WO2024084708A1 - 半導体光導波路及びその製造方法 - Google Patents
半導体光導波路及びその製造方法 Download PDFInfo
- Publication number
- WO2024084708A1 WO2024084708A1 PCT/JP2022/039382 JP2022039382W WO2024084708A1 WO 2024084708 A1 WO2024084708 A1 WO 2024084708A1 JP 2022039382 W JP2022039382 W JP 2022039382W WO 2024084708 A1 WO2024084708 A1 WO 2024084708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- optical waveguide
- semiconductor optical
- substrate
- semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 158
- 230000003287 optical effect Effects 0.000 title claims abstract description 96
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000010410 layer Substances 0.000 claims abstract description 135
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 239000012792 core layer Substances 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract description 5
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 4
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/136—Integrated optical circuits characterised by the manufacturing method by etching
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
Definitions
- This disclosure relates to a semiconductor optical waveguide and a method for manufacturing the same.
- Semiconductor optical waveguides not only guide light to form optical circuits, but also allow the state of the guided light to be controlled by applying electrical signals such as current or electric field to the waveguide.
- a typical example of a semiconductor optical waveguide is a semiconductor laser that uses a compound semiconductor, and it is being put to practical use in various fields such as optical communications.
- FIG. 1 is a perspective view showing a schematic diagram of the structure and manufacturing process of a semiconductor optical waveguide 100c using a compound semiconductor according to the prior art, where (a) shows the state of the semiconductor multilayer film 100a that is the base of the semiconductor optical waveguide 100c, (b) shows the state of the semiconductor multilayer film 100b after removing the overcladding layer 103 of the semiconductor multilayer film 100a, and (c) shows the state of the semiconductor optical waveguide 100c after electrodes are formed on the overcladding layer 103 and the substrate 101.
- the semiconductor optical waveguide 100c shown in FIG. 1 is described as being a semiconductor optical waveguide using an indium phosphide (InP)-based compound semiconductor, as an example.
- InP indium phosphide
- the semiconductor optical waveguide 100c is manufactured from a semiconductor multilayer film 100a.
- the semiconductor multilayer film 100a includes a substrate 101, a core layer 102 formed on the substrate 101, and an overcladding layer 103 formed on the core layer 102.
- n-InP n-type doped InP
- i-InGaAsP indium gallium arsenide phosphide
- p-InP p-type doped InP
- the semiconductor multilayer film 100b shown in FIG. 1(b) is formed.
- the method of removing the part of the overcladding layer 103 may be, for example, dry etching by high-speed ion beam irradiation.
- the semiconductor multilayer film 100b formed in this way the light guided in the core layer 102 is confined to the region (waveguide region) shown by the dashed line in FIG. 1 based on the refractive index difference between the core layer 102 and the substrate 101 and the overcladding layer 103.
- a waveguide having such a form is generally called a ridge-type waveguide.
- a p-type semiconductor (overcladding layer 103), an intrinsic semiconductor (core layer 102), and an n-type semiconductor (substrate 101) are stacked in this order in the thickness direction (z direction).
- a semiconductor multilayer film having such a layered structure is generally called a pin diode.
- the semiconductor multilayer film 100b can be said to be a ridge-type waveguide having a pin diode structure.
- the semiconductor optical waveguide 100c shown in FIG. 1(c) is manufactured.
- a voltage that makes the overcladding layer 103 electrically positive with respect to the substrate 101 forward bias
- holes are injected through the overcladding layer 103 to which p-InP is applied, and electrons are injected through the substrate 101 to which n-InP is applied, into the core layer 102 to which i-InGaAsP is applied.
- the physical properties of i-InGaAsP change depending on the charge of the electrons and holes.
- a ridge-type waveguide as shown in FIG. 1 can be manufactured by removing only a portion of the overcladding layer after the semiconductor multilayer film 100a is obtained. This has the advantage that the manufacturing process is simple, but on the other hand, it has the disadvantage that there is little freedom in designing the waveguide width and electrical resistance.
- the waveguide width is wider than a certain width, unintended higher-order waveguide modes may be excited, which may degrade the performance of the optical device to which the ridge-type waveguide is applied.
- the waveguide width is narrowed, the electrical resistance of the waveguide increases.
- the Joule heat caused by the current flowing through the waveguide increases as the electrical resistance of the waveguide increases.
- semiconductor lasers are subject to significant degradation of their characteristics due to heat, so it is desirable to keep such Joule heat low, and therefore a waveguide with low electrical resistance is desirable.
- An existing solution to this problem is a semiconductor optical waveguide structure that can narrow the waveguide width while keeping the electrical resistance low (see, for example, Non-Patent Document 1).
- FIG. 2 is a perspective view showing the structure and manufacturing process of an exemplary buried semiconductor optical waveguide 200c according to the prior art, where (a) shows the base semiconductor multilayer film 200a, (b) shows the semiconductor multilayer film 200b in the state before the electrodes are formed, and (c) shows the semiconductor optical waveguide 200c in the state after the electrodes are formed.
- the semiconductor optical waveguide 200c in FIG. 2 is described as being a semiconductor optical waveguide using an indium phosphide (InP)-based compound semiconductor, as an example.
- InP indium phosphide
- the semiconductor multilayer film 200a that is the base of the buried semiconductor optical waveguide 200c has the same structure as the semiconductor multilayer film 100a in FIG. 1(a).
- a part of the semiconductor multilayer film 200a having such a structure is removed from the semiconductor multilayer film 200a.
- the removal extends not only to the overcladding layer 203 but also to the region of the substrate 201 through the core layer 202.
- the removed region is then buried with a semiconductor BH 206 having a buried heterostructure to form the semiconductor multilayer film 200b.
- the semiconductor BH 206 has a structure in which an n-InP layer 206b is inserted into a part of the p-InP 206a.
- the semiconductor multilayer film 200b having such a configuration has a narrower width in the y direction of the core layer 202 than the semiconductor multilayer film 100b, which is a ridge-type waveguide. Furthermore, both side surfaces in the y direction of the core layer 202 are also structured with InP, which has a refractive index equivalent to that of the substrate 201 and the overcladding layer 203, embedded therein, so the light confinement effect in the lateral direction (y direction) is also enhanced.
- the semiconductor BH 206 has a structure that has a pnp junction in the thickness direction (z direction). Since this type of pnp structure essentially has two pn junctions, for example, when the potential on the overcladding layer 203 side with respect to the substrate 201 is made positive, the pn interface on the substrate 201 side is in a reverse bias state, as in a diode, so no current flows. In other words, although it is embedded in the semiconductor BH 206, current is injected only into the core layer 202. As a result, the spread of the current is suppressed, and the light confinement effect in the lateral direction (y direction) is further enhanced.
- the semiconductor optical waveguide 200c shown in FIG. 2(c) is manufactured.
- the semiconductor optical waveguide 200c having a buried waveguide structure has a larger surface area on which the electrode 205 is provided than the semiconductor optical waveguide 100c having a ridge waveguide structure. This makes it possible to provide the electrode 205 over the entire surface of the xy plane of the overcladding layer 203, thereby making it possible to reduce the electrical resistance of the waveguide.
- a buried type semiconductor optical waveguide such as the semiconductor optical waveguide 200c can reduce the resistance value of the waveguide while narrowing the waveguide width compared to a ridge type waveguide such as the semiconductor optical waveguide 100c. This allows excitation of higher order waveguide modes and reduces the amount of Joule heat generation, thereby achieving high device performance.
- the core layer is also subjected to etching and other processes. This can lead to crystal defects in the core layer, making it difficult to ensure the reliability of the device.
- This disclosure has been made in consideration of the above problems, and its purpose is to provide a semiconductor optical waveguide and a manufacturing method thereof that can reduce the waveguide width and resistance while suppressing crystal defects in the core layer.
- the present disclosure provides a semiconductor optical waveguide that includes a substrate, a core layer formed on the substrate, an overclad layer formed on the core layer, a contact layer disposed on the overclad layer, a cavity formed in the overclad layer, a groove formed in the overclad layer and the contact layer and connected to the cavity, a first electrode connected to the substrate, and a second electrode connected to the contact layer.
- the present disclosure provides a method for manufacturing a semiconductor optical waveguide, the method including: preparing a semiconductor multilayer film in which a core layer is formed on a substrate, an overclad layer is formed on the core layer, and a sacrificial layer is further formed on the overclad layer; removing a region in the sacrificial layer that corresponds to the waveguide width; depositing the same material as the overclad layer on the overclad layer and on top of the sacrificial layer, and further forming a contact layer on the deposited overclad layer; forming a groove that connects to the sacrificial layer on the main surface of the remaining sacrificial layer and outside the side of the remaining sacrificial layer facing the waveguide region; removing the remaining sacrificial layer to form a cavity; and connecting a first electrode to the substrate and a second electrode to the contact layer, respectively.
- FIG. 1 is a perspective view showing a schematic structure and manufacturing process of a semiconductor optical waveguide 100c using a compound semiconductor according to conventional technology, in which (a) shows a state of a semiconductor multilayer film 100a that is the element of the semiconductor optical waveguide 100c, (b) shows a state of a semiconductor multilayer film 100b with an overcladding layer 103 of the semiconductor multilayer film 100a removed, and (c) shows a state of a semiconductor optical waveguide 100c in which electrodes are formed on the overcladding layer 103 and a substrate 101.
- FIGS. 1A and 1B are perspective views showing a structure and a manufacturing process of an exemplary buried-type semiconductor optical waveguide 200c according to the prior art, in which (a) shows a base semiconductor multilayer film 200a, (b) shows a semiconductor multilayer film 200b in a state before electrodes are formed, and (c) shows a semiconductor optical waveguide 200c in a state after electrodes are formed.
- 3A, 3B, and 3C are diagrams showing the structure of a semiconductor optical waveguide 300 according to the present disclosure, in which (a) is a perspective view, (b) is a top view, and (c) is a cross-sectional view taken along line IIIc-IIIc.
- FIGS. 4A, 4B, and 4C are diagrams showing the structure of a semiconductor optical waveguide 400 according to the present disclosure, in which (a) is a perspective view, (b) is a top view, and (c) is a cross-sectional view taken along the line IVc-IVc.
- 1A is a perspective view showing the structure of a semiconductor optical waveguide 500 according to the present disclosure
- FIG. 1B is a top view
- FIG. 1C is a cross-sectional view taken along the line Vc-Vc.
- FIGS. 6A, 6B, and 6C are diagrams showing the structure of a semiconductor optical waveguide 500 according to the present disclosure, in which (a) is a perspective view, (b) is a top view, and (c) is a cross-sectional view taken along the line VIc-VIc.
- 7 is a flow chart illustrating a method 700 for manufacturing a semiconductor optical waveguide 300 in accordance with the present disclosure.
- FIG. 8 is a perspective view showing the structure of a semiconductor multilayer film 800 prepared in S701.
- FIG. 1 is a perspective view showing the structure of a semiconductor multilayer film 900 formed in S702.
- FIG. 1 is a perspective view showing the structure of the semiconductor multilayer film 1000 formed in S703.
- FIG. 11 is a perspective view showing the structure of the semiconductor multilayer film 1100 formed in S704.
- the semiconductor optical waveguide according to the present disclosure is described as a semiconductor optical waveguide that uses an InP-based compound semiconductor, but this is for illustrative purposes only and is not intended to be limited to InP-based compound semiconductors.
- (Configuration of Semiconductor Optical Waveguide) 3 is a diagram showing the structure of a semiconductor optical waveguide 300 according to the present disclosure, in which (a) is a perspective view, (b) is a top view, and (c) is a cross-sectional view taken along the line IIIc-IIIc. As shown in FIG.
- the semiconductor optical waveguide 300 includes a substrate 301, a core layer 302 formed on the substrate 301, an overcladding layer 303 formed on the core layer 302, a contact layer 304 disposed on the overcladding layer 303, cavities 305a and 305b formed in the overcladding layer 303, grooves 306a and 306b formed in the overcladding layer 303 and the contact layer 304 and connected to the cavities 305a and 305b, an electrode 307 disposed on the lower surface of the substrate 301, and an electrode 308 disposed on the upper surface of the contact layer 304.
- n-InP is applied to the substrate 301
- i-InGaAsP is applied to the core layer 302
- p-InP is applied to the overcladding layer 303.
- the contact layer 304 is a layer that improves the electrical contact between the electrode 308 and the overcladding layer 303, and may be made of, for example, p-InGaAs.
- the electrodes 307 and 308 may be made of a metal with excellent conductivity.
- Cavity 305a and groove 306a, as well as cavity 305b and groove 306b, are substantially connected structures.
- grooves 306a and 306b are through grooves having a depth from the top surface of contact layer 304 to the top surfaces of cavities 305a and 305b.
- the side surfaces of grooves 306a and 306b on the waveguide region side are formed so as to be positioned outside the side surfaces of cavities 305a and 305b on the waveguide region side.
- an overcladding layer 303 having an inverted convex shape is formed in the upper part of the waveguide region in the semiconductor optical waveguide 300. Due to this inverted convex shape, the width of the overcladding layer 303 in the y direction becomes narrower in the waveguide region where the overcladding layer 303 and the core layer 302 contact, and the waveguide width becomes narrower accordingly.
- the upper surfaces (surfaces on which the electrode 308 is disposed) of the overcladding layer 303 and the contact layer 304 are wider than those of a ridge-type semiconductor optical waveguide according to conventional technology (e.g., semiconductor optical waveguide 100c), and as a result, it is possible to obtain a semiconductor optical waveguide with lower resistance than a ridge-type semiconductor optical waveguide according to conventional technology.
- conventional technology e.g., semiconductor optical waveguide 100c
- the semiconductor optical waveguide 300 having such a configuration does not have an embedded structure in which the side surface in the y direction of the core layer 302 is covered with cladding. Therefore, in manufacturing the semiconductor optical waveguide 300, processing such as removal of the core layer 302 is not required, and the occurrence of crystal defects in the core layer 302 can be suppressed. As a result, the semiconductor optical waveguide 300 makes it easier to ensure the reliability of the device compared to semiconductor optical waveguides according to conventional technology.
- grooves 306a, b are depicted as a single groove extending continuously in the x direction (parallel to the optical axis direction), but they may have a structure having multiple divided grooves 401a-c, d-f, as in the semiconductor optical waveguide 400 shown in FIG. 4.
- the semiconductor optical waveguide 400 having such divided grooves 401a-c, d-f has improved rigidity of the overclad layer 303, making it possible to ensure mechanical strength.
- the cavities 305a, b and the grooves 306a, b may be hollow or may be filled with a highly insulating, low refractive index filler material 501 as shown in FIG. 5.
- the filler material 501 may be, for example, benzocyclobutene (BCB) or a material such as that formed by spin-on-glass (SOG) in typical semiconductor manufacturing (e.g., silica glass, etc.).
- the substrate 301, the core layer 302, the overcladding layer 303, and the contact layer 304 are depicted as all having the same length in the x direction and width in the y direction, but as in the semiconductor optical waveguide 600 shown in FIG. 6, a substrate 601 whose width in the y direction is greater than that of the core layer 302 in the y direction (whose main surface is wider than that of the core layer 302) may be used, and the electrodes 607a, b may be disposed on the upper surface of the substrate 601.
- Such a configuration of the semiconductor optical waveguide 600 can be regarded as a ground-signal-ground (GSG) high-frequency circuit, and it is also possible to configure it as a modulator such as a Mach-Zehnder modulator.
- GSG ground-signal-ground
- the method 700 for manufacturing a semiconductor optical waveguide 300 according to the present disclosure includes the steps of preparing a semiconductor multilayer film 800 in which a core layer 302 is formed on a substrate 301, an overcladding layer 303a is formed on the core layer 302, and a sacrificial layer 801 is further formed on the overcladding layer 303a (S701), removing a region of the sacrificial layer 801 corresponding to the waveguide width (S702), and depositing the same material as the overcladding layer 303a on the overcladding layer 303a and the sacrificial layer 801 to form the overcladding layer 303a.
- FIG. 8 is a perspective view showing the structure of the semiconductor multilayer film 800 prepared in S701.
- the semiconductor multilayer film 800 has a structure in which a sacrificial layer 801 is further formed on the overcladding layer 103 in the semiconductor multilayer film 100a shown in FIG. 1.
- the semiconductor multilayer film 800 serves as the base, and the sacrificial layer 801 serves as the subsequent cavities 305a, b.
- indium gallium arsenide (InGaAs) may be used as the sacrificial layer 801.
- the thicknesses of the overcladding layer 303 and the sacrificial layer 801 are each set to 100 nm.
- FIG. 9 is a perspective view showing the structure of the semiconductor multilayer film 900 formed in S702.
- the semiconductor multilayer film 900 has a structure in which a region corresponding to the waveguide width is removed in the sacrificial layer 801 of the semiconductor multilayer film 800 shown in FIG. 8.
- the width in the y direction of the removed region corresponds to the waveguide width of the semiconductor optical waveguide 300.
- the width in the y direction of the removed region is set to 2 ⁇ m.
- the removal method can be, for example, wet etching using an etchant selective to p-InP or dry etching by irradiation with a high-speed ion beam. If necessary, the upper surface of the portion of the sacrificial layer 801 to be left may be masked.
- the width in the y direction of the sacrificial layers 801a and 801b to be left behind must be 1 ⁇ m or more from the viewpoint of manufacturability. Also, in FIG. 9, the region opposite the waveguide region of the sacrificial layer 801 is depicted as being removed, but this opposite region does not need to be removed as long as the width in the y direction of the sacrificial layers 801a and 801b to be left behind is maintained at 1 ⁇ m or more.
- FIG. 10 is a perspective view showing the structure of the semiconductor multilayer film 1000 formed in S703.
- the semiconductor multilayer film 1000 has a structure in which the sacrificial layers 801a, b remaining in the semiconductor multilayer film 900 are embedded in the overcladding layer 303, and a contact layer 304 is further formed on the overcladding layer 303.
- the semiconductor multilayer film 1100 has a structure in which grooves 306a and 306b are formed in the overcladding layer 303 of the semiconductor multilayer film 1000.
- the side surfaces of the grooves 306a and 306b on the waveguide region side must be formed so as to be located outside the side surfaces of the remaining sacrificial layers 801a and 801b on the waveguide region side (to make the overcladding layer 303 located on the upper part of the waveguide region have an inverted convex shape).
- the grooves 306a and 306b must be connected to the cavities 305a and 305b to be formed later, the grooves 306a and 306b must be formed to a depth at which the sacrificial layer 801 is exposed on the bottom surface.
- the grooves 306a and 306b may be formed, for example, by dry etching using high-speed ion irradiation.
- the sacrificial layer 801 is removed, and in S706, the electrode 307 is connected to the substrate 301, and the electrode 308 is connected to the contact layer 304, respectively, to produce the semiconductor optical waveguide 300.
- the sacrificial layer 801 can be removed, for example, by wet etching using an etchant that is selective to p-InP. If necessary, the top and side surfaces of the contact layer 304 may be masked to prevent the contact layer 304 from being affected by the etching.
- the semiconductor optical waveguide according to the present disclosure may have a structure having grooves 401a-c, d-f divided into multiple parts, like the semiconductor optical waveguide 400 shown in FIG. 4.
- a portion of the contact layer 304 and the overcladding layer 303 may be removed so as to remain.
- the upper surfaces of the portions to be left may be masked.
- the semiconductor optical waveguide according to the present disclosure may have cavities 305a, b and grooves 306a, b filled with a highly insulating and low refractive index filling material 501, as in the semiconductor optical waveguide 500 shown in FIG. 5.
- a highly insulating and low refractive index filling material 501 as in the semiconductor optical waveguide 500 shown in FIG. 5.
- the length in the x direction and the width in the y direction of the substrate 301 may be greater than those of the core layer 302, as in the semiconductor optical waveguide 600 shown in FIG. 6, and the electrode 307 may be provided on the upper surface of the substrate 301.
- the electrode 307 is provided on the upper surface of the substrate 301.
- the semiconductor optical waveguide according to the present disclosure suppresses the occurrence of crystal defects in the core layer, while having a narrow waveguide width and low resistance, and therefore can achieve higher reliability and device performance than semiconductor optical waveguides according to conventional technology.
- Such optical semiconductor optical waveguides are expected to be applied to optical devices in optical communication networks where high capacity is desired.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
コア層における結晶欠陥を抑制しながらも、導波路幅を狭く且つ低抵抗とすることができる半導体光導波路及びその製造方法を提供する。本開示による半導体光導波路は、基板と、基板上に形成されたコア層と、コア層上に形成されたオーバークラッド層と、オーバークラッド層上に設置されたコンタクト層と、オーバークラッド層内に形成された空洞と、オーバークラッド層及びコンタクト層に形成され、空洞と繋がった溝と、基板と接続された第1の電極と、コンタクト層と接続された第2の電極と、を備える。
Description
本開示は、半導体光導波路及びその製造方法に関する。
半導体光導波路は、光を導波させて光回路を形成するだけなく、その導波路に電流や電界といった電気信号を印加することによって、導波する光の状態を制御することもできる。半導体光導波路の典型的な例としては、化合物半導体を用いた半導体レーザなどが挙げられ、光通信等の様々な分野で実用化が進んでいる。
図1は、従来技術による、化合物半導体を用いた半導体光導波路100cの構造及び製造プロセスを模式的に示した斜視図であり、(a)は、半導体光導波路100cの素となる半導体多層膜100aの状態を、(b)は、半導体多層膜100aのオーバークラッド層103を除去した半導体多層膜100bの状態を、(c)は、オーバークラッド層103及び基板101に電極を形成した半導体光導波路100cの状態を、それぞれを示している。尚、図1に示される半導体光導波路100cは、例として、インジウムリン(InP)系化合物半導体を用いた半導体光導波路であるものとして説明される。
図1(a)に示される通り、半導体光導波路100cは、半導体多層膜100aから製造される。半導体多層膜100aは、基板101と、基板101上に形成されるコア層102と、コア層102上に形成されるオーバークラッド層103と、を含む。半導体多層膜100aがInP系である場合、基板101にはn型ドーピングがされたInP(以下、n-InPという)が、コア層102にはInPより高い屈折率を有する、不純物が添加されていない(intrinsic)インジウムガリウムヒ素リン(以下、i-InGaAsP)が、オーバークラッド層103には、p型ドーピングがされたInP(以下、p-InPという)が、それぞれ適用される。
このような構成を有する半導体多層膜100aのオーバークラッド層103の一部(後述する導波路領域に対応する部分以外)を除去することにより、図1(b)に示されるような、半導体多層膜100bが形成される。オーバークラッド層103の一部を除去する方法は、例えば、高速イオンビーム照射によるドライエッチングであり得る。このように形成された半導体多層膜100bでは、コア層102と基板101及びオーバークラッド層103との屈折率差に基づき、コア層102内を導波する光が、図1において破線で示した領域(導波路領域)に閉じ込められる。そして、当該導波路領域において、x方向に光が進行することにより、光が導波される。このような形態を有する導波路は、一般にリッジ型導波路と呼ばれる。さらに、半導体多層膜100bは、厚さ方向(z方向)に対して、p型半導体(オーバークラッド層103)、不純物が添加されていない(intrinsic)半導体(コア層102)、n型半導体(基板101)の順に積層されている。このような積層形態を有する半導体多層膜は、一般に、pinダイオードと呼ばれる。即ち、半導体多層膜100bは、pinダイオードの構造を有するリッジ型導波路であると言える。
このような構成を有する半導体多層膜100bに対し、基板101の下面(コア層102に接していない、xy平面に平行な面)、及びオーバークラッド層103の上面(同じく、コア層102に接していない、xy平面に平行な面)のそれぞれに、電極104、105を設置することにより、図1(c)に示される半導体光導波路100cが製造される。この電極104-電極105間に電圧を印加することにより、コア層102を導波する光を制御することが可能となる。例えば、基板101に対してオーバークラッド層103に電気的に正となるような電圧を印加(順方向バイアス)すると、p-InPが適用されているオーバークラッド層103を通じて正孔が、n-InPが適用されている基板101を通じて電子が、それぞれi-InGaAsPが適用されているコア層102に注入される。これに伴い、i-InGaAsPの物性値が電子・正孔の電荷によって変化する。
逆に、基板101に対してオーバークラッド層103に電気的に負となるような電圧を印加(逆方向バイアス)すると、i-InGaAsPが適用されるコア層102には電荷が注入されず、電界が印加されることにより、i-InGaAsPの物性値が変化する。
一般に、図1に例示されるようなリッジ型導波路の製造は、素となる半導体多層膜100aが得られた後、オーバークラッド層の一部のみを除去すれば製造できる。このため、製造プロセスが簡易であるという利点を有するが、その反面、導波路幅と電気抵抗の設計自由度が低いという欠点も有する。
導波路幅は、一定の幅より広い場合、意図しない高次の導波モードが励振される可能性があり、これに伴って、当該リッジ型導波路が適用される光デバイスの性能が劣化し得る。一方で、導波路幅が狭くなると、それに伴って、導波路の電気抵抗が高くなるという問題が生じる。とりわけ、上述した半導体レーザの場合、導波路の電気抵抗が高くなることにより、導波路に流れる電流に起因するジュール熱も高くなる。一般に、半導体レーザは熱による特性劣化が大きいことから、このようなジュール熱は低く抑えられることが望ましく、そのため電気抵抗が小さい導波路であることが望ましい。
このような問題に対する既存の解決方法、すなわち、導波路幅を狭くしつつも電気抵抗も低く抑制できる半導体光導波路の構造として、埋込み型導波路が挙げられる(例えば、非特許文献1参照)。
図2は、従来技術による、例示的な埋込み型の半導体光導波路200cの構造及び製造プロセスを模式的に示す斜視図であり、(a)は素となる半導体多層膜200aを、(b)は電極を形成する前の状態である半導体多層膜200bを、(c)は電極を形成した後の状態である半導体光導波路200cを、それぞれ示している。尚、図2においても、図1と同様に、半導体光導波路200cは、例として、インジウムリン(InP)系化合物半導体を用いた半導体光導波路であるものとして説明される。
図2(a)に示される通り、埋込み型の半導体光導波路200cの素となる半導体多層膜200aは、図1(a)における半導体多層膜100aと同様の構成を有する。このような構成を有する半導体多層膜200aに対して、半導体多層膜100bの製造プロセスと同様に、半導体多層膜200aの一部を除去するが、このとき、埋込み型の半導体光導波路200cの製造プロセスでは、オーバークラッド層203だけでなく、コア層202を経て、基板201の領域まで除去が及ぶ。その後、除去した領域を埋込みヘテロ構造(Buried Heterostructure)を有する半導体BH206で埋込み、半導体多層膜200bを形成する。図2(b)では、例として、半導体BH206は、p-InP206aの一部にn-InP層206bが挿入された構造を有する。
このような構成を有する半導体多層膜200bは、リッジ型導波路である半導体多層膜100bに比べコア層202のy方向の幅が狭くなる。さらに、コア層202のy方向の両側面も、基板201及びオーバークラッド層203と同等の屈折率を有するInPが埋め込まれた構造となるため、横方向(y方向)の光閉じ込め効果も高くなる。
加えて、半導体BH206は、厚さ方向(z方向)に対してpnp接合を有するような構造となっている。このようなpnp構造は、実質的に、pn接合が2つ存在することとなるため、例えば、基板201に対してオーバークラッド層203側の電位を正とした際には、基板201側のpn界面は、ダイオードでいう逆バイアス状態になるので電流は流れないこととなる。すなわち、半導体BH206に埋め込まれているものの、電流はコア層202のみに注入されることとなる。その結果、電流の広がりが抑制され、横方向(y方向)の光閉じ込め効果はさらに高くなる。
このような構成を有する半導体多層膜200bに対して、基板201の下面及びオーバークラッド層103の上面のそれぞれに、電極204、205を設置することにより、図2(c)に示される半導体光導波路200cが製造される。
埋込み型導波路構造を有する半導体光導波路200cは、図2(c)に示される通り、リッジ型導波路構造を有する半導体光導波路100cに比べて、電極205が設置される面の面積が大きい。このため、オーバークラッド層203のxy平面に対して全面に渡って電極205を設置することが可能となり、その結果、導波路の電気抵抗を低減することが可能となる。
このように、半導体光導波路200cのような埋込み型の半導体光導波路は、半導体光導波路100cのようなリッジ型導波路に比べて、導波路の幅を狭くしつつも、導波路の抵抗値を低くすることができる。このため、高次の導波モードが励振及びジュール発熱量が低減されることにより、高いデバイス性能を実現することが可能である。
しかしながら、このような埋込み型導波路は、製造プロセスにおいてコア層にもエッチング等の加工が及ぶ。このため、コア層において結晶欠陥が生じる場合があり、その結果、デバイスの信頼性確保が難しくなるという課題がある。
土居 功年, 中村 道治,."埋込みヘテロ型InGaP/InP長波長半導体レーザ", 日立評論, Vol.61, No.11, pp39-42(1979)
本開示は、上記のような課題に対して鑑みてなされたものであり、その目的とするところは、コア層における結晶欠陥を抑制しながらも、導波路幅を狭く且つ低抵抗とすることができる半導体光導波路及びその製造方法を提供することにある。
上記のような課題に対し、本開示では、半導体光導波路であって、基板と、基板上に形成されたコア層と、コア層上に形成されたオーバークラッド層と、オーバークラッド層上に設置されたコンタクト層と、オーバークラッド層内に形成された空洞と、オーバークラッド層及びコンタクト層に形成され、空洞と繋がった溝と、基板と接続された第1の電極と、コンタクト層と接続された第2の電極と、を含む半導体光導波路を提供する。
さらに本開示では、半導体光導波路の製造方法であって、基板上にコア層が形成され、コア層上にオーバークラッド層が形成され、オーバークラッド層上に犠牲層がさらに形成された半導体多層膜を準備することと、犠牲層において導波路幅に対応する領域を除去することと、オーバークラッド層及び犠牲層の上部に、オーバークラッド層と同じ材料を堆積させ、堆積させたオーバークラッド層上にコンタクト層をさらに形成することと、残留している犠牲層の主面の上、且つ残留している犠牲層の導波路領域側の側面よりも外側に、犠牲層と繋がる溝を形成することと、残留している犠牲層を除去し、空洞を形成することと、第1の電極と基板、及び、第2の電極とコンタクト層とを、それぞれ接続することと、を含む半導体光導波路の製造方法を提供する。
以下に、図面を参照しながら本開示の種々の実施形態について詳細に説明する。同一または類似の参照符号は同一または類似の要素を示し重複する説明を省略する場合がある。材料および数値は例示を目的としており本開示の技術的範囲の限定を意図していない。以下の説明は、一例であって本開示の一実施形態の要旨を逸脱しない限り、一部の構成を省略若しくは変形し、または追加の構成とともに実施することができる。
また、以下の説明では、本開示による半導体光導波路はInP系化合物半導体を用いた半導体光導波路であるものとして述べられるが、これは例示を目的としており、InP系化合物半導体に限定することを意図していない。
以下に、本開示の一実施形態による半導体光導波路300の構成について、図面を参照して、詳細に説明する。
(半導体光導波路の構成)
図3は、本開示による半導体光導波路300の構造を示す図であり、(a)は斜視図、(b)は上面図、(c)はIIIc-IIIc断面線における断面図である。図3に示される通り、半導体光導波路300は、基板301と、基板301上に形成されたコア層302と、コア層302上に形成されたオーバークラッド層303と、オーバークラッド層303上に設置されたコンタクト層304と、オーバークラッド層303内に形成された空洞305a、bと、オーバークラッド層303及びコンタクト層304内に形成され、空洞305a、bと繋がった溝306a、bと、基板301の下面に設置された電極307と、コンタクト層304の上面に設置された電極308と、を含む。
図3は、本開示による半導体光導波路300の構造を示す図であり、(a)は斜視図、(b)は上面図、(c)はIIIc-IIIc断面線における断面図である。図3に示される通り、半導体光導波路300は、基板301と、基板301上に形成されたコア層302と、コア層302上に形成されたオーバークラッド層303と、オーバークラッド層303上に設置されたコンタクト層304と、オーバークラッド層303内に形成された空洞305a、bと、オーバークラッド層303及びコンタクト層304内に形成され、空洞305a、bと繋がった溝306a、bと、基板301の下面に設置された電極307と、コンタクト層304の上面に設置された電極308と、を含む。
ここでは例として、半導体光導波路100c、200cと同様に、基板301にはn-InPが、コア層302には、i-InGaAsPが、オーバークラッド層303には、p-InPが、それぞれ適用される。コンタクト層304は、電極308とオーバークラッド層303との電気的な接触性を向上させる層であり、例えば、p-InGaAsなどが適用され得る。電極307、308は、導電性に優れる金属等であり得る。
空洞305aと溝306a、並びに空洞305bと溝306bは、実質的に繋がった構造である。換言すれば、溝306a、bは、コンタクト層304の上面から空洞305a、bの上面までの深さを有する貫通溝である。加えて、溝306a、bの導波路領域側の側面(xz平面に平行な側面)は、空洞305a、bの導波路領域側の側面より外側に位置するように形成される。
このように空洞305a、b及び溝306a、bを形成することにより、半導体光導波路300における導波路領域の上部には、逆凸型の形状を有するオーバークラッド層303が形成される。この逆凸型の形状により、オーバークラッド層303とコア層302が接する導波路領域では、オーバークラッド層303のy方向の幅が狭くなり、それに伴って導波路幅が狭くなる。一方、オーバークラッド層303及びコンタクト層304の上面(電極308が設置される面)は、従来技術によるリッジ型の半導体光導波路(例えば、半導体光導波路100c)に比べて広くなり、その結果、従来技術によるリッジ型の半導体光導波路よりも低抵抗な半導体光導波路とすることが可能となる。
また、このような構成を有する半導体光導波路300は、コア層302のy方向の側面がクラッドで覆われた埋込み型構造を有していない。このため、半導体光導波路300の製造では、コア層302に対する除去等の加工が不要であり、コア層302における結晶欠陥の発生を抑制することができる。その結果、半導体光導波路300は、従来技術による半導体光導波路に比べ、デバイスの信頼性確保を容易にすることが可能となる。
尚、図3では、溝306a、bはx方向(光軸方向に対して平行方向)に連続して延在する1つの溝として描写されているが、図4に示される半導体光導波路400の様に、複数に分割された溝401a-c、d-fを有する構造であってもよい。このような分割された溝401a-c、d-fを有する半導体光導波路400は、オーバークラッド層303の剛性が向上するため、機械強度を確保することも可能となる。
また、空洞305a、b及び溝306a、bは、中空であってもよく、又は、図5に示されるように、高絶縁性且つ低屈折率な充填材料501が充填されていてもよい。充填材料501は、例えば、ベンゾシクロブテン(BCB)、又は、一般的な半導体の製造においてSpin-on-glass(SOG)で形成されるような材料(例えば、シリカガラス等)であり得る。
加えて、図3では、基板301、コア層302、オーバークラッド層303、コンタクト層304は、x方向の長さ及びy方向の幅が全て同一であるように描写されているが、図6に示される半導体光導波路600のように、y方向の幅がコア層302のy方向の幅より大きい(コア層302より主面が広い)基板601を用いてもよく、電極607a、bは基板601の上面に設置されてもよい。このような半導体光導波路600の構成は、グラウンド-シグナル-グラウンド(GSG)高周波回路としてみなすことができ、マッハツェンダ変調器に代表される変調器の構成とすることも可能となる。
次いで、以下に、本開示による半導体光導波路の製造方法700について、図面を参照して詳細に説明する。
(半導体光導波路の製造方法)
図7は、本開示による半導体光導波路300の製造方法700を示すフローチャートである。本開示による半導体光導波路300の製造方法700は、基板301上にコア層302が形成され、コア層302上にオーバークラッド層303aが形成され、更にオーバークラッド層303a上に犠牲層801が形成された半導体多層膜800を準備すること(S701)と、犠牲層801において導波路幅に対応する領域を除去すること(S702)と、オーバークラッド層303a及び犠牲層801の上部に、オーバークラッド層303aと同じ材料を堆積させ、オーバークラッド層303を形成し、オーバークラッド層303上にコンタクト層304をさらに形成すること(S703)と、残留している犠牲層801の主面の上、且つ残留している犠牲層801の導波路領域側の側面よりも外側に、犠牲層801と繋がる溝306a、bを形成すること(S704)と、残留している犠牲層801を除去し、空洞305a、bを形成すること(S705)と、電極307と基板301、及び、電極308とコンタクト層304とを、それぞれ接続すること(S706)と、を含む。
図7は、本開示による半導体光導波路300の製造方法700を示すフローチャートである。本開示による半導体光導波路300の製造方法700は、基板301上にコア層302が形成され、コア層302上にオーバークラッド層303aが形成され、更にオーバークラッド層303a上に犠牲層801が形成された半導体多層膜800を準備すること(S701)と、犠牲層801において導波路幅に対応する領域を除去すること(S702)と、オーバークラッド層303a及び犠牲層801の上部に、オーバークラッド層303aと同じ材料を堆積させ、オーバークラッド層303を形成し、オーバークラッド層303上にコンタクト層304をさらに形成すること(S703)と、残留している犠牲層801の主面の上、且つ残留している犠牲層801の導波路領域側の側面よりも外側に、犠牲層801と繋がる溝306a、bを形成すること(S704)と、残留している犠牲層801を除去し、空洞305a、bを形成すること(S705)と、電極307と基板301、及び、電極308とコンタクト層304とを、それぞれ接続すること(S706)と、を含む。
図8は、S701において準備される半導体多層膜800の構造を示す斜視図である。半導体多層膜800は、図1に示される半導体多層膜100aにおけるオーバークラッド層103上に犠牲層801がさらに形成された構造を有する。本開示による半導体光導波路300の製造方法700では、この半導体多層膜800が素となり、犠牲層801が後の空洞305a、bとなる。犠牲層801は、例えば、インジウムガリウムヒ素(InGaAs)が適用され得る。またここでは、例として、オーバークラッド層303及び犠牲層801の厚さは、それぞれ100nmとする。
図9は、S702において形成された半導体多層膜900の構造を示す斜視図である。半導体多層膜900は、図8に示される半導体多層膜800の犠牲層801において導波路幅に対応する領域が除去された構造を有する。当該除去される領域のy方向の幅が、半導体光導波路300の導波路幅に対応する。ここでは、例として、除去される領域のy方向の幅は2μmとしている。また、除去の方法は、例えば、p-InPと選択性のあるエッチャントを用いたウエットエッチングや高速イオンビームの照射によるドライエッチング等であり得る。必要に応じて、犠牲層801の残留させる部分の上面にはマスキングを施してよい。
S702において、残留させる犠牲層801a、bのy方向の幅は、製造性の観点から、1μm以上必要である。また、図9では、犠牲層801の導波路領域とは反対側の領域も除去されている様に描写されているが、当該反対側の領域は、残留させる犠牲層801a、bのy方向の幅が1μm以上であることが維持されれば、除去されなくともよい。
図10は、S703において形成された半導体多層膜1000の構造を示す斜視図である。半導体多層膜1000は、半導体多層膜900において残留している犠牲層801a、bがオーバークラッド層303に埋め込まれ、当該オーバークラッド層303上にコンタクト層304がさらに形成された構造を有する。
図11は、S704において形成された半導体多層膜1100の構造を示す斜視図である。半導体多層膜1100は、半導体多層膜1000のオーバークラッド層303に溝306a、bが形成された構造を有する。溝306a、bを形成する際、溝306a、bの導波路領域側の側面(xz平面に平行な側面)が、残留している犠牲層801a、bの導波路領域側の側面よりも外側に位置するように形成される必要がある(導波路領域の上部に位置するオーバークラッド層303を逆凸型の形状とするため)。また、後に形成される空洞305a、bと、溝306a、bが繋がる必要があるため、溝306a、bは、犠牲層801が底面に露出する深さまで形成される必要がある。溝306a、bの形成方法は、例えば、高速イオン照射によるドライエッチング等であり得る。
最後に、S705において犠牲層801を除去し、S706において電極307と基板301とを、及び、電極308とコンタクト層304とを、それぞれ接続することにより、半導体光導波路300が製造される。犠牲層801の除去方法は、例えば、p-InPと選択性のあるエッチャントを用いたウエットエッチング等であり得る。必要に応じて、コンタクト層304がエッチングの影響を受けない様、コンタクト層304の上面及び側面にマスキングを施してもよい。
上述の通り、本開示による半導体光導波路は、図4に示される半導体光導波路400の様に、複数に分割された溝401a-c、d-fを有する構造であってもよい。このような溝401a-c、d-fを形成するためには、製造方法700のS704において、一部のコンタクト層304及びオーバークラッド層303を残留させるように除去すればよい。具体的には、例えば、残留させる部分の上面にマスキングをすることなどが挙げられる。
また、上述の通り、本開示による半導体光導波路は、図5に示される半導体光導波路500の様に、空洞305a、b及び溝306a、bが、高絶縁性且つ低屈折率な充填材料501で充填されていてもよい。このような半導体光導波路500を製造するためには、製造方法700のS704の後に、空洞305a、b及び溝306a、bに充填材料501を充填させることを行えばよい。
加えて、上述の通り、本開示による半導体光導波路は、図6に示される半導体光導波路600の様に、基板301のx方向の長さ及びy方向の幅がコア層302より大きくてもよく、電極307を当該基板301の上面に設置してもよい。このような半導体光導波路600を製造するためには、製造方法700のS701において、主面がコア層302より広い基板301を用いるとともに、S706において、電極307を基板301の上面に設置するように行えばよい。
以上述べた通り、本開示による半導体光導波路は、コア層における結晶欠陥の発生を抑制しながらも、導波路幅が狭く、且つ低抵抗であるため、従来技術による半導体光導波路に比べ、高い信頼性とデバイス性能を実現できる。このような光半導体光導波路は、大容量化が望まれる光通信ネットワークにおける、光デバイス等への適用が見込まれる。
Claims (8)
- 半導体光導波路であって、
基板と、
前記基板上に形成されたコア層と、
前記コア層上に形成されたオーバークラッド層と、
前記オーバークラッド層上に設置されたコンタクト層と、
前記オーバークラッド層内に形成された空洞と、
前記オーバークラッド層及び前記コンタクト層に形成され、前記空洞と繋がった溝と、
前記基板と接続された第1の電極と、
前記コンタクト層と接続された第2の電極と、
を備える半導体光導波路。 - 前記溝が、光軸方向と平行な方向に対して複数に分割される、請求項1に記載の半導体光導波路。
- 前記溝が、高絶縁性且つ低屈折率な充填材料で充填される、請求項1に記載の半導体光導波路。
- 前記基板の主面が前記コア層の主面より広く、
前記基板の上面に前記第1の電極が設置される、
請求項1に記載の半導体光導波路。 - 半導体光導波路の製造方法であって、
基板上にコア層が形成され、前記コア層上にオーバークラッド層が形成され、前記オーバークラッド層上に犠牲層がさらに形成された半導体多層膜を準備することと、
前記犠牲層において導波路幅に対応する領域を除去することと、
前記オーバークラッド層及び前記犠牲層の上部に、前記オーバークラッド層と同じ材料を堆積させ、前記堆積させたオーバークラッド層上にコンタクト層をさらに形成することと、
残留している前記犠牲層の主面の上、且つ残留している前記犠牲層の導波路領域側の側面よりも外側に、前記犠牲層と繋がる溝を形成することと、
残留している前記犠牲層を除去し、空洞を形成することと、
第1の電極と前記基板、及び、第2の電極とコンタクト層とを、それぞれ接続することと、
を備える半導体光導波路の製造方法。 - 前記溝を形成することにおいて、前記コンタクト層及び前記オーバークラッド層の一部を残留させるように除去することをさらに備える、請求項5に記載の半導体光導波路の製造方法。
- 前記溝を形成することの後に、前記空洞及び前記溝に高絶縁性且つ低屈折率な充填材料を充填させることをさらに備える、請求項5に記載の半導体光導波路の製造方法。
- 前記半導体多層膜を準備することにおいて、前記基板の主面が前記コア層の主面よりも広く、
前記第1の電極を接続することにおいて、前記第1の電極は、前記基板の上面に接続される、請求項5に記載の半導体光導波路の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/039382 WO2024084708A1 (ja) | 2022-10-21 | 2022-10-21 | 半導体光導波路及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/039382 WO2024084708A1 (ja) | 2022-10-21 | 2022-10-21 | 半導体光導波路及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024084708A1 true WO2024084708A1 (ja) | 2024-04-25 |
Family
ID=90737340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/039382 WO2024084708A1 (ja) | 2022-10-21 | 2022-10-21 | 半導体光導波路及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024084708A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004037524A (ja) * | 2002-06-28 | 2004-02-05 | Nec Corp | 熱光学位相シフタ及びその製造方法 |
US20050070113A1 (en) * | 2003-09-26 | 2005-03-31 | Hanberg Peter J. | Low resistance T-shaped ridge structure |
JP2011258810A (ja) * | 2010-06-10 | 2011-12-22 | Mitsubishi Electric Corp | 半導体光集積素子及びその製造方法 |
JP2012208413A (ja) * | 2011-03-30 | 2012-10-25 | Anritsu Corp | 光ゲート素子 |
JP2012226162A (ja) * | 2011-04-20 | 2012-11-15 | Sumitomo Electric Ind Ltd | マッハツェンダー変調器を作製する方法、及びマッハツェンダー変調器 |
WO2018131227A1 (ja) * | 2017-01-10 | 2018-07-19 | 三菱電機株式会社 | 半導体光増幅器およびその製造方法、光位相変調器 |
WO2019207624A1 (ja) * | 2018-04-23 | 2019-10-31 | 三菱電機株式会社 | 半導体光集積素子 |
-
2022
- 2022-10-21 WO PCT/JP2022/039382 patent/WO2024084708A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004037524A (ja) * | 2002-06-28 | 2004-02-05 | Nec Corp | 熱光学位相シフタ及びその製造方法 |
US20050070113A1 (en) * | 2003-09-26 | 2005-03-31 | Hanberg Peter J. | Low resistance T-shaped ridge structure |
JP2011258810A (ja) * | 2010-06-10 | 2011-12-22 | Mitsubishi Electric Corp | 半導体光集積素子及びその製造方法 |
JP2012208413A (ja) * | 2011-03-30 | 2012-10-25 | Anritsu Corp | 光ゲート素子 |
JP2012226162A (ja) * | 2011-04-20 | 2012-11-15 | Sumitomo Electric Ind Ltd | マッハツェンダー変調器を作製する方法、及びマッハツェンダー変調器 |
WO2018131227A1 (ja) * | 2017-01-10 | 2018-07-19 | 三菱電機株式会社 | 半導体光増幅器およびその製造方法、光位相変調器 |
WO2019207624A1 (ja) * | 2018-04-23 | 2019-10-31 | 三菱電機株式会社 | 半導体光集積素子 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100937589B1 (ko) | 하이브리드 레이저 다이오드 | |
US8891570B2 (en) | Optical semiconductor device | |
US20090225804A1 (en) | Semiconductor laser and method for manufacturing the same | |
JP2003069153A (ja) | 半導体光デバイス及び集積型光半導体装置 | |
JPS61160987A (ja) | 集積型半導体光素子とその製造方法 | |
JP5705786B2 (ja) | 半導体光位相変調器 | |
JPH08220571A (ja) | 小型ディジタル光学スイッチ | |
JP2019079993A (ja) | 半導体光素子 | |
US9774168B2 (en) | Quantum cascade semiconductor laser | |
WO2024084708A1 (ja) | 半導体光導波路及びその製造方法 | |
CN110731035B (zh) | 半导体装置及半导体装置的制造方法 | |
JP4948469B2 (ja) | 半導体光デバイス | |
US20220247155A1 (en) | Semiconductor optical device and method for manufacturing the same | |
JP2010045066A (ja) | 半導体レーザ装置 | |
JP2563994B2 (ja) | 半導体レーザ装置およびその製造方法 | |
JPH0230195B2 (ja) | ||
JP3025322B2 (ja) | 光導波路 | |
EP3970246A1 (en) | Optical device with passive window | |
JP2986034B2 (ja) | 半導体方向性結合器 | |
JPS6055686A (ja) | 分布帰還型半導体レ−ザ | |
Hiratani et al. | High efficiency operation of membrane distributed-reflector laser with reduced index coupling coefficient structure | |
JP2005043722A (ja) | 半導体電界吸収型変調器 | |
US20050207692A1 (en) | Optical switch | |
JPH0724319B2 (ja) | 光集積装置及びその製造方法 | |
JPH0378730A (ja) | 半導体光スイッチ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22962814 Country of ref document: EP Kind code of ref document: A1 |