurs due to a sizing process of compressing the cylindrical battery 1 along the height direction (direction parallel to the Z-axis), a crimping process, or other causes.
- interference between the connection portion 53 of the spacer assembly 50 and the housing contact portion 33 of the first current collector 30 can be minimized.
- the bridge 53a is configured not to contact the cap 40, even if the housing 20 is deformed due to a sizing process or an external impact, the possibility of deformation of the bridge 53a may occur. can reduce
- each component constituting the spacer assembly 50 may be integrally formed.
- the spacer assembly 50 in which the spacer portion 51 , the gasket portion 52 , and the connection portion 53 are integrally formed may be manufactured by injection molding. That is, the cylindrical battery 1 of the present invention, as one component, strengthens the sealing force for the opening of the housing 20 and the electrode assembly ( 10) can all be obtained. Therefore, according to the present invention, the complexity of the manufacturing process and the increase in manufacturing cost caused by the application of additional parts can be prevented.
- connection portion 53 of the spacer assembly 50 is applied substantially along the radial direction
- the force can be converted into a direction of rotating the spacer part 51 .
- the spacer part 51 can be finely rotated clockwise or counterclockwise on a plane (X-Y plane) (for example, it can be rotated by about 1 degree), and thus the connection part 53 Interference with the current collector 30 due to deformation of the connecting portion 53 may be prevented by preventing stress from being accumulated.
- the spacer assembly 50 is formed by a crimping process. It can be seen that no abnormal deformation occurs in the current collector even when force is applied.
- the terminal 60 is electrically connected to the second uncoated portion 12 of the electrode assembly 10 .
- the terminal 60 may pass through, for example, a substantially central portion of a closed portion formed at an upper end of the housing 20 .
- a portion of the terminal 60 may be exposed to the upper portion of the housing 20 and the remaining portion may be positioned inside the housing 20 .
- the terminal 60 may be fixed on the inner surface of the closed portion of the housing 20 by, for example, riveting.
- the closed portion formed on the top of the housing 20 has a first polarity. It can function as one electrode terminal 20a.
- the terminal 60 is electrically connected to the second uncoated portion 12 of the electrode assembly 10, the terminal 60 exposed to the outside of the housing 20 can function as a second electrode terminal.
- the cylindrical battery 1 of the present invention has a structure in which a pair of electrode terminals 60 and 20a are located in the same direction. Therefore, in the case of electrically connecting a plurality of cylindrical batteries 1 , it is possible to dispose an electrical connection component such as a bus bar on only one side of the cylindrical battery 1 . This can lead to simplification of the battery pack structure and improvement of energy density.
- the cylindrical battery 1 has a structure in which one surface of the housing 20 having a substantially flat shape can be used as the first electrode terminal 20a, so that an electrical connection part such as a bus bar is used as the first electrode. When bonding to the terminal 20a, a sufficient bonding area can be secured. Accordingly, in the cylindrical battery 1, sufficient bonding strength between the electrical connection component and the first electrode terminal 20a can be secured, and resistance at the bonding portion can be reduced to a desirable level.
- the terminal 60 when the terminal 60 functions as the second electrode terminal, the terminal 60 is electrically insulated from the housing 20 having the first polarity. Electrical isolation between the housing 20 and the terminal 60 can be realized in various ways. For example, insulation may be realized by interposing an insulating gasket G between the terminal 60 and the housing 20 . Alternatively, insulation may be realized by forming an insulating coating layer on a portion of the terminal 60 . Alternatively, the terminals 60 and the housing 20 may be disposed in a spaced apart state so that contact is impossible, but the terminals 60 may be structurally firmly fixed. Alternatively, a plurality of methods among the methods described above may be applied together.
- the insulating gasket (G) when the insulating gasket (G) is applied for electrical insulation and riveting is applied to fix the terminal 60, the insulating gasket (G) is deformed together during riveting of the terminal 60, and the housing 20 ) can be bent towards the inner surface of the top closure of
- the insulating gasket (G) may be coupled to the housing 20 and the terminal 60 by thermal fusion. In this case, airtightness at the bonding interface between the insulating gasket G and the terminal 60 and at the bonding interface between the insulating gasket G and the housing 20 may be enhanced.
- the second current collector 70 may be coupled to an upper portion of the electrode assembly 10 .
- the second current collector 70 may be made of a conductive metal material and may be coupled to the second uncoated portion 12 .
- the coupling between the second uncoated portion 12 and the second current collector 70 may be performed by, for example, laser welding.
- the insulator 80 is interposed between the closed portion formed on the upper end of the housing 20 and the upper end of the electrode assembly 10 or between the closed portion and the second current collector 70. It can be.
- the insulator 80 may be made of, for example, an insulating resin material. The insulator 80 may prevent contact between the electrode assembly 10 and the housing 20 and/or contact between the electrode assembly 10 and the second current collector 70 .
- the insulator 80 may also be interposed between the upper end of the outer circumferential surface of the electrode assembly 10 and the inner surface of the housing 20 . In this case, it is possible to prevent a short circuit from occurring when the second uncoated portion 12 of the electrode assembly 10 contacts the inner surface of the sidewall portion of the housing 20 .
- the insulator 80 may have a height corresponding to a distance between the closed portion formed on the top of the housing 20 and the electrode assembly 10 or a distance between the closed portion and the second current collector 70 . In this case, it is possible to prevent the electrode assembly 10 from moving inside the housing 20, thereby significantly reducing the risk of damage to a joint for electrical connection between parts. When the insulator 80 is applied together with the above-described spacer assembly 50, the flow prevention effect of the electrode assembly 10 can be maximized.
- the insulator 80 may have an opening formed at a position corresponding to the winding center hole C of the electrode assembly 10 .
- the terminal 60 may directly contact the second current collector 70 through the opening.
- resistance is minimized through expansion of the welding area through the curved surface of the uncoated portion, multiplexing of current paths using the first current collector 30, and minimization of the length of the current path.
- the AC resistance of the cylindrical battery 1 measured through a resistance meter between the positive electrode and the negative electrode and between the terminal 60 and the flat surface 20a around it is approximately 0.5 milliohm to 4 milliohm suitable for rapid charging. ohms, preferably approximately 1 milliohm to 4 milliohms.
- the cylindrical battery may be, for example, a cylindrical battery having a form factor ratio (defined as the diameter of the cylindrical battery divided by the height, i.e., the ratio of the diameter ( ⁇ ) to the height (H)) of greater than about 0.4. .
- a form factor ratio defined as the diameter of the cylindrical battery divided by the height, i.e., the ratio of the diameter ( ⁇ ) to the height (H)
- the form factor means a value representing the diameter and height of a cylindrical battery.
- the diameter of the cylindrical battery may be approximately 40 mm to 50 mm, and the height may be approximately 60 mm to 130 mm.
- a cylindrical battery according to an embodiment of the present invention may be, for example, a 46110 battery, a 4875 battery, a 48110 battery, a 4880 battery, or a 4680 battery.
- the first two numbers represent the diameter of the battery, and the remaining numbers represent the height of the battery.
- the battery according to an embodiment of the present invention may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 46 mm, a height of about 110 mm, and a form factor ratio of about 0.418.
- a battery according to another embodiment may be a cylindrical battery having a diameter of about 48 mm, a height of about 75 mm, and a form factor ratio of about 0.640.
- a battery according to another embodiment may be a cylindrical battery having a diameter of about 48 mm, a height of about 110 mm, and a form factor ratio of about 0.418.
- a battery according to another embodiment may be a cylindrical battery having a diameter of about 48 mm, a height of about 80 mm, and a form factor ratio of about 0.600.
- a battery according to another embodiment may be a cylindrical battery having a diameter of about 46 mm, a height of about 80 mm, and a form factor ratio of about 0.575.
- batteries with a form factor ratio of approximately 0.4 or less have been used. That is, conventionally, for example, 1865 batteries and 2170 batteries have been used.
- 1865 batteries and 2170 batteries have been used.
- the diameter is approximately 18 mm
- the height is approximately 65 mm
- the form factor ratio is approximately 0.277.
- the diameter is approximately 21 mm
- the height is approximately 70 mm
- the form factor ratio is approximately 0.300.
- a plurality of cylindrical batteries 1 may be connected in series and parallel on top of the cylindrical battery 1 using a bus bar 150 .
- the number of cylindrical batteries 1 can be increased or decreased in consideration of the capacity of the battery pack.
- the terminal 60 may have a positive polarity and the outer surface 20a of the closed portion of the housing 20 may have a negative polarity.
- the reverse is also possible.
- a plurality of cylindrical batteries 1 may be arranged in a plurality of rows and columns. Columns are in the vertical direction with respect to the page, and rows are in the left and right direction with respect to the page. Also, to maximize space efficiency, the cylindrical batteries 1 may be arranged in a closest packing structure. The densely packed structure is formed when an equilateral triangle is formed when the centers of the terminals 60 exposed to the outside of the housing 20 are connected to each other.
- the bus bar 150 may be disposed above the plurality of cylindrical batteries 1, more preferably between adjacent rows. Alternatively, busbars 150 may be placed between adjacent rows.
- the bus bar 150 connects the batteries 1 disposed in the same row in parallel with each other, and connects the cylindrical batteries 1 disposed in two adjacent columns in series with each other.
- the bus bar 150 may include a body portion 151, a plurality of first bus bar terminals 152, and a plurality of second bus bar terminals 153 for series and parallel connection.
- the body portion 151 may extend between terminals 60 of adjacent cylindrical batteries 1, preferably between rows of cylindrical batteries 1. Alternatively, the body portion 151 may extend along the rows of the cylindrical batteries 1 and be regularly bent in a zigzag shape.
- the plurality of first bus bar terminals 152 protrude from one side of the body 151 toward the terminal 60 of each cylindrical battery 1 and may be electrically coupled to the terminal 60 . Electrical coupling between the first bus bar terminal 152 and the terminal 60 may be performed by laser welding or ultrasonic welding.
- the plurality of second bus bar terminals 153 may be electrically coupled to the outer surface 20a of each cylindrical battery 1 from the other side of the body portion 151 . Electrical coupling between the second bus bar terminal 153 and the outer surface 20a may be performed by laser welding or ultrasonic welding.
- the body part 151, the plurality of first bus bar terminals 152 and the plurality of second bus bar terminals 153 may be formed of one conductive metal plate.
- the metal plate may be, for example, an aluminum plate or a copper plate, but the present invention is not limited thereto.
- the body portion 151, the plurality of first bus bar terminals 152, and the plurality of second bus bar terminals 153 may be manufactured as separate pieces and then coupled to each other by welding or the like.
- the terminal 60 having a positive polarity and the outer surface 20a of the closed portion of the housing 20 having a negative polarity are located in the same direction, the bus bar 150 Electrical connection of the cylindrical batteries 1 can be easily implemented by using.
- the terminal 60 of the cylindrical battery 1 and the outer surface 20a of the closed portion of the housing 20 have a large area, a sufficient coupling area of the bus bar 150 is secured to form a cylindrical battery 1 The resistance of the battery pack can be sufficiently lowered.
- a battery pack 3 is a battery assembly in which a plurality of cylindrical batteries 1 according to an embodiment of the present invention are electrically connected, and a battery assembly accommodating the same. It includes a pack housing (2).
- the electrical connection structure of the plurality of batteries 1 through the bus bar has been exemplarily described with reference to FIG. 14 above, and other parts such as a cooling unit and a power terminal are omitted for convenience in drawing.
- a vehicle 5 may be, for example, an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle, and includes a battery pack 3 according to an embodiment of the present invention.
- the automobile 5 includes a four-wheeled automobile and a two-wheeled automobile.
- the vehicle 5 operates by receiving power from the battery pack 3 according to an embodiment of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Cell Separators (AREA)
Abstract
Description
Claims (20)
- 제1 무지부 및 제2 무지부를 포함하는 전극 조립체;일 측에 형성된 개방부를 구비하며 상기 개방부를 통해 상기 전극 조립체를 수용하는 하우징;상기 제1 무지부와 결합되며 상기 하우징 내에 위치하는 제1 집전체;상기 개방부를 커버하는 캡; 및상기 제1 집전체와 상기 캡 사이에 개재되어 상기 전극 조립체의 유동을 방지하도록 구성되는 스페이서부, 상기 하우징과 상기 캡 사이에 개재되어 상기 캡과 상기 하우징 사이를 실링하도록 구성되는 가스켓부, 및 상기 스페이서부와 상기 가스켓부 사이를 연결하며 상기 스페이서부와 상기 가스켓부 사이에서 그 연장 방향이 전환되는 절곡부를 구비하는 연결부를 포함하는 스페이서 어셈블리;를 포함하는 배터리.
- 제1항에 있어서,상기 연결부는,상기 전극 조립체의 원주 방향을 따라 상호 이격되어 배치되는 복수의 브릿지를 포함하는 것을 특징으로 하는 배터리.
- 제1항에 있어서,상기 절곡부는,상기 제1 집전체를 향하는 방향과 반대 방향으로 볼록한 형태를 갖는 것을 특징으로 하는 배터리.
- 제1항에 있어서,상기 연결부는,상기 연결부의 단면적을 부분적으로 감소시키도록 구성된 노치부를 구비하는 것을 특징으로 하는 배터리.
- 제4항에 있어서,상기 노치부는,상기 제1 집전체와 대향하는 면에 소정의 깊이로 형성되는 것을 특징으로 하는 배터리.
- 제4항에 있어서,상기 노치부는,상기 절곡부와 상기 스페이서부 사이에 위치하는 것을 특징으로 하는 배터리.
- 제1항에 있어서,상기 스페이서부는,상기 제1 집전체와 상기 캡 사이의 거리와 대응되는 높이를 갖는 것을 특징으로 하는 배터리.
- 제1항에 있어서,상기 스페이서부는,상기 전극 조립체의 일 면 상에서 중심부에 위치하는 것을 특징으로 하는 배터리.
- 제1항에 있어서,상기 스페이서부는,상기 전극 조립체의 권취 중심 홀과 대응되는 위치에 형성되는 스페이서 홀을 구비하는 것을 특징으로 하는 배터리.
- 제9항에 있어서,상기 스페이서 어셈블리는,상기 스페이서 홀을 가로지르도록 구성되는 분출 방지부를 구비하는 것을 특징으로 하는 배터리.
- 제1항에 있어서,상기 하우징은,외주면 둘레가 압입되어 형성된 비딩부; 및상기 비딩부의 하방에서 상기 개방부를 정의하는 끝단이 상기 캡의 가장자리를 감싸도록 연장 및 절곡된 클림핑부;를 포함하는 것을 특징으로 하는 배터리.
- 제11항에 있어서,상기 가스켓부는,상기 클림핑부를 따라 절곡되어 상기 캡의 가장자리를 감싸도록 형성되는 것을 특징으로 하는 배터리.
- 제2항에 있어서,상기 복수의 브릿지는,상기 제1 집전체와 접촉하지 않도록 구성되는 것을 특징으로 하는 배터리.
- 제2항에 있어서,상기 복수의 브릿지는,상기 캡과 접촉하지 않도록 구성되는 것을 특징으로 하는 배터리.
- 제2항에 있어서,상기 제1 집전체는,상기 전극 조립체의 일 면 상에서 중심부에 위치하는 지지부;상기 지지부로부터 연장되며 상기 제1 무지부와 결합되는 무지부 결합부; 및상기 지지부로부터 연장되거나 또는 상기 무지부 결합부의 단부로부터 연장되어 상기 하우징과 상기 가스켓부 사이에 개재되는 하우징 접촉부;를 포함하는 것을 특징으로 하는 배터리.
- 제15항에 있어서,상기 하우징은,그 측벽의 일부가 내측을 향해 압입된 비딩부; 및상기 비딩부의 하방에서 상기 개방부를 정의하는 끝단이 상기 캡의 가장자리를 감싸도록 연장 및 절곡된 클림핑부;를 포함하고,상기 하우징 접촉부는,상기 캡과 대면하는 상기 비딩부의 일 면 상에 접촉하는 것을 특징으로 하는 배터리.
- 제1항에 있어서,상기 캡은, 주변 영역과 비교하여 더 얇은 두께를 갖는 벤팅부를 구비하며,상기 스페이서부는, 상기 벤팅부를 덮지 않도록 상기 벤팅부보다 더 내측에 위치하는 것을 특징으로 하는 배터리.
- 제15항에 있어서,상기 연결부는,상기 배터리의 높이 방향을 따라 상기 하우징 접촉부와 중첩되지 않도록 위치하는 것을 특징으로 하는 배터리.
- 제1항 내지 제18항 중 어느 한 항에 따른 배터리를 포함하는 배터리 팩.
- 제19항에 따른 배터리 팩을 포함하는 자동차.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23749922.3A EP4318793A1 (en) | 2022-02-04 | 2023-01-20 | Battery, and battery pack and vehicle including same |
JP2024500384A JP2024527356A (ja) | 2022-02-04 | 2023-01-20 | バッテリー、それを含むバッテリーパック及び自動車 |
CA3239391A CA3239391A1 (en) | 2022-02-04 | 2023-01-20 | Battery, battery pack and vehicle including the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0014958 | 2022-02-04 | ||
KR20220014958 | 2022-02-04 | ||
KR10-2022-0088961 | 2022-07-19 | ||
KR1020220088961A KR20230118484A (ko) | 2022-02-04 | 2022-07-19 | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023149689A1 true WO2023149689A1 (ko) | 2023-08-10 |
Family
ID=87552479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/001075 WO2023149689A1 (ko) | 2022-02-04 | 2023-01-20 | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4318793A1 (ko) |
JP (1) | JP2024527356A (ko) |
CA (1) | CA3239391A1 (ko) |
WO (1) | WO2023149689A1 (ko) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6677082B2 (en) | 2000-06-22 | 2004-01-13 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
US6680143B2 (en) | 2000-06-22 | 2004-01-20 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
KR20060086125A (ko) * | 2005-01-26 | 2006-07-31 | 삼성에스디아이 주식회사 | 이차 전지와 이에 사용되는 캡 조립체 |
KR20080071313A (ko) * | 2007-01-30 | 2008-08-04 | 삼성에스디아이 주식회사 | 이차 전지 |
KR101023865B1 (ko) * | 2009-02-25 | 2011-03-22 | 에스비리모티브 주식회사 | 이차 전지 |
JP2012160377A (ja) * | 2011-02-01 | 2012-08-23 | Hitachi Vehicle Energy Ltd | 二次電池およびその製造方法 |
US20130224546A1 (en) * | 2010-09-24 | 2013-08-29 | Shin-Kobe Electric Machinery Co., Ltd. | Electrical Storage Device and Method of Manfacturig Electrical Storage Device |
KR20220014958A (ko) | 2020-07-30 | 2022-02-08 | 에이치엘케이바이오 주식회사 | 안티에이징 복합분체를 함유하는 메이크업화장료 조성물 및 그의 제조방법 |
KR20220088961A (ko) | 2020-09-23 | 2022-06-28 | 가부시키가이샤 코키 | 플럭스 및 솔더 페이스트 |
-
2023
- 2023-01-20 EP EP23749922.3A patent/EP4318793A1/en active Pending
- 2023-01-20 CA CA3239391A patent/CA3239391A1/en active Pending
- 2023-01-20 WO PCT/KR2023/001075 patent/WO2023149689A1/ko active Application Filing
- 2023-01-20 JP JP2024500384A patent/JP2024527356A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6677082B2 (en) | 2000-06-22 | 2004-01-13 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
US6680143B2 (en) | 2000-06-22 | 2004-01-20 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
KR20060086125A (ko) * | 2005-01-26 | 2006-07-31 | 삼성에스디아이 주식회사 | 이차 전지와 이에 사용되는 캡 조립체 |
KR20080071313A (ko) * | 2007-01-30 | 2008-08-04 | 삼성에스디아이 주식회사 | 이차 전지 |
KR101023865B1 (ko) * | 2009-02-25 | 2011-03-22 | 에스비리모티브 주식회사 | 이차 전지 |
US20130224546A1 (en) * | 2010-09-24 | 2013-08-29 | Shin-Kobe Electric Machinery Co., Ltd. | Electrical Storage Device and Method of Manfacturig Electrical Storage Device |
JP2012160377A (ja) * | 2011-02-01 | 2012-08-23 | Hitachi Vehicle Energy Ltd | 二次電池およびその製造方法 |
KR20220014958A (ko) | 2020-07-30 | 2022-02-08 | 에이치엘케이바이오 주식회사 | 안티에이징 복합분체를 함유하는 메이크업화장료 조성물 및 그의 제조방법 |
KR20220088961A (ko) | 2020-09-23 | 2022-06-28 | 가부시키가이샤 코키 | 플럭스 및 솔더 페이스트 |
Also Published As
Publication number | Publication date |
---|---|
JP2024527356A (ja) | 2024-07-24 |
CA3239391A1 (en) | 2023-08-10 |
EP4318793A1 (en) | 2024-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022158858A2 (ko) | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 | |
WO2022177377A1 (ko) | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 | |
WO2022177378A1 (ko) | 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2022139451A1 (ko) | 전극 조립체 및 이를 포함하는 이차전지 | |
WO2023096390A1 (ko) | 전극 단자의 고정 구조 및 이를 포함하는 배터리, 배터리 팩 및 자동차 | |
WO2023163400A1 (ko) | 원통형 이차전지, 이를 포함하는 배터리 팩 및 자동차 | |
WO2023075523A1 (ko) | 원통형 배터리 셀, 이를 포함하는 배터리 및 자동차 및 집전판 | |
WO2023075520A1 (ko) | 개선된 집전판을 포함하는 원통형 이차전지, 이를 포함하는 배터리 팩 및 자동차 | |
WO2022177371A1 (ko) | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 | |
WO2022177379A1 (ko) | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 | |
WO2023013933A1 (ko) | 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2022177355A1 (ko) | 이차 전지 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2023013929A1 (ko) | 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2023149689A1 (ko) | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 | |
WO2023149688A1 (ko) | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 | |
WO2022191674A1 (ko) | 전해액 함침성이 우수한 전극 조립체 및 이를 포함하는 배터리, 배터리 팩 및 자동차 | |
WO2023055088A1 (ko) | 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2022177179A2 (ko) | 전극 조립체 및 그 제조 방법, 전극 조립체를 포함하는 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2023063540A1 (ko) | 배터리의 제조방법 | |
WO2022177360A1 (ko) | 이차 전지 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2022216092A1 (ko) | 전극 조립체, 배터리 셀, 배터리 팩 및 자동차 | |
WO2023096062A1 (ko) | 전극 단자의 리벳팅 구조 및 이를 포함하는 배터리 셀, 배터리 팩 및 자동차 | |
WO2022075749A1 (ko) | 전지 케이스 성형 장치, 성형 방법 및 전지 케이스 | |
WO2022177356A1 (ko) | 전극 단자의 리벳팅 구조 및 이를 포함하는 이차 전지, 배터리 팩 및 자동차 | |
WO2024014939A1 (ko) | 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23749922 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023749922 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317075799 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2023749922 Country of ref document: EP Effective date: 20231025 |
|
ENP | Entry into the national phase |
Ref document number: 2024500384 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3239391 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |