WO2024080187A1 - 点灯回路 - Google Patents

点灯回路 Download PDF

Info

Publication number
WO2024080187A1
WO2024080187A1 PCT/JP2023/036039 JP2023036039W WO2024080187A1 WO 2024080187 A1 WO2024080187 A1 WO 2024080187A1 JP 2023036039 W JP2023036039 W JP 2023036039W WO 2024080187 A1 WO2024080187 A1 WO 2024080187A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
voltage
supply line
resistor
Prior art date
Application number
PCT/JP2023/036039
Other languages
English (en)
French (fr)
Inventor
佑太 北川
祐貴也 山田
真司 太田
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2024080187A1 publication Critical patent/WO2024080187A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • B60Q1/38Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction using immovably-mounted light sources, e.g. fixed flashing lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection

Definitions

  • the present invention relates to a lighting circuit.
  • a known example of a vehicle lamp is a vehicle direction indicator lamp (hereinafter also referred to as a "turn signal lamp”) that uses a so-called sequential method technology in which multiple light sources are turned on in sequence (see, for example, Patent Document 1).
  • a lighting circuit used in such a vehicle lamp is supplied with power from the vehicle battery.
  • Vehicles are generally equipped with turn signal lamps on the left and right sides of the front and rear of the vehicle, each of which receives power from the battery.
  • turn signal lamps on the left and right sides of the front and rear of the vehicle, each of which receives power from the battery.
  • the lengths of the wiring from the battery to each turn signal lamp are different, there is a risk of the timing of the lamps turning on being off due to differences in wiring resistance, etc.
  • the object of the present invention is to provide a lighting circuit that can improve the accuracy of the lighting timing.
  • the main invention for achieving the above object is a lighting circuit applied to a vehicle lamp including multiple light sources, the lighting circuit comprising: a voltage divider circuit that divides a power supply voltage applied to a power supply line into multiple different voltages; a timer circuit including a first resistor to which the power supply voltage is applied via the power supply line and a first capacitor connected to the first resistor; a control circuit that sequentially lights up the multiple light sources based on the multiple voltages of the voltage divider circuit and the voltage of the first capacitor; and a first discharge circuit that discharges the first capacitor for a first period when the power supply voltage is applied to the power supply line.
  • the present invention provides a lighting circuit that can improve the accuracy of lighting timing.
  • FIG. 1 is a diagram showing a configuration of a vehicle lamp 1 including a lighting circuit 10 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a light-off circuit 13.
  • 2 is a diagram illustrating an example of a timer circuit 15 and a discharge circuit 16.
  • FIG. 2 is a diagram illustrating an example of a reset circuit 17.
  • FIG. 2 is a diagram illustrating an example of a switch circuit 18.
  • FIG. 2 is a diagram illustrating an example of a switch circuit 19. 2 is a diagram for explaining the operation of the lighting circuit 10.
  • FIG. 2 is a diagram illustrating an example of a light-off circuit 13.
  • 2 is a diagram illustrating an example of a timer circuit 15 and a discharge circuit 16.
  • FIG. 2 is a diagram illustrating an example of a reset circuit 17.
  • FIG. 2 is a diagram illustrating an example of a switch circuit 18.
  • connection refers to a state in which two components are electrically connected unless otherwise specified. Therefore, “connection” includes cases in which two components are connected not only through wiring, but also through, for example, a resistor.
  • FIG. 1 is a diagram showing the configuration of a vehicle lamp 1 including a lighting circuit 10 according to the present embodiment.
  • the vehicle lamp 1 of this embodiment is a turn signal lamp (vehicle direction indicator lamp) that sequentially lights up the light-emitting elements of the light source based on the voltage Vbat of the vehicle battery 2.
  • the vehicle of this embodiment is provided with vehicle lamps 1 having the same configuration as that shown in FIG. 1 at four locations on the left and right sides of the front of the vehicle body, and on the left and right sides of the rear of the vehicle body. Here, one of these lamps will be described as an example.
  • the vehicle lamp 1 of this embodiment is also used as a hazard lamp. For turn signals, either the left or right lamp will light up (blink), and for hazards, all of the lamps will light up (blink). In the following description, the vehicle lamp 1 may be simply referred to as a lamp.
  • the distance from the battery 2 to each lamp of the vehicle is not the same, so the length of the wiring (harness) that supplies power from the battery 2 to each lamp is different.
  • the length of the wiring from the battery 2 to the rear lamp will be significantly longer than the length of the wiring from the battery 2 to the front lamp.
  • the vehicle lamp 1 includes a switch 4, a lighting circuit 10, light sources 21 to 24, and resistors Rd1 and Rd2.
  • the switch 4 is an element for applying the voltage Vbat of the vehicle battery 2 to the power line L1 of the vehicle lamp 1.
  • a mechanical contact relay or a contactless relay using a semiconductor element is used as the switch 4.
  • the voltage Vbat of the battery 2 is applied to one end of the switch 4, and the other end is connected to the power supply line L1.
  • power supply voltage VCC may be abbreviated to voltage VCC.
  • Power supply line L1 is a wiring that supplies voltage VCC to the internal circuits of the lighting circuit 10.
  • the vehicle lamp 1 is also provided with a ground line (not shown). The parts of each circuit in the vehicle lamp 1 that are grounded are connected to the ground line.
  • lighting circuit 10 When voltage VCC is applied to power line L1, lighting circuit 10 sequentially lights light sources 21 to 24. Details of lighting circuit 10 will be described later, but lighting circuit 10 is a module in which multiple circuits for lighting light sources 21 to 24 (light-emitting elements D1 to D4) and terminals A to H are attached to a board.
  • the light source 21 includes a light-emitting element D1 that is turned on first.
  • a light-emitting diode LED
  • the light-emitting element D1 is not limited to an LED, and may be, for example, another semiconductor light-emitting element such as a laser diode (LD) or an organic EL element, or a halogen lamp (the same applies to the light-emitting elements D2 to D4 described below).
  • the anode of the light-emitting element D1 is connected to the drive circuit 11 and NMOS transistor Q1 (described below) via terminal D of the lighting circuit 10.
  • the cathode of the light-emitting element D1 is connected to the NMOS transistor Q2 (described below) via terminal E.
  • Light source 22 includes light-emitting element D2, which is turned on after light-emitting element D1 of light source 21 is turned on.
  • the anode of light-emitting element D2 is connected to the cathode of light-emitting element D1.
  • the cathode of light-emitting element D2 is connected to NMOS transistor Q3 (described later) via terminal F.
  • Light source 23 includes light-emitting element D3, which is turned on after light-emitting element D2 of light source 22 is turned on.
  • the anode of light-emitting element D3 is connected to the cathode of light-emitting element D2.
  • the cathode of light-emitting element D3 is connected to NMOS transistor Q4 (described later) via terminal G.
  • Light source 24 includes light-emitting element D4, which is turned on after light-emitting element D3 of light source 23 is turned on.
  • the anode of light-emitting element D4 is connected to the cathode of light-emitting element D3.
  • the cathode of light-emitting element D4 is grounded via terminal F.
  • the resistors Rd1 and Rd2 are resistors for adjusting the magnitude of the input current Iin supplied from the vehicle battery 2 to the vehicle lamp 1, and in this embodiment, are provided outside the lighting circuit 10.
  • One end of the resistor Rd1 is connected to the power supply line L1, and the other end is connected to the switch circuit 18 via terminal B.
  • One end of the resistor Rd2 is connected to the power supply line L1, and the other end is connected to the switch circuit 19 via terminal C.
  • a vehicle incorporating the vehicle lamp 1 of this embodiment is provided with a detection device (not shown) that detects whether or not there is a disconnection in the light-emitting elements D1 to D4 of the vehicle lamp 1, based on the input current Iin from the battery 2. For example, when the vehicle lamp 1 is operating, this detection device detects that there is a disconnection in any of the light-emitting elements D1 to D4 of the vehicle lamp 1 if the current value of the input current Iin is smaller than a threshold value (lower limit threshold value: hereinafter also referred to as the lower limit value).
  • a threshold value lower limit threshold value: hereinafter also referred to as the lower limit value
  • the current value of the input current Iin must be greater than the lower limit value to avoid erroneously detecting that the light-emitting elements D1 to D4 are broken.
  • the "normal state” here refers to, for example, a state in which no breaks have occurred in the light-emitting elements D1 to D4 of the light sources 21 to 24 of the vehicle lamp 1.
  • breakage of a light-emitting element refers to, for example, a state in which the resistance value between the cathode and anode of a light-emitting element is sufficiently greater than the normal resistance value.
  • the input current Iin to the vehicle lamp 1 also becomes large, and the current from the battery 2 may exceed, for example, the rated current.
  • an upper limit threshold (hereinafter also referred to as the upper limit value) is also set for the input current Iin that flows from the battery 2 to the vehicle lamp 1 when the vehicle lamp 1 is operating.
  • the input current Iin supplied from the battery 2 must be within a range (allowable range) determined by a lower limit and an upper limit.
  • the lighting circuit 10 of this embodiment lights up the light sources 21 to 24 in a sequential manner while keeping the input current Iin within an allowable range. Specifically, the magnitude of the input current Iin is adjusted by the adjustment current Id, which will be described later.
  • the lighting circuit 10 includes a drive circuit 11, a disconnection detection circuit 12, a light-out circuit 13, a power supply circuit 14, a timer circuit 15, a discharge circuit 16, a reset circuit 17, switch circuits 18 and 19, resistors R1 to R5, R11 to R18, comparators COM1 to COM4, NMOS transistors Q1 to Q4, and terminals A to H.
  • the drive circuit 11 is a regulator that generates a predetermined drive current Iout for driving the light emitting elements D1 to D4 of the light sources 21 to 24, which are the loads, based on the power supplied from the battery 2.
  • the method for generating the constant current may be a switching method or a linear method.
  • the open circuit detection circuit 12 detects whether or not there is an open circuit in the light emitting elements D1 to D4 of the light sources 21 to 24 (i.e., whether or not there is an abnormality in at least one of the light sources 21 to 24).
  • the open circuit detection circuit 12 corresponds to a "detection circuit.”
  • the resistance value between the anode and cathode of the open light emitting element becomes very large.
  • the output voltage Vout of the drive circuit 11 increases significantly. Therefore, the presence or absence of an abnormality in the light sources 21 to 24 can be detected based on the output voltage Vout of the drive circuit 11.
  • the break detection circuit 12 determines whether the output voltage Vout of the drive circuit 11 is higher than a predetermined value, and when the output voltage Vout becomes higher than the predetermined value, detects that there is a break in any of the light-emitting elements D1 to D4.
  • the break detection circuit 12 detects that there is a break, it changes the level of the connection line L2 connected to the light-off circuit 13 from a high level (hereinafter, H level) to a low level (hereinafter, L level).
  • the light-off circuit 13 stops the operation of the drive circuit 11 to turn off the light sources 21 to 24. Based on the disconnection detection result of the disconnection detection circuit 12, the light-off circuit 13 also controls the switch circuits 18 and 19 so that no current flows through the resistors Rd1 and Rd2 to prevent unnecessary power consumption in the resistors Rd1 and Rd2. Details of the light-off circuit 13 will be described later.
  • the power supply circuit 14 is a circuit that generates a voltage Vdd (e.g., 5 V) for operating each circuit of the lighting circuit 10 based on the voltage VCC (e.g., 13 V) of the power supply line L1.
  • Vdd e.g., 5 V
  • VCC e.g., 13 V
  • timer circuit 15 When voltage VCC is applied to power supply line L1, timer circuit 15 outputs a voltage (voltage V1, described below) that changes with time. Details of timer circuit 15 will be described later.
  • discharge circuit 16 stops operation of timer circuit 15 by discharging capacitor 52 (described later) of timer circuit 15 for a certain period of time.
  • discharge circuit 16 corresponds to the "first discharge circuit.” Details of discharge circuit 16 will be described later.
  • the reset circuit 17 When the voltage VCC is no longer applied to the power supply line L1, the reset circuit 17 outputs an H-level signal SR for resetting each circuit of the lighting circuit 10 for a certain period of time. Based on this H-level signal SR, for example, a capacitor 52 (described later) of the timer circuit 15 and a capacitor 66 (described later) of the discharge circuit 16 are discharged. In this embodiment, the reset circuit 17 corresponds to a "second discharge circuit.” Details of the reset circuit 17 will be described later.
  • the switch circuits 18 and 19 are circuits for adjusting the magnitude of the input current Iin flowing through the power supply line L1 by conducting or blocking the current path from the power supply line to the ground of each of the resistors Rd1 and Rd2.
  • the switch circuit 18 corresponds to the "first current adjustment circuit”
  • the resistor Rd1 corresponds to the "second resistor.”
  • the switch circuit 19 corresponds to the "second current adjustment circuit”
  • the resistor Rd2 corresponds to the "third resistor.” Details of the switch circuits 18 and 19 will be described later.
  • Resistors R1 to R5 are connected in series between the power supply line L1 and the ground, and divide the voltage VCC applied to the power supply line L1 into multiple different voltages. Resistors R1 to R5 correspond to a "voltage divider circuit.” As shown in Figure 1, resistors R5, R4, R3, R2, and R1 are connected in this order from the power supply line L1 (voltage VCC) side to the ground side. Also, the connection point between resistors R5 and R4 is node N4, the connection point between resistors R4 and R3 is node N3, the connection point between resistors R3 and R2 is node N2, and the connection point between resistors R2 and R1 is node N1.
  • resistors R1 to R5 When voltage VCC is applied to power line L1, resistors R1 to R5 generate a voltage that is a divided version of voltage VCC at each of the resistor connection points (nodes N1 to N4). Note that node N4 has the highest voltage, and node N1 has the lowest voltage.
  • the voltages at the nodes (N1 to N4) of resistors R1 to R5 are applied to the non-inverting input terminals (+ terminals) of comparators COM1 to COM4.
  • the output voltage of timer circuit 15 (voltage V1, described later) is applied to the inverting input terminals (- terminals) of comparators COM1 to COM4.
  • the comparators COM1 to COM4 each compare the voltages at their - and + terminals and output according to the results.
  • the comparators COM1 to COM4 in this embodiment are of the open-drain type, and output an open (hereinafter also referred to as high impedance) voltage if the voltage at the + terminal is greater than the voltage at the - terminal, and an L-level (ground level) voltage if it is less.
  • high impedance open
  • L-level (ground level) voltage if it is less.
  • Resistors R11, R12, resistors R13, R14, resistors R15, R16, and resistors R17, R18 are connected in series, and when voltage VCC is applied to power supply line L1, they divide the voltage VCC. At this time, the resistance value of each resistor (resistors R11 to R18) is set so as to generate a divided voltage that turns on NMOS transistors Q1 to Q4.
  • the NMOS transistors Q1 to Q4 function as switches that turn on and off depending on the voltage applied to their gates.
  • the NMOS transistors Q1 to Q4 are elements that control the lighting or extinguishing of the light sources 21 to 24.
  • the drain of the NMOS transistor Q1 is connected to the terminal D, and the source is grounded.
  • the gate of the NMOS transistor Q1 is connected to the connection point between the resistors R11 and R12, and is also connected to the output of the comparator COM1.
  • the drain of the NMOS transistor Q2 is connected to the terminal E, and the source is grounded.
  • the gate of the NMOS transistor Q2 is connected to the connection point between the resistors R13 and R14, and is also connected to the output of the comparator COM2.
  • the drain of the NMOS transistor Q3 is connected to the terminal F, and the source is grounded.
  • the gate of the NMOS transistor Q3 is connected to the connection point between the resistors R15 and R16, and is also connected to the output of the comparator COM3.
  • the drain of the NMOS transistor Q4 is connected to the terminal G, and the source is grounded.
  • the gate of the NMOS transistor Q4 is connected to the connection point between the resistors R17 and R18, and is also connected to the output of the comparator COM4.
  • comparators COM1 to COM4 when the output of comparator COM1 is at the L level, the voltage at the connection point between resistors R11 and R12 becomes lower than the threshold voltage of NMOS transistor Q1, and NMOS transistor Q1 turns off.
  • the output of comparator COM1 when the output of comparator COM1 is at high impedance, the divided voltage of voltage VCC by resistors R11 and R12 is applied to the gate of NMOS transistor Q1, and NMOS transistor Q1 turns on.
  • the relationship between comparators COM2 to COM4 and NMOS transistors Q2 to Q4 is similar, so a description will be omitted. Note that comparators COM1 to COM4, resistors R11 to R18, and NMOS transistors Q1 to Q4 correspond to the "control circuit.”
  • FIG. 2 is a diagram showing an example of the light-off circuit 13. As shown in FIG.
  • the light-off circuit 13 includes inverters 30A and 30B, a capacitor 31, and Schottky barrier diodes 38a to 38c.
  • Capacitor 31 is an element that is charged by application of voltage Vdd and holds the charge required to operate inverters 30A and 30B.
  • Inverter 30A is a circuit that inverts and outputs the logical level of connection line L2 from break detection circuit 12, and includes a PNP transistor 32, a diode 33, and a resistor 34 connected in series. For example, when the level of connection line L2 is H level, PNP transistor 32 is turned off, and node NA, to which diode 33 and resistor 34 are connected, becomes L level. On the other hand, when the level of connection line L2 is L level, PNP transistor 32 is turned on, and node NA becomes H level.
  • Inverter 30B is a circuit that inverts and outputs the logical level of node NA, and includes an NMOS transistor 35 and resistors 36 and 37 connected in series.
  • NMOS transistor 35 turns on, and the level of node NB to which NMOS transistor 35 and resistor 36 are connected becomes L level.
  • NMOS transistor 35 turns off, and the level of node NB becomes H level.
  • node NA which is the output of inverter 30A
  • NMOS transistor 35 which is the input of inverter 30B
  • a connection line L2 is connected between the node between resistors 36 and 37 of inverter 30B and the base electrode of PNP transistor 32, which is the input of inverter 30A. Therefore, the light-off circuit 13 operates as a holding circuit that holds the logic level of connection line L2.
  • the Schottky barrier diode 38a If an open circuit is detected and the light-off circuit 13 holds an L-level signal, the Schottky barrier diode 38a generates an L-level signal S10 at the anode to stop the operation of the drive circuit 11.
  • the Schottky barrier diode 38b If an open circuit is detected and the light-off circuit 13 holds an L-level signal, the Schottky barrier diode 38b generates an L-level signal S11 at its anode to turn off the NMOS transistor 81 (described later) of the switch circuit 18.
  • the Schottky barrier diode 38c If an open circuit is detected and the light-off circuit 13 holds an L-level signal, the Schottky barrier diode 38c generates an L-level signal S12 at its anode to turn off the NMOS transistor 91 (described below) of the switch circuit 19.
  • Schottky barrier diodes 38a to 38c are used, but they are not limited to Schottky barrier diodes.
  • general rectifier diodes may be used.
  • FIG. 3 is a diagram showing an example of the timer circuit 15 and the discharge circuit 16. As shown in FIG. 3
  • the timer circuit 15 includes a resistor 51, a capacitor 52, and an NPN transistor 53.
  • a voltage VCC is applied to one end of resistor 51 via power supply line L1.
  • Resistor 51 corresponds to the "first resistor.”
  • Capacitor 52 is connected between the other end of resistor 51 and ground. The connection point between resistor 51 and capacitor 52 is node NC. The voltage at node NC (hereinafter also referred to as voltage V1) is the output of timer circuit 15. Capacitor 52 corresponds to the "first capacitor.”
  • NPN transistor 53 is an element for discharging capacitor 52.
  • the collector of NPN transistor 53 is connected to node NC, and the emitter is grounded.
  • a signal SR from reset circuit 17, which will be described later, is applied to the base of NPN transistor 53.
  • signal SR is at H level, NPN transistor 53 turns on. This causes the charge stored in capacitor 52 to be discharged.
  • the discharge circuit 16 includes a comparator 61 , resistors 62 to 65 , a capacitor 66 , and an NPN transistor 67 .
  • the + terminal of comparator 61 is connected to the connection point (hereinafter, node ND) between resistors 62 and 63, which divide voltage VCC, and the divided voltage of power supply voltage VCC by resistors 62 and 63 is applied to it.
  • the - terminal of comparator 61 is connected to the connection point (hereinafter, node NE) between resistors 64 and 65, which divide voltage VCC, and the divided voltage of power supply voltage VCC by resistors 64 and 65 is applied to it.
  • the output of comparator 61 is connected to node NC of timer circuit 15.
  • Comparator 61 outputs a high impedance voltage if the voltage at the + terminal is greater than the voltage at the - terminal, and outputs an L level (ground level) voltage if it is less.
  • the resistance values of resistors 62, 63 and resistors 64, 65 are set so that in the initial state (when capacitor 66 is not charged), the voltage at node ND is slightly higher than the voltage at node NE.
  • Capacitor 66 is provided between node NE and ground. As a result, when voltage VCC is applied to power supply line L1, current flows to capacitor 66 via resistor 64 and node NE. This charges capacitor 66, causing the voltage at node NE to rise and eventually (after a certain period of time) become higher than the voltage at node ND.
  • the output of comparator 61 is at L level for a certain period of time when voltage VCC is applied to power supply line L1, and then becomes high impedance when the voltage of node NE becomes higher than the voltage of node ND.
  • the discharge circuit 16 discharges capacitor 52 of timer circuit 15 via comparator 61, since the output of comparator 61 is at L level.
  • NPN transistor 67 is an element for discharging capacitor 66.
  • the collector of NPN transistor 67 is connected to node NE, and the emitter is grounded.
  • a signal SR from reset circuit 17, which will be described later, is applied to the base of NPN transistor 53. When signal SR is at H level, NPN transistor 53 turns on. This causes the charge stored in capacitor 66 to be discharged.
  • FIG. 4 is a diagram showing an example of the reset circuit 17. As shown in FIG. 4
  • the reset circuit 17 includes a diode 71, capacitors 72, 74, and 76, and resistors 73, 77a, 77b, 78a, and 78b.
  • Comparator 75 operates when voltage VCC is applied through diode 71, which prevents reverse current.
  • capacitor 72 and resistor 73 and capacitor 74 which are connected in series, are connected in parallel between the cathode of diode 71 and ground.
  • the output of comparator 75 is connected to the connection point between resistor 73 and capacitor 74, and the voltage at this connection point becomes the output (signal SR) of reset circuit 17.
  • Resistors 77a and 77b, and resistors 78a and 78b, are connected in series to divide the voltage VCC.
  • a capacitor 76 is connected in parallel to resistor 77b at the connection point between resistors 77a and 77b.
  • the voltage at the junction between resistors 77a and 77b is applied to the + terminal of comparator 75, and the voltage at the junction between resistors 78a and 78b is applied to the - terminal.
  • the resistors 77a, 77b and the resistors 78a, 78b are set so that when the voltage VCC is applied to the power supply line L1, the voltage at the connection point between the resistors 78a and 78b is higher than the voltage at the connection point between the resistors 77a and 77b.
  • the output of the comparator 75 is at L level, and the signal SR is also at L level. During this period, the capacitors 72, 74, and 76 are each charged.
  • comparator 75 When voltage VCC is no longer applied to power line L1, comparator 75 operates for a certain period of time using the charging voltage of capacitor 72 as its power source. At this time, the voltage at the connection point of resistors 78a and 78b becomes zero, but the voltage at the connection point of resistors 77a and 77b becomes greater than zero due to the charging voltage of capacitor 76. Therefore, comparator 75 becomes high impedance because the voltage at its + terminal is greater than the voltage at its - terminal, and a voltage based on the charging voltage of capacitor 74 is output, so signal SR becomes H level.
  • the reset circuit 17 outputs an H-level signal SR for a certain period of time.
  • Fig. 5A is a diagram showing an example of the switch circuit 18.
  • Fig. 5B is a diagram showing an example of the switch circuit 19.
  • the switch circuit 18 includes an NMOS transistor 81, a capacitor 82, resistors 83 and 84, a comparator 85, and resistors 86 and 87.
  • NMOS transistor 81 functions as a switch that turns on and off depending on the voltage applied to its gate.
  • the drain of NMOS transistor 81 is connected to resistor Rd1 via terminal B, and the source is grounded.
  • the gate of NMOS transistor 81 is connected to the connection point of resistors 83 and 84, which divide voltage Vdd.
  • Signal S11 is applied to the connection point of resistors 83 and 84, and the output of comparator 85 is also applied to it.
  • Capacitor 82 is an element for stabilizing the gate voltage of NMOS transistor 81, and is provided between the gate of NMOS transistor 81 and ground.
  • the + terminal of comparator 85 is connected to the junction of resistors 86 and 87, which divide voltage VCC, and voltage V1 is applied to one end. If the voltage at the + terminal is smaller than the voltage at the - terminal, comparator 85 outputs an L level, and if the voltage at the + terminal is greater than the voltage at the - terminal, it becomes high impedance.
  • the resistance values of resistors 86 and 87 are set so that the divided voltage of voltage VCC by resistors 86 and 87 is slightly lower than the voltage at node N3 in FIG. 1.
  • NMOS transistor 81 when voltage VCC is applied to power supply line L1, NMOS transistor 81 turns on and switch circuit 18 starts supplying current from power supply line L1 to resistor Rd1. Also, when NMOS transistor 81 turns off based on signal S11 or the output of comparator 85, switch circuit 18 cuts off the current supply path from power supply line L1 to resistor Rd1.
  • the switch circuit 19 includes an NMOS transistor 91, a capacitor 92, and resistors 93 and 94.
  • NMOS transistor 91 functions as a switch that turns on and off depending on the voltage applied to its gate.
  • the drain of NMOS transistor 91 is connected to resistor Rd1 via terminal C, and the source is grounded.
  • the gate of NMOS transistor 91 is also connected to the connection point of resistors 93 and 94, which divide voltage Vdd.
  • a signal S12 is also applied to the connection point of resistors 93 and 94.
  • Capacitor 92 is an element for stabilizing the gate voltage of NMOS transistor 91, and is provided between the gate of NMOS transistor 91 and ground.
  • NMOS transistor 91 when voltage VCC is applied to power supply line L1, NMOS transistor 91 turns on and switch circuit 19 starts supplying current from power supply line L1 to resistor Rd2. Also, when NMOS transistor 91 turns off based on signal S12, switch circuit 19 cuts off the current supply path from power supply line L1 to resistor Rd2.
  • Fig. 6 is a diagram for explaining the operation of the lighting circuit 10.
  • the hatched portion indicates high impedance.
  • the vehicle lamp 1 of this embodiment is a turn signal lamp, and when, for example, the driver of the vehicle operates a turn signal (not shown) to turn on the vehicle lamp 1, a control circuit (not shown) such as a microcomputer controls the on/off of the switch 4.
  • a control circuit such as a microcomputer controls the on/off of the switch 4.
  • a voltage (hereinafter also referred to as turn voltage Vt) is generated that alternates between a high-level period T1 and a low-level period T2 at a predetermined cycle.
  • switch 4 is turned on, and voltage VCC is applied to power line L1, so turn voltage Vt is at the high level.
  • switch 4 is turned off, and voltage VCC is not applied to power line L1, so turn voltage Vt is at the low level.
  • Figure 6 shows approximately one cycle of turn voltage Vt, but periods T1 and T2 are repeated periodically. In other words, voltage VCC is applied periodically to power line L1.
  • the solid and dashed lines conceptually show the difference in the rise of the turn voltage Vt due to differences in the wiring length (wiring resistance) from the battery 2 to each lamp of the vehicle.
  • the solid line shows the front of the vehicle
  • the dashed line shows the rear of the vehicle. Since the wiring resistance is greater at the rear of the vehicle, far from the battery 2, the rise is delayed compared to the front of the vehicle, as shown by the dashed line in the figure (the rising waveform of the turn voltage Vt becomes slanted).
  • the operation in the case of the solid line will be mainly explained.
  • the turn voltage Vt is at the L level, and the voltage VCC is not applied to the power line L1. Therefore, power from the battery 2 is not supplied to the lighting circuit 10, and the operation of each circuit is stopped. In other words, the output voltage Vout of the lighting circuit 10 is zero, and the light sources 21 to 24 are turned off.
  • the outputs of the discharge circuit 16, timer circuit 15, and reset circuit 17 are all at the L level, and the adjustment current Id flowing through resistors Rd1 and Rd2 is also zero.
  • switch 4 turns on and the turn voltage Vt becomes H level. That is, voltage VCC is applied to power supply line L1.
  • voltage Vdd is generated in power supply circuit 14 of lighting circuit 10, and NMOS transistors 81 and 91 of switch circuits 18 and 19 turn on.
  • switch circuit 18 starts supplying current to resistor Rd1 connected to power supply line L1.
  • switch circuit 19 starts supplying current to resistor Rd2 connected to power supply line L1.
  • the regulated current Id flowing from the power line to resistors Rd1 and Rd2 is the sum of the current flowing through resistor Rd1 and the current flowing through resistor Rd2.
  • the input current Iin to the lighting circuit 10 is always equal to or greater than the regulated current Id. Therefore, by making the magnitude of the regulated current Id greater than the lower limit of the input current Iin, it is possible to prevent erroneous detection by the vehicle-side detection device caused by the input current Iin falling below the lower limit.
  • the discharge circuit 16 in FIG. 3 operates and its output becomes L level, so that the capacitor 52 in the timer circuit 15 in FIG. 3 is discharged (not charged). Therefore, the output (voltage V1) of the timer circuit 15 is zero. For this reason, the outputs of the comparators COM1 to COM4 in FIG. 1 become high impedance, the NMOS transistors Q1 to Q4 are all turned on, and the drive current Iout is not supplied to the light-emitting elements D1 to D4 (the light sources 21 to 24 remain off). Also, the comparator 85 in the switch circuit 18 in FIG. 5A becomes high impedance because the voltage at the + terminal is higher than the voltage at the - terminal (the output of the timer circuit 15).
  • the output of the discharge circuit 16 becomes high impedance. This causes charging of the capacitor 52 of the timer circuit 15 (charging by the voltage VCC) to begin, and the voltage V1 gradually rises.
  • the period from time t0 to t1 is the period during which the discharge circuit 16 discharges the capacitor 52 of the timer circuit 15, and corresponds to the "first period.” This period is shorter than the period T1 during which the turn voltage Vt is at the H level, as shown in Figure 6.
  • the output (voltage V1) of the timer circuit 15 becomes higher than the voltage of the node N1. This causes the output of the comparator COM1 in FIG. 1 to go to L level, turning off the NMOS transistor Q1. As a result, the drive current Iout flows from terminal D to the light source 21 (light-emitting element D1) to terminal E to the NMOS transistor Q2 to ground, turning on the light source 21.
  • the output (voltage V1) of timer circuit 15 becomes higher than the voltage of node N3. This causes the output of comparator COM3 in FIG. 1 to go to L level, turning off NMOS transistor Q3. Therefore, drive current Iout flows through the path terminal D ⁇ light source 21 (light-emitting element D1) ⁇ light source 22 (light-emitting element D2) ⁇ light source 23 (light-emitting element D3) ⁇ terminal G ⁇ NMOS transistor Q4 ⁇ ground, and light sources 21 to 23 are turned on.
  • the voltage at the negative terminal of the comparator 85 of the switch circuit 18 shown in FIG. 5A becomes higher than the voltage at the positive terminal, and the output of the comparator 85 becomes L level.
  • the output of the comparator 85 becomes L level the voltage at the connection point of the resistors R86 and 87 becomes lower than the threshold voltage of the NMOS transistor 81, and the NMOS transistor 81 turns off, so that the supply of current to the resistor Rd1 stops. That is, after the light source 22 (light-emitting element D2) is turned on, the switch circuit 18 cuts off the current supply path from the power line L1 to the resistor Rd1. In this case, the light source 22 corresponds to a "predetermined light source".
  • the magnitude of the adjustment current Id becomes smaller at time t4.
  • the period from time t6 to t7 corresponds to the "second period.” As shown in FIG. 6, this period is shorter than the period T2 during which the turn voltage Vt is at the L level.
  • a discharge circuit 16 is provided, which discharges the capacitor 52 of the timer circuit 15 for a fixed period (the period from time t0 to t1). Therefore, as shown in the figure, even if there is a difference in the rise of the turn voltage Vt, the accuracy of the timing of lighting the lamps at each position of the vehicle can be improved.
  • the voltage Vbat (voltage VCC) of the battery 2 is not always constant, but varies between, for example, 9 and 16 V.
  • the resistors R1 to R5 divide the voltage VCC into a plurality of voltages, and the charging voltage of the capacitor 52 in the timer circuit 15 depends on the voltage VCC.
  • the lighting circuit 10 sequentially lights up the light sources 21 to 24 based on a comparison between the divided voltages of the resistors R1 to R5 and the charging voltage (voltage V1) of the capacitor 52, so that the accuracy of the lighting timing can be improved even if the magnitude of the voltage VCC changes.
  • the light-off circuit 13 in FIG. 2 sets the signals S10, S11, and S12 to L level and holds them at L level.
  • the drive circuit 11 stops operation by the L-level signal S10. As a result, all the light sources are turned off.
  • the signals S11 and S12 become L level, the NMOS transistor 81 of the switch circuit 18 in FIG. 5A and the NMOS transistor 91 of the switch circuit 19 in FIG. 5B are both turned off.
  • the switch circuit 18 cuts off the current supply path from the power supply line L1 to the resistor Rd1
  • the switch circuit 19 cuts off the current supply path from the power supply line L1 to the resistor Rd2.
  • the NMOS transistor Q1 provided between the output of the drive circuit 11 and the light source 21 (specifically, the anode of the light-emitting element D1) has the function of simultaneously turning off the light sources 21 to 24.
  • the NMOS transistor Q1 when the NMOS transistor Q1 is turned on, the drive current Iout is no longer supplied to the light-emitting elements D1 to D4, so that all of the light sources 21 to 24 are turned off. Therefore, when a break is detected by the break detection circuit 12, for example, the light-off circuit 13 may be configured to forcibly control the NMOS transistor Q1 to be turned on.
  • the lighting circuit 10 is a lighting circuit applied to a vehicle lamp 1 including light sources 21 to 24, and includes a circuit (voltage dividing circuit) composed of resistors R1 to R5, a timer circuit 15, a circuit (control circuit) composed of comparators COM1 to COM4 and NMOS transistors Q1 to Q4, and a discharge circuit 16.
  • the resistors R1 to R5 divide the power supply voltage VCC applied to the power supply line L1 into a plurality of voltages (four in this example) that are different from each other.
  • the timer circuit 15 includes a resistor 51 to which the power supply voltage VCC is applied via the power supply line L1, and a capacitor 52 connected to the resistor 51.
  • the control circuit sequentially lights the light sources 21 to 24 based on the four voltages divided by the resistors R1 to R5 and the voltage of the capacitor 52.
  • the discharge circuit 16 discharges the capacitor 52 of the timer circuit 15 for a certain period (the period from time t0 to t1 in FIG. 6).
  • the timer circuit 15 is not activated immediately (it activates after a certain period of time) by the discharge circuit 16, so that it is possible to suppress deviations in the timing of lighting caused by, for example, differences in the length of the wiring from the battery 2 to the positions of each lamp on the vehicle body, and the like, and therefore it is possible to improve the accuracy of the timing of lighting.
  • the lighting circuit 10 also includes a reset circuit 17 that discharges the capacitor 52 for a certain period (the period from time t6 to time t7 in FIG. 6) when the voltage VCC is no longer applied to the power supply line L1. This ensures that the charge in the capacitor 52 is discharged during the certain period. This further improves the accuracy of the lighting start timing.
  • the lighting circuit 10 also includes a switch circuit 18 that starts supplying current to resistor Rd1 connected to the power supply line L1 when voltage VCC is applied to the power supply line L1.
  • the switch circuit 18 cuts off the current supply path from the power supply line L1 to resistor Rd1 after a specific light source (light source 22 in this embodiment) among light sources 21-24 is lit based on the voltage of capacitor 52. This makes it possible to prevent the input current Iin from exceeding an upper limit value when the number of photoelectric elements to be lit increases.
  • the lighting circuit 10 also includes a switch circuit 19 that starts supplying current to the resistor Rd2 connected to the power line L1 when the voltage VCC is applied to the power line L1, and a disconnection detection circuit 12 that detects whether there is an abnormality in at least one of the light sources 21 to 24.
  • the switch circuit 18 cuts off the current supply path from the power line L1 to the resistor Rd1.
  • the switch circuit 19 cuts off the current supply path from the power line L1 to the resistor Rd2. This makes it possible to suppress unnecessary power consumption when an abnormality is detected.
  • the input current Iin can be prevented from falling below a lower limit. Therefore, for example, it is possible to prevent a detection device on the vehicle side from erroneously detecting that there is a disconnection in any of the light-emitting elements D1 to D4 due to a small input current Iin.
  • the vehicle lamp 1 is a turn signal lamp, and the voltage VCC is periodically applied to the power supply line L1. It is effective to apply the lighting circuit 10 to such a vehicle lamp 1.
  • the vehicle lamp 1 is provided with four light sources 21 to 24, but the number of light sources is not limited to four and may be any number.
  • switches are provided between the anode of light-emitting element D1 and the cathodes of light-emitting elements D1 to D3 and ground, respectively, and the light sources 21 to 24 are sequentially lit by turning the switches on and off, but this is not limited to the above.
  • the light-emitting elements D1 to D4 and the switches (NMOS transistors Q1 to Q4) may be connected in parallel, and the light sources may be sequentially lit by turning the switches on and off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

複数の光源を含む車両用灯具に適用される点灯回路であって、電源ラインに印加される電源電圧を、互いに異なる複数の電圧に分圧する分圧回路と、前記電源ラインを介して前記電源電圧が印加される第1抵抗と、前記第1抵抗に接続される第1コンデンサとを含むタイマ回路と、前記分圧回路の前記複数の電圧と、前記第1コンデンサの電圧とに基づいて、前記複数の光源を順次点灯させる制御回路と、前記電源ラインに前記電源電圧が印加されると、第1期間の間、前記第1コンデンサを放電する第1放電回路と、を備える。

Description

点灯回路
 本発明は、点灯回路に関する。
 車両用灯具として、例えば、複数の光源を順次点灯させる、いわゆるシーケンシャル方式の技術を用いた車両用方向指示灯(以下、「ターンシグナルランプ」ともいう。)などが知られている(例えば、特許文献1)。このような車両用灯具に適用される点灯回路には、車両のバッテリーから電力が供給されている。
国際公開2016/104282号公報
 ところで、車両には、一般的に車体前方の左右、及び車体後方の左右にターンシグナルランプが設けられており、それぞれ、上記バッテリーから電力が供給される。しかしながら、バッテリーから各ターンシグナルランプまでの配線長さがそれぞれ異なるため、配線抵抗の違いなどにより点灯のタイミングがずれるおそれがあった。
 本発明の目的は、点灯のタイミングの精度を高めることのできる点灯回路を提供することにある。
 前記目的を達成する主たる本発明は、複数の光源を含む車両用灯具に適用される点灯回路であって、電源ラインに印加される電源電圧を、互いに異なる複数の電圧に分圧する分圧回路と、前記電源ラインを介して前記電源電圧が印加される第1抵抗と、前記第1抵抗に接続される第1コンデンサとを含むタイマ回路と、前記分圧回路の前記複数の電圧と、前記第1コンデンサの電圧とに基づいて、前記複数の光源を順次点灯させる制御回路と、前記電源ラインに前記電源電圧が印加されると、第1期間の間、前記第1コンデンサを放電する第1放電回路と、を備える点灯回路である。
 本発明によれば、点灯のタイミングの精度を高めることのできる点灯回路を提供することができる。
本実施形態の点灯回路10を含む車両用灯具1の構成を示す図である。 消灯回路13の一例を示す図である。 タイマ回路15及び放電回路16の一例を示す図である。 リセット回路17の一例を示す図である。 スイッチ回路18の一例を示す図である。 スイッチ回路19の一例を示す図である。 点灯回路10の動作を説明するための図である。
<関連出願の相互参照>
 この出願は、2022年10月13日に出願された日本特許出願、特願2022-164727に基づく優先権を主張し、その内容を援用する。
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
 なお、本実施形態で、「接続」とは、特段の言及がない限り電気的に接続されている状態をいう。このため「接続」には、2つの部品が配線のみならず、例えば、抵抗を介して接続されている場合も含む。
=====本実施形態=====
<<車両用灯具1の構成>>
 図1は、本実施形態の点灯回路10を含む車両用灯具1の構成を示す図である。
 本実施形態の車両用灯具1は、車両用のバッテリー2の電圧Vbatに基づいて、光源の発光素子をシーケンシャル方式で点灯させるターンシグナルランプ(車両用方向指示灯)である。本実施形態の車両には、車体前方の左側と右側、及び車体後方の左側と右側の4カ所に、それぞれ、図1の同様の構成の車両用灯具1が設けられている。ここでは、その一つを例に挙げて説明する。
 なお、本実施形態の車両用灯具1は、ハザードランプとしても用いられる。ターンシグナルの場合は、左右の何れが点灯(点滅)し、ハザードの場合には、全てが点灯(点滅)する。以下の説明において、車両用灯具1のことを単にランプと呼ぶことがある。
 ここで、一般的に、バッテリー2から車両の各ランプまでの距離は同じではないため、バッテリー2から各ランプに電力を供給する配線(ハーネス)の長さが異なる。例えば、バッテリー2が車両の前方に設けられている場合、バッテリー2から後方のランプまでの配線長さは、バッテリー2から前方のランプまでの配線長さと比べてかなり長くなる。
 このような各ランプまでの配線の長さの違い(換言すると配線抵抗の大きさの違い)などにより、車両の各ランプにおいて点灯のタイミングがずれるおそれがある。そこで、本実施形態では、後述するように点灯のタイミングの精度の向上を図っている。
 車両用灯具1は、スイッチ4、点灯回路10、光源21~24、及び抵抗Rd1,Rd2を含んで構成される。
 スイッチ4は、車両用のバッテリー2の電圧Vbatを、車両用灯具1の電源ラインL1に印加するための素子である。スイッチ4には、例えば、メカニカル方式の有接点リレーや、半導体素子を使用した無接点リレーなどが採用される。
 スイッチ4の一端には、バッテリー2の電圧Vbatが印加され、他端は、電源ラインL1に接続されている。
 このため、スイッチ4がオンすると、バッテリー2の電圧Vbatは、スイッチ4を介して、電源ラインL1に印加される。本実施形態において、スイッチ4がオンすることにより電源ラインL1に印加される電圧を、電源電圧VCCとする。以下では、電源電圧VCCのことを、電圧VCCと略すことがある。
 一方、スイッチ4がオフすると、電源ラインL1には電圧VCCが印加されなくなる。この結果、例えば、電源ラインL1と接地との間の抵抗や回路等の影響により、電源ラインL1の電圧は、ゼロまで低下する。
 なお、本実施形態において、スイッチ4に接続されるライン(点灯回路10の内側、外側)を全て電源ラインL1とする。電源ラインL1は、点灯回路10の内部の回路に電圧VCCを供給する配線である。また、車両用灯具1には、図示しない接地ラインも設けられている。車両用灯具1の各回路において接地されている箇所は、接地ラインに接続されていることを意味している。
 点灯回路10は、電源ラインL1に電圧VCCが印加されると、シーケンシャル方式にて光源21~光源24を順次点灯する。なお、点灯回路10の詳細は後述するが、点灯回路10は、光源21~24(発光素子D1~D4)を点灯させるための複数の回路と、端子A~Hと、が基板に取り付けられたモジュールである。
 光源21は、最初に点灯される発光素子D1を含む。本実施形態の発光素子D1には発光ダイオード(LED)が用いられている。ただし、発光素子D1は、LEDには限られず、例えば、レーザダイオード(LD)や有機EL素子などの他の半導体発光素子、あるいは、ハロゲンランプなどでもよい(後述する発光素子D2~D4についても同様)。発光素子D1のアノードは、点灯回路10の端子Dを介して駆動回路11及びNMOSトランジスタQ1(後述)に接続されている。また、発光素子D1のカソードは、端子Eを介してNMOSトランジスタQ2(後述)に接続されている。
 光源22は、光源21の発光素子D1が点灯した後に点灯される発光素子D2を含む。発光素子D2のアノードは、発光素子D1のカソードに接続されている。また、発光素子D2のカソードは、端子Fを介してNMOSトランジスタQ3(後述)に接続されている。
 光源23は、光源22の発光素子D2が点灯した後に点灯される発光素子D3を含む。発光素子D3のアノードは、発光素子D2のカソードに接続されている。また、発光素子D3のカソードは、端子Gを介してNMOSトランジスタQ4(後述)に接続されている。
 光源24は、光源23の発光素子D3が点灯した後に点灯される発光素子D4を含む。発光素子D4のアノードは、発光素子D3のカソードに接続されている。また、発光素子D4のカソードは、端子Fを介して接地されている。
 抵抗Rd1,Rd2は、車両用のバッテリー2から、車両用灯具1へ供給される入力電流Iinの大きさの調整用の抵抗であり、本実施形態では点灯回路10の外部に設けられている。抵抗Rd1の一端は電源ラインL1に接続され、他端は、端子Bを介してスイッチ回路18に接続されている。また、抵抗Rd2の一端は、電源ラインL1に接続され、他端は、端子Cを介してスイッチ回路19に接続されている。
<入力電流の許容範囲>
 ところで、本実施形態の車両用灯具1が組み込まれる車両には、バッテリー2からの入力電流Iinに基づいて、車両用灯具1の発光素子D1~D4に断線があるか否かを検出する検出装置(不図示)が、設けられる。この検出装置は、例えば、車両用灯具1が動作している際に、入力電流Iinの電流値が閾値(下限側の閾値:以下、下限値ともいう)より小さい場合、車両用灯具1の発光素子D1~D4の何れかに断線があることを検出する。
 したがって、車両用灯具1が正常な状態で動作している際に、発光素子D1~D4が断線していると誤検出しないように、入力電流Iinの電流値は、下限値より大きくなる必要がある。なお、ここで「正常な状態」とは、例えば、車両用灯具1の光源21~24の発光素子D1~D4に断線が発生していない状態をいう。また、「発光素子の断線」とは、例えば、発光素子のカソードと、アノードとの間の抵抗値が、通常の抵抗値より十分大きくなる状態をいう。
 一方、車両用灯具1での消費電力が必要以上に大きくなると、車両用灯具1への入力電流Iinも大きくなるため、バッテリー2からの電流が、例えば定格電流を超えてしまうことがある。
 このため、車両用灯具1が動作している際、バッテリー2から、車両用灯具1へ流れる入力電流Iinに対して、上限側の閾値(以下、上限値ともいう)も定められている。
 よって、本実施形態の車両用灯具1では、バッテリー2から、供給される入力電流Iinは、下限値と上限値で定まる範囲(許容範囲)内に収まる必要がある。
 本実施形態の点灯回路10は、バッテリー2からの電力が供給されると、入力電流Iinを許容範囲に収めつつ、光源21~24をシーケンシャル方式で点灯させる。具体的には、後述する調整電流Idにより、入力電流Iinの大きさを調整する。
<<点灯回路10の構成>>
 点灯回路10は、図1に示すように、駆動回路11、断線検出回路12、消灯回路13、電源回路14、タイマ回路15、放電回路16、リセット回路17、スイッチ回路18,19、抵抗R1~R5、R11~R18、コンパレータCOM1~COM4、NMOSトランジスタQ1~Q4、及び端子A~Hを含んで構成される。
 駆動回路11は、バッテリー2から供給される電力に基づいて、負荷である光源21~24の発光素子D1~D4を駆動するための所定の駆動電流Ioutを生成するレギュレータである。なお、定電流を生成する方式としては、スイッチング方式でもよいし、リニア方式でもよい。
 断線検出回路12は、光源21~24の発光素子D1~D4に断線が有るか否か(すなわち、光源21~24の少なくとも何れかに異常が有あるか否か)を検出する。なお、断線検出回路12は「検出回路」に相当する。ここで、発光素子D1~D4の何れかが断線すると、断線した発光素子のアノードと、カソードとの間の抵抗値は非常に大きくなる。このような状態において、駆動電流Ioutが発光素子D1~D4に供給されると、駆動回路11の出力電圧Voutは、大きく上昇する。よって、駆動回路11の出力電圧Voutに基づいて、光源21~24の異常の有無を検出することができる。
 本実施形態の断線検出回路12は、例えば、駆動回路11の出力電圧Voutが所定値より高いか否かを判定し、出力電圧Voutが所定値より高くなると、発光素子D1~D4の何れかに断線があることを検出する。そして、断線検出回路12は、断線があることを検出すると、消灯回路13と接続された接続ラインL2のレベルを、ハイレベル(以下、Hレベル)からローレベル(以下、Lレベル)に変化させる。
 消灯回路13は、断線検出回路12が断線を検出すると、光源21~24を消灯すべく、駆動回路11の動作を停止させる。また、消灯回路13は、断線検出回路12の断線検出結果に基づいて、抵抗Rd1,Rd2で無駄な電力が消費されることを防ぐべく、抵抗Rd1,Rd2に電流が流れないようにスイッチ回路18,19を制御する。なお、消灯回路13の詳細については後述する。
 電源回路14は、電源ラインL1の電圧VCC(例えば13V)に基づいて点灯回路10の各回路を動作させるための電圧Vdd(例えば、5V)を生成する回路である。
 タイマ回路15は、電源ラインL1に電圧VCCが印加されると、時間に応じて変化する電圧(後述する電圧V1)を出力する。なお、タイマ回路15の詳細については後述する。
 放電回路16は、電源ラインL1に電圧VCCが印加されると、一定期間の間、タイマ回路15のコンデンサ52(後述)を放電することにより、タイマ回路15の動作を停止させる。本実施形態において、放電回路16は、「第1放電回路」に相当する。なお、放電回路16の詳細については後述する。
 リセット回路17は、電源ラインL1に電圧VCCが印加されなくなると、一定期間の間、点灯回路10の各回路のリセットを行うためのHレベルの信号SRを出力する。このHレベルの信号SRに基づいて、例えば、タイマ回路15のコンデンサ52(後述)や、放電回路16のコンデンサ66(後述)が放電される。本実施形態において、リセット回路17は、「第2放電回路」に相当する。なお、リセット回路17の詳細については後述する。
 スイッチ回路18,19は、電源ラインから抵抗Rd1,Rd2の夫々を接地するまでの電流経路を導通又は遮断することにより、電源ラインL1に流れる入力電流Iinの大きさを調整するための回路である。本実施形態において、スイッチ回路18は、「第1電流調整回路」に相当し、抵抗Rd1は「第2抵抗」に相当する。また、スイッチ回路19は、「第2電流調整回路」に相当し、抵抗Rd2は「第3抵抗」に相当する。なお、スイッチ回路18,19の詳細については後述する。
 抵抗R1~R5は、電源ラインL1と接地との間に直列接続されており、電源ラインL1に印加される電圧VCCを、互いに異なる複数の電圧に分圧する。なお、抵抗R1~R5は、「分圧回路」に相当する。図1に示すように、電源ラインL1(電圧VCC)側から接地側に、抵抗R5,R4,R3,R2,R1の順に接続されている。また、抵抗R5と抵抗R4の接続点をノードN4、抵抗R4と抵抗R3の接続点をノードN3、抵抗R3と抵抗R2の接続点をノードN2、抵抗R2と抵抗R1の接続点をノードN1とする。
 電源ラインL1に電圧VCCが印加されると、抵抗R1~R5は、各抵抗の接続点(ノードN1~N4)のそれぞれに、電圧VCCを分圧した電圧を発生させる。なお、ノードN4の電圧が最も高く、ノードN1の電圧が最も低くなる。
 コンパレータCOM1~COM4の非反転入力端子(+端子)には、抵抗R1~R5の各ノード(N1~N4)の電圧がそれぞれ印加される。また、コンパレータCOM1~COM4の反転入力端子(-端子)には、タイマ回路15の出力電圧(後述する電圧V1)がそれぞれ印加される。
 そして、コンパレータCOM1~COM4は、それぞれ、-端子と+端子の電圧の大小を比較し、その結果に応じた出力を行う。具体的には、本実施形態のコンパレータCOM1~COM4は、オープンドレインタイプであり、+端子の電圧が-端子の電圧よりも大きければオープン(以下、ハイインピーダンスともいう)、小さければLレベル(接地レベル)の電圧を出力する。なお、後述する他のコンパレータ(コンパレータ61,75,85)についても同様である。
 抵抗R11,R12、抵抗R13,R14、抵抗R15,R16、及び抵抗R17,R18は、それぞれ、直列接続されており、電源ラインL1に電圧VCCが印加されると、電圧VCCを分圧する。この際、NMOSトランジスタQ1~Q4をオンする分圧電圧を生成するよう、各抵抗(抵抗R11~R18)の抵抗値がそれぞれ設定されている。
 NMOSトランジスタQ1~Q4は、ゲートに印加される電圧に応じてオンオフするスイッチの機能を有している。本実施形態おいて、NMOSトランジスタQ1~Q4は、光源21~24のそれぞれの点灯、又は消灯を制御する素子である。
 NMOSトランジスタQ1のドレインは端子Dに接続され、ソースは接地されている。また、NMOSトランジスタQ1のゲートは、抵抗R11と抵抗R12の接続点に接続されるとともに、コンパレータCOM1の出力に接続されている。
 NMOSトランジスタQ2のドレインは端子Eに接続され、ソースは接地されている。また、NMOSトランジスタQ2のゲートは、抵抗R13と抵抗R14の接続点に接続されるとともに、コンパレータCOM2の出力に接続されている。
 NMOSトランジスタQ3のドレインは端子Fに接続され、ソースは接地されている。また、NMOSトランジスタQ3のゲートは、抵抗R15と抵抗R16の接続点に接続されるとともに、コンパレータCOM3の出力に接続されている。
 NMOSトランジスタQ4のドレインは端子Gに接続され、ソースは接地されている。また、NMOSトランジスタQ4のゲートは、抵抗R17と抵抗R18の接続点に接続されるとともに、コンパレータCOM4の出力に接続されている。
 例えば、コンパレータCOM1の出力がLレベルの場合、抵抗R11と抵抗R12の接続点の電圧が、NMOSトランジスタQ1のしきい値電圧よりも低くなり、NMOSトランジスタQ1はオフする。一方、コンパレータCOM1の出力がハイインピーダンスの場合、抵抗R11と抵抗R12による電圧VCCの分圧電圧がNMOSトランジスタQ1のゲートに印加されてNMOSトランジスタQ1がオンする。コンパレータCOM2~COM4と、NMOSトランジスタQ2~Q4との関係も同様であるので、説明を省略する。なお、コンパレータCOM1~COM4、抵抗R11~R18、NMOSトランジスタQ1~Q4は、「制御回路」に相当する。
<消灯回路13>
 図2は、消灯回路13の一例を示す図である。
 消灯回路13は、インバータ30A,30B、コンデンサ31、及びショットキーバリアダイオード38a~38cを含んで構成される。
 コンデンサ31は、電圧Vddが印加されることにより充電され、インバータ30A,30Bを動作させるための電荷を保持する素子である。
 インバータ30Aは、断線検出回路12からの接続ラインL2の論理レベルを反転して出力する回路であり、直列に接続されたPNPトランジスタ32、ダイオード33、及び抵抗34を含む。例えば接続ラインL2のレベルがHレベルである場合、PNPトランジスタ32はオフするため、ダイオード33と、抵抗34とが接続されたノードNAは、Lレベルとなる。一方、接続ラインL2のレベルがLレベルである場合、PNPトランジスタ32はオンするため、ノードNAは、Hレベルとなる。
 インバータ30Bは、ノードNAの論理レベルを反転して出力する回路であり、直列に接続されたNMOSトランジスタ35、及び抵抗36,37を含む。ここで、例えば、ノードNAのレベルがHレベルである場合、NMOSトランジスタ35はオンするため、NMOSトランジスタ35及び抵抗36が接続されたノードNBのレベルはLレベルとなる。また、ノードNAのレベルがLレベルである場合、NMOSトランジスタ35はオフするため、ノードNBのレベルは、Hレベルとなる。
 本実施形態では、インバータ30Aの出力であるノードNAは、インバータ30Bの入力であるNMOSトランジスタ35のゲート電極に接続されている。また、インバータ30Bの抵抗36,37の間のノードと、インバータ30Aの入力であるPNPトランジスタ32のベース電極との間は、接続ラインL2を介して接続されている。したがって、消灯回路13は、接続ラインL2の論理レベルを保持する保持回路として動作することになる。
 ショットキーバリアダイオード38aは、断線検出があり、消灯回路13がLレベルの信号を保持する場合、駆動回路11の動作を停止させるためのLレベルの信号S10を、アノードに生成する。
 ショットキーバリアダイオード38bは、断線検出があり、消灯回路13がLレベルの信号を保持する場合、スイッチ回路18のNMOSトランジスタ81(後述)をオフさせるためのLレベルの信号S11を、アノードに生成する。
 ショットキーバリアダイオード38cは、断線検出があり、消灯回路13がLレベルの信号を保持する場合、スイッチ回路19のNMOSトランジスタ91(後述)をオフさせるためのLレベルの信号S12を、アノードに生成する。
 なお、本実施形態では、ショットキーバリアダイオード38a~38cを用いているが、ショットキーバリアダイオードには限られず、例えば、一般的な整流用ダイオードを用いても良い。
<タイマ回路15>
 図3は、タイマ回路15及び放電回路16の一例を示す図である。
 図3に示すように、タイマ回路15は、抵抗51、コンデンサ52、及びNPNトランジスタ53を含んで構成される。
 抵抗51の一端には電源ラインL1を介して電圧VCCが印加される。なお、抵抗51は「第1抵抗」に相当する。
 コンデンサ52は、抵抗51の他端と接地との間に接続されている。なお、抵抗51とコンデンサ52との接続点をノードNCとする。ノードNCの電圧(以下、電圧V1ともいう)がタイマ回路15の出力となる。なお、コンデンサ52は「第1コンデンサ」に相当する。
 電圧VCCが抵抗51に印加されると、抵抗51の抵抗値に応じた電流がコンデンサ52に向けて流れる。コンデンサ52は電荷を蓄えていき、充電が進行するためノードNCの電圧V1は次第に上昇する。この電圧V1は、前述したようにコンパレータCOM1~COM4の非反転入力端子(-端子)に印加される。また、電圧V1は、後述するようにスイッチ回路18に供給される。
 NPNトランジスタ53は、コンデンサ52を放電させるための素子である。NPNトランジスタ53のコレクタは、ノードNCに接続され、エミッタは接地されている。またNPNトランジスタ53のベースには、後述するリセット回路17からの信号SRが印加される。そして、信号SRがHレベルのとき、NPNトランジスタ53がオンする。これにより、コンデンサ52に蓄えられた電荷が放電される。
<放電回路16>
 図3に示すように、放電回路16は、コンパレータ61、抵抗62~65、コンデンサ66、及びNPNトランジスタ67を含んで構成される。
 コンパレータ61の+端子は、電圧VCCを分圧する抵抗62と抵抗63の接続点(以下、ノードND)に接続されており、抵抗62と抵抗63による電源電圧VCCの分圧電圧が印加される。また、コンパレータ61の-端子は、電圧VCCを分圧する抵抗64と抵抗65の接続点(以下、ノードNE)に接続されており、抵抗64と抵抗65による電源電圧VCCの分圧電圧が印加される。また、コンパレータ61の出力はタイマ回路15のノードNCに接続されている。
 そして、コンパレータ61は、+端子の電圧が-端子の電圧よりも大きければハイインピーダンス、小さければLレベル(接地レベル)の電圧を出力する。なお、抵抗62,63と、抵抗64,65の抵抗値は、初期状態(コンデンサ66が充電されていない状態)において、ノードNDの電圧がノードNEの電圧よりもやや高くなるように設定されている。
 コンデンサ66は、ノードNEと接地との間に設けられている。これにより、電源ラインL1に電圧VCCが印加されると、抵抗64及びノードNEを介してコンデンサ66に電流が流れる。これによりコンデンサ66が充電されるため、ノードNEの電圧も上昇し、やがて(一定期間経過後に)ノードNDの電圧よりも高くなる。
 このため、コンパレータ61の出力は、電源ラインL1に電圧VCCが印加されると一定期間はLレベルであり、その後、ノードNEの電圧がノードNDの電圧より高くなるとハイインピーダンスになる。この一定期間では、放電回路16は、コンパレータ61の出力がLレベルであるので、タイマ回路15のコンデンサ52を、コンパレータ61を介して放電する。
 NPNトランジスタ67は、コンデンサ66を放電させるための素子である。NPNトランジスタ67のコレクタは、ノードNEに接続され、エミッタは接地されている。またNPNトランジスタ53のベースには、後述するリセット回路17からの信号SRが印加される。そして、信号SRがHレベルのとき、NPNトランジスタ53がオンする。これにより、コンデンサ66に蓄えられた電荷が放電される。
<リセット回路17>
 図4は、リセット回路17の一例を示す図である。
 図4に示すように、リセット回路17は、ダイオード71、コンデンサ72,74,76、及び抵抗73,77a,77b,78a,78bを含んで構成される。
 コンパレータ75は、電圧VCCが、逆流防止用のダイオード71を介して、印加されて動作する。また、ダイオード71のカソードと接地との間には、コンデンサ72と、直列接続された抵抗73とコンデンサ74と、が並列に設けられている。また、コンパレータ75の出力は、抵抗73とコンデンサ74との接続点に接続されており、この接続点の電圧がリセット回路17の出力(信号SR)となる。
 抵抗77a,77b、及び抵抗78a,78bは、それぞれ、直列接続されており、電圧VCCを分圧する。また、抵抗77aと抵抗77bとの接続点にはコンデンサ76が、抵抗77bと並列に設けられている。
 コンパレータ75の+端子には、抵抗77aと抵抗77bとの接続点の電圧が印加され、-端子には、抵抗78aと抵抗78bとの接続点の電圧が印加される。
 なお、抵抗77a、77b、及び抵抗78a,78bは、電源ラインL1に電圧VCCが印加されたときに、抵抗78a、78bの接続点の電圧が、抵抗77a、77bの接続点の電圧よりも高くなるように設定されている。
 このため、電源ラインL1に電圧VCCが印加されている期間では、コンパレータ75の出力はLレベルであり、信号SRもLレベルとなる。なお、この期間の間に、コンデンサ72,74,76がそれぞれ充電される。
 その後、電源ラインL1に電圧VCCが印加されなくなると、コンパレータ75は、コンデンサ72の充電電圧を電源として、一定期間動作する。このとき、抵抗78a、78bの接続点の電圧はゼロとなるが、抵抗77a、77bの接続点の電圧は、コンデンサ76の充電電圧により、ゼロより大になる。よってコンパレータ75は、+端子の電圧が-端子の電圧よりも大きいのでハイインピーダンスとなり、コンデンサ74の充電電圧に基づいた電圧が出力されるため、信号SRはHレベルとなる。
 このように、リセット回路17は、電源ラインL1に電圧VCCが印加されている状態から、電圧VCCが印加されなくなると、一定期間、Hレベルの信号SRを出力する。
<スイッチ回路18,19>
 図5Aはスイッチ回路18の一例を示す図である。図5Bは、スイッチ回路19の一例を示す図である。
 スイッチ回路18は、図5Aに示すように、NMOSトランジスタ81、コンデンサ82、抵抗83,84、コンパレータ85、及び抵抗86,87を含んで構成される。
 NMOSトランジスタ81は、ゲートに印加される電圧に応じてオンオフするスイッチの機能を有している。NMOSトランジスタ81のドレインは端子Bを介して抵抗Rd1に接続され、ソースは接地されている。また、NMOSトランジスタ81のゲートは、電圧Vddを分圧する抵抗83,84の接続点に接続されている。また、抵抗83,84の接続点には信号S11が印加されるとともに、コンパレータ85の出力が印加される。
 コンデンサ82は、NMOSトランジスタ81のゲート電圧を安定化させるための素子であり、NMOSトランジスタ81のゲートと接地との間に設けられている。
 コンパレータ85の+端子は、電圧VCCを分圧する抵抗86,87の接続点に接続され、一端には電圧V1が印加される。そして、コンパレータ85は、+端子の電圧が-端子の電圧よりも小さければ、Lレベルを出力し、+端子の電圧が-端子の電圧よりも大きければ、ハイインピーダンスとなる。
 なお、本実施形態では、抵抗86,87による電圧VCCの分圧電圧が、図1のノードN3の電圧よりやや低くなるように抵抗86,87の抵抗値が設定されている。
 以上の構成により、スイッチ回路18は、電源ラインL1に電圧VCCが印加されると、NMOSトランジスタ81がオンし、電源ラインL1から抵抗Rd1に電流の供給を開始する。また、スイッチ回路18は、信号S11又はコンパレータ85の出力に基づいてNMOSトランジスタ81がオフした場合、電源ラインL1から抵抗Rd1への電流の供給経路を遮断する。
 スイッチ回路19は、図5Bに示すように、NMOSトランジスタ91、コンデンサ92、及び抵抗93,94を含んで構成される。
 NMOSトランジスタ91は、ゲートに印加される電圧に応じてオンオフするスイッチの機能を有している。NMOSトランジスタ91のドレインは端子Cを介して抵抗Rd1に接続され、ソースは接地されている。また、NMOSトランジスタ91のゲートは、電圧Vddを分圧する抵抗93,94の接続点に接続されている。また、抵抗93,94の接続点には信号S12が印加される。
 コンデンサ92は、NMOSトランジスタ91のゲート電圧を安定化させるための素子であり、NMOSトランジスタ91のゲートと接地との間に設けられている、
 以上の構成により、スイッチ回路19は、電源ラインL1に電圧VCCが印加されると、NMOSトランジスタ91がオンし、電源ラインL1から抵抗Rd2に電流の供給を開始する。また、スイッチ回路19は、信号S12に基づいてNMOSトランジスタ91がオフした場合、電源ラインL1から抵抗Rd2への電流の供給経路を遮断する。
<<<点灯回路10の動作>>>
 図6は、点灯回路10の動作を説明するための図である。なお、図6の放電回路16の出力において、斜線でハッチングしている部分は、ハイインピーダンスであることを示している。
 本実施形態の車両用灯具1は、ターンシグナルランプであり、例えば、車両の運転手が、車両用灯具1を点灯させるべく、方向指示器(不図示)を操作すると、マイコン等の制御回路(不図示)がスイッチ4をオンオフ制御する。
 スイッチ4のオンオフにより、所定周期で、Hレベルの期間T1と、Lレベルの期間T2と、を交互に繰り返す電圧(以下、ターン電圧Vtともいう)が生成される。具体的には、期間T1では、スイッチ4がオンすることにより電源ラインL1に電圧VCCが印加されるためターン電圧VtはHレベルとなる。一方、期間T2では、スイッチ4がオフすることにより、電源ラインL1には電圧VCCが印加されないためターン電圧VtはLレベルとなる。図6では、ターン電圧Vtの約1周期分を記載しているが、期間T1と期間T2は周期的に繰り返される。換言すると、電源ラインL1には、電圧VCCが周期的に印加される。
 なお、図6において、バッテリー2から車両の各ランプへの配線長さ(配線抵抗)の違いによる、ターン電圧Vtの立ち上がりの違いを実線と破線で概念的に示している。例えば、本実施形態のようにバッテリー2が車体前方に配置されている場合、実線は車体前方、破線は車体後方を示している。バッテリー2から遠い車体後方では、配線抵抗が大きくなるため、図の破線で示すように、車体前方よりも立ち上がりが遅れる(ターン電圧Vtの立ち上がり波形が斜めになる)。以下では、主に実線の場合における動作について説明する。
 時刻t0よりも前では、ターン電圧VtがLレベルであり、電源ラインL1に電圧VCCが印加されていない。よって、点灯回路10にはバッテリー2の電力が供給されないため、各回路の動作は停止している。すなわち、点灯回路10の出力電圧Voutはゼロであり、光源21~24は消灯している。また、放電回路16、タイマ回路15、リセット回路17の出力も全てLレベルであり、抵抗Rd1,Rd2に流れる調整電流Idもゼロである。
 時刻t0でスイッチ4がオンし、ターン電圧VtがHレベルになる。すなわち、電源ラインL1に電圧VCCが印加される。これにより、点灯回路10の電源回路14で電圧Vddが生成されるため、スイッチ回路18,19のNMOSトランジスタ81,91がオンする。NMOSトランジスタ81がオンすることにより、スイッチ回路18は、電源ラインL1に接続された抵抗Rd1に電流の供給を開始する。また、NMOSトランジスタ91がオンすることにより、スイッチ回路19は、電源ラインL1に接続された抵抗Rd2に電流の供給を開始する。
 このとき電源ラインから抵抗Rd1,Rd2に流れる調整電流Idは、抵抗Rd1に流れる電流と、抵抗Rd2に流れる電流の加算値になる。また、点灯回路10への入力電流Iinは、必ず、調整電流Id以上である。よって、このときの調整電流Idの大きさを入力電流Iinの下限値よりも大きくすることで、入力電流Iinが下限値より小さくなることによる車両側の検出装置の誤検出を防止することができる。
 また、このとき、図3の放電回路16が動作してその出力がLレベルとなるため、図3のタイマ回路15のコンデンサ52は放電される(充電が行われない)。よって、タイマ回路15の出力(電圧V1)はゼロである。このため、図1のコンパレータCOM1~COM4の出力は、ハイインピーダンスとなり、NMOSトランジスタQ1~Q4が全てオンになり、発光素子D1~D4には駆動電流Ioutが供給されない(光源21~24は消灯したままである)。また、図5Aのスイッチ回路18のコンパレータ85は、+端子の電圧が-端子の電圧(タイマ回路15の出力)よりも高いためハイインピーダンスになっている。
 時刻t1で、放電回路16の出力がハイインピーダンスになる。これにより、タイマ回路15のコンデンサ52の充電(電圧VCCによる充電)が開始され、電圧V1が次第に上昇していく。なお、時刻t0~t1の期間は、放電回路16がタイマ回路15のコンデンサ52を放電する期間であり「第1期間」に相当する。この期間は、図6に示すように、ターン電圧VtがHレベルである期間T1よりも短い。
 時刻t2で、タイマ回路15の出力(電圧V1)がノードN1の電圧よりも高くなる。これにより、図1のコンパレータCOM1の出力がLレベルになり、NMOSトランジスタQ1がオフする。よって、端子D→光源21(発光素子D1)→端子E→NMOSトランジスタQ2→接地の経路で駆動電流Ioutが流れ、光源21が点灯する。
 時刻t3で、タイマ回路15の出力(電圧V1)がノードN2の電圧よりも高くなる。これにより、図1のコンパレータCOM2の出力がLレベルになり、NMOSトランジスタQ2がオフする。よって、端子D→光源21(発光素子D1)→光源22(発光素子D2)→端子F→NMOSトランジスタQ3→接地の経路で駆動電流Ioutが流れ、光源21および光源22が点灯する。
 時刻t4で、タイマ回路15の出力(電圧V1)がノードN3の電圧よりも高くなる。これにより、図1のコンパレータCOM3の出力がLレベルになり、NMOSトランジスタQ3がオフする。よって、端子D→光源21(発光素子D1)→光源22(発光素子D2)→光源23(発光素子D3)→端子G→NMOSトランジスタQ4→接地の経路で駆動電流Ioutが流れ、光源21~23が点灯する。
 ここで、時刻t4(実際には時刻t4の前)において、図5Aに示すスイッチ回路18のコンパレータ85の-端子の電圧が+端子の電圧よりも大きくなり、コンパレータ85の出力がLレベルになる。コンパレータ85の出力がLレベルになると、抵抗R86,87の接続点の電圧がNMOSトランジスタ81のしきい値電圧よりも低くなり、NMOSトランジスタ81がオフするので、抵抗Rd1への電流の供給が停止する。すなわち、スイッチ回路18は、光源22(発光素子D2)が点灯した後に、電源ラインL1から抵抗Rd1への電流の供給経路を遮断する。なお、この場合、光源22は「所定の光源」に相当する。これにより、図6に示すように、時刻t4で調整電流Idの大きさが小さくなる。このように調整電流Idを小さくすることにより、点灯させる光源の数が増えた際に、入力電流Iinが、上限値を超えないように(許容範囲内に収まるように)することができる。
 時刻t5で、タイマ回路15の出力(電圧V1)がノードN4の電圧よりも高くなる。これにより、図1のコンパレータCOM4の出力がLレベルになり、NMOSトランジスタQ4がオフする。よって、端子D→光源21(発光素子D1)→光源22(発光素子D2)→光源23(発光素子D3)→光源24(発光素子D4)→端子H→接地の経路で駆動電流Ioutが流れ、光源21~24が全て点灯する。
 時刻t6(時刻t0から期間T1経過後)において、ターン電圧VtがLレベルになる。これにより、電源ラインL1に電圧VCCが印加されなくなる。電源ラインL1に電圧VCCが印加されなくなることにより、各回路の動作が停止し、光源21~24は消灯する。但し、図4のリセット回路17は、コンデンサ72の電圧で動作し、時刻t7までHレベルの信号を出力する。このHレベルの信号により、各回路のコンデンサ等の電荷が放電される。このため、次にコンデンサに充電が行われる際には、常に空の状態(電荷が蓄えられていない状態)から充電が開始するので、充電時間と電圧との関係が正確になる。
 なお時刻t6~t7の期間は「第2期間」に相当する。この期間は、図6に示すように、ターン電圧VtがLレベルである期間T2よりも短い。
 時刻t6から期間T2経過すると、ターン電圧VtがHレベルになる。以下同様の動作を繰り返し実行する。
 ここで、仮に、放電回路16を設けていない場合、図6の時刻t0でタイマ回路15のコンデンサ52への充電が開始される。この際、車両の各ランプにおいて、配線抵抗などにより、図6のようにターン電圧Vtの立ち上がりに差(実線と破線)があると、各ランプのコンデンサ52の充電電圧が異なることになり、点灯タイミングがばらつくおそれがある。
 これに対し、本実施形態では、放電回路16を設けており、放電回路16は、タイマ回路15のコンデンサ52を一定期間(時刻t0~t1の期間)放電する。よって、図に示すように、ターン電圧Vtの立ち上がりに差がある場合でも、車両の各位置のランプの点灯のタイミングの精度を高めることができる。
 また、バッテリー2の電圧Vbat(電圧VCC)は常に一定ではなく、例えば9~16Vの間で変化する。本実施形態では、抵抗R1~R5は電圧VCCを複数の電圧に分圧しており、タイマ回路15のコンデンサ52の充電電圧は電圧VCCに依存している。そして、点灯回路10は、抵抗R1~R5による分圧電圧と、コンデンサ52の充電電圧(電圧V1)との比較に基づいて光源21~24を順次点灯させるので電圧VCCの大きさが変化した場合においても、点灯のタイミングの精度を高めることができる。
<断線が検出された場合>
 期間T1の間において、断線検出回路12で断線が検出されると、図2の消灯回路13は、信号S10,S11,S12をLレベルにするとともにLレベルを保持する。駆動回路11はLレベルの信号S10によって動作を停止する。これにより、光源は全て消灯する。また、信号S11,S12がLレベルになることにより、図5Aのスイッチ回路18のNMOSトランジスタ81、及び図5Bのスイッチ回路19のNMOSトランジスタ91はともにオフとなる。よって、スイッチ回路18は、電源ラインL1から抵抗Rd1への電流の供給経路を遮断し、スイッチ回路19は、電源ラインL1から抵抗Rd2への電流の供給経路を遮断する。このため調整電流Idはゼロとなり、無駄な電力が消費されないようにできる。
 なお、本実施形態の点灯回路10では、駆動回路11の出力と、光源21(具体的には発光素子D1のアノード)との間に設けられたNMOSトランジスタQ1は、光源21~24を一斉に消灯させる機能を有している。すなわち、NMOSトランジスタQ1がオンすると、駆動電流Ioutが発光素子D1~D4に供給されなくなるため、光源21~24は全て消灯する。よって、断線検出回路12で断線検出された場合、例えば、消灯回路13が、NMOSトランジスタQ1を強制的にオンに制御するような構成にしてもよい。
===まとめ===
 以上、本実施形態の点灯回路10について説明した。点灯回路10は、光源21~24を含む車両用灯具1に適用される点灯回路であって、抵抗R1~R5で構成される回路(分圧回路)と、タイマ回路15と、コンパレータCOM1~COM4及びNMOSトランジスタQ1~Q4等で構成される回路(制御回路)と、放電回路16とを備える。抵抗R1~R5は、電源ラインL1に印加される電源電圧VCCを、互いに異なる複数(ここでは4つ)の電圧に分圧する。タイマ回路15は、電源ラインL1を介して電源電圧VCCが印加される抵抗51と、抵抗51に接続されるコンデンサ52とを含む。制御回路は、抵抗R1~R5で分圧された4つの電圧と、コンデンサ52の電圧とに基づいて、光源21~24を順次点灯させる。放電回路16は、電源ラインL1に電源電圧VCCが印加されると、一定期間(図6の時刻t0~t1の期間)の間、タイマ回路15のコンデンサ52を放電する。これにより、電源ラインL1に電源電圧VCCが印加された際に、放電回路16によってタイマ回路15がすぐに動作しない(一定期間後に動作する)ので、例えば、バッテリー2からの車体の各ランプの位置までの配線長さの違いなどによる、点灯のタイミングのずれを抑制することができる。よって、点灯のタイミングの精度を高めることができる。
 また、点灯回路10は、電源ラインL1に電圧VCCが印加されなくなると、一定期間(図6の時刻t6~t7の期間)の間、コンデンサ52を放電するリセット回路17を備えている。これにより、上記一定期間に、コンデンサ52の電荷を確実に放電させることができる。よって、点灯開始タイミングの精度がさらに向上する。
 また、点灯回路10は、電源ラインL1に電圧VCCが印加されると、電源ラインL1に接続された抵抗Rd1に電流の供給を開始するスイッチ回路18を備えている。スイッチ回路18は、コンデンサ52の電圧に基づいて、光源21~24のうち所定の光源(本実施形態では光源22)が点灯した後に、電源ラインL1から抵抗Rd1への電流の供給経路を遮断する。これにより、点灯させる光電が増えた際に、入力電流Iinが上限値を超えないようにすることができる。
 また、点灯回路10は、電源ラインL1に電圧VCCが印加されると、電源ラインL1に接続された抵抗Rd2に電流の供給を開始するスイッチ回路19と、光源21~24のうち少なくとも何れかに異常が有るか否かを検出する断線検出回路12と、備えている。そして、スイッチ回路18は、断線検出回路12が異常を検出すると、電源ラインL1から抵抗Rd1への電流の供給経路を遮断する。また、スイッチ回路19は、断線検出回路12が異常を検出すると、電源ラインL1から抵抗Rd2への電流の供給経路を遮断する。これにより、異常が検出された際に無駄な電力の消費を抑制できる。また、正常時には、抵抗Rd1,Rd2に電流を流すことで、入力電流Iinが下限値を下回らないようにすることができる。よって、例えば車両側の検出装置で入力電流Iinが小さいことにより発光素子D1~D4の何れかに断線があると誤検出されることを防止できる。
 また、車両用灯具1は、ターンシグナルランプであり、電源ラインL1には、電圧VCCが周期的に印加される。このような車両用灯具1に点灯回路10を適用すると効果的である。
 上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。また、本発明は、その趣旨を逸脱することなく、変更や改良され得るとともに、本発明にはその等価物が含まれるのはいうまでもない。
 前述の実施形態では、車両用灯具1には4つの光源21~24が設けられていたが、光源の数は4つには限られず、複数であればよい。
 また、前述の実施形態では、発光素子D1のアノード及び発光素子D1~D3のカソードと、接地との間にそれぞれスイッチ(NMOSトランジスタQ1~Q4)を設け、スイッチのオンオフによって光源21~24を順次点灯させていたが、これには限られない。例えば、発光素子D1~D4とスイッチ(NMOSトランジスタQ1~Q4)を並列に接続して、スイッチのオンオフによりシーケンシャル方式で順次点灯させるようにしてもよい。
 また、前述の実施形態ではターンシグナルの場合について説明したが、ハザードの場合も同様に適用できる。特に、ハザードの場合は、前述したように点灯させるランプが多いので、本実施形態によって各ランプの点灯のタイミングを合わせることができ、より効果的である。
1 車両用灯具
2 バッテリー
4 スイッチ
10 点灯回路
11 駆動回路
12 断線検出回路
13 消灯回路
14 電源回路
15 タイマ回路
16 放電回路
17 リセット回路
18,19 スイッチ回路
21~24 光源
31 コンデンサ
32 PNPトランジスタ
33 ダイオード
35 NMOSトランジスタ
34,36,37 抵抗
38a~38c ショットキーバリアダイオード
51 抵抗
52 コンデンサ
53 NPNトランジスタ
61 コンパレータ
62~65 抵抗
66 コンデンサ
67 NPNトランジスタ
71 ダイオード
72,74,76 コンデンサ
73,77a,77b,78a,78b 抵抗
75 コンパレータ
81,91 NMOSトランジスタ
82,92 コンデンサ
83,84,86,87,93,94 抵抗
85 コンパレータ
A~H 端子
D1~D4 発光素子
R1~R5,R11~R18,Rd1,Rd2 抵抗
COM1~COM4 コンパレータ
Q1~Q4 NMOSトランジスタ
VCC 電源電圧
Vdd 電圧
Vout 出力電圧
Iin 入力電流
Id 調整電流

Claims (5)

  1.  複数の光源を含む車両用灯具に適用される点灯回路であって、
     電源ラインに印加される電源電圧を、互いに異なる複数の電圧に分圧する分圧回路と、
     前記電源ラインを介して前記電源電圧が印加される第1抵抗と、前記第1抵抗に接続される第1コンデンサとを含むタイマ回路と、
     前記分圧回路の前記複数の電圧と、前記第1コンデンサの電圧とに基づいて、前記複数の光源を順次点灯させる制御回路と、
     前記電源ラインに前記電源電圧が印加されると、第1期間の間、前記第1コンデンサを放電する第1放電回路と、
     を備える点灯回路。
  2.  請求項1に記載の点灯回路であって、
     前記電源ラインに前記電源電圧が印加されなくなると、第2期間の間、前記第1コンデンサを放電する第2放電回路を備える、
     点灯回路。
  3.  請求項1に記載の点灯回路であって、
     前記電源ラインに前記電源電圧が印加されると、前記電源ラインに接続された第2抵抗に電流の供給を開始する第1電流調整回路を備え、
     前記第1電流調整回路は、
     前記第1コンデンサの電圧に基づいて、前記複数の光源のうち所定の光源が点灯した後に、前記電源ラインから前記第2抵抗への電流の供給経路を遮断する、
     点灯回路。
  4.  請求項3に記載の点灯回路であって、
     前記電源ラインに前記電源電圧が印加されると、前記電源ラインに接続された第3抵抗に電流の供給を開始する第2電流調整回路と、
     前記複数の光源のうち少なくとも何れかに異常が有るか否かを検出する検出回路と、
     備え、
     前記第1電流調整回路は、
     前記検出回路が異常を検出すると、前記電源ラインから前記第2抵抗への電流の供給経路を遮断し、
     前記第2電流調整回路は、
     前記検出回路が異常を検出すると、前記電源ラインから前記第3抵抗への電流の供給経路を遮断する、
     点灯回路。
  5.  請求項1~4の何れか一項に記載の点灯回路であって、
     前記車両用灯具は、ターンシグナルランプであり、
     前記電源ラインには、前記電源電圧が周期的に印加される、
     点灯回路。
PCT/JP2023/036039 2022-10-13 2023-10-03 点灯回路 WO2024080187A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022164727 2022-10-13
JP2022-164727 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024080187A1 true WO2024080187A1 (ja) 2024-04-18

Family

ID=90669175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036039 WO2024080187A1 (ja) 2022-10-13 2023-10-03 点灯回路

Country Status (1)

Country Link
WO (1) WO2024080187A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179288A (ja) * 2012-02-03 2013-09-09 Nichia Chem Ind Ltd 発光ダイオード駆動装置
WO2016104282A1 (ja) * 2014-12-24 2016-06-30 株式会社小糸製作所 光源点灯回路、ターンシグナルランプ
JP2017119449A (ja) * 2015-12-28 2017-07-06 株式会社小糸製作所 点灯回路、車両用ターンシグナルランプ
WO2021149561A1 (ja) * 2020-01-20 2021-07-29 株式会社小糸製作所 点灯回路、および車両用方向指示灯

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179288A (ja) * 2012-02-03 2013-09-09 Nichia Chem Ind Ltd 発光ダイオード駆動装置
WO2016104282A1 (ja) * 2014-12-24 2016-06-30 株式会社小糸製作所 光源点灯回路、ターンシグナルランプ
JP2017119449A (ja) * 2015-12-28 2017-07-06 株式会社小糸製作所 点灯回路、車両用ターンシグナルランプ
WO2021149561A1 (ja) * 2020-01-20 2021-07-29 株式会社小糸製作所 点灯回路、および車両用方向指示灯

Similar Documents

Publication Publication Date Title
US9428101B2 (en) Light emitting element driving device, light emitting device, and vehicle
US7964987B2 (en) Light emitting apparatus
US10165652B2 (en) Lighting circuit and vehicle lamp employing same
JP6510921B2 (ja) チャージポンプ、スイッチ駆動装置、発光装置、車両
US9531157B2 (en) Lighting circuit and lamp system
JP2006210219A (ja) 車両用灯具の点灯制御回路
JP2014017184A (ja) Ledモジュールおよびこれを備えた照明装置
JP6821835B2 (ja) 点灯回路およびそれを用いた車両用灯具
JP6302706B2 (ja) 車両用灯具およびその駆動装置
JP6138354B2 (ja) 負荷駆動回路、および、負荷短絡検出回路
WO2005093916A1 (ja) レーザ素子駆動装置
US9544958B2 (en) LED driver circuit
WO2017033629A1 (ja) 発光素子駆動装置
WO2024080187A1 (ja) 点灯回路
CN111405702B (zh) 灯光系统
US20090088920A1 (en) Vehicle load backup circuit
US20080238511A1 (en) Control Device with Terminal 15 - Holding Circuit
JP5244447B2 (ja) 点灯制御装置
US20230045032A1 (en) Lighting circuit and vehicular direction indicator lamp
US11789061B2 (en) Integrated circuit and semiconductor device
WO2023112693A1 (ja) 点灯回路、及び車両用灯具
CN113950179B (zh) 灯组切换控制装置
JP7432456B2 (ja) 点灯回路、車両用方向指示灯
US20230104593A1 (en) Light source module and lighting circuit
JP6249555B2 (ja) 車両用灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877192

Country of ref document: EP

Kind code of ref document: A1