WO2024084878A1 - Auスパッタリングターゲット - Google Patents

Auスパッタリングターゲット Download PDF

Info

Publication number
WO2024084878A1
WO2024084878A1 PCT/JP2023/033946 JP2023033946W WO2024084878A1 WO 2024084878 A1 WO2024084878 A1 WO 2024084878A1 JP 2023033946 W JP2023033946 W JP 2023033946W WO 2024084878 A1 WO2024084878 A1 WO 2024084878A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
target
surface roughness
polishing
less
Prior art date
Application number
PCT/JP2023/033946
Other languages
English (en)
French (fr)
Inventor
汰一 伊藤
Original Assignee
松田産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松田産業株式会社 filed Critical 松田産業株式会社
Publication of WO2024084878A1 publication Critical patent/WO2024084878A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to an Au sputtering target.
  • Sputtering is used in the field of semiconductors for fine wiring, MEMS, optical devices, LEDs, organic electroluminescence, etc.
  • Sputtering is a technique in which Ar gas or the like is introduced into a vacuum, a negative voltage is applied to a film-forming material called a target, and the ionized Ar gas is collided at high speed with the target surface (sputtering surface), violently ejecting particles (atoms and/or molecules) of the film-forming material, which are then deposited on the opposing substrate surface to form a thin film.
  • Sputtering can form films even with materials that are difficult to deposit using vacuum deposition, such as high-melting point metals and alloys, and can be used with a wide range of film-forming materials.
  • precious metal films formed using precious metal sputtering targets are used in a variety of fields due to the excellent chemical stability and electrical properties of the precious metals themselves.
  • precious metal films are used as excitation electrodes formed on both sides of quartz crystal chips.
  • the vibration frequency is adjusted by the thickness of the precious metal film, so there is a demand for precious metal sputtering targets that can form precious metal films with a uniform film thickness distribution during sputtering.
  • Sputtering targets are manufactured by a variety of methods, but the final step in their manufacture typically involves grinding and/or polishing the surface of the target.
  • Patent Document 1 discloses a technique in which a raw material containing Ag is melted in a melting furnace, cooled and solidified to obtain an Ag alloy ingot, which is then cold-rolled and heat-treated, and then polished with waterproof paper and buffed to obtain a sputtering target.
  • Patent Document 2 discloses a technique in which a metal ingot is repeatedly rolled, machined with a milling machine, and then buffed to obtain a sputtering target.
  • the present invention aims to provide an Au sputtering target that has excellent stability in the film thickness distribution of the sputtering film formed in the early stage of sputtering and can stabilize the deposition rate in the early stage of sputtering.
  • a Au sputtering target comprising: The average surface roughness Ra of the sputtered surface is 0.1 ⁇ m or more and 50.0 ⁇ m or less, and the difference between the maximum and minimum values is 10.0 ⁇ m or less; and The average surface roughness Rz on the sputtered surface is 80.0 ⁇ m or less, and the difference between the maximum and minimum values is 10.0 ⁇ m or less.
  • Au sputtering target [2] The Au sputtering target according to [1], wherein the average surface roughness Ra exceeds 1.0 ⁇ m. [3] The Au sputtering target according to [2], wherein the average surface roughness Ra exceeds 10.0 ⁇ m.
  • the present invention provides an Au sputtering target that has excellent stability in the film thickness distribution of the sputtering film formed in the early stage of sputtering, and can also stabilize the deposition rate in the early stage of sputtering.
  • FIG. 2 is a diagram for explaining measurement points A to E on the sputtering surface of an Au sputtering target.
  • FIG. 2 is a diagram for explaining region I on the sputtering surface of the Au sputtering target.
  • the sputtering target according to an embodiment of the present invention (hereinafter, also simply referred to as "target") is A gold sputtering target comprising:
  • the surface roughness Ra measured on the surface of the target has an average value of 0.1 ⁇ m or more and 50.0 ⁇ m or less, and the difference between the maximum value and the minimum value is 10.0 ⁇ m or less.
  • the surface roughness Rz measured on the surface of the target has an average value of 80.0 ⁇ m or less, and the difference between the maximum value and the minimum value is 10.0 ⁇ m or less. This is an Au sputtering target.
  • the average value of surface roughness Ra in the present disclosure is the average value of the surface roughness Ra of the target measured at each of the five measurement points indicated below as measurement points A to E, and the difference between the maximum and minimum values of surface roughness Ra in the present disclosure is the difference between the maximum and minimum values of the surface roughness Ra of the target measured at each of the five measurement points indicated below.
  • Measurement point A the center point of the sputtering surface of the target.
  • Measurement point B When a first imaginary line segment is drawn connecting the measurement point A and an arbitrary point b on the edge of the sputtering surface of the target, the point on the first imaginary line segment is located 5 mm from the point b.
  • Measurement point C the midpoint of a second imaginary line segment connecting the measurement point A and the measurement point B.
  • Measurement point D When an imaginary straight line D is drawn on the sputtering surface of the target that passes through the measurement point A and is perpendicular to the first imaginary line segment, and at least one of the two points on the edge of the sputtering surface of the target that intersect with the straight line D is designated as point d, and a third imaginary line segment is drawn connecting the measurement point A and point d, the point on the third imaginary line segment that is located 5 mm away from point d toward the measurement point A.
  • Measurement point E the midpoint of a fourth imaginary line segment connecting the measurement point A and the measurement point D.
  • Figure 1 shows a diagram to explain the above measurement points A to E.
  • Figure 1(a) is a plan view of the target, and shows measurement points A to E when the shape of the target's sputtering surface (sputtering surface) is round, while Figure 1(b) shows measurement points A to E when the shape of the target's sputtering surface is square.
  • the positions of measurement points A to E in Figure 1 are just examples, and if the position of any point B on the edge of the target's sputtering surface used to set point B changes, the positions of points C to E also change. Note that the above points b and d are not shown in Figure 1.
  • the measurement points for evaluating the surface roughness Ra, Rz described below, and the difference between the maximum and minimum values of each of these surface roughnesses may be any of the five measurement points A to E described above, but it is preferable to measure any of five points arbitrarily selected from a region of the sputtering surface of the target other than the region included in the position 5 mm long from the edge of the sputtering surface of the target (measurement region I).
  • a diagram for explaining this measurement region I is shown in Figure 2.
  • the shaded region in Figure 2 is measurement region I.
  • the measurement point when performing a measurement at a specific measurement point, if the measurement point is a point, the measurement can be performed at the target measurement point. If the measurement point occupies a certain area, the measurement can be performed so that the target measurement point is included in that area.
  • the characteristics of the sputtered film in the initial sputtering period or the characteristics of the initial sputtering period tend to be unstable, this tendency will affect subsequent sputtering. Furthermore, if these characteristics are unstable, the pre-sputtering time tends to be long.
  • the inventors have conducted extensive research and have found that, with regard to Ra, which evaluates the average surface roughness, it is possible to obtain an Au sputtering target that has excellent stability in the film thickness distribution of the sputtering film formed in the early stage of sputtering and that can stabilize the deposition rate (deposition rate) in the early stage of sputtering by making the Ra measured at various points on the target a relatively rough state of 0.1 ⁇ m or more while reducing the difference between the maximum and minimum values of the surface roughness Ra, in other words, by reducing the in-plane distribution (variation).
  • Ra which evaluates the average surface roughness
  • the surface roughness Ra is an arithmetic mean roughness, and is the average of the unevenness, so it is not easily affected by a single protruding scratch.
  • a small Ra indicates that the unevenness from the average surface roughness is small. Further intensive studies by the inventors have revealed that these conditions alone are insufficient, and that sufficient deposition rate and film thickness distribution characteristics can be ensured by reducing the localized protrusions at the ⁇ m level and further reducing the variation in the number of localized protrusions at various points on the target.
  • the present inventors have studied Rz, which evaluates the presence or absence of localized convexities on the target surface, and by making the Rz measured at various points on the Au sputtering target below a specific value while reducing the difference between the average values of these Rz, a target with excellent characteristics of deposition rate and film thickness distribution at the initial stage of sputtering can be obtained.
  • the present inventors speculate that when a target with localized convexities at the ⁇ m level is used, the voltage distribution on the target surface becomes more uneven during sputtering, causing discharge unevenness and reducing the characteristics of deposition rate and film thickness distribution at the initial stage of sputtering.
  • the term “sputtered film” refers to a film formed by sputtering.
  • the thickness distribution of the sputtered film is stabilized means that when the thickness is measured at multiple points on the surface of the sputtered film, the standard deviation calculated from the multiple thicknesses obtained is small. For example, it is preferable that the standard deviation of the thickness obtained at nine measurement points of the sputtered film described below is 100 ⁇ or less.
  • the deposition rate in sputtering is stabilized means that when sputtering is performed multiple times, the variation in the deposition rate of the sputtered film in each sputtering is small.
  • the variation in the deposition rate in the 30 sputterings is preferably within 5 ⁇ /sec, and more preferably within 2 ⁇ /sec.
  • the stabilization of the film thickness distribution of the sputtered film formed in the initial stage of sputtering and the stabilization of the deposition rate in the initial stage of sputtering will be collectively expressed as "stabilization of the initial sputtering characteristics.”
  • the material of the sputtering target is gold (Au), and may contain unavoidable impurities as other components.
  • the content of unavoidable impurities in the sputtering target is preferably 1000 wtppm or less, more preferably 100 wtppm or less, and even more preferably 20 wtppm or less.
  • the shape of the sputtering target is not particularly limited, and may be a plate shape or a cylindrical shape.
  • the sputtering surface of the target means the surface on which sputtering is performed.
  • the shape of the sputtering surface of the sputtering target is not particularly limited and may be circular or a polygonal shape such as a square, pentagon, or hexagon, but is preferably circular or rectangular.
  • the area of the sputtering surface of the sputtering target is not particularly limited, but may be 10 cm 2 or more and 5000 cm 2 or less, or 50 cm 2 or more and 2000 cm 2 or less, depending on the size of the target that is currently widely used and the size of the device.
  • the diameter when the target is disk-shaped, the diameter may be 100 mm or more, when the target is plate-shaped, the shorter side may be 5 cm or more, and when the target is cylindrical, the outer diameter is 10 cm or more.
  • the sputtering surface has a shape that can take a line segment with a length of more than 1 cm from the viewpoint of usage efficiency.
  • the average value of the surface roughness Ra measured at each of the five measurement points indicated by the measurement points A to E may be 0.1 ⁇ m or more and 50.0 ⁇ m or less, may be more than 0.1 ⁇ m and 50.0 ⁇ m or less, may be more than 1 ⁇ m and 50.0 ⁇ m or less, may be more than 1 ⁇ m and 50.0 ⁇ m or less, may be more than 5 ⁇ m and 50.0 ⁇ m or less, may be more than 5 ⁇ m and 50.0 ⁇ m or less, may be 10 ⁇ m or more and 50.0 ⁇ m or less, may be more than 10 ⁇ m and 50.0 ⁇ m or less, may be 15 ⁇ m or more and 50.0 ⁇ m or less, or may be more than 15 ⁇ m and 50.0 ⁇ m or less. If the surface roughness is large, the surface area becomes large and the sputtering area becomes large, so the film formation rate tends to be fast.
  • the method of making the surface roughness Ra within the above range may be any method, for example, when using abrasive paper, the method of adjusting the roughness of the abrasive paper can be mentioned, and when using an automatic lathe using a machine such as a lathe, the method of adjusting the polishing speed or the feed speed of the object to be polished can be mentioned.
  • the feed speed can be increased to increase Ra, and the feed speed can be decreased to decrease Ra.
  • polishing the target if the desired average Ra value cannot be obtained in one polishing, it is necessary to polish the target multiple times while checking the surface roughness Ra after polishing until it is within the desired range.
  • the polishing operation is preferably performed not only to adjust the surface roughness Ra to the desired range, but also to reduce the variation in Ra, adjust Rz (maximum height) to the desired range, and reduce the variation in Rz, as described below, so that the final target satisfies the desired surface conditions.
  • the difference (variation) between the maximum and minimum values of surface roughness Ra measured at each of the five measurement points indicated by measurement points A to E may be 10.0 ⁇ m or less, preferably 10.0 ⁇ m or less, may be 5 ⁇ m or less, may be 3 ⁇ m or less, may be 1 ⁇ m or less, may be 0.5 ⁇ m or less, or may be 0.1 ⁇ m or less, and the lower limit may be 0.0 ⁇ m or more, may be 0.01 ⁇ m or more, may be 0.5 ⁇ m, may be 1.0 ⁇ m, or may be 3 ⁇ m.
  • the method of making the variation of surface roughness Ra within the above range is not particularly limited as long as the polishing can reduce the variation, and for example, it can be achieved by repeatedly polishing to reduce the variation to a desired range, but from the viewpoint of manufacturing efficiency, it is preferable to use an automatically rotating machine such as a lathe to polish the surface so that the polishing marks form a concentric shape while considering the desired range and method of the average value of Ra.
  • an automatically rotating machine such as a lathe
  • the feed speed can be kept constant and the feed speed can be reduced to reduce the variation of Ra.
  • a machine capable of automatic polishing in order to minimize the variation in surface roughness caused by manual work.
  • the desired condition for the variation in Ra is not met due to insufficient polishing in a portion of the sputtering surface of the target after automatic polishing, it is acceptable to polish only that portion manually or mechanically so that the condition is met.
  • the desired variation in Ra cannot be obtained by one polishing, the surface roughness Ra after polishing can be confirmed and polished multiple times to achieve the desired range. In this case, the area with the largest maximum value of Ra may be polished partially to reduce the overall variation.
  • the average value of the surface roughness Rz measured at each of the five measurement points indicated by measurement points A to E may be 80 ⁇ m or less, and a smaller average value is preferable, and may be 70 ⁇ m or less, 50 ⁇ m or less, or 30 or less, and there is no particular need to set a lower limit, but it may be 0.1 ⁇ m or more, may be more than 0.1 ⁇ m, may be 1 ⁇ m or more, may be more than 1 ⁇ m, may be 5 ⁇ m or more, may be 5 ⁇ m or more, may be 10 ⁇ m or more, may be 10 ⁇ m or more, may be 15 ⁇ m or more, or may be more than 15 ⁇ m.
  • Rz (maximum height) is the arithmetic mean roughness, which is calculated by extracting a portion of the roughness curve measured by a roughness meter etc. over a reference length, and finding the sum of the highest and deepest parts, and is used when checking for the presence or absence of protruding scratches, etc.
  • a large Rz indicates that there are partially defective areas, specifically that there is a large local variation in the target surface.
  • any method may be used to set the average value of the surface roughness Rz within the above range, and for example, when abrasive paper is used, the coarseness of the abrasive paper can be adjusted, and when an automatic lathe is used using a machine such as a lathe, the polishing speed or the feed speed of the object to be polished can be adjusted.
  • Rz can be increased by making the cutting depth of the lathe blade deeper, and Rz can be decreased by reducing the cutting depth of the lathe blade.
  • the surface roughness Rz after polishing can be checked and polished several times to bring it into the desired range. In this case, it is preferable to first adjust the above-mentioned Ra conditions so that they are in the desired range, and then polish to reduce Rz, that is, to reduce local convexities.
  • the difference (variation) between the maximum and minimum values of surface roughness Rz measured at each of the five measurement points indicated by measurement points A to E may be 10.0 ⁇ m or less, more preferably 5.0 ⁇ m or less, more preferably 3.0 ⁇ m or less, even more preferably 1.0 ⁇ m or less, may be 0.5 ⁇ m or less, or may be 0.1 ⁇ m or less, from the viewpoint of stabilizing the initial sputtering characteristics. Furthermore, from the viewpoint of the film thickness distribution of the sputtered film, the smaller the difference between the maximum and minimum values of surface roughness Rz, the more preferable it is, and there is no need to set a lower limit, but it may be 0.0 ⁇ m or more, or may be 0.01 ⁇ m or more.
  • the method for bringing the variation of the surface roughness Rz into the above range is not particularly limited as long as the polishing can reduce the variation, and for example, it can be achieved by repeatedly polishing to reduce the variation to a desired range, but from the viewpoint of manufacturing efficiency, it is preferable to use an automatically rotating machine such as a lathe to polish the surface so that the polishing marks form concentric circles while considering the desired range and method of the average value of Rz. Also, when using a machine such as a lathe, the variation of Rz can be reduced by, for example, keeping the cutting depth of the blade constant, keeping the feed rate constant, and reducing the feed rate. It is also preferable to use a machine capable of automatic polishing in order to minimize the variation in surface roughness caused by manual work.
  • the desired condition for the variation in Ra is not met due to insufficient polishing in a portion of the sputtering surface of the target after automatic polishing, it is acceptable to polish only that portion manually or mechanically so that the condition is met.
  • the desired Rz variation cannot be obtained by one polishing, the surface roughness Rz after polishing is checked and polished multiple times to bring it into the desired range. In this case, it is preferable to first adjust the above-mentioned Ra conditions so that they are in the desired range, and then polish partially to reduce the areas with large maximum Rz values, that is, local convex parts, and polish to reduce the overall variation.
  • the target has a surface distortion (processing distortion) caused by processing such as polishing.
  • a large degree of this processing distortion means a large residual stress, and there is a disadvantage that the deposition rate at the beginning of sputtering and the uniformity of the film thickness distribution are also deteriorated. Therefore, it is preferable that the processing distortion of the target surface is small.
  • the processing distortion is affected by the degree of the load applied to the target during polishing, and the smaller the degree of the load, the smaller the processing distortion. Therefore, if the target is polished so as to be pressed, the processing distortion will be large, so it is preferable to polish it so as to reduce this pressing.
  • the surface roughness can be adjusted with as little load as possible, or the grit size of the abrasive paper used for polishing can be adjusted. If the processing distortion is not within the desired range, polishing may be repeated so as to be within the desired range.
  • the processing distortion can be evaluated, for example, by the half-width of the crystal plane measured by X-ray diffraction; the smaller the half-width, the smaller the processing distortion, and a smaller half-width is preferable.
  • the average half-width of the (220) crystal plane measured by X-ray diffraction on the target at each of the five measurement points indicated by measurement points A to E is preferably 1.0 or less, and more preferably 0.6 or less. There is no need to set a lower limit for the half-width, but it may be 0.01 or more, or 0.05 or more.
  • the variation in the half-width of the (220) crystal plane measured by X-ray diffraction in the target at each of the five measurement points indicated by measurement points A to E is preferably ⁇ 0.1 or less, more preferably ⁇ 0.06 or less, and while there is no need to set a lower limit for the variation in the half-width, it may be ⁇ 0.005 or more, or may be ⁇ 0.01 or more.
  • the variation in half-width refers to the range of deviation from the average value of the half-width. Specifically, the variation in half-width being ⁇ 0.1 or less means that all of the five measured values of the half-width are within the range of (average value -0.1) to (average value +0.1).
  • the above half-width can be measured using an X-ray diffraction device (such as Rigaku's RINTULTIMA IV, with a Cu-K ⁇ tube).
  • an X-ray diffraction device such as Rigaku's RINTULTIMA IV, with a Cu-K ⁇ tube.
  • evaluation parameters for the two processing distortions mentioned above are measured at each of the five measurement points mentioned above, in the same way as the surface roughness mentioned above, and calculated as the average value.
  • the method for evaluating this sputtered film is not particularly limited, but for example, the sputtering surface of the target is subjected to at least 30 operations of sputtering Au to obtain a sputtered film under the conditions of input power: DC 1 kW, sputtering ultimate pressure: 9.5 ⁇ 10 ⁇ 5 Pa, and sputtering time: 42 seconds, and the film thickness of each of the obtained sputtered films is measured.
  • the deposition rate in the initial stage of sputtering can be evaluated by dividing the thickness of the sputtered film formed in the above sputtering by the sputtering time (42 seconds).
  • the standard deviation (standard deviation ⁇ ) of the film thickness obtained by measuring the film thickness at the nine measurement points shown below is preferably 100 ⁇ or less, and more preferably 50 ⁇ or less. This is preferably satisfied in each of at least 30 sputtered films obtained by at least 30 sputtering operations.
  • the resistance value at each point is measured by applying a probe for measuring resistance to the target point.
  • An imaginary line segment is formed by connecting an arbitrary imaginary straight line passing through the center of the surface of the sputtered film with two intersections with the edge of the surface of the sputtered film, and nine points on the line segment are arranged so as to divide the line segment into 10 equal parts.
  • the average crystal grain size on the sputtering surface of the target is not particularly limited, and may be, for example, 1 ⁇ m or more and 500 ⁇ m or less, 10 ⁇ m or more and 200 ⁇ m or less, or 10 ⁇ m or more and 100 ⁇ m or less.
  • the average crystal grain size can be evaluated by observing the sputtering surface of the target using a scanning electron microscope (SEM).
  • the crystal orientation of the crystals on the sputtering surface of the target is not particularly limited and may be, for example, (111), (100) ((200)), or (110) (220).
  • the crystal orientation can be evaluated by an X-ray diffraction device using Cu as the X-ray source.
  • the target may be used with a backing plate for supporting the Au member.
  • the form of the backing plate is not particularly limited, and the shape and material can be selected according to the application.
  • the backing plate is treated as constituting the target, and the Au member is also referred to as the target member.
  • the wording "target” in the description of the target member is replaced with "target member”.
  • the shape of the backing plate may be, for example, a plate shape having a polygonal surface such as a square, pentagon, or hexagon, or a circular surface.
  • the area of the backing plate is not particularly limited, and may be in the same range as the area of the target described above, and more specifically, the shape of the surface of the backing plate on the side where the target member and the backing plate are bonded may be the same as the shape of the surface of the backing plate on the bonding side.
  • the method for producing the sputtering target is not particularly limited, and the target can be produced by a known method or a combination of known methods.
  • the target can be produced by a production method including a casting step of casting a raw material containing noble metal to obtain an ingot, a processing step of processing the ingot to obtain a workpiece having a desired shape, a heating step of heat-treating the workpiece to obtain a sintered body, and a polishing step of polishing the sintered body. Each step will be described below.
  • the casting process is not particularly limited, but for example, a raw material containing Au is prepared, melted in a container such as a graphite crucible or a ceramic crucible in the air, a vacuum atmosphere, or an inert atmosphere, and the molten raw material is poured into a mold having a desired shape, and then cooled and solidified for casting to obtain an ingot.
  • the melting conditions are not particularly limited, and may be any conditions that allow the raw material to melt.
  • the raw material used is one having a high purity, preferably with a gold purity of 99.9% by weight or more, more preferably 99.95% by weight or more, and even more preferably 99.99% by weight or more.
  • the processing step is not particularly limited, but for example, the ingot obtained in the above casting step is cut into a desired shape (plate shape, cylindrical shape, etc.) to form a billet, which is then forged and processed.
  • a plate-shaped target for example, surface defects on the outer peripheral surface of an ingot formed into a plate are ground away to produce a billet of the desired shape
  • a cylindrical target surface defects on the outer peripheral surface of an ingot formed into a cylindrical shape are ground away and the inside is hollowed out to produce a cylindrical billet.
  • the billet is then forged into a desired shape.
  • the conditions for forging are not particularly limited, and for example, it is preferable to perform the forging in a hot state at a temperature in the range of 100 to 800°C.
  • the billet may be worked into a desired shape by rolling. Forging or rolling may be performed multiple times.
  • the heating step is not particularly limited, but for example, an electric furnace or the like is used to heat the processed material at a heating temperature of preferably 100 to 800°C, more preferably 300 to 700°C, and for a heating time of preferably 10 to 500 minutes, more preferably 50 to 250 minutes, to obtain a target material having a certain crystal structure.
  • a heating temperature preferably 100 to 800°C, more preferably 300 to 700°C, and for a heating time of preferably 10 to 500 minutes, more preferably 50 to 250 minutes, to obtain a target material having a certain crystal structure.
  • the number of times of the heat treatment may be one or more.
  • the polishing process is not particularly limited, but by performing the polishing operation described in the description of the above-mentioned surface roughness Ra and Rz and their variations, polishing is performed so that the above-mentioned surface roughness Ra is within a desired range, preferably so that the variation of Ra, Rz, and Rz are within a desired range.
  • the target material obtained by the heating process is surface-polished by an automatic polishing machine or an automatic rotating body such as a rotating potter's wheel.
  • the polishing mode is not particularly limited, but from the viewpoint of further stabilizing the initial sputtering characteristics, it is preferable to perform the polishing without changing the center position when polishing in a circular shape, that is, to perform the polishing so that the polishing marks form a concentric circle.
  • CMP chemical mechanical polishing
  • a backing plate and/or a bonding layer when a backing plate and/or a bonding layer is provided, the method for providing them is not particularly limited, and a backing plate and/or a bonding layer can be provided on a target (target member) manufactured by the above method.
  • the measurement sample is kept in an environment similar to the environment in which the measurement will be performed for at least 48 hours before the measurement.
  • the measurement temperature, measurement humidity, and measurement pressure are normal temperature (20 ⁇ 10°C), normal humidity (40 ⁇ 20% RH), and normal pressure (atmospheric pressure).
  • Measurement point A the center point of the sputtering surface of the target.
  • Measurement point B When a first imaginary line segment is drawn connecting the measurement point A and an arbitrary point b on the edge of the sputtering surface of the target, the point on the first imaginary line segment is located 5 mm from the point b.
  • Measurement point C the midpoint of a second imaginary line segment connecting the measurement point A and the measurement point B.
  • Measurement point D When an imaginary straight line D is drawn on the sputtering surface of the target that passes through the measurement point A and is perpendicular to the first imaginary line segment, and at least one of the two points on the edge of the sputtering surface of the target that intersect with the straight line D is designated as point d, and a third imaginary line segment is drawn connecting the measurement point A and point d, the point on the third imaginary line segment that is located 5 mm away from point d toward the measurement point A.
  • Measurement point E the midpoint of a fourth imaginary line segment connecting the measurement point A and the measurement point D.
  • the target was attached to a sputtering device (SRV-4320 manufactured by Shinko Seiki Co., Ltd.), and the inside of the device was evacuated to 9.5 ⁇ 10 ⁇ 5 Pa or less. Sputtering was then performed under the conditions of input power: DC 1 kW, target-substrate distance: 50 mm, and sputtering time: 42 seconds, forming an Au film on a 6-inch Si substrate (wafer) to produce a sputtered film (thickness: about 1100 ⁇ ). This sputtering was repeated 30 times using the same target to obtain 30 sputtered films.
  • SRV-4320 manufactured by Shinko Seiki Co., Ltd.
  • the first, 15th, and 30th sputtered films were used to evaluate the film thickness distribution by the method described below.
  • the deposition rate was evaluated in the first, 15th, and 30th sputtering of the 30 sputterings by the method described below.
  • Example 1 First, an Au lump (purity 99.99 wt%) was placed in a high-frequency melting furnace and melted at a temperature of 1200°C to obtain molten Au, and then the molten Au was poured into a mold to obtain an Au ingot. Next, the Au ingot was cut to obtain a billet, which was then hot forged at 500°C to obtain a disk-shaped workpiece with a diameter of 300 mm and a height of 7 mm. Next, in order to remove oxides on the surface, the surface was cut with a milling machine, and the surface was uniformly hairline polished with abrasive paper No. 2000 while rotating it on a rotary table.
  • the polishing specifically, first, the surface roughness Ra of the surface after polishing was repeatedly confirmed, and the surface was polished with abrasive paper No. 2000 so that the surface roughness Ra approached the values shown in Table 1, and then the surface roughness Rz of the surface after polishing was repeatedly confirmed to polish the parts with large surface roughness Rz, and finally, a sputtering target was manufactured so that the surface roughness Ra and Rz of the sputtering target measured at the above five measurement points were the values shown in Table 1.
  • polishing was performed using a rotary table (turntable), the polishing was performed without changing the center position when polishing in a circular shape.
  • the target obtained was disk-shaped, with a diameter of 290 mm and a height of 6 mm. Furthermore, elemental analysis using an ICP-MS analyzer (Shimadzu Corporation's inductively coupled plasma atomic emission spectrometry ICPS-8100) revealed that the composition ratio of the target was 99.99% by weight of Au purity.
  • the average Ra was approximately 0.3 ⁇ m
  • the average Rz was approximately 3.6 ⁇ m
  • the variation in Ra and Rz was small.
  • the deposition rate was approximately 23 ⁇ /sec
  • the film thickness distribution was approximately 1000 ⁇ with a small standard deviation.
  • Example 2 After obtaining the workpiece, the milling machine was changed to an NC automatic lathe, and the cutting depth of the cutting tool was set to about 0.05 mm, the rotation speed was 100 rpm, and the feed rate was 0.01 mm/rev, and polishing was performed. Specifically, as in Example 1, first, the surface roughness Ra of the surface after polishing was repeatedly confirmed, and polishing was performed with an NC automatic lathe so that the surface roughness Ra approached the values shown in Table 1, and then the surface roughness Rz of the surface after polishing was repeatedly confirmed to polish the parts with large surface roughness Rz, and finally, the surface roughness Ra and Rz of the sputtering target measured at the above five measurement points were set to the values shown in Table 1.
  • the size of the target finally obtained and the purity of Au were also the same as in Example 1.
  • the average value of Ra was about 3.0 ⁇ m
  • the average value of Rz was about 15 ⁇ m
  • the variations in Ra and Rz were very small
  • the deposition rate was about 29 ⁇ /sec
  • the film thickness distribution was about 1200 ⁇ with a small standard deviation.
  • Example 3 After obtaining the workpiece, the milling machine was changed to an NC automatic lathe, and the cutting depth of the cutting tool was set to about 0.1 mm, the rotation speed was 200 rpm, and the feed rate was 0.1 mm/rev, and polishing was performed. Specifically, as in Example 1, first, the surface roughness Ra of the surface after polishing was repeatedly confirmed, and polishing was performed with an NC automatic lathe so that the surface roughness Ra approached the values shown in Table 1, and then, the surface roughness Rz of the surface after polishing was repeatedly confirmed to polish the parts with large surface roughness Rz, and finally, the surface roughness Ra and Rz of the sputtering target measured at the above five measurement points were set to the values shown in Table 1.
  • the size of the target finally obtained and the purity of Au were also the same as in Example 1.
  • the average value of Ra was about 10 ⁇ m
  • the average value of Rz was about 45 ⁇ m
  • the variations in Ra and Rz were small
  • the deposition rate was about 30 ⁇ /sec
  • the film thickness distribution was about 1250 ⁇ with a small standard deviation.
  • Example 4 After obtaining the workpiece, the milling machine was changed to an NC automatic lathe, and the cutting depth of the cutting tool was set to about 0.5 mm, the rotation speed was 500 rpm/min, and the feed rate was 0.2 mm/rev, and polishing was performed. Specifically, as in Example 1, first, the surface roughness Ra of the surface after polishing was repeatedly confirmed, and polishing was performed with an NC automatic lathe so that the surface roughness Ra approached the values shown in Table 1, and then, the surface roughness Rz of the surface after polishing was repeatedly confirmed to polish the parts with large surface roughness Rz, and finally, the surface roughness Ra and Rz of the sputtering target measured at the above five measurement points were made to the values shown in Table 1.
  • the size of the target finally obtained and the purity of Au were also the same as in Example 1.
  • the average value of Ra was about 35 ⁇ m
  • the average value of Rz was about 75 ⁇ m
  • the variations in Ra and Rz were small
  • the deposition rate was about 32 ⁇ /sec
  • the film thickness distribution was about 1350 ⁇ with a small standard deviation.
  • Example 5 In the polishing in Example 1 described above, the degree of pressing of the abrasive paper against the target was reduced so that the surface roughness Ra and Rz of the sputtering target measured at the above five measurement points finally became the values shown in Table 1, and furthermore, polishing was performed so as to become the half-value width shown in Table 1.
  • a sputtering target was manufactured in the same manner as in Example 1. The size of the target finally obtained and the purity of Au were also the same as in Example 1.
  • the average value of Ra was about 0.71 ⁇ m, the average value of Rz was about 3.3 ⁇ m, the variation of Ra and Rz was small, the deposition rate was about 25 ⁇ /sec, and the film thickness distribution was about 1200 ⁇ with a small standard deviation, which was better than the target in Example 1.
  • the average value of Ra was about 5 ⁇ m and the average value of Rz was about 22.5 ⁇ m, but there was a large variation, the deposition rate was about 20 to 23 ⁇ /sec, and the film thickness distribution was 850 to 970 ⁇ with a very large standard deviation.
  • Comparative Example 2 After obtaining the workpiece, the surface was cut under the conditions of the milling machine used in Comparative Example 1, and then the surface was polished by CMP. A sputtering target was manufactured in the same manner as in Example 1 so that the surface roughness Ra and Rz of the sputtering target measured at the above five measurement points were the values shown in Table 1. The size of the target finally obtained and the purity of Au were also the same as in Example 1. As a result, the average value of Ra and the average value of Rz were both less than 0.1 ⁇ m, the variation of Ra and Rz was very small, and the film thickness distribution was good, but the deposition rate was very slow and the variation was large.
  • the average values of Ra and Rz were about 12.5 ⁇ m and 32.4 ⁇ m, respectively, with very large variations in Ra and Rz, the deposition rate was about 22 ⁇ /sec, and the film thickness distribution was also about 910 to 960 ⁇ with a large standard deviation.
  • the average value of Ra was about 61 ⁇ m and the average value of Rz was about 83 ⁇ m, with large variations in Ra and Rz, the deposition rate was about 19.5 ⁇ /sec, and the film thickness distribution was about 790 to 850 ⁇ with a large standard deviation.
  • Example 6 After obtaining the workpiece, the surface was manually polished uniformly using #120 abrasive paper so that the surface roughness Ra and Rz of the sputtering target measured at the above five measurement points were the values shown in Table 1.
  • a sputtering target was manufactured in the same manner as in Example 1.
  • the size and Au purity of the target finally obtained were also similar to those of Example 1.
  • the average value of Ra was about 42 ⁇ m and the average value of Rz was about 85.1 ⁇ m, and while the variation in Ra was small, the variation in Rz was large, the deposition rate was about 10 to 16 ⁇ /sec, and the film thickness distribution was about 370 to 680 ⁇ with a large standard deviation.
  • the present invention it is possible to provide an Au sputtering target in which the sputtering film formed in the initial stage of sputtering has excellent stability in thickness distribution and the deposition rate in the initial stage of sputtering can be stabilized.
  • the sputtering target according to the embodiment of the present invention can be widely used in the formation of elements in electronic components, semiconductor devices, optical thin films, magnetic devices, LEDs, organic EL, LCDs, etc., using a sputtering method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Auスパッタリングターゲットであって、スパッタ面の表面粗さRaの平均値が0.1μm以上、50.0μm以下であり、最大値と最小値との差が10.0μm以下であり、かつ、スパッタ面の表面粗さRzの平均値が80.0μm以下であり、最大値と最小値との差が10.0μm以下である、Auスパッタリングターゲット。

Description

Auスパッタリングターゲット
 本発明は、Auスパッタリングターゲットに関する。
 スパッタリング法は、半導体分野における微細配線、MEMS、光デバイス、LED、又は有機EL等に用いられている。スパッタリングとは、真空中でArガスなどを導入し、ターゲットと呼ばれる成膜材料に負の電圧を印加し、イオン化したArガスを高速でターゲット表面(スパッタ面)に衝突させて、成膜材料の粒子(原子及び/又は分子)を激しく弾き出し、対向する基板表面に堆積させて薄膜を形成する技術である。スパッタリング法では、高融点の金属や合金など、真空蒸着法では困難な材料でも、成膜が可能で、広範囲な成膜材料に対応できる。
 スパッタリングターゲットの材料の開発は幅広く行われており、貴金属を用いた開発も行われている。貴金属のスパッタリングターゲットを用いて成膜された貴金属膜は、貴金属自体の優れた化学的安定性と電気特性のために様々な分野で用いられている。例えば、水晶振動子デバイスにおいては、水晶チップの両面に形成する励振電極等として貴金属膜が用いられている。水晶振動子デバイスでは、貴金属膜の膜厚により振動周波数を調整すること等から、スパッタリング時に均一な膜厚分布で貴金属膜を成膜することが可能な貴金属スパッタリングターゲットが求められている。
 スパッタリングターゲットは、様々な方法で製造されているが、その製造の最終工程では、一般的にターゲットの表面を研削及び/又は研磨する工程が設けられる。
 例えば、特許文献1には、Agを含む原料を溶解炉中で溶解させ、冷却固化して得られたAg合金インゴットを冷間圧延し、熱処理した後、耐水紙での研磨、およびバフ研磨を行い、スパッタリングターゲットを得る技術が開示されている。
 また、特許文献2には、金属のインゴットを用いて繰り返し圧延加工を行い、フライス盤による機械加工を行った後、バフ研磨を行い、スパッタリングターゲットを得る技術が開示されている。
特開2017-031503号公報 特開2002-146521号公報
 上述したように、従来のスパッタリングターゲットの製造方法の最終段階では、様々な研磨等の操作が行われるが、最終的に得られるターゲットのスパッタ面の状態、特にAuスパッタリングターゲットのスパッタ面の状態の検討は十分なものとはいえず、改善の余地が残されていた。
 かかる問題に鑑み、本発明は、スパッタリング初期に成膜されるスパッタリング膜の膜厚分布の安定性に優れ、また、スパッタリング初期におけるデポレートの安定化を図ることができる、Auスパッタリングターゲットを提供することを課題とする。
 本発明者は、鋭意検討の結果、スパッタリングターゲットの表面粗さRa、Rzを特定の数値範囲とし、かつ、表面粗さの面内ばらつきを小さくすることにより、上記課題を解決できることを見出し、本発明に到達した。
[1] Auスパッタリングターゲットであって、
 スパッタ面における表面粗さRaの平均値が0.1μm以上、50.0μm以下であり、最大値と最小値との差が10.0μm以下であり、かつ、
 スパッタ面における表面粗さRzの平均値が80.0μm以下であり、最大値と最小値との差が10.0μm以下である、
Auスパッタリングターゲット。
[2] 前記表面粗さRaの平均値が1.0μm超である、[1]に記載のAuスパッタリングターゲット。
[3] 前記表面粗さRaの平均値が10.0μm超である、[2]に記載のAuスパッタリングターゲット。
[4] 前記表面粗さRzの最大値と最小値との差が5.0μm以下である、[1]~[3]のいずれかに記載のAuスパッタリングターゲット。
[5] 前記表面粗さRzの最大値と最小値との差が3.0μm以下である、[4]に記載のAuスパッタリングターゲット。
[6] スパッタ面におけるX線回折により測定される(220)結晶面の半値幅の平均値が1.0以下である、[1]~[5]のいずれかに記載のAuスパッタリングターゲット。
[7] スパッタ面におけるX線回折により測定される(220)結晶面の半値幅のばらつきが±0.1以下である、[1]~[6]のいずれかに記載のAuスパッタリングターゲット。
 本発明により、スパッタリング初期に成膜されるスパッタリング膜の膜厚分布の安定性に優れ、また、スパッタリング初期におけるデポレートの安定化を図ることができる、Auスパッタリングターゲットを提供することができる。
Auスパッタリングターゲットのスパッタ面における測定点A~Eを説明するための図である。 Auスパッタリングターゲットのスパッタ面における領域Iを説明するための図である。
 以下に本発明の実施の形態を詳細に説明するが、これらの説明は本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限りこれらの内容に限定されない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
 また、図面について、本実施形態に記載されている構成要素の寸法、形状、それらの相対的な配置等は一例である。
 また、本明細書では複数の実施形態を説明するが、これらは可能な範囲で組み合わせることができる。
 また、本明細書において「A又はB」の表現は、「A及びBからなる群から選択される少なくとも1つ」と読み替えることができる。
<Auスパッタリングターゲット>
 本発明の実施形態に係るスパッタリングターゲット(以下、単に「ターゲット」とも称する。)は、
 Auスパッタリングターゲットであって、
 前記ターゲットの表面で測定される表面粗さRaについて、平均値が0.1μm以上、50.0μm以下であり、最大値と最小値との差が10.0μm以下であり、また、
 前記ターゲットの表面で測定される表面粗さRzについて、平均値が80.0μm以下であり、最大値と最小値との差が10.0μm以下である、
Auスパッタリングターゲットである。
 本開示の表面粗さRaの平均値とは、下記の測定点A~Eで示される5つの各測定点において測定されるターゲットの表面粗さRaの平均値であり、本開示の表面粗さRaの最大値と最小値との差とは、下記5つの各測定点において測定されるターゲットの表面粗さRaのうち、最大値と最小値との差である。これは、Rzについても同様である。
(測定点)
測定点A:前記ターゲットのスパッタ面の中心点。
測定点B:前記測定点Aと前記ターゲットのスパッタ面の縁上の任意の点bとを結ぶ第1の仮想的な線分を引いた場合において、前記点bから5mmの長さに位置する前記第1の仮想的な線分上の点。
測定点C:前記測定点Aと前記測定点Bとを結ぶ第2の仮想的な線分の中点。
測定点D:前記測定点Aを通り、前記第1の仮想的な線分に直交する前記ターゲットのスパッタ面上に仮想的な直線Dを引き、前記直線Dと交わる前記ターゲットのスパッタ面の縁上の2点のうちの少なくとも一方の点を点dとし、前記測定点Aと前記点dとを結ぶ第3の仮想的な線分を引いた場合において、前記点dから前記測定点Aに向かって5mmの長さに位置する前記第3の仮想的な線分上の点。
測定点E:前記測定点Aと前記測定点Dとを結ぶ第4の仮想的な線分の中点。
 上記の測定点A~Eを説明するための図を図1に示す。図1(a)は、ターゲットの平面図であり、ターゲットのスパッタされる面(スパッタ面)の形状が丸形状である場合の測定点A~Eを示し、図1(b)は、ターゲットのスパッタ面の形状が四角形状である場合の測定点A~Eを示す。なお、図1における測定点A~Eの位置は一例であり、点Bを設定するためのターゲットのスパッタ面の縁上の任意の点Bの位置が変化すれば、点C~Eの位置も変化する。なお、図1では、上記の点bおよび点dの図示を省略している。
 表面粗さRa、及び後述するRz、並びにそれらの各表面粗さの最大値と最小値との差を評価する測定点は、上記の測定点A~Eで示される5つの各測定点であればよいが、前記ターゲットのスパッタ面の縁から5mmの長さの位置までに含まれる領域以外の前記ターゲットのスパッタ面の領域(測定領域I)から任意に選択される5つの各測定であることが好ましい。この測定領域Iを説明するための図を図2に示す。図2中の斜線の領域が測定領域Iである。
 なお、特定の測定点で測定を行う場合、測定箇所が点である測定であれば、対象の測定点で測定を行えばよく、測定箇所が一定の領域を占める測定であれば、対象の測定点がその領域に含まれるように測定を行えばよい。
 従来、Auスパッタリングターゲットでは、製造工程の最終段階において、スパッタリングを実施する側のターゲットの表面(スパッタ面)を研磨する工程が設けられていた。従来のターゲットの製造における研磨の工程では、最終的に得られるターゲットのスパッタ面における表面粗さをできるだけ小さくする方向で研磨等の処理が行われてきた。
 しかし、スパッタリングターゲットのスパッタ面の状態は、初期スパッタにより成膜される膜の膜厚分布や、初期のスパッタにおけるデポレートに影響を及ぼす要因であるが、これらの関係性についての検討は十分ではなかった。スパッタリング初期におけるスパッタ膜の特性や初期スパッタの特性が不安定な傾向にあると、この傾向はその後のスパッタリングに影響を及ぼすことなる。また、これらの特性が不安定であると、プレ・スパッタリング時間が長くなってしまう傾向にあった。
 そこで、本発明者らは鋭意検討した結果、表面粗さの平均値を評価するRaについて、ターゲット各所で測定されたRaを0.1μm以上という比較的粗化した状態としつつ、表面粗さRaの最大値と最小値の差を小さくする、すなわち、面内の分布(ばらつき)を小さくすることにより、スパッタリング初期に成膜されるスパッタリング膜の膜厚分布の安定性に優れ、また、スパッタリング初期におけるデポレート(堆積速度)の安定化を図ることができるAuスパッタリングターゲットを得ることができること見出した。
 一方で、表面粗さRaは算術平均粗さであり、凹凸の平均を見ているため、1つの突出したキズの影響を受けにくい。Raが小さいことは、表面粗さでの平均からの凸凹が小さいことを表す。本発明者らのさらなる鋭意検討により、これらの条件のみでは不十分であり、μmレベルでの局所的な凸部を少なくし、さらに、ターゲット各所でのその局所的な凸部の少なさのばらつきを小さくすることにより、十分なデポレート及び膜厚分布の特性を確保できることが分かった。
 そこで本発明者らは、ターゲット表面上の局所的な凸部の有無を評価するRzについて検討し、Auスパッタリングターゲット各所で測定されたRzを特定値以下としつつ、これらのRzの平均値の差を小さくすることにより、スパッタリング初期のデポレート及び膜厚分布の特性に優れるターゲットを得ることができた。μmレベルでの局所的な凸部が存在するターゲットを用いた場合、スパッタリング時において、ターゲット表面の電圧分布のばらつきが大きくなるために放電のばらつきが生じてスパッタリング初期のデポレート及び膜厚分布の特性が低下する、特に、ターゲット表面に突出した凸部があると最初に該凸部でのスパッタが進みスパッタリング初期のデポレート及び膜厚分布の特性が低下する、と本発明者らは推測している。
 さらに、本発明者は、本願実施形態に係るスパッタリングターゲットを用いてスパッタリングを行った場合、成膜速度が速くなり生産性向上につながると本発明者は推測している。
 本明細書において、「スパッタリング膜」とは、スパッタリングにより成膜される膜を意味する。
 また、本明細書において、「スパッタリング膜の膜厚分布が安定化する」とは、スパッタリング膜の表面の複数点で膜厚を測定した場合に、得られた複数の膜厚から算出される標準偏差が小さいことを意味する。例えば、後述するスパッタリング膜の9つの測定点で得られる膜厚の標準偏差が100Å以下であることが好ましい。
 また、本明細書において、「スパッタリングにおけるデポレートが安定化する」とは、複数回スパッタリングを行った場合において、各スパッタリングにおけるスパッタリング膜の成膜速度のばらつきが小さいことを意味する。例えば、30枚のスパッタリング膜を成膜した場合において、30回のスパッタリングのデポレートの変動幅が5Å/秒以内であることが好ましく、2Å/秒以内であることがより好ましい。
 以下、スパッタリング初期に成膜されたスパッタリング膜の膜厚分布が安定化すること、及び初期のスパッタリングにおけるデポレートが安定化することを、まとめて「スパッタリング初期特性が安定化する」と表現する。
 スパッタリングターゲットの材質は、金(Au)であり、不可避不純物をその他の成分として含んでいてもよい。
 スパッタリングターゲット中の不可避不純物の含有量は、1000wtppm以下であることが好ましく、100wtppm以下であることがより好ましく、20wtppm以下であることがさらに好ましい。
 スパッタリングターゲットの形状は特段制限されず、板形状であってもよく、円筒形状であってもよい。なお、本明細書において、ターゲットのスパッタ面とは、スパッタを実施する面を意味する。
 また、スパッタリングターゲットのスパッタ面の形状は特段制限されず、円形状であってもよく、四角形状、五角形状、又は六角形状等の多角形状であってもよいが、円形状又は四角形状であることが好ましい。
 スパッタリングターゲットのスパッタ面の面積は特段制限されないが、現状多く使用されているターゲットの大きさから、装置の大きさにもよるが、10cm以上、5000cm以下であってよく、50cm以上、2000cm以下であってもよい。また、ターゲットが円盤状である場合、直径100mm以上であってもよく、ターゲットが板形状である場合、短いほうの一辺が5cm以上であってもよく、ターゲットが円筒形状である場合、外径10cm以上である。また、ターゲットがどの形状であっても、スパッタ面が、使用効率の観点から1cm超の長さの線分を取り得る形状であることが好ましい。
(表面粗さRa)
 表面粗さRaについて、スパッタリングターゲット各所で測定されたRaを0.1μm以上と粗化面としつつ、Raの面内分布と均一にする(最大値と最小値の差を小さくする)ことにより、スパッタリング初期のデポレート及び膜厚分布の特性に優れるAuスパッタリングターゲットを得ることができる。
 測定点A~Eで示される5つの各測定点において測定される表面粗さRaの平均値は、スパッタリング初期特性が安定化する観点から、0.1μm以上、50.0μm以下であればよく、0.1μm超、50.0μm以下であってもよく、1μm以上、50.0μm以下であってもよく、1μm超、50.0μm以下であってもよく、5μm以上、50.0μm以下であってもよく、5μm超、50.0μm以下であってもよく、10μm以上、50.0μm以下であってもよく、10μm超、50.0μm以下であってもよく、15μm以上、50.0μm以下であってもよく、15μm超、50.0μm以下であってもよい。表面粗さが大きいと、表面積が大きくなりスパッタ面積が大きくなることから成膜速度が速くなる傾向がある。
 表面粗さRaを上記の範囲とする方法は、どのような方法でもよく、例えば、研磨紙を用いる場合には、研磨紙の目の粗さを調整する方法が挙げられ、旋盤等の機械を用いた自動旋盤を行う場合には、研磨速度を調整したり、研磨対象の送り速度を調整したりする方法が挙げられる。旋盤等の機械を用いる場合、例えば、送り速度を大きくすることでRaを増加させることができ、送り速度を小さくすることでRaを減少させることができる。
 また、ターゲットの研磨においては、1回の研磨で所望のRaの平均値が得られない場合には、研磨後の表面粗さRaの確認を行いつつ、複数回研磨を行い、所望の範囲にする必要がある。
 研磨の操作は、表面粗さRaを所望の範囲に調整する操作だけでなく、後述するRaのばらつきを減少させる操作、Rz(最大高さ)を所望の範囲に調整する操作、及びRzのばらつきを減少させる操作を考慮して、最終的に得られるターゲットが所望の表面の条件を満たすように研磨することが好ましい。
 表面粗さRa及び後述するRzの測定方法は特段制限されず、一般的な表面粗さ測定装置(例えば、Mitutoyo製の接触式表面粗さ測定器 小型表面粗さ測定器SJ-210)を用いて測定することができる。
 測定点A~Eで示される5つの各測定点において測定される表面粗さRaの最大値と最小値との差(ばらつき)は、スパッタリング初期特性が安定化する観点から、10.0μm以下であればよく、10.0μm以下であることが好ましく、5μm以下であってもよく、3μm以下であってもよく、1μm以下であってもよく、0.5μm以下であってもよく、0.1μm以下であってもよく、下限については、0.0μm以上であってもよく、0.01μm以上であってもよく、0.5μmであってもよく、1.0μmであってもよく、3μmであってもよい。
 表面粗さRaのばらつきを上記の範囲とする方法は、ばらつきを減少させることができる研磨が行われれば特段制限されず、例えば、所望の範囲までばらつきを減少させるよう繰り返し研磨を行うことで達成することができるが、製造効率の観点から、上記のRaの平均値を所望の範囲と方法を考慮しつつ、旋盤等の自動回転する機械を用いて、研磨痕が同心円状を形成するように研磨する方法が好ましい。また、旋盤等の機械を用いる場合、例えば、送り速度を一定にして、かつ、送り速度を小さくすることでRaのばらつきを小さくすることができる。
 また、手作業による表面粗さのばらつきをできるだけ省き、自動研磨できる機械を用いることが好ましい。ただし、自動研磨を行った後、ターゲットのスパッタ面の一部で研磨が不足しているために所望のRaのばらつきの条件が満たされない場合、該条件が満たされるように一部分だけ手作業又は機械作業で研磨を行ってもよい。
 また、ターゲットの研磨においては、1回の研磨で所望のRaのばらつきが得られない場合には、研磨後の表面粗さRaの確認を行いつつ、複数回研磨を行い所望の範囲にすることができる。この場合、Raの最大値が大きい箇所を部分的に研磨して、全体のばらつきが小さくするように研磨してもよい。
(表面粗さRz)
 μmレベルでの局所的な凸部を少なくする、つまり、上記5つの各測定点において測定されるRzの平均値を小さくし、さらに、ターゲット各所でのその局所的な凹凸の少なさのばらつきを小さくする、つまり上記5つの各測定点において測定される表面粗さRzの最大値と最小値との差を小さくすることにより、十分なスパッタリング初期のデポレート及び膜厚分布の特性を確保できるAuスパッタリングターゲットを得ることができる。
 測定点A~Eで示される5つの各測定点において測定される表面粗さRzの平均値は、スパッタリング初期特性が安定化する観点から、80μm以下であればよく、該平均値は小さい方が好ましく、70μm以下であってもよく、50μm以下であってもよく、30以下であってもよく、また、下限の設定は特段要しないが、0.1μm以上であればよく、0.1μm超であってもよく、1μm以上であってもよく、1μm超であってもよく、5μm以上であってもよく、5μm超であってもよく、10μm以上であってもよく、10μm超であってもよく、15μm以上であってもよく、15μm超であってもよい。
 表面粗さRz(最大高さ)は算術平均粗さであり、粗さ計等で測定した粗さ曲線の一部を基準長さで抜き出し、もっとも高い部分ともっとも深い部分の和の値により求められ、突出したキズの有無を確認する場合などに用いられる。Rzが大きいことは、部分的に悪い箇所があること、具体的にはターゲット表面の局所的なばらつきが大きいことを表す。
 表面粗さRzの平均値を上記の範囲とする方法は、どのような方法でもよく、例えば、研磨紙を用いる場合には、研磨紙の目の粗さを調整する方法が挙げられ、旋盤等の機械を用いた自動旋盤を行う場合には、研磨速度を調整したり、研磨対象の送り速度を調整したりする方法が挙げられる。旋盤等の機械を用いる場合、例えば、旋盤の刃の切込み量を深くいれることでRzを増加させることができ、旋盤の刃の切込み量を少なくすることでRzを減少させることができる。
 また、ターゲットの研磨においては、1回の研磨で所望のRzの平均値が得られない場合には、研磨後の表面粗さRzの確認を行いつつ、複数回研磨を行い所望の範囲にすることができる。この場合、まずは上述したRaの条件を所望の範囲になるように先に調整し、その後、Rzを小さくするように、つまり、局所的な凸部を小さくするように研磨を行うことが好ましい。
 測定点A~Eで示される5つの各測定点において測定される表面粗さRzの最大値と最小値との差(ばらつき)は、スパッタリング初期特性が安定化する観点から、10.0μm以下であればよく、5.0μm以下であることがより好ましく、3.0μm以下であることがより好ましく、1.0μm以下であることがさらに好ましく、0.5μm以下であってもよく、0.1μm以下であってもよい。また、スパッタリング膜の膜厚分布の観点からは、表面粗さRzの最大値と最小値との差は小さければ小さいほど好ましく下限を設定することは要しないが、0.0μm以上であってもよく、0.01μm以上であってもよい。
 表面粗さRzのばらつきを上記の範囲とする方法は、ばらつきを減少させることができる研磨が行われれば特段制限されず、例えば、所望の範囲までばらつきを減少させるよう繰り返し研磨を行うことで達成することができるが、製造効率の観点から、上記のRzの平均値を所望の範囲と方法を考慮しつつ、旋盤等の自動回転する機械を用いて、研磨痕が同心円状を形成するように研磨する方法が好ましい。また、旋盤等の機械を用いる場合、例えば、刃の切込み量を一定にし、かつ、送り速度を一定にして、かつ、送り速度を小さくすることでRzのばらつきを小さくすることができる。
 また、手作業による表面粗さのばらつきをできるだけ省き、自動研磨できる機械を用いることが好ましい。ただし、自動研磨を行った後、ターゲットのスパッタ面の一部で研磨が不足しているために所望のRaのばらつきの条件が満たされない場合、該条件が満たされるように一部分だけ手作業又は機械作業で研磨を行ってもよい。
 また、ターゲットの研磨においては、1回の研磨で所望のRzのばらつきが得られない場合には、研磨後の表面粗さRzの確認を行いつつ、複数回研磨を行い所望の範囲にすることができる。この場合、まずは上述したRaの条件を所望の範囲になるように先に調整し、その後、Rzの最大値が大きい箇所、つまり、局所的な凸部を小さくするように部分的な研磨を行い、全体のばらつきが小さくするように研磨することが好ましい。
(半値幅)
 ターゲットは、研磨等の加工により表面に歪(加工歪)が生じる。この加工歪の程度が大きいということは、残留応力が大きいことを意味し、スパッタリング初期のデポレートや膜厚分布の均一性も悪くなるというデメリットがある。よって、ターゲット表面の加工歪は小さいことが好ましい。加工歪は、研磨の際にターゲットにかかる負荷の程度に影響され、負荷の程度が小さいほど加工歪が小さくなる。よって、ターゲットを押し付けるように研磨を行うと加工歪が大きくなってしまうため、この押し付けを小さくするように研磨を行うことが好ましい。本実施形態では、上記の表面粗さを所望の範囲にすることが必要であるが、表面粗さの最大値と最小値との差を小さくするため、研磨の回数が多くなり加工歪が大きくなる傾向がある。表面粗さの条件を所望の範囲に維持しつつ加工歪を所望の範囲にするためには、例えば、できるだけ負荷をかけずに表面粗さを調整したり、研磨に用いる研磨紙の番手を調整したりすること等が挙げられる。加工歪が所望の範囲に含まれない場合には、所望の範囲に含まれるように繰り返し研磨を行ってもよい。
 加工歪は、例えばX線回折により測定される結晶面の半値幅により評価することができ、半値幅が小さいほど加工歪が小さいことを表し、半値幅が小さいことが好ましい。具体的には、測定点A~Eで示される5つの各測定点においてターゲットにおけるX線回折により測定される(220)結晶面の半値幅の平均値が、1.0以下であることが好ましく、0.6以下であることがより好まし好ましい。また、該半値幅の下限の設定は要しないが、0.01以上であってもよく、0.05以上であってもよい。
 また、測定点A~Eで示される5つの各測定点においてターゲットにおけるX線回折により測定される(220)結晶面の半値幅のばらつきが、±0.1以下であることが好ましく、±0.06以下であることがより好ましく、また、該半値幅のばらつきの下限の設定は要しないが、±0.005以上であってもよく、±0.01以上であってもよい。
 本明細書において、半値幅のばらつきとは、半値幅の平均値からのずれの範囲を示す。具体的には、半値幅のばらつきが±0.1以下であるとは、5つの半値幅の測定値がいずれも、(平均値-0.1)~(平均値+0.1)の範囲に含まれることを意味する。
 上記の半値幅は、X線回折装置(リガク製RINTULTIMA IV 等 管球Cu-Kα)で測定することができる。
 上記の2つの半値幅の評価パラメータについて、少なくとも1つの評価パラメータが好ましい範囲に入ることが好ましく、両方の評価パラメータが好ましい範囲に入ることがより好ましい。
 また、上記の2つの加工歪の評価パラメータは、上述した表面粗さと同様に、上述した5つの各測定点において測定し、その平均値として算出する。
 前記ターゲットを用いることにより、スパッタリング初期に成膜されるスパッタリング膜の膜厚の安定性に優れるスパッタリング膜を得ることができる。このスパッタ膜の評価方法は特段制限されないが、例えば、前記ターゲットのスパッタ面に対して、投入電力:DC 1kW、スパッリングタ到達圧力:9.5×10-5Pa、及びスパッタリング時間:42秒の条件でAuをスパッタリングしてスパッタリング膜を得るという操作を少なくとも30回行い、得られた各スパッタリング膜の膜厚を測定することで評価することができる。
 また、スパッタリング初期におけるデポレートは、上記のスパッタリングにおいて成膜されたスパッタリング膜の厚さをスパッタ時間(42秒)で除することで評価することができる。
 上記のスパッタリング膜の膜厚のばらつき(膜厚分布)は特段制限されないが、下記の(測定点)に示す9つの測定点で膜厚を測定して得られる膜厚の標準偏差(標準偏差σ)が、100Å以下であることが好ましく、50Å以下であることがより好ましい。これは、上記の少なくとも30回のスパッタリングにより得られた少なくとも30枚のスパッタリング膜のそれぞれにおいて満たされることが好ましい。
 膜厚の測定において、触針型の装置を用いる場合、各点における抵抗値の測定は、対象の点に抵抗を測定するための探針を当てて行う。
(測定点)
 前記スパッタリング膜の表面において該表面の中心を通る任意の仮想的な直線と、前記スパッタリング膜の表面の縁との2つの交点で結ばれる仮想的な線分において、該線分を10等分するように配置される該線分上の9つの点。
 ターゲットのスパッタ面における平均結晶粒径は特段制限されず、例えば、1μm以上、500μm以下であってよく、10μm以上、200μm以下であってもよく、10μm以上、100μm以下であってもよい。平均結晶粒径は、走査型電子顕微鏡(SEM)を用いてターゲットのスパッタ面を観察することにより評価することができる。
 ターゲットのスパッタ面における結晶の結晶方位は特段制限されず、例えば、(111)、(100)((200))、又は(110)(220)等であってもよい。結晶方位は、X線源としてCuを用いて、X線回折装置により評価することができる。
 ターゲットは、上述のAu部材を支持するためのバッキングプレートを設けて用いてもよい。バッキングプレートの態様は特段制限されず、用途に応じて形状や材料を選定することができる。本明細書では、バッキングプレートを用いる場合、該バッキングプレートはターゲットを構成するものとして扱い、上述したAu部材をターゲット部材とも称する。この場合、上述したターゲット部材の説明における「ターゲット」の文言を「ターゲット部材」に置換して読み替える。
 バッキングプレートの形状は、例えば、表面の形状が、四角形、五角形、もしくは六角形等の多角形状、又は円形状の表面を有する板形状とすることができる。バッキングプレートの面積は特段制限されず、例えば、上記のターゲットの面積と同様の範囲を採用することができ、より具体的には、ターゲット部材とバッキングプレートとが接着される側のバッキングプレートの面の形状を、該接着側のバッキングプレートの面の形状と同様としてもよい。
<スパッタリングターゲットの製造方法>
 上記のスパッタリングターゲットの製造方法は特段制限されず、公知の方法により、また、公知の方法を組み合わせて製造することができる。例えば、貴を含む原料を鋳造してインゴットを得る鋳造工程、前記インゴットを加工して所望の形状を有する加工物を得る加工工程、前記加工物を熱処理して焼結体を得る加熱工程、及び前記焼結体を研磨する研磨工程を含む製造方法により、ターゲットを製造することができる。以下、各工程について説明する。
[鋳造工程]
 鋳造工程は特段制限されないが、例えば、Auを含む原料を準備し、大気中、真空雰囲気または不活性雰囲気中にて黒鉛るつぼ又はセラミックスるつぼ等の容器内で溶解し、この溶解した原料を所望の形状を有する鋳型内に注湯した後に冷却固化して鋳造し、インゴットを得ることができる。溶融の条件は特段制限されず、原料が溶融する条件であればよい。
 原料としては、金の純度が、好ましくは99.9重量%以上、より好ましくは99.95重量%以上、さらに好ましくは99.99重量%以上の高純度のものを用いる。
[加工工程]
 加工工程は特段制限されないが、例えば、上記の鋳造工程で得られたインゴットを所望の形状(板形状又は円筒形状等)に切削してビレットとした後に、鍛造して加工する。
 板形状のターゲットを作製する場合には、例えば板形状に成形したインゴットの外周面の表面欠陥を研削除去することによって、所望の形状のビレットを作製する。円筒形状のターゲットを作製する場合には、円柱形状に成形したインゴットの外周面の表面欠陥を研削除去すると共に、内部をくり抜き加工することによって、円筒形状のビレットを作製する。
 次いで、ビレットを所望の形状に鍛造する。鍛造の条件は特段制限されず、例えば、100~800℃の範囲の熱間で実施することが好ましい。また、鍛造に代えて、又は鍛造に加えて圧延により所望の形状に加工してもよい。鍛造や圧延は、複数回実施してもよい。
[加熱工程]
 加熱工程は特段制限されないが、例えば、電気炉等を用いて、加熱温度について、好ましくは100~800℃、より好ましくは300~700℃、また、加熱時間について、好ましくは10~500分、より好ましくは50~250分の条件で加工物を加熱して一定の結晶組織を有するターゲット材を得ることができる。加熱処理を行うことにより、加工時に生じた内部歪を十分に除去することができる。また、加熱処理の回数は、1回でもよく、複数回であってもよい。
[研磨工程]
 研磨工程は特段制限されないが、上述の表面粗さRa及びRz、並びにこれらのばらつきの説明で述べた研磨の操作を行うことにより、上述した表面粗さRaが所望の範囲となるように、好ましくは、Raのばらつき、Rz、及びRzのばらつきが所望の範囲となるように研磨を行う。例えば、加熱工程により得られたターゲット材を自動研磨機、又は回転ろくろ等の自動回転体により表面研磨を行う。自動研磨機として旋盤での研磨を行う場合、研磨の態様は特段制限されないが、スパッタリング初期特性をより安定させる観点から、円状に研磨する際の中心位置を変えずに行うこと、つまり、研磨痕が同心円状を形成するように行うことが好ましい。
 また、スパッタリング初期特性を安定させるため、できるだけ手作業による研磨は適用しないことが好ましい。さらに、ターゲットの表面上の異物混入を抑制するため、バフ研磨等の研磨剤を用いる研磨は適用しないことが好ましい。
 なお、研磨工程において、上記の自動回転体等を用いた研磨等により表面研磨を用いた加工を行った後に化学的機械研磨(CMP)を行うと、表面粗さRaの平均値が所望の範囲より小さくなり得るため、自動回転体等を用いた研磨等にCMP研磨を行うことは好ましくない。
 また、バッキングプレートおよび/又はボンディング層を設ける場合、これらを設ける方法は特段制限されず、上記の方法で製造されたターゲット(ターゲット部材)に、バッキングプレートおよび/又はボンディング層を設けることができる。
 また、上述したように、研磨により生じるターゲットの表面の加工歪の深さ及び量を小さくする観点から、研磨の際はターゲットへの負荷を小さくするようにして行うことが好ましい。
 本明細書における各特性の測定では、特段言及されていない場合には、測定前に、測定する環境と同様の環境に測定サンプルを48時間以上保持する。また、測定温度、測定湿度、及び測定圧力については、特段言及されていない場合には、常温(20±10℃)、常湿(40±20%RH)、及び常圧(大気圧)とする。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
[ターゲットの特性の評価]
(表面粗さRa及びRz)
 ターゲットを用いて、図1に示すようにターゲットのスパッタ面において下記の測定点A~Eを決定し、表面粗さ測定装置(Mitutoyo製の接触式表面粗さ測定器 小型表面粗さ測定器SJ-210)を用いて表面粗さRa及びRzを測定した。測定点A~Eにおける表面粗さRa及びRzのそれぞれの平均値、最大値、最小値、及び最大値と最小値との差を表1に示す。表1において、「大」が最大値、「小」が最小値、「差」が最大値と最小値との差を意味する。
(測定点)
測定点A:前記ターゲットのスパッタ面の中心点。
測定点B:前記測定点Aと前記ターゲットのスパッタ面の縁上の任意の点bとを結ぶ第1の仮想的な線分を引いた場合において、前記点bから5mmの長さに位置する前記第1の仮想的な線分上の点。
測定点C:前記測定点Aと前記測定点Bとを結ぶ第2の仮想的な線分の中点。
測定点D:前記測定点Aを通り、前記第1の仮想的な線分に直交する前記ターゲットのスパッタ面上に仮想的な直線Dを引き、前記直線Dと交わる前記ターゲットのスパッタ面の縁上の2点のうちの少なくとも一方の点を点dとし、前記測定点Aと前記点dとを結ぶ第3の仮想的な線分を引いた場合において、前記点dから前記測定点Aに向かって5mmの長さに位置する前記第3の仮想的な線分上の点。
測定点E:前記測定点Aと前記測定点Dとを結ぶ第4の仮想的な線分の中点。
(半値幅)
 上記の測定点A~Eの5つの測定点において、X線回折装置を用いて、ターゲット表面の(220)面の半値幅を測定した。その平均値及びばらつきを表1に示す。
[スパッタリング膜の特性の評価]
 ターゲットをスパッタリング装置(神港精機製SRV-4320)に取り付け、装置内を9.5×10-5Pa以下まで真空排気した後、投入電力:DC 1kW、ターゲット-基板間距離:50mm、スパッタ時間:42秒の条件でスパッタを行い、6インチSi基板(ウエハ)上にAu膜を成膜し、スパッタリング膜(厚さ:約1100Å)を作製した。同じターゲットを用いてこのスパッタリングを30回繰り返し行い、30枚のスパッタリング膜を得た。この30枚のうち、1枚目、15枚目、及び30枚目に得られたスパッタリング膜を用いて、後述する方法で膜厚分布の評価を行った。また、30回のスパッタリングのうち、1回目、15回目、30回目のスパッタリングにおいて、後述する方法でデポレートを評価した。
(デポレート)
 スパッタリングにおけるデポレートは、上記のスパッタリングにおいて成膜されたスパッタリング膜の厚さをスパッタ時間(42秒)で除することで評価した。この評価結果を表2に示す。
(膜厚)
 スパッタリング膜の表面において該表面の中心を通る任意の仮想的な線分(該中心を通る直線とスパッタリング膜の縁との2つの交点で結ばれる線分)について、該線分を10等分するように該線分上に9つの点を打った場合に、これらの9つの各点において、株式会社Mitutoyo製の触針式表面形状測定機小型表面粗さ測定器 SJ-210を用いて、スパッタリング膜の膜厚を測定し、これらの膜厚から、膜厚の平均値と、膜厚の標準偏差の平均値(標準偏差σ)を算出した。これらの算出した結果を表3に示す。各点における膜厚の測定は、対象の点に抵抗を測定するための探針を当てて行った。
[スパッタリングターゲットの製造]
(実施例1)
 まず、Au塊(純度99.99重量%)を高周波溶解炉に入れて1200℃の温度で溶解させてAu溶湯を得た後、該Au溶湯を鋳型に注湯しAuインゴットを得た。次いで、Auインゴットを切削してビレットを得た後、500℃で熱間鍛造して、直径300mm、高さ7mmの円盤状の加工物を得た。次いで、表面の酸化物を取り除くため、フライス盤で表面切削しさらにロータリテーブルに取り付け回転させながら表面を研磨紙2000番で表面を均一にヘアライン研磨した。研磨について、具体的には、まずは、研磨後の表面の表面粗さRaの確認を繰り返すことにより、表面粗さRaが表1に示す数値に近づくように研磨紙2000番で表面を研磨し、その後、研磨後の表面の表面粗さRzの確認を繰り返すことにより、表面粗さRzが大きい部分を研磨し、最終的に、上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるように、スパッタリングターゲットを製造した。ロータリーテーブル(ターンテーブル)を用いた研磨の際、円状に研磨する際の中心位置を変えずに研磨を行った。
 得られたターゲットの形状は、円盤状であり、直径290mm、高さ6mmであった。また、ICP-MS分析装置(島津製作所製の誘導結合プラズマ発光分析ICPS-8100)を用いた元素分析を行った結果、ターゲットの組成比率は、Auの純度が99.99重量%であった。Raの平均値が約0.3μm、Rzの平均値が約3.6μmであり、Ra及びRzのばらつきが小さく、デポレートは23Å/秒程度であり、膜厚分布は1000Å程度で標準偏差が小さかった。
(実施例2)
 加工物を得た後、フライス盤をNC自動旋盤に変更し、バイトによる1回の切込み深さを0.05mm程度、回転数100rpm、送り量0.01mm/revとし、研磨を行った。研磨について、具体的には、実施例1と同様に、まずは、研磨後の表面の表面粗さRaの確認を繰り返すことにより、表面粗さRaが表1に示す数値に近づくようにNC自動旋盤での研磨を行い、その後、研磨後の表面の表面粗さRzの確認を繰り返すことにより、表面粗さRzが大きい部分を研磨し、最終的に上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしたこと以外は、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。Raの平均値が約3.0μm、Rzの平均値が約15μmであり、Ra及びRzのばらつきが非常に小さく、デポレートは29Å/秒程度であり、膜厚分布は1200Å程度で標準偏差が小さかった。
(実施例3)
 加工物を得た後、フライス盤をNC自動旋盤に変更し、バイトによる1回の切込み深さを0.1mm程度、回転数200rpm、送り量0.1mm/revとし、研磨を行った。研磨について、具体的には、実施例1と同様に、まずは、研磨後の表面の表面粗さRaの確認を繰り返すことにより、表面粗さRaが表1に示す数値に近づくようにNC自動旋盤での研磨を行い、その後、研磨後の表面の表面粗さRzの確認を繰り返すことにより、表面粗さRzが大きい部分を研磨し、最終的に上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしたこと以外は、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。Raの平均値が約10μm、Rzの平均値が約45μmであり、Ra及びRzのばらつきが小さく、デポレートは30Å/秒程度であり、膜厚分布は1250Å程度で標準偏差が小さかった。
(実施例4)
 加工物を得た後、フライス盤をNC自動旋盤に変更し、バイトによる1回の切込み深さを0.5mm程度、回転数500rpm/min、送り量0.2mm/revとし、研磨を行った。研磨について、具体的には、実施例1と同様に、まずは、研磨後の表面の表面粗さRaの確認を繰り返すことにより、表面粗さRaが表1に示す数値に近づくようにNC自動旋盤での研磨を行い、その後、研磨後の表面の表面粗さRzの確認を繰り返すことにより、表面粗さRzが大きい部分を研磨し、最終的に上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしたこと以外は、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。Raの平均値が約35μm、Rzの平均値が約75μmであり、Ra及びRzのばらつきが小さく、デポレートは32Å/秒程度であり、膜厚分布は1350Å程度で標準偏差が小さかった。
(実施例5)
 上述した実施例1における研磨において、ターゲットへの研磨紙の押し付けの程度を小さくすることにより、最終的に上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしつつ、さらに、表1に記載の半値幅となるように研磨を行ったこと以外は、実施例1と同様の方法で実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。Raの平均値が約0.71μm、Rzの平均値が約3.3μmであり、Ra及びRzのばらつきが小さく、デポレートは25Å/秒程度であり、膜厚分布は1200Å程度で標準偏差が小さく、実施例1におけるターゲットよりも良好であった。
(比較例1)
 加工物を得た後、自動立型フライス盤の正面フライス加工で、円筒形で複数の刃がついた切削工具を回転させて切削する方法に変更し、回転数300rpmm、送り速度45mm/minで研磨を行い上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしたこと以外は、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。その結果、Raの平均値が約5μm、Rzの平均値が約22.5μmであったが、ばらつきが大きく、デポレートは20~23Å/秒程度であり、膜厚分布は850~970Åで標準偏差が非常に大きかった。
(比較例2)
 加工物を得た後、比較例1で用いたフライス盤の条件で表面切削加工したのち、CMPにより表面研磨した。上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるように、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。その結果、Raの平均値およびRzの平均値がともに0.1μm未満であり、Ra及びRzのばらつきが非常に小さく、膜厚分布は良好であったが、デポレートは非常に遅くそのばらつきが大きかった。
(比較例3)
 加工物を得た後、手動での旋盤で、切削速度0.05~0.5m/min、切込み量0.1mm、送り量0.1~1.0mm/revの範囲でばらつきながら切削に変更し、上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしたこと以外は、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。Raの平均値およびRzの平均値が12.5μm、32.4μm程度であり、Ra及びRzのばらつきが非常に大きく、デポレートは22Å/秒程度であり、膜厚分布も910~960Å程度で標準偏差が大きかった。
(比較例4)
 加工物を得た後、NC自動旋盤に変更し、バイトによる1回の切込み深さを1.0mm程度、回転数600rpm/min、送り量0.2mm/revに設定し、上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしたこと以外は、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。Raの平均値が61μm程度およびRzの平均値が83μm程度であり、Ra及びRzのばらつきが大きく、デポレートは19.5Å/秒程度であり、膜厚分布は790~850Å程度で標準偏差が大きかった。
(比較例5)
 加工物を得た後、研磨紙800番を用いて手動で表面を均一に研磨し、上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしたこと以外は、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。Raの平均値が1.5μm程度およびRzの平均値が10.6μm程度であり、Raのばらつきが小さい一方で、Rzのばらつきが大きく、デポレートは19~22Å/秒程度であり、膜厚分布は760~820Å程度で標準偏差が大きかった。
(比較例6)
 加工物を得た後、研磨紙120番を用いて手動で表面を均一に研磨し、上記の5つの測定点において測定されるスパッタリングターゲットの表面粗さRa、Rzが表1に示す数値となるようにしたこと以外は、実施例1と同様の方法でスパッタリングターゲットを製造した。最終的に得られたターゲットのサイズ及びAuの純度も実施例1と同様であった。Raの平均値が42μm程度およびRzの平均値が85.1μm程度であり、Raのばらつきが小さい一方で、Rzのばらつきが大きく、デポレートは10~16Å/秒程度であり、膜厚分布は370~680Å程度で標準偏差が大きかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1から、上記の測定により得られたターゲットのスパッタ面の表面粗さRaの平均値を0.1μm以上、50μm以下とし、Raのばらつきを10μm以下とし、Rzの平均値を80μm以下とし、かつ、表面粗さRzのばらつきを10μm以下とすることにより、スパッタリング初期に成膜されるスパッタリング膜が膜厚分布の安定性に優れ、かつ、スパッタリング初期におけるデポレートの安定化を図ることができることが分かった。Raの平均値が小さすぎる比較例2では、凹凸の平均が小さすぎるためにスパッタリング初期におけるデポレートが小さくなったと推測される。また、Rzが大きい、又はRzのばらつきが大きい比較例1、3~6では、局所的な凸部が存在する、又はターゲット表面でその局所的な凸部の高さの程度のばらつきが存在する、等の理由によりスパッタリング膜の膜厚分布のばらつきが大きくなったと推測される。
 本発明によれば、スパッタリング初期に成膜されるスパッタリング膜が膜厚分布の安定性に優れ、また、スパッタリング初期におけるデポレートの安定化を図ることができるAuスパッタリングターゲットを提供することができる。本発明の実施形態に係るスパッタリングターゲットは、スパッタ法を用いた、電子部品、半導体デバイス、光学薄膜、磁気デバイス、LED、有機EL、又はLCD等における素子の形成に広く利用することができる。
 

Claims (7)

  1.  Auスパッタリングターゲットであって、
     スパッタ面の表面粗さRaの平均値が0.1μm以上、50.0μm以下であり、最大値と最小値との差が10.0μm以下であり、かつ、
     スパッタ面の表面粗さRzの平均値が80.0μm以下であり、最大値と最小値との差が10.0μm以下である、
    Auスパッタリングターゲット。
  2.  前記表面粗さRaの平均値が1.0μm超である、請求項1に記載のAuスパッタリングターゲット。
  3.  前記表面粗さRaの平均値が10.0μm超である、請求項2に記載のAuスパッタリングターゲット。
  4.  前記表面粗さRzの最大値と最小値との差が5.0μm以下である、請求項1~3のいずれか1項に記載のAuスパッタリングターゲット。
  5.  前記表面粗さRzの最大値と最小値との差が3.0μm以下である、請求項4に記載のAuスパッタリングターゲット。
  6.  スパッタ面におけるX線回折により測定される(220)結晶面の半値幅の平均値が1.0以下である、請求項1~5のいずれか1項に記載のAuスパッタリングターゲット。
  7.  スパッタ面におけるX線回折により測定される(220)結晶面の半値幅のばらつきが±0.1以下である、請求項1~6のいずれか1項に記載のAuスパッタリングターゲット。
     
PCT/JP2023/033946 2022-10-17 2023-09-19 Auスパッタリングターゲット WO2024084878A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022166509 2022-10-17
JP2022-166509 2022-10-17

Publications (1)

Publication Number Publication Date
WO2024084878A1 true WO2024084878A1 (ja) 2024-04-25

Family

ID=90737516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033946 WO2024084878A1 (ja) 2022-10-17 2023-09-19 Auスパッタリングターゲット

Country Status (1)

Country Link
WO (1) WO2024084878A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191323A (ja) * 2008-02-15 2009-08-27 Ulvac Material Kk スパッタリングターゲットの製造方法、スパッタリングターゲットの洗浄方法、スパッタリングターゲット及びスパッタリング装置
CN104561639A (zh) * 2014-12-26 2015-04-29 北京有色金属与稀土应用研究所 一种金合金靶材及其制备方法
WO2019111945A1 (ja) * 2017-12-06 2019-06-13 田中貴金属工業株式会社 金スパッタリングターゲットの製造方法及び金膜の製造方法
WO2022038796A1 (ja) * 2020-08-17 2022-02-24 松田産業株式会社 貴金属スパッタリングターゲット材
JP2022128463A (ja) * 2017-12-06 2022-09-01 田中貴金属工業株式会社 Au膜の形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191323A (ja) * 2008-02-15 2009-08-27 Ulvac Material Kk スパッタリングターゲットの製造方法、スパッタリングターゲットの洗浄方法、スパッタリングターゲット及びスパッタリング装置
CN104561639A (zh) * 2014-12-26 2015-04-29 北京有色金属与稀土应用研究所 一种金合金靶材及其制备方法
WO2019111945A1 (ja) * 2017-12-06 2019-06-13 田中貴金属工業株式会社 金スパッタリングターゲットの製造方法及び金膜の製造方法
JP2022128463A (ja) * 2017-12-06 2022-09-01 田中貴金属工業株式会社 Au膜の形成方法
WO2022038796A1 (ja) * 2020-08-17 2022-02-24 松田産業株式会社 貴金属スパッタリングターゲット材

Similar Documents

Publication Publication Date Title
JP6719630B2 (ja) スパッタリングターゲットの製造方法
US8663402B2 (en) Sputtering target with few surface defects, and surface processing method thereof
JP5562928B2 (ja) タングステンスパッタリングターゲットおよびその製造方法
JP4949259B2 (ja) スパッタリングターゲット
CN102224276B (zh) 溅射靶及其制造方法
TWI525206B (zh) Ytterbium sputtering target and manufacturing method of the target
TWI496922B (zh) A sputtering target for reducing particle generation, and a method for manufacturing the same
TWI503420B (zh) Tantalum sputtering target
WO2013103029A1 (ja) インジウム製スパッタリングターゲット及びその製造方法
JP7320639B2 (ja) Au膜の形成方法
JP5969493B2 (ja) スパッタリングターゲットおよびその製造方法
JP4945037B2 (ja) タングステンスパッタリングターゲットおよびその製造方法
CN107109634B (zh) 钽溅射靶及其制造方法
TWI602931B (zh) 鋁濺鍍靶材
WO2024084878A1 (ja) Auスパッタリングターゲット
KR102074047B1 (ko) 탄탈 스퍼터링 타깃 및 그 제조 방법
JP5038553B2 (ja) スパッタリングターゲットの製造方法
JP7086514B2 (ja) コバルト製又はコバルト基合金製スパッタリングターゲット及びその製造方法
CN112048703A (zh) 铝钕合金旋转溅射靶材及其制备方法
JP2003171760A (ja) タングステンスパッタリングターゲット
WO2023058698A1 (ja) スパッタリングターゲット、その製造方法、及びスパッタリングターゲットを用いたスパッタリング膜の製造方法
WO2000031316A1 (fr) CIBLE POUR PULVERISATION CATHODIQUE EN ALLIAGE Co-Ti ET PROCEDE DE FABRICATION CORRESPONDANT
JPH05195216A (ja) Ti−Wターゲット材およびその製造方法