WO2024082567A1 - 基于设计版图的量测数据库构建方法、装置、设备及介质 - Google Patents

基于设计版图的量测数据库构建方法、装置、设备及介质 Download PDF

Info

Publication number
WO2024082567A1
WO2024082567A1 PCT/CN2023/086171 CN2023086171W WO2024082567A1 WO 2024082567 A1 WO2024082567 A1 WO 2024082567A1 CN 2023086171 W CN2023086171 W CN 2023086171W WO 2024082567 A1 WO2024082567 A1 WO 2024082567A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
database
design
graphics
design layout
Prior art date
Application number
PCT/CN2023/086171
Other languages
English (en)
French (fr)
Inventor
韩春营
Original Assignee
东方晶源微电子科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东方晶源微电子科技(北京)有限公司 filed Critical 东方晶源微电子科技(北京)有限公司
Publication of WO2024082567A1 publication Critical patent/WO2024082567A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present application relates to the field of chip manufacturing, and in particular to a method, device, electronic device and computer-readable storage medium for constructing a measurement database based on a design layout.
  • the line width measurement data generated in the production process is generally based on the design line width, design spacing and design pitch to establish a database to save and monitor the data.
  • pitch refers to the distance between the centers of two "units" on the board.
  • Common hole/island measurements are generally performed based on the hole or island design line width (a1, b1 as shown in Figure 1), design pitch (p1, p2 as shown in Figure 1), and design spacing (s1 as shown in Figure 1). The data obtained is also saved, used, and monitored based on these design values.
  • Common Line/Space measurements are generally performed based on the designed width of the Line or Space (w1, w2 as shown in Figure 2), the designed pitch (p1 as shown in Figure 2), and the designed spacing (s1 as shown in Figure 2).
  • the data obtained is also saved, used, and monitored based on these design values.
  • the measurement value is generally saved to a database, and then the measurement data is saved, used and monitored based on the design line width or design spacing plus the design pitch, as shown in FIG3 .
  • the design line width, design spacing and design pitch of the test pattern are all fixed values, so it is feasible to save data based on the design line width, design spacing and design pitch.
  • the line width w1 in the center part of FIG. 4 is not only affected by the nearby line width w2 and spacing s1, but also by the non-adjacent line width w3 and spacing s2, while the line width w4 and spacing s3 and spacing s4 in the other direction also affect w1.
  • the embodiment of the present application provides a method, device, electronic device and computer-readable storage medium for constructing a measurement database based on a design layout.
  • the measurement database constructed by the method can store a large number of measurement data in chip implementation.
  • the measurement data obtained on the actual graph and the graphic environment around the measurement data.
  • an embodiment of the present application provides a method for constructing a measurement database based on a design layout, comprising:
  • obtain all measurement data of the SEM image including:
  • the SEM image is measured to obtain measurement data.
  • a measurement database including:
  • the corresponding measurement data are saved according to the grouping results to obtain a measurement database.
  • the corresponding measurement data is saved according to the grouping result to obtain a measurement database, including:
  • the design line width, the design spacing and the design pitch is saved to obtain a measurement database
  • the measurement data includes design line width, design spacing, design pitch and design layout information.
  • the design line width, the design spacing and the design pitch corresponding measurement data is saved to obtain a measurement database, including:
  • the design line width, the design spacing and the order of the design pitch is saved to obtain a measurement database, including:
  • the corresponding measurement data is saved according to the order of design line width, design spacing and design pitch to obtain a measurement database.
  • graphics are grouped based on the design layout to obtain grouping results, including:
  • Graphics are grouped based on the design layout, and the database number corresponding to each group of graphics is determined.
  • the method further includes:
  • the measurement data of the newly added graphic is saved in the measurement data record corresponding to the database number.
  • the method further includes:
  • the measurement data of the newly added graphics is saved in the measurement data record corresponding to the new database number.
  • the method further includes:
  • the existing graphics in the measurement database are retrieved, compared and updated.
  • graphics are grouped based on the design layout to obtain grouping results, including:
  • the measurement points located at different positions within a chip product but with the same pattern are grouped together.
  • graphics are grouped based on the design layout to obtain grouping results, including:
  • the measurement points with the same graphics between different chip products are divided into the same group.
  • an embodiment of the present application provides a device for constructing a measurement database based on a design layout, comprising:
  • Graphics selection module used to select the actual graphics that need to be measured on the design layout
  • SEM image acquisition module used to acquire a scanning electron microscope SEM image of the actual pattern at the actual position of the silicon wafer
  • a measurement data acquisition module is used to acquire all measurement data of the SEM image
  • the measurement database construction module is used to save the measurement data and obtain the measurement database.
  • a measurement data acquisition module is used to: determine the target measurement point according to the coordinate position information of the design layout; generate all measurement frames within a preset measurement range based on the design layout and preset measurement conditions; generate a measurement recipe file based on the target measurement point and all measurement frames; align the SEM image with the design layout to obtain an alignment result; and measure the SEM image based on the alignment result and the measurement recipe file to obtain measurement data.
  • measurement database building modules including:
  • a graphic grouping unit used for grouping graphics based on the design layout to obtain a grouping result
  • the measurement database construction unit is used to save the corresponding measurement data according to the grouping result to obtain the measurement database.
  • a measurement database construction unit is used to: save corresponding measurement data based on grouping results, design line width, design spacing and design pitch to obtain a measurement database; wherein the measurement data includes design line width, design spacing, design pitch and design layout information.
  • the measurement database construction unit is used to save corresponding measurement data according to the grouping results, the design line width, the design spacing and the order of the design pitch to obtain the measurement database.
  • the measurement database construction unit is used to: determine each layer in each group of graphics based on the grouping result; for each layer, according to the design line width, design spacing and design pitch The corresponding measurement data are saved in sequence to obtain the measurement database.
  • a graphic grouping unit is used to group the graphics based on the design layout and determine the database number corresponding to each group of graphics.
  • the device comprises:
  • the measurement data acquisition module is also used to obtain the measurement data of the newly added graphics
  • a graphic judgment module is used to judge whether the newly added graphic is the same as the graphics corresponding to each database number
  • the measurement database construction unit is further used to save the measurement data of the newly added graphic into the measurement data record corresponding to the database number if there is a graphic corresponding to the database number that is the same as the newly added graphic.
  • the device comprises:
  • a database number generation module used for generating a new database number for the newly added graphic if the graphics corresponding to all database numbers are different from the newly added graphic;
  • the measurement database construction unit is also used to save the measurement data of the newly added graphics into the measurement data record corresponding to the new database number.
  • the device comprises:
  • the measurement database construction unit is also used to search, compare and update existing graphics in the measurement database based on the measurement data of the newly added graphics.
  • a graphic grouping unit is used to group measurement points located at different positions within a chip product but with the same graphics into the same group.
  • a graphic grouping unit is used to group measurement points with the same graphics between different chip products into the same group.
  • an embodiment of the present application provides an electronic device, the electronic device comprising: a processor and a memory storing computer program instructions;
  • the processor executes the computer program instructions, the method for constructing a measurement database based on the design layout as shown in the first aspect is implemented.
  • an embodiment of the present application provides a computer-readable storage medium having computer program instructions stored thereon.
  • the computer program instructions are executed by a processor, the method for constructing a measurement database based on a design layout as shown in the first aspect is implemented.
  • the measurement database constructed by the method, device, electronic device and computer-readable storage medium based on the design layout of the embodiment of the present application can store a large amount of measurement data obtained on the actual chip graphics and the graphic environment around the measurement data.
  • the method for constructing a measurement database based on a design layout includes: selecting an actual graphic to be measured on the design layout; obtaining a scanning electron microscope (SEM) image of the actual graphic at an actual position on a silicon wafer; obtaining all measurement data of the SEM image; and saving the measurement data to obtain a measurement database.
  • SEM scanning electron microscope
  • this method selects the actual graphics that need to be measured on the design layout, and obtains the SEM image of the actual graphics at the actual position of the silicon wafer, and then can obtain a large amount of measurement data and the graphic environment around the measurement data on the actual graphics of the chip.
  • FIG1 is a schematic diagram of measuring the design line width, design spacing and design pitch of Hole/Island in the prior art
  • FIG2 is a schematic diagram of measuring the design line width, design spacing and design pitch of Line/Space in the prior art
  • FIG3 is a schematic diagram of the use and monitoring of measurement data in the prior art
  • FIG4 is a schematic diagram showing the influence of the line width w1 on the surrounding graphics
  • FIG5 is a flow chart of a method for constructing a measurement database based on a design layout according to an embodiment of the present application
  • FIG6 is a schematic diagram of measurement data content based on a design layout provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a database for storing measurement data at a chip manufacturing layer according to an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a measurement database construction device based on a design layout provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present application.
  • the present invention provides a measurement method based on a design layout.
  • Database construction method, device, electronic device and computer readable storage medium The following first introduces the measurement database construction method based on the design layout provided in the embodiment of the present application.
  • FIG5 is a flow chart of a method for constructing a measurement database based on a design layout provided by an embodiment of the present application. As shown in FIG5 , the method for constructing a measurement database based on a design layout includes:
  • the actual pattern is not a test pattern.
  • all measurement data of the SEM image can be automatically acquired.
  • all measurement data of the SEM image are obtained, including:
  • the SEM image is measured to obtain measurement data.
  • storing the measurement data to obtain a measurement database includes:
  • the corresponding measurement data are saved according to the grouping results to obtain a measurement database.
  • the corresponding measurement data is saved according to the grouping result to obtain a measurement database, including:
  • the design line width, the design spacing and the design pitch is saved to obtain a measurement database
  • the measurement data includes design line width, design spacing, design pitch and design layout information.
  • the designed line width, the designed spacing, and the designed pitch is saved to obtain a measurement database, including:
  • the design line width, the design spacing and the order of the design pitch is saved to obtain a measurement database.
  • the measurement values can be saved in the order of “graphic grouping - design line width and design spacing - design pitch”, and the database data can be queried and used according to the graphic grouping, design line width and design spacing, and design pitch.
  • the corresponding measurement data is saved to obtain a measurement database, including:
  • the corresponding measurement data is saved according to the order of design line width, design spacing and design pitch to obtain a measurement database.
  • the layout-based measurement database can contain multi-layer layout information
  • the measurement data of different chip manufacturing layers can be saved in the same design graphic group, which can better monitor the mutual influence of inter-layer line width data and the relationship between yield.
  • the same chip manufacturing layer will be divided into two or more exposures to achieve the transfer of the design layout to the silicon wafer.
  • the layer exposed later will be affected by the layer already exposed on the silicon wafer.
  • saving the line width measurement values of the same design pattern after two or more exposure processes together can enhance the timeliness and effectiveness of monitoring, which is meaningful for monitoring and adjusting the exposure process.
  • the line width of the Metal layer and the aperture of the Contact/Via may also jointly affect the performance of the Metal-Via connection.
  • the Metal-Via connection will have a higher risk of failure.
  • the line width of the front metal layer is narrowed, if it is sufficient, the risk of failure can be considered low, and the contact/via lithography process does not need to be reworked, thus avoiding the cost loss caused by excessive rework. Therefore, as shown in Figure 7, saving the multi-layer measurement data of the same pattern together can achieve the effect of improving the accuracy and effectiveness of process monitoring, improving yield and reducing costs.
  • grouping graphics based on the design layout to obtain grouping results includes:
  • Graphics are grouped based on the design layout, and the database number corresponding to each group of graphics is determined.
  • the method further includes:
  • the measurement data of the newly added graphic is saved in the measurement data record corresponding to the database number.
  • the method further includes:
  • the measurement data of the newly added graphics is saved in the measurement data record corresponding to the new database number.
  • graphics are first grouped based on the design layout, and each group of graphics has a corresponding database number. If new measurement graphic data is added, the new measurement graphic needs to be compared with the numbered graphics in the database. If the new measurement graphic is the same as the existing measurement graphic, the new measurement data is added to the data record of the existing graphic and saved as a new measurement data of the existing graphic. If the new measurement graphic is different from the existing measurement graphic, the database will generate a new measurement graphic number for saving the new measurement graphic. Moreover, the new measurement data will be saved in the measurement data record of the new measurement graphic.
  • the method further includes:
  • the existing graphics in the measurement database are retrieved, compared and updated.
  • grouping graphics based on the design layout to obtain grouping results includes:
  • the measurement points located at different positions within a chip product but with the same pattern are grouped together.
  • grouping graphics based on the design layout to obtain grouping results includes:
  • the measurement points with the same graphics between different chip products are divided into the same group.
  • the line width control uniformity within a chip and the line width control uniformity between products can be better compared and monitored.
  • the measurement database constructed by the present application can save a large number of measurement values obtained on the actual graphics of the chip and the graphic environment around the measurement values.
  • the existing measurement database can only save the design line width or spacing and design pitch of the measurement point, and cannot save the graphic environment around the measurement point.
  • the influence of the surrounding graphics needs to be considered.
  • FIG8 is a schematic diagram of the structure of a measurement database construction device based on a design layout provided by an embodiment of the present application. As shown in FIG8 , the measurement database construction device based on a design layout includes:
  • the graphic selection module 801 is used to select the actual graphic that needs to be measured on the design layout
  • SEM image acquisition module 802 used to acquire a scanning electron microscope SEM image of the actual pattern at the actual position of the silicon wafer;
  • the measurement data acquisition module 803 is used to acquire all the measurement data of the SEM image
  • the measurement database construction module 804 is used to store the measurement data and obtain the measurement database.
  • the measurement data acquisition module 803 is used to: determine the target measurement point according to the coordinate position information of the design layout; generate all measurement frames within the preset measurement range based on the design layout and the preset measurement conditions; generate a measurement recipe file according to the target measurement point and all measurement frames; align the SEM image with the design layout to obtain an alignment result; and based on the alignment result and the measurement recipe file, The SEM image is measured to obtain measurement data.
  • the measurement database construction module 804 includes:
  • a graphic grouping unit used for grouping graphics based on the design layout to obtain a grouping result
  • the measurement database construction unit is used to save the corresponding measurement data according to the grouping result to obtain the measurement database.
  • the measurement database construction unit is used to: save corresponding measurement data according to the grouping results, design line width, design spacing and design pitch to obtain a measurement database; wherein the measurement data includes design line width, design spacing, design pitch and design layout information.
  • the measurement database construction unit is used to save corresponding measurement data according to the grouping result, the design line width, the design spacing and the order of the design pitch to obtain the measurement database.
  • the measurement database construction unit is used to: determine each layer in each group of graphics based on the grouping result; for each layer, save the corresponding measurement data according to the order of design line width, design spacing and design pitch to obtain the measurement database.
  • the graphic grouping unit is used to: group the graphics based on the design layout, and determine the database number corresponding to each group of graphics.
  • the apparatus comprises:
  • the measurement data acquisition module 803 is also used to acquire the measurement data of the newly added graphics
  • a graphic judgment module is used to judge whether the newly added graphic is the same as the graphics corresponding to each database number
  • the measurement database construction unit is further used to save the measurement data of the newly added graphic into the measurement data record corresponding to the database number if there is a graphic corresponding to the database number that is the same as the newly added graphic.
  • the apparatus comprises:
  • a database number generation module used for generating a new database number for the newly added graphic if the graphics corresponding to all database numbers are different from the newly added graphic;
  • the measurement database construction unit is also used to save the measurement data of the newly added graphics into the measurement data record corresponding to the new database number.
  • the apparatus comprises:
  • the measurement database construction unit is also used to search, compare and update existing graphics in the measurement database based on the measurement data of the newly added graphics.
  • the pattern grouping unit is used to group measurement points that are located at different positions in a chip product but have the same pattern into the same group.
  • the pattern grouping unit is used to group measurement points with the same pattern between different chip products into the same group.
  • Each module in the device shown in FIG. 8 has the function of implementing each step in FIG. 5 and can achieve its corresponding technical effect, which will not be described in detail here for the sake of brevity.
  • FIG. 9 shows a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • the electronic device may include a processor 901 and a memory 902 storing computer program instructions.
  • the above-mentioned processor 901 may include a central processing unit (CPU), or an application specific integrated circuit (ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 902 may include a large capacity memory for data or instructions.
  • the memory 902 may include a hard disk drive (HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a universal serial bus (USB) drive, or a combination of two or more of these.
  • the memory 902 may include removable or non-removable (or fixed) media.
  • the memory 902 may be internal or external to the electronic device.
  • the memory 902 may be a non-volatile solid-state drive. Memory.
  • the memory 902 may be a read-only memory (ROM).
  • the ROM may be a mask-programmed ROM, a programmable ROM (PROM), an erasable PROM (EPROM), an electrically erasable PROM (EEPROM), an electrically rewritable ROM (EAROM), or a flash memory, or a combination of two or more of these.
  • the processor 901 reads and executes the computer program instructions stored in the memory 902 to implement any one of the methods for constructing a measurement database based on a design layout in the above embodiments.
  • the electronic device may further include a communication interface 903 and a bus 910. As shown in Fig. 9, the processor 901, the memory 902, and the communication interface 903 are connected via the bus 910 and communicate with each other.
  • the communication interface 903 is mainly used to implement communication between various modules, devices, units and/or equipment in the embodiments of the present application.
  • Bus 910 includes hardware, software or both, and the parts of electronic equipment are coupled to each other.
  • bus may include accelerated graphics port (AGP) or other graphics bus, enhanced industrial standard architecture (EISA) bus, front side bus (FSB), hypertransport (HT) interconnection, industrial standard architecture (ISA) bus, infinite bandwidth interconnection, low pin count (LPC) bus, memory bus, micro channel architecture (MCA) bus, peripheral component interconnection (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology attachment (SATA) bus, video electronics standard association local (VLB) bus or other suitable bus or two or more of these combinations.
  • AGP accelerated graphics port
  • EISA enhanced industrial standard architecture
  • FAB front side bus
  • HT hypertransport
  • ISA industrial standard architecture
  • LPC low pin count
  • MCA micro channel architecture
  • PCI peripheral component interconnection
  • PCI-X PCI-Express
  • SATA serial advanced technology attachment
  • VLB video electronics standard association local
  • bus 910 may include one or more buses.
  • the embodiment of the present application can provide a computer-readable storage medium for implementation.
  • the computer-readable storage medium stores computer program instructions; when the computer program instructions are executed by the processor, the above embodiment is implemented. Any one of the design layout-based measurement database construction methods.
  • the functional modules shown in the above-described block diagram can be implemented as hardware, software, firmware or a combination thereof.
  • it can be, for example, an electronic circuit, an application-specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, etc.
  • ASIC application-specific integrated circuit
  • the elements of the present application are programs or code segments that are used to perform the required tasks.
  • Programs or code segments can be stored in machine-readable media, or transmitted on a transmission medium or a communication link by a data signal carried in a carrier wave.
  • "Machine-readable media" can include any medium capable of storing or transmitting information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, optical fiber media, radio frequency (RF) links, etc.
  • Code segments can be downloaded via computer networks such as the Internet, intranets, etc.
  • each box in the flowchart and/or block diagram and the combination of boxes in the flowchart and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device to produce a machine so that the computer or other programmable data processing device can be used to perform the operation of the present invention.
  • the instructions executed by the processor of the data processing device enable the implementation of the functions/actions specified in one or more blocks of the flowchart and/or block diagram.
  • Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field programmable logic circuit. It is also understood that each block in the block diagram and/or flowchart and the combination of blocks in the block diagram and/or flowchart may also be implemented by dedicated hardware that performs the specified function or action, or may be implemented by a combination of dedicated hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本申请提供了一种基于设计版图的量测数据库构建方法、装置、电子设备及计算机可读存储介质。该基于设计版图的量测数据库构建方法,包括:在设计版图上选取需要量测的实际图形;获取实际图形在硅片实际位置的扫描电子显微镜SEM图像;获取SEM图像所有的量测数据;保存量测数据,得到量测数据库。根据本申请实施例,其构建的量测数据库能够保存大量在芯片实际图形上取得的量测数据和量测数据周边的图形环境。

Description

基于设计版图的量测数据库构建方法、装置、设备及介质 技术领域
本申请属于芯片生产制造领域,尤其涉及一种基于设计版图的量测数据库构建方法、装置、电子设备及计算机可读存储介质。
背景技术
目前在芯片生产制造过程中,对于生产过程中产生的线宽量测数据一般基于设计线宽、设计间距及设计pitch来建立数据库保存和监控数据。其中,pitch是指板面两“单元”其中心间之距离。
常见的基于设计线宽、设计间距及设计pitch的量测都是量测各种专门设计的测试图形。下面对几种常见的测试图形的量测进行说明:
(1)Hole/Island的设计线宽、设计间距及设计pitch的量测:
常见的Hole/Island量测,一般会根据Hole或Island的设计线宽(如图1所示的a1,b1),设计pitch(如图1所示的p1,p2),以及设计间距(如图1所示的s1)进行量测。其所得数据也依据这些设计值进行保存,使用和监测。
(2)Line/Space的设计线宽、设计间距及设计pitch的量测:
常见的Line/Space量测,一般会根据Line或Space的设计宽度(如图2所示的w1,w2),设计pitch(如图2所示的p1),以及设计间距(如图2所示的s1)进行量测。其所得数据也依据这些设计值进行保存,使用和监测。
目前在设计线宽或设计间距量测完成后,一般保存测量值到数据库,然后依据设计线宽或设计间距加上设计pitch来保存,使用和监控量测数据,可参见图3。
现有技术由于是在测试图形上进行量测,测试图形的设计线宽、设计间距及设计pitch都是固定值,所以依据设计线宽、设计间距及设计pitch来保存数据是可行的。
但是,现有技术无法保存硅片实际图形的量测数据。因为硅片实际图形中多种设计线宽、设计间距及设计pitch常常同时存在,仅以设计线宽、设计间距及设计pitch为依据来保存量测数据无法涵盖图形周边环境对量测所得线宽值和间距值的影响。
在硅片实际图形中,一小块设计版图图形中即包含各种线宽设计值,间距设计值,pitch设计值,并且实际的线宽值和间距值会受到周围存在的图形的影响。
如图4所示,图4中中心部分线宽w1,不仅受到近处线宽w2和间距s1影响,同时也会受到非邻近的线宽w3和间距s2影响,而另一方向的线宽w4和间距s3以及间距s4也会影响w1。
因此仅依据设计线宽、设计间距及设计pitch来保存数据对实际芯片图形的数据保存是不足够的,无法保存影响线宽的全部图形信息。
另外,依据设计线宽、设计间距及设计pitch来保存数据也很难将同一个硅片实际图形在各个芯片制造层的线宽值和间距值保存在一起。芯片生产技术的不断升级,要求更加关注各个芯片制造层间的互相影响。在同一个硅片位置,实际芯片图形在各个制造层的量测数据统一保存和管理越来越重要。
有鉴于此,提出本申请。
发明内容
本申请实施例提供一种基于设计版图的量测数据库构建方法、装置、电子设备及计算机可读存储介质,其构建的量测数据库能够保存大量在芯片实 际图形上取得的量测数据和量测数据周边的图形环境。
第一方面,本申请实施例提供一种基于设计版图的量测数据库构建方法,包括:
在设计版图上选取需要量测的实际图形;
获取实际图形在硅片实际位置的扫描电子显微镜(scanning electron microscope,SEM)图像;
获取SEM图像所有的量测数据;
保存量测数据,得到量测数据库。
可选的,获取SEM图像所有的量测数据,包括:
根据设计版图的坐标位置信息确定目标量测点;
基于设计版图和预设的量测条件,生成预设量测范围内的所有的量测框;
根据目标量测点和所有的量测框生成量测配方文件;
将SEM图像与设计版图对准,得到对准结果;
基于对准结果和量测配方文件,对SEM图像进行量测,得到量测数据。
可选的,保存量测数据,得到量测数据库,包括:
基于设计版图进行图形分组,得到分组结果;
依据分组结果保存对应的量测数据,得到量测数据库。
可选的,依据分组结果保存对应的量测数据,得到量测数据库,包括:
依据分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库;
其中,量测数据包括设计线宽、设计间距、设计pitch和设计版图信息。
可选的,依据分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库,包括:
依据分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对 应的量测数据,得到量测数据库。
可选的,依据分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库,包括:
基于分组结果,确定每一组图形中的各个图层;
针对每一个图层,依据设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
可选的,基于设计版图进行图形分组,得到分组结果,包括:
基于设计版图进行图形分组,并确定每组图形对应的数据库编号。
可选的,在保存量测数据,得到量测数据库之后,方法还包括:
获取新增图形的量测数据;
判断新增图形与各个数据库编号对应的图形是否相同;
若存在一个数据库编号对应的图形与新增图形相同,则将新增图形的量测数据保存至数据库编号对应的量测数据记录中。
可选的,在判断新增图形与各个数据库编号对应的图形是否相同之后,方法还包括:
若所有数据库编号对应的图形与新增图形均不相同,则针对新增图形生成一个新的数据库编号;
将新增图形的量测数据保存至新的数据库编号对应的量测数据记录中。
可选的,在获取新增图形的量测数据之后,方法还包括:
依据新增图形的量测数据,对量测数据库中的已有图形进行检索、对比和更新。
可选的,基于设计版图进行图形分组,得到分组结果,包括:
将位于一个芯片产品内不同位置但图形相同的量测点分为同组。
可选的,基于设计版图进行图形分组,得到分组结果,包括:
将不同芯片产品间图形相同的量测点分为同组。
第二方面,本申请实施例提供了一种基于设计版图的量测数据库构建装置,包括:
图形选取模块,用于在设计版图上选取需要量测的实际图形;
SEM图像获取模块,用于获取实际图形在硅片实际位置的扫描电子显微镜SEM图像;
量测数据获取模块,用于获取SEM图像所有的量测数据;
量测数据库构建模块,用于保存量测数据,得到量测数据库。
可选的,量测数据获取模块,用于:根据设计版图的坐标位置信息确定目标量测点;基于设计版图和预设的量测条件,生成预设量测范围内的所有的量测框;根据目标量测点和所有的量测框生成量测配方文件;将SEM图像与设计版图对准,得到对准结果;基于对准结果和量测配方文件,对SEM图像进行量测,得到量测数据。
可选的,量测数据库构建模块,包括:
图形分组单元,用于基于设计版图进行图形分组,得到分组结果;
量测数据库构建单元,用于依据分组结果保存对应的量测数据,得到量测数据库。
可选的,量测数据库构建单元,用于:依据分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库;其中,量测数据包括设计线宽、设计间距、设计pitch和设计版图信息。
可选的,量测数据库构建单元,用于:依据分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
可选的,量测数据库构建单元,用于:基于分组结果,确定每一组图形中的各个图层;针对每一个图层,依据设计线宽、设计间距和设计pitch的 先后顺序,保存对应的量测数据,得到量测数据库。
可选的,图形分组单元,用于:基于设计版图进行图形分组,并确定每组图形对应的数据库编号。
可选的,该装置包括:
量测数据获取模块,还用于获取新增图形的量测数据;
图形判断模块,用于判断新增图形与各个数据库编号对应的图形是否相同;
量测数据库构建单元,还用于若存在一个数据库编号对应的图形与新增图形相同,则将新增图形的量测数据保存至数据库编号对应的量测数据记录中。
可选的,该装置包括:
数据库编号生成模块,用于若所有数据库编号对应的图形与新增图形均不相同,则针对新增图形生成一个新的数据库编号;
量测数据库构建单元,还用于将新增图形的量测数据保存至新的数据库编号对应的量测数据记录中。
可选的,该装置包括:
量测数据库构建单元,还用于依据新增图形的量测数据,对量测数据库中的已有图形进行检索、对比和更新。
可选的,图形分组单元,用于:将位于一个芯片产品内不同位置但图形相同的量测点分为同组。
可选的,图形分组单元,用于:将不同芯片产品间图形相同的量测点分为同组。
第三方面,本申请实施例提供了一种电子设备,电子设备包括:处理器以及存储有计算机程序指令的存储器;
处理器执行计算机程序指令时实现如第一方面所示的基于设计版图的量测数据库构建方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现如第一方面所示的基于设计版图的量测数据库构建方法。
本申请实施例的基于设计版图的量测数据库构建方法、装置、电子设备及计算机可读存储介质,其构建的量测数据库能够保存大量在芯片实际图形上取得的量测数据和量测数据周边的图形环境。
该基于设计版图的量测数据库构建方法,包括:在设计版图上选取需要量测的实际图形;获取实际图形在硅片实际位置的扫描电子显微镜SEM图像;获取SEM图像所有的量测数据;保存量测数据,得到量测数据库。
可见,该方法在设计版图上选取需要量测的实际图形,并获取实际图形在硅片实际位置的SEM图像,进而可以大量在芯片实际图形上取得量测数据和量测数据周边的图形环境。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中Hole/Island的设计线宽、设计间距及设计pitch的量测示意图;
图2是现有技术中Line/Space的设计线宽、设计间距及设计pitch的量测示意图;
图3是现有技术中使用和监控量测数据的示意图;
图4是线宽w1受到周围存在的图形的影响的示意图;
图5是本申请一个实施例提供的基于设计版图的量测数据库构建方法的流程示意图;
图6是本申请一个实施例提供的基于设计版图的量测数据内容示意图;
图7是本申请一个实施例提供的分芯片制造层保存量测数据的数据库示意图;
图8是本申请一个实施例提供的基于设计版图的量测数据库构建装置的结构示意图;
图9是本申请一个实施例提供的电子设备的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了解决现有技术问题,本申请实施例提供了一种基于设计版图的量测 数据库构建方法、装置、电子设备及计算机可读存储介质。下面首先对本申请实施例所提供的基于设计版图的量测数据库构建方法进行介绍。
图5示出了本申请一个实施例提供的基于设计版图的量测数据库构建方法的流程示意图。如图5所示,该基于设计版图的量测数据库构建方法,包括:
S501、在设计版图上选取需要量测的实际图形;
其中,该实际图形不是测试图形(test pattern)。
S502、获取实际图形在硅片实际位置的扫描电子显微镜SEM图像;
S503、获取SEM图像所有的量测数据;
其中,在一些实施例中可以自动获取SEM图像所有的量测数据。
在一些实施例中,获取SEM图像所有的量测数据,包括:
根据设计版图的坐标位置信息确定目标量测点;
基于设计版图和预设的量测条件,生成预设量测范围内的所有的量测框;
根据目标量测点和所有的量测框生成量测配方文件;
将SEM图像与设计版图对准,得到对准结果;
基于对准结果和量测配方文件,对SEM图像进行量测,得到量测数据。
S504、保存量测数据,得到量测数据库。
在一些实施例中,保存量测数据,得到量测数据库,包括:
基于设计版图进行图形分组,得到分组结果;
依据分组结果保存对应的量测数据,得到量测数据库。
在一些实施例中,依据分组结果保存对应的量测数据,得到量测数据库,包括:
依据分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库;
其中,量测数据包括设计线宽、设计间距、设计pitch和设计版图信息。
在一些实施例中,依据分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库,包括:
依据分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
具体地,如图6所示,保存量测值可以依据“图形分组-设计线宽和设计间距-设计pitch”的顺序来保存,同时可以依据图形分组,设计线宽和设计间距,设计pitch来查询和利用数据库数据。
在一些实施例中,依据分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库,包括:
基于分组结果,确定每一组图形中的各个图层;
针对每一个图层,依据设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
由于基于版图的量测数据库可以包含多层版图信息,可以将不同芯片制造层的量测数据保存在同一设计图形组中,可以更好监测层间线宽数据的相互影响和良率之间的关系。
在先进芯片制造工艺中,同一层芯片制造层会被分成两次或多次曝光来实现将设计版图转移到硅片上。多次曝光的工艺中,后面曝光的图层会受到硅片上已曝光形成的图层的影响。这时将同一设计图形,两次或多次曝光工艺后的线宽测量值保存在一起,能增强监测的及时性和有效性,对曝光工艺的监控和调整都有意义。
而且,在芯片制造中,Metal层的线宽和Contact/Via的孔径也可能联合影响Metal-Via连接的性能。当Metal层的线宽和Contact/Via的孔径同时变窄时,Metal-Via连接就会有较高风险失效。而当Contact/Via的孔径 变窄时,前层Metal层的线宽足够时,则可考虑失效风险较低,Contact/Via的光刻工艺不需要返工,避免过多返工造成的成本损失。所以,如图7所示,将同一图形的多层量测数据保存在一起,可以达到提高工艺监测精度和有效性,改善良率和降低成本的效果。
在一些实施例中,基于设计版图进行图形分组,得到分组结果,包括:
基于设计版图进行图形分组,并确定每组图形对应的数据库编号。
在一些实施例中,在保存量测数据,得到量测数据库之后,方法还包括:
获取新增图形的量测数据;
判断新增图形与各个数据库编号对应的图形是否相同;
若存在一个数据库编号对应的图形与新增图形相同,则将新增图形的量测数据保存至数据库编号对应的量测数据记录中。
在一些实施例中,在判断新增图形与各个数据库编号对应的图形是否相同之后,方法还包括:
若所有数据库编号对应的图形与新增图形均不相同,则针对新增图形生成一个新的数据库编号;
将新增图形的量测数据保存至新的数据库编号对应的量测数据记录中。
具体地,首先基于设计版图进行图形分组,每组图形有对应的数据库编号。如有新的量测图形数据加入,新的量测图形需要与数据库中已编号的图形进行对比。如新的量测图形与已存在的量测图形相同,则新的量测数据加入已存在的图形的数据记录中,作为已存在图形的一个新的量测数据保存。如新的量测图形与已存在的量测图形都不相同,则数据库会生成一个新的量测图形编号用于保存这个新的量测图形。而且,新的量测数据则会保存在新的量测图形的量测数据记录中。
在一些实施例中,在获取新增图形的量测数据之后,方法还包括:
依据新增图形的量测数据,对量测数据库中的已有图形进行检索、对比和更新。
在一些实施例中,基于设计版图进行图形分组,得到分组结果,包括:
将位于一个芯片产品内不同位置但图形相同的量测点分为同组。
在一些实施例中,基于设计版图进行图形分组,得到分组结果,包括:
将不同芯片产品间图形相同的量测点分为同组。
基于上述实施例所示的图形分组方法,可以更好地比较和监控芯片内线宽控制均一性和产品间线宽控制均一性。
综上所述,运用本申请所构建的量测数据库,可以保存大量在芯片实际图形上取得的量测值和量测值周边的图形环境。现有的量测数据库在保存实际图形上的量测值时,只能保存量测点的设计线宽或间距与设计pitch,无法保存量测点周边的图形环境。但是,对于芯片实际图形上的量测值,周边图形的影响是需要考虑的。
图8是本申请一个实施例提供的基于设计版图的量测数据库构建装置的结构示意图,如图8所示,该基于设计版图的量测数据库构建装置,包括:
图形选取模块801,用于在设计版图上选取需要量测的实际图形;
SEM图像获取模块802,用于获取实际图形在硅片实际位置的扫描电子显微镜SEM图像;
量测数据获取模块803,用于获取SEM图像所有的量测数据;
量测数据库构建模块804,用于保存量测数据,得到量测数据库。
在一些实施例中,量测数据获取模块803,用于:根据设计版图的坐标位置信息确定目标量测点;基于设计版图和预设的量测条件,生成预设量测范围内的所有的量测框;根据目标量测点和所有的量测框生成量测配方文件;将SEM图像与设计版图对准,得到对准结果;基于对准结果和量测配方文件, 对SEM图像进行量测,得到量测数据。
在一些实施例中,量测数据库构建模块804,包括:
图形分组单元,用于基于设计版图进行图形分组,得到分组结果;
量测数据库构建单元,用于依据分组结果保存对应的量测数据,得到量测数据库。
在一些实施例中,量测数据库构建单元,用于:依据分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库;其中,量测数据包括设计线宽、设计间距、设计pitch和设计版图信息。
在一些实施例中,量测数据库构建单元,用于:依据分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
在一些实施例中,量测数据库构建单元,用于:基于分组结果,确定每一组图形中的各个图层;针对每一个图层,依据设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
在一些实施例中,图形分组单元,用于:基于设计版图进行图形分组,并确定每组图形对应的数据库编号。
在一些实施例中,该装置包括:
量测数据获取模块803,还用于获取新增图形的量测数据;
图形判断模块,用于判断新增图形与各个数据库编号对应的图形是否相同;
量测数据库构建单元,还用于若存在一个数据库编号对应的图形与新增图形相同,则将新增图形的量测数据保存至数据库编号对应的量测数据记录中。
在一些实施例中,该装置包括:
数据库编号生成模块,用于若所有数据库编号对应的图形与新增图形均不相同,则针对新增图形生成一个新的数据库编号;
量测数据库构建单元,还用于将新增图形的量测数据保存至新的数据库编号对应的量测数据记录中。
在一些实施例中,该装置包括:
量测数据库构建单元,还用于依据新增图形的量测数据,对量测数据库中的已有图形进行检索、对比和更新。
在一些实施例中,图形分组单元,用于:将位于一个芯片产品内不同位置但图形相同的量测点分为同组。
在一些实施例中,图形分组单元,用于:将不同芯片产品间图形相同的量测点分为同组。
图8所示装置中的各个模块具有实现图5中各个步骤的功能,并能达到其相应的技术效果,为简洁描述,在此不再赘述。
图9示出了本申请实施例提供的电子设备的结构示意图。
电子设备可以包括处理器901以及存储有计算机程序指令的存储器902。
具体地,上述处理器901可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器902可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器902可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器902可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器902可在电子设备的内部或外部。在特定实施例中,存储器902可以是非易失性固态 存储器。
在一个实施例中,存储器902可以是只读存储器(Read Only Memory,ROM)。在一个实施例中,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器901通过读取并执行存储器902中存储的计算机程序指令,以实现上述实施例中的任意一种基于设计版图的量测数据库构建方法。
在一个示例中,电子设备还可包括通信接口903和总线910。其中,如图9所示,处理器901、存储器902、通信接口903通过总线910连接并完成相互间的通信。
通信接口903,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线910包括硬件、软件或两者,将电子设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线910可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
另外,结合上述实施例中的基于设计版图的量测数据库构建方法,本申请实施例可提供一种计算机可读存储介质来实现。该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例 中的任意一种基于设计版图的量测数据库构建方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能模块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本申请的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程 数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (26)

  1. 一种基于设计版图的量测数据库构建方法,其特征在于,包括:
    在设计版图上选取需要量测的实际图形;
    获取所述实际图形在硅片实际位置的扫描电子显微镜SEM图像;
    获取所述SEM图像所有的量测数据;
    保存所述量测数据,得到量测数据库。
  2. 根据权利要求1所述的基于设计版图的量测数据库构建方法,其特征在于,所述获取所述SEM图像所有的量测数据,包括:
    根据设计版图的坐标位置信息确定目标量测点;
    基于所述设计版图和预设的量测条件,生成预设量测范围内的所有的量测框;
    根据所述目标量测点和所述所有的量测框生成量测配方文件;
    将所述SEM图像与所述设计版图对准,得到对准结果;
    基于所述对准结果和所述量测配方文件,对所述SEM图像进行量测,得到所述量测数据。
  3. 根据权利要求1所述的基于设计版图的量测数据库构建方法,其特征在于,所述保存所述量测数据,得到量测数据库,包括:
    基于所述设计版图进行图形分组,得到分组结果;
    依据所述分组结果保存对应的量测数据,得到量测数据库。
  4. 根据权利要求3所述的基于设计版图的量测数据库构建方法,其特征在于,所述依据所述分组结果保存对应的量测数据,得到量测数据库,包括:
    依据所述分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库;
    其中,所述量测数据包括所述设计线宽、所述设计间距、所述设计pitch 和设计版图信息。
  5. 根据权利要求4所述的基于设计版图的量测数据库构建方法,其特征在于,所述依据所述分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库,包括:
    依据所述分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
  6. 根据权利要求5所述的基于设计版图的量测数据库构建方法,其特征在于,所述依据所述分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库,包括:
    基于所述分组结果,确定每一组图形中的各个图层;
    针对每一个图层,依据所述设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
  7. 根据权利要求3所述的基于设计版图的量测数据库构建方法,其特征在于,所述基于所述设计版图进行图形分组,得到分组结果,包括:
    基于所述设计版图进行图形分组,并确定每组图形对应的数据库编号。
  8. 根据权利要求7所述的基于设计版图的量测数据库构建方法,其特征在于,在所述保存所述量测数据,得到量测数据库之后,所述方法还包括:
    获取新增图形的量测数据;
    判断所述新增图形与各个所述数据库编号对应的图形是否相同;
    若存在一个所述数据库编号对应的图形与所述新增图形相同,则将所述新增图形的量测数据保存至所述数据库编号对应的量测数据记录中。
  9. 根据权利要求8所述的基于设计版图的量测数据库构建方法,其特征在于,在所述判断所述新增图形与各个所述数据库编号对应的图形是否相同之后,所述方法还包括:
    若所有所述数据库编号对应的图形与所述新增图形均不相同,则针对所述新增图形生成一个新的数据库编号;
    将所述新增图形的量测数据保存至所述新的数据库编号对应的量测数据记录中。
  10. 根据权利要求8所述的基于设计版图的量测数据库构建方法,其特征在于,在所述获取新增图形的量测数据之后,所述方法还包括:
    依据所述新增图形的量测数据,对所述量测数据库中的已有图形进行检索、对比和更新。
  11. 根据权利要求3所述的基于设计版图的量测数据库构建方法,其特征在于,所述基于所述设计版图进行图形分组,得到分组结果,包括:
    将位于一个芯片产品内不同位置但图形相同的量测点分为同组。
  12. 根据权利要求3所述的基于设计版图的量测数据库构建方法,其特征在于,所述基于所述设计版图进行图形分组,得到分组结果,包括:
    将不同芯片产品间图形相同的量测点分为同组。
  13. 一种基于设计版图的量测数据库构建装置,其特征在于,包括:
    图形选取模块,用于在设计版图上选取需要量测的实际图形;
    SEM图像获取模块,用于获取所述实际图形在硅片实际位置的扫描电子显微镜SEM图像;
    量测数据获取模块,用于获取所述SEM图像所有的量测数据;
    量测数据库构建模块,用于保存所述量测数据,得到量测数据库。
  14. 根据权利要求13所述的基于设计版图的量测数据库构建装置,其特征在于,所述量测数据获取模块,用于:根据设计版图的坐标位置信息确定目标量测点;基于所述设计版图和预设的量测条件,生成预设量测范围内的所有的量测框;根据所述目标量测点和所述所有的量测框生成量测配方文件; 将所述SEM图像与所述设计版图对准,得到对准结果;基于所述对准结果和所述量测配方文件,对所述SEM图像进行量测,得到所述量测数据。
  15. 根据权利要求13所述的基于设计版图的量测数据库构建装置,其特征在于,所述量测数据库构建模块,包括:
    图形分组单元,用于基于所述设计版图进行图形分组,得到分组结果;
    量测数据库构建单元,用于依据所述分组结果保存对应的量测数据,得到量测数据库。
  16. 根据权利要求15所述的基于设计版图的量测数据库构建装置,其特征在于,所述量测数据库构建单元,用于:依据所述分组结果、设计线宽、设计间距和设计pitch,保存对应的量测数据,得到量测数据库;其中,所述量测数据包括所述设计线宽、所述设计间距、所述设计pitch和设计版图信息。
  17. 根据权利要求16所述的基于设计版图的量测数据库构建装置,其特征在于,所述量测数据库构建单元,用于:依据所述分组结果、设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
  18. 根据权利要求17所述的基于设计版图的量测数据库构建装置,其特征在于,所述量测数据库构建单元,用于:基于所述分组结果,确定每一组图形中的各个图层;针对每一个图层,依据所述设计线宽、设计间距和设计pitch的先后顺序,保存对应的量测数据,得到量测数据库。
  19. 根据权利要求15所述的基于设计版图的量测数据库构建装置,其特征在于,所述图形分组单元,用于:基于所述设计版图进行图形分组,并确定每组图形对应的数据库编号。
  20. 根据权利要求19所述的基于设计版图的量测数据库构建装置,其特征在于,包括:
    量测数据获取模块,还用于获取新增图形的量测数据;
    图形判断模块,用于判断所述新增图形与各个所述数据库编号对应的图形是否相同;
    量测数据库构建单元,还用于若存在一个所述数据库编号对应的图形与所述新增图形相同,则将所述新增图形的量测数据保存至所述数据库编号对应的量测数据记录中。
  21. 根据权利要求20所述的基于设计版图的量测数据库构建装置,其特征在于,包括:
    数据库编号生成模块,用于若所有所述数据库编号对应的图形与所述新增图形均不相同,则针对所述新增图形生成一个新的数据库编号;
    量测数据库构建单元,还用于将所述新增图形的量测数据保存至所述新的数据库编号对应的量测数据记录中。
  22. 根据权利要求20所述的基于设计版图的量测数据库构建装置,其特征在于,包括:
    量测数据库构建单元,还用于依据所述新增图形的量测数据,对所述量测数据库中的已有图形进行检索、对比和更新。
  23. 根据权利要求15所述的基于设计版图的量测数据库构建装置,其特征在于,所述图形分组单元,用于:将位于一个芯片产品内不同位置但图形相同的量测点分为同组。
  24. 根据权利要求15所述的基于设计版图的量测数据库构建装置,其特征在于,所述图形分组单元,用于:将不同芯片产品间图形相同的量测点分为同组。
  25. 一种电子设备,其特征在于,所述电子设备包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令时实现如权利要求1-12任意一项所述的基于设计版图的量测数据库构建方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-12任意一项所述的基于设计版图的量测数据库构建方法。
PCT/CN2023/086171 2022-10-21 2023-04-04 基于设计版图的量测数据库构建方法、装置、设备及介质 WO2024082567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211294748.8A CN115757394A (zh) 2022-10-21 2022-10-21 基于设计版图的量测数据库构建方法、装置、设备及介质
CN202211294748.8 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024082567A1 true WO2024082567A1 (zh) 2024-04-25

Family

ID=85352756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086171 WO2024082567A1 (zh) 2022-10-21 2023-04-04 基于设计版图的量测数据库构建方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN115757394A (zh)
WO (1) WO2024082567A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115757394A (zh) * 2022-10-21 2023-03-07 东方晶源微电子科技(北京)有限公司 基于设计版图的量测数据库构建方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491195A (zh) * 2018-12-25 2019-03-19 上海微阱电子科技有限公司 一种建立辅助图形曝光模型的方法
CN112259469A (zh) * 2020-10-21 2021-01-22 上海华力集成电路制造有限公司 半导体器件关键尺寸量测方法及取得sem图像的方法
CN113326601A (zh) * 2020-02-28 2021-08-31 中芯国际集成电路制造(上海)有限公司 预处理方法及系统、掩膜版的制造方法、设备、存储介质
WO2022151716A1 (zh) * 2021-01-14 2022-07-21 长鑫存储技术有限公司 晶圆量测方法、装置、介质和电子设备
CN115757394A (zh) * 2022-10-21 2023-03-07 东方晶源微电子科技(北京)有限公司 基于设计版图的量测数据库构建方法、装置、设备及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491195A (zh) * 2018-12-25 2019-03-19 上海微阱电子科技有限公司 一种建立辅助图形曝光模型的方法
CN113326601A (zh) * 2020-02-28 2021-08-31 中芯国际集成电路制造(上海)有限公司 预处理方法及系统、掩膜版的制造方法、设备、存储介质
CN112259469A (zh) * 2020-10-21 2021-01-22 上海华力集成电路制造有限公司 半导体器件关键尺寸量测方法及取得sem图像的方法
WO2022151716A1 (zh) * 2021-01-14 2022-07-21 长鑫存储技术有限公司 晶圆量测方法、装置、介质和电子设备
CN115757394A (zh) * 2022-10-21 2023-03-07 东方晶源微电子科技(北京)有限公司 基于设计版图的量测数据库构建方法、装置、设备及介质

Also Published As

Publication number Publication date
CN115757394A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024082567A1 (zh) 基于设计版图的量测数据库构建方法、装置、设备及介质
US11669957B2 (en) Semiconductor wafer measurement method and system
US6714885B1 (en) Method for measuring number of yield loss chips and number of poor chips by type due to defect of semiconductor chips
CN105378565A (zh) 使用直写光刻的集成电路制造
CN113488414B (zh) 晶圆生产监控方法、系统与电子设备
US7735043B2 (en) Wiring layout apparatus, wiring layout method, and wiring layout program for semiconductor integrated circuit
CN107561875B (zh) 一种套刻误差量测和问题评估的方法
WO2024045295A1 (zh) 基于设计版图的扫描电子显微镜图像的量测方法和装置
WO2024045294A1 (zh) 基于设计版图的扫描电子显微镜图像缺陷检测方法、装置
WO2024066279A1 (zh) 晶片的缺陷检测方法、装置、设备及计算机可读存储介质
JP2005109056A (ja) 半導体素子の検査装置
CN104103545A (zh) 晶圆缺陷检测方法
KR20160002476A (ko) 프로브 카드를 이용한 웨이퍼 테스트 시스템 및 방법
TW507308B (en) Correction of overlay offset between inspection layers in integrated circuits
CN115172199A (zh) 一种用于识别晶圆缺陷的方法及系统
CN111862076B (zh) 改善亮场缺陷检测精度及其过程中因色差导致杂讯的方法
CN109994393B (zh) 测量点补偿值的计算方法、装置及设备
US9448487B2 (en) Method of manufacturing semiconductor and exposure system
CN113148946B (zh) 一种晶圆低可靠性失效管芯的标注方法和装置
KR100506818B1 (ko) 반도체 기판의 이동위치 설정방법 및 반도체 기판의검사방법
CN114241048B (zh) 特征尺寸一致性分析方法及装置、计算机可读存储介质
CN107643655A (zh) 掩模板关键尺寸的监控方法
JP6534583B2 (ja) 判定装置、基板検査装置および判定方法
CN117457516A (zh) 晶圆缺陷的检测方法及装置
WO2020194524A1 (ja) 基板解析装置