WO2024078642A1 - 载板玻璃制造装置及制造方法 - Google Patents

载板玻璃制造装置及制造方法 Download PDF

Info

Publication number
WO2024078642A1
WO2024078642A1 PCT/CN2023/135820 CN2023135820W WO2024078642A1 WO 2024078642 A1 WO2024078642 A1 WO 2024078642A1 CN 2023135820 W CN2023135820 W CN 2023135820W WO 2024078642 A1 WO2024078642 A1 WO 2024078642A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
glass
cavity
partition
glass ribbon
Prior art date
Application number
PCT/CN2023/135820
Other languages
English (en)
French (fr)
Inventor
张云晓
高树军
林海靖
张振超
宋兴晨
丁文明
Original Assignee
青岛融合光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211593579.8A external-priority patent/CN115650564B/zh
Priority claimed from CN202311197353.0A external-priority patent/CN117142751A/zh
Application filed by 青岛融合光电科技有限公司 filed Critical 青岛融合光电科技有限公司
Publication of WO2024078642A1 publication Critical patent/WO2024078642A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B21/00Severing glass sheets, tubes or rods while still plastic
    • C03B21/02Severing glass sheets, tubes or rods while still plastic by cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/20Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by gripping tongs or supporting frames

Definitions

  • the present application belongs to the technical field of plate glass production, and relates to a plate glass manufacturing device and a manufacturing method.
  • the key equipment in the process of forming plate glass is the forming tank.
  • the traditional forming tank of the plate glass overflows outward. During the overflow process, the area of contact with air is too large, resulting in the attachment of pollutants and affecting the quality of the glass.
  • the traditional heating method of the forming tank of the plate glass is external muffle furnace heating, which is large in size and low in efficiency, and the heating effect is uneven, which is easy to produce uneven texture and cause frequent defective products.
  • the traditional muffle furnace heating method has imprecise temperature control, which is easy to cause uneven heating of the glass, affecting the forming, affecting the internal stress, causing fragments or breakage, and frequent defective problems.
  • Chinese application CN112279496A discloses an improved device for manufacturing glass ribbon, which includes a stretching tank having a lower elongated nozzle opening through which molten glass can be discharged downward, and the stretching tank includes a direct heating device and an indirect heating device.
  • the present application proposes a carrier glass manufacturing device and a manufacturing method, which can well complete the molding of the carrier glass and has the advantage of fast molding speed.
  • the first aspect of the present application provides a plate glass manufacturing device, comprising a glass former body for shaping molten glass; the glass former body comprises:
  • a first outer plate and a second outer plate are symmetrically arranged at intervals, and a molding cavity is formed between the two.
  • the molten glass flows from top to bottom in the molding cavity;
  • a partition is vertically arranged in the middle between the first outer plate and the second outer plate, and the partition divides the upper part of the molding cavity into a first cavity and a second cavity;
  • the molding cavity further comprises a glass ribbon cavity located at the lower part of the molding cavity, wherein the end of the partition is located at the upper part of the glass ribbon cavity, the upper end of the glass ribbon cavity is a downward pull-down outlet for molten glass, the downward pull-down outlet is a double-slit structure and is communicated with the bottom of the first cavity and the bottom of the second cavity respectively;
  • the molten glass flows from top to bottom in the first cavity and the second cavity, and the molten glass in the first cavity and the second cavity flows into the glass ribbon cavity at the same time.
  • the tops of the first outer plate and the second outer plate are higher than the top of the partition; the sides of the partition opposite to the first outer plate and the second outer plate are respectively fixedly provided with a first temperature sensor, and the sides of the first outer plate and the second outer plate opposite to the partition are respectively fixedly provided with a first temperature sensor and a first adjustment electrode, both of which are electrically connected to the signal processor. catch.
  • the first temperature sensor is configured to collect temperature in real time and transmit the collected temperature to the signal processor;
  • the signal processor is configured to receive the temperature collected by the temperature sensor and compare it with the set first target temperature; when the collected temperature is lower than the first target temperature, an instruction is sent to the first adjustment electrode;
  • the first adjustment electrode is configured to receive the instruction of the signal processor and adjust the temperature.
  • a physical property sensor and a second temperature sensor are fixedly arranged on both sides of the glass ribbon cavity, and the physical property sensor is electrically connected to the signal processor.
  • the physical property sensor is a camera, which is configured to take pictures in real time and send the pictures taken to the signal processor; the signal processor is configured to receive the pictures taken by the physical property sensor, and analyze the thickness, transmittance, impurity content, and flow velocity parameters of the glass ribbon, and determine whether these parameters meet the predetermined range; when they do not meet, the first adjustment electrode is controlled to adjust the temperature in the molding cavity to improve these parameters.
  • the second temperature sensor is configured to collect temperature in real time and send the collected temperature to the signal processor;
  • the signal processor is configured to receive the temperature collected by the second temperature sensor and compare it with the set second target temperature; when the collected temperature is lower than the second target temperature, an instruction is sent to the first adjustment electrode;
  • the first adjustment electrode is configured to receive the instruction of the signal processor and adjust the temperature in the molding cavity.
  • first outer panel and the second outer panel are both folded and have the same structure.
  • the first outer panel and the second outer panel respectively include a vertical plate body and an inclined plate body, each inclined plate body is located at the bottom of the vertical plate body, and the distance between the top of each inclined plate body and the partition is greater than the distance between its bottom and the partition.
  • the side of the inclined plate body opposite to the side of the partition is either an inclined plane or an inclined curved surface.
  • the upper portion of the glass ribbon cavity is a V-shaped structure that is wider at the top and narrower at the bottom; and the end of the partition is a V-shaped structure that is wider at the top and narrower at the bottom.
  • first outer plate and the second outer plate may be collectively referred to as outer plates; an upper material guide plate is vertically disposed below each outer plate; and a transverse partition is slidably disposed between the upper material guide plate and the outer plate.
  • a lower guide plate is vertically arranged below each upper guide plate; a cutting wire is arranged between the upper guide plate and the lower guide plate, and both ends of the cutting wire are respectively connected to the cross-cutting device to cut the glass ribbon; a grabbing device for grabbing the glass ribbon is arranged below the lower guide plate.
  • the upper surface of the diaphragm is in close contact with the bottom of the outer plate
  • the lower surface of the diaphragm is in close contact with the top of the upper guide plate
  • the outer end of the diaphragm is connected to the telescopic device to drive the diaphragm to slide.
  • the double-slit structure can be formed between each diaphragm to control the width of the glass ribbon; and each diaphragm can contact with the partition to cut off the molten glass; the bottom of the upper guide plate is flush with the bottom of the partition (i.e., the bottom of the end of the partition).
  • the physical property sensor and the second temperature sensor are disposed on the inner walls of the upper guide plate and the lower guide plate.
  • the top of the partition is lower than the top of each outer plate, the end of the partition is inclined toward the center so that its longitudinal section is triangular, and the bottom of the end of the partition is flush with the bottom of the upper guide plate.
  • the telescopic device includes a first motor, a first screw rod, a slide table and a slide seat, wherein the slide seat A first motor is provided on the side away from the forming cavity, the output end of the first motor is connected to the first screw rod, the first screw rod is provided with a first nut, the first nut is fixedly connected to the slide, the slide is slidably arranged on the slide seat, and the cross partition is arranged on the slide to move with the slide under the drive of the first motor.
  • the cross-cutting device includes a mounting plate, a second motor, a translation table and a connecting block.
  • a second motor is provided on the side of the mounting plate away from the molding cavity, and a driving wheel, a driven wheel and a slide rail are provided on the side of the mounting plate close to the molding cavity; the driving wheel and the driven wheel are respectively located at both ends of the mounting plate; the output end of the second motor is connected to the driving wheel, and the driving wheel is connected to the driven wheel through a transmission belt; a slide rail consistent with the translation direction of the transmission belt is provided on the mounting plate, and the translation table cooperates with the slide rail on the mounting plate through a slider; the translation table is connected to the transmission belt through a connecting block so as to move with the transmission belt; a mounting block is provided on the translation table, and the end of the cutting wire is connected to the mounting block.
  • the cross-cutting device further comprises support legs, and the support legs are arranged on both sides of the bottom of the mounting plate.
  • the cross-cutting device further comprises at least two photoelectric sensors and a light shielding plate; wherein the photoelectric sensor is arranged on the mounting plate along the translation direction of the transmission belt, and the light shielding plate is arranged on the translation stage.
  • the photoelectric sensor comprises a light emitting element and a light receiving element arranged opposite to each other, and a gap is formed between the two for the light shielding plate to pass through; the position of the cutting wire is determined by whether the light shielding plate is in the gap or outside the gap.
  • the gripping device includes a lifting device, a reduction motor and a glass clamp.
  • the lifting platform of the lifting device is provided with a reduction motor, and the output end of the reduction motor is provided with a glass clamp.
  • the gripping device includes a lifting device capable of pushing the lifting platform up and down; a fourth motor is provided on the lifting platform; the output end of the fourth motor is connected to the input end of the reduction motor, and the output end of the reduction motor is connected to the glass clamp.
  • the lifting device includes a third motor and a vertically arranged second screw rod; the output end of the third motor is connected to the second screw rod to drive it to rotate; the second screw rod is provided with a second nut with at least one side limited; the lifting platform is located on the second nut.
  • the glass clamp includes a clamping plate and a supporting plate, a first side of the supporting plate is slidably provided with two clamping plates, and a second side of the supporting plate is connected to an output end of the reduction motor.
  • the glass clamp includes a first clamping plate and a second clamping plate arranged opposite to each other, and a support plate; wherein the first side of the support plate has two guide rails, and the first clamping plate and the second clamping plate are respectively slidably embedded in the guide rails to limit and support; the second side of the support plate is connected to the output end of the reduction motor.
  • the glass clamp also has a fifth motor, and the output end of the fifth motor is connected to the main gear to drive the main gear to rotate; the main gear is respectively meshed with the first slave gear and the second slave gear to drive the two to rotate at the same time; the first clamping plate is connected to the first rack meshed with the first slave gear, and the second clamping plate is connected to the second rack meshed with the second slave gear; the movement directions of the guide rail, the first rack and the second rack are parallel.
  • the second aspect of the present application provides a method for manufacturing a carrier glass, using the carrier glass manufacturing device described in any of the above embodiments, and the manufacturing method includes:
  • the molten glass enters the molding cavity between the first outer plate and the second outer plate, and the molten glass in the molding cavity is divided into two parts by the partition plate;
  • the two parts of molten glass are respectively placed in the first cavity and the second cavity and simultaneously move toward the glass cavity along the side of the partition. flow;
  • the molten glasses flowing from the first cavity and the second cavity to the ends of the partition are combined into one and drawn downward in the glass ribbon cavity to form a glass ribbon.
  • the first temperature sensor collects the temperature in real time and transmits the collected temperature to the signal processor; the signal processor receives the collected temperature and compares it with the set first target temperature; when the collected temperature is lower than the first target temperature, an instruction is sent to the first adjustment electrode to adjust the temperature.
  • the physical property sensor takes photos in real time and sends the photos to the signal processor; the signal processor analyzes the thickness, transmittance, impurity content, and flow speed parameters of the glass ribbon from the photos to determine whether these parameters meet the predetermined range; if not, the first adjustment electrode is controlled to adjust the temperature in the molding cavity to improve these parameters.
  • the second temperature sensor collects the temperature in real time and sends the collected temperature to the signal processor; the signal processor receives the collected temperature and compares it with the set second target temperature; when the collected temperature is lower than the second target temperature, an instruction is sent to the first adjustment electrode to adjust the temperature in the molding cavity.
  • the method for manufacturing carrier glass comprises the following steps:
  • Glass ribbon forming two telescopic devices are activated to control the spacing between each transverse partition to control the width of the glass ribbon; the molten glass in the forming cavity is pulled down along the partition and the outer plate to form a glass ribbon, and the two are combined into one at the bottom of the partition, and then pulled down to form a glass ribbon;
  • Glass ribbon clamping two grabbing devices are started, and the glass clamps clamp the glass ribbon; two telescopic devices are started again to control the contact between each transverse partition to cut off the molten glass;
  • Glass ribbon cutting Two cross-cutting devices are started synchronously, driving the cutting wire to cut the hot glass ribbon along the gap between the upper guide plate and the lower guide plate;
  • Glass ribbon transfer The two lifting devices are started to drive the glass clamp to move downward, and the glass ribbon is brought out from between the two lower guide plates. Then the fourth motor and the reduction motor are started to rotate the glass clamp to rotate the glass ribbon from the vertical state to the horizontal state for transfer.
  • At least one embodiment of the present application provides a plate glass manufacturing device, which can accommodate and heat molten glass by setting a molding cavity; by setting a partition, the molding cavity can be divided into two areas, so that the molten glass in the two areas can be drawn down along the partition to form; by setting a transverse partition, the flow of the drawn molten glass can be controlled; by setting an upper guide plate and a lower guide plate, they can cooperate with each other so that the top of the drawn glass ribbon can still be kept hot, which is convenient for the cutting wire to cut the hot glass ribbon; by setting a cutting wire and a cross-cutting device, the glass ribbon can be drawn along the upper guide plate.
  • the gap between the upper and lower guide plates can be moved to cut the hot glass ribbon in the middle without generating glass dust, thus improving the glass yield rate; by arranging a grabbing device, the glass ribbon that has been cooled under the lower guide plate can be grabbed and clamped, and the cutting wire and the cross-cutting device can be assisted to cut the hot glass ribbon, and after cutting, the grabbing device can transfer it; by arranging a heater and a temperature sensor, the temperature field of the molten glass in the molding cavity can be accurately controlled, and the glass temperature field between the upper and lower guide plates can be controlled, which is beneficial for the cutting wire and the cross-cutting device to cut the hot glass ribbon.
  • the carrier glass manufacturing device provided by at least one embodiment of the present application can not only efficiently cut the drawn carrier glass without generating glass dust, but also facilitate the grabbing and transportation, thereby effectively improving the production efficiency and yield rate of the carrier glass and reducing the production cost of the enterprise.
  • FIG1 is a schematic structural diagram of a carrier glass manufacturing device according to an embodiment
  • Figure 2a is a schematic diagram of the structure of a double straight outer plate
  • FIG2b is a schematic diagram of the structure of a hyperbolic outer plate
  • FIG3 is a schematic structural diagram of a carrier glass manufacturing device according to an embodiment
  • FIG4 is a perspective view of a diaphragm and a telescopic device according to an embodiment
  • FIG5 is a front view of a cross-cutting device according to an embodiment
  • FIG6 is a perspective view of a cross-cutting device according to an embodiment
  • FIG7 is a perspective view of a gripping device according to an embodiment
  • FIG8 is a schematic diagram of a gripping device gripping a glass ribbon according to an embodiment
  • FIG9 is a schematic diagram of a glass clamp according to an embodiment
  • 100 is a glass former body
  • 101 is a first outer plate
  • 102 is a second outer plate
  • 103 is a forming cavity
  • 1031 is a first containing cavity
  • 1032 is a second containing cavity
  • 1033 is a glass ribbon cavity
  • 104 is a partition
  • 1041 is an end of the partition
  • 1042 is a plane formed by the partition
  • 105 is a molten glass draw outlet
  • 106 is a vertical plate
  • 107 is an inclined plate
  • 108 is a double straight outer plate
  • 109 is a hyperbolic outer plate
  • 110 is an upper guide plate
  • 111 is a horizontal partition
  • 112 is a lower guide plate
  • 113 is a cutting wire
  • 201 a first temperature sensor, 202 a temperature control unit, 203 a digital-to-analog converter, 204 a physical property sensor and a second temperature sensor, 205 a signal processor;
  • 3 telescopic device 301 first motor, 302 first screw rod, 303 slide table, 304 slide seat;
  • 4 cross-cutting device 401 mounting plate, 402 second motor, 403 translation stage, 404 connecting block, 405 driving wheel, 406 driven wheel, 407 slide rail, 408 transmission belt, 409 slider, 410 mounting block, 411 supporting leg, 412 photoelectric sensor, 4121 light-emitting element, 4122 light-receiving element, 4123 gap, 413 light shielding plate;
  • first and second are used for descriptive purposes only and do not refer to It can be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • the features defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication of two elements.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication of two elements.
  • the first embodiment of the present application provides a plate glass manufacturing device, comprising a glass former body 100 for molding molten glass; the glass former body 100 comprises two outer plates symmetrically arranged at intervals, namely a first outer plate 101 and a second outer plate 102, and a molding cavity 103 is formed between the two; the molten glass in liquid state flows from top to bottom in the molding cavity 103.
  • a partition 104 is vertically arranged in the middle between the first outer plate 101 and the second outer plate 102, and the partition 104 divides the upper part of the molding cavity 103 into a first cavity 1031 and a second cavity 1032.
  • the molding cavity 103 further includes a glass ribbon cavity 1033 located at the lower part of the molding cavity 103.
  • the end 1041 of the partition 104 is located at the upper part of the glass ribbon cavity 1033; the upper end of the glass ribbon cavity 1033 is a molten glass pull-down outlet 105; the pull-down outlet 105 is a double-slit structure and is connected to the bottom of the first cavity 1031 and the second cavity 1032.
  • the molten glass flows from top to bottom in the first cavity and the second cavity, and the molten glass in the first cavity and the second cavity flows into the glass ribbon cavity 1033 at the same time.
  • the pull-down outlet 105 is located between the first cavity 1031 and the second cavity 1032 at the upper part of the molding cavity 103 and the glass ribbon cavity 1033 at the lower part of the molding cavity 103.
  • the pull-down outlet 105 is a double-slit structure, which mainly refers to the width of this place, which is relatively narrow compared with the widths of the first cavity 1031, the second cavity 1032 and the glass ribbon cavity 1033.
  • the molten glass is in an extruded state at this place and then enters the glass ribbon cavity 1033 along the partition 104.
  • the double-slit structure of the pull-down outlet 105 is formed at the narrowest point between the two outer plates 101, 102 and the partition 104.
  • the pull-down outlet 105 is adjacent to the end 1041 of the partition, but is not located at the bottom of the end 1041 of the partition.
  • the molten glass enters the molding cavity 103 between the first outer plate 101 and the second outer plate 102, and is divided into two parts by the partition 104; the two parts of the molten glass are respectively in the first cavity 1031 and the second cavity 1032 and flow toward the glass ribbon cavity 1033 along the side of the partition 104 at the same time; the molten glass flowing from the first cavity 1031 and the second cavity 1032 to the end 1041 of the partition (i.e., the molten glass pull-down outlet 105) is combined into one at the bottom of the end of the partition and is pulled downward in the glass ribbon cavity 1033 to form a glass ribbon, as shown in FIG. 3 .
  • the height of the top of the first outer plate 101 and the second outer plate 102 is higher than the height of the top of the partition 104; by setting the top of the partition 104 lower than the top of the outer plate, the uniformity of the molten glass on both sides of the partition 104 can be ensured.
  • the partition 104 has two opposite side surfaces, one side surface faces the first outer plate 101, and the other side surface faces the second outer plate 102.
  • the side surfaces of the partition 104 opposite to the first outer plate 101 and the second outer plate 102 are respectively fixed with a first temperature sensor
  • the first outer plate 101 and the second outer plate 102 are respectively fixedly provided with a first temperature sensor 201 and a temperature control unit 202 on the side opposite to the partition 104; both are electrically connected to the signal processor 205;
  • the temperature control unit 202 is a first regulating electrode, located on the inner wall of the molding cavity 103, and the temperature in the molding cavity can be controlled by regulating the electrode.
  • the regulating electrode can be directly purchased as a finished product with temperature adjustment sold on the market.
  • the first temperature sensor 201 can realize the temperature measurement function by using a conventional temperature sensor; the temperature control unit 202 can use hardware capable of adjusting the temperature, such as an adjusting electrode; the signal processor 205 can use a CPU, a single-chip microcomputer, a PLC, an MCU, an FPGA, and other hardware devices capable of realizing corresponding functions.
  • This embodiment also includes a memory and at least one program, wherein the at least one program is stored in the memory and configured to be executed by the signal processor 205; the at least one program includes:
  • the first temperature sensor 201 receives the real-time collected temperature and transmits the collected temperature to the signal processor 205;
  • the signal processor 205 receives the temperature collected by the temperature sensor 201 and compares it with the set first target temperature; when the collected temperature is lower than the first target temperature, it sends an instruction to the first regulating electrode;
  • the first adjustment electrode receives instructions from the signal processor 205 and performs temperature adjustment.
  • the first target temperature is set according to actual needs in order to control the temperature of the molten glass in the first cavity 1031 and the second cavity 1032 .
  • the molten glass is located in the molding cavity 103.
  • the flow and temperature regulation of the molten glass in the first cavity 1031 and the second cavity 1032 are realized by the temperature control unit 202 arranged on the inner wall thereof.
  • the heating equipment is small in size, reduces the loss of heat energy flow, reduces energy consumption, and improves the product output efficiency.
  • the first temperature sensor 201 arranged on the side of the partition 104 and the inner surface of the outer plate can measure the temperature of the molten glass flowing through it. The temperature measurement data is fed back to the signal processor 205.
  • the signal processor 205 controls the heating of the temperature control unit 202 to flexibly adjust the temperature of the molten glass when it flows.
  • the interior of the molding cavity 103 is covered with the first regulating electrode, which controls the temperature of the first regulating electrode to control the partition, effectively adjusts the physical properties of the molten glass, reduces the texture in the molding process, and reduces the occurrence of defective products.
  • the contact surface between the drawing process and the outside world is reduced and is limited to the exit drawing place, which reduces the adhesion of pollutants and improves the physical properties of the output product.
  • the two sides of the glass ribbon cavity 1033 are respectively fixed with a physical property sensor and a second temperature sensor 204, and the physical property sensor and the second temperature sensor 204 are both electrically connected to the signal processor 205.
  • the physical property sensor is a camera.
  • the second temperature sensor can be a conventional temperature sensor.
  • the at least one program also includes:
  • the physical property sensor receives an instruction to take a photo in real time and send the taken photo to the signal processor 205;
  • the signal processor 205 receives the photos taken by the physical property sensor and analyzes the parameters such as the thickness, transmittance, impurity content, and flow velocity of the glass ribbon to determine whether these parameters meet the predetermined range; if not, the first adjustment electrode is controlled to improve these parameters by adjusting the temperature of different areas in the molding cavity 103.
  • the second temperature sensor receives the real-time collected temperature and sends the collected temperature to the instruction of the signal processor 205;
  • the signal processor 205 also receives the temperature collected by the second temperature sensor and compares it with the set second target temperature; when the collected temperature is lower than the second target temperature, it sends an instruction to the first regulating electrode;
  • the first adjustment electrode receives the instruction of the signal processor 205 and adjusts the temperature in the molding cavity.
  • the second target temperature is set according to actual needs in order to control the temperature of the glass ribbon in the glass ribbon cavity 1033 .
  • each outer plate includes a vertical plate body 106 and an inclined plate body 107, the inclined plate body 107 is located at the bottom of the vertical plate body 106, and the distance between the top of the inclined plate body 107 and the partition 104 is greater than the distance between the bottom of the inclined plate body 107 and the partition 104; that is, the molding cavity 103 gradually decreases from top to bottom.
  • the side of the inclined plate body 107 opposite to the side of the partition 104 is either an inclined plane or an inclined curved surface.
  • the upper portion of the glass ribbon cavity 1033 is a V-shaped structure that is wide at the top and narrow at the bottom.
  • the end 1041 of the partition is a V-shaped structure that is wide at the top and narrow at the bottom; it is convenient to guide the molten glass to flow into the glass ribbon cavity 1033 from top to bottom along the partition 104.
  • the glass former body 100 includes a first outer plate 101 and a second outer plate 102, which are used to draw the molten glass in a liquid state produced in the previous process downward along the central plane of the glass former body 100 (i.e., the plane 1042 formed by the partition) to form a glass ribbon.
  • the partition 104 is used to divide the molten glass of the previous process into two areas (i.e., the first cavity and the second cavity) in the forming cavity 103. At the end 1041 of the partition, the molten glass in the first cavity 1031 and the second cavity 1032 are combined into one, and then drawn downward at the glass ribbon cavity 1033 to form a glass ribbon.
  • the height of the partition 104 is slightly lower than the first outer plate 101 and the second outer plate 102 to ensure that the molten glass on both sides is uniform.
  • the shape of the inclined plate body 107 of the first outer plate 101 and the second outer plate 102 on the upper part of the glass former body 100 can be: a double straight outer plate 108 forming an inclined plane on the side opposite to the side of the partition 104, as shown in FIG2a; or a hyperbolic outer plate 109 forming an inclined curved surface on the side opposite to the side of the partition 104, as shown in FIG2b.
  • the hyperbolic outer plate 109 can ensure that the molten glass maintains better fluidity and uniformity.
  • the glass former body 100, the inner walls on both sides and the outer walls on both sides of the partition 104 (i.e., the two sides) are equipped with a first temperature sensor 201 and a temperature control unit 202, which are divided into multiple areas in the horizontal and vertical directions.
  • the related signals of different sensing areas are transmitted to the signal processor 205 through the digital-to-analog converter 203, and then the temperature control units 202 (first adjustment electrodes) of different areas are controlled to adjust the temperature to ensure the fluidity and physical properties of the molten glass in different areas.
  • the molten glass on both sides is drawn and merged to form a glass ribbon.
  • Four sets of physical property sensors and a second temperature sensor 204 are set on both sides of the glass ribbon to sense the physical properties of the glass ribbon (including temperature, transmittance, thickness, flow rate, etc.) and feed the signal back to the signal processor 205.
  • the temperature control units of different areas are controlled to adjust the temperature to ensure the fluidity and physical properties of the glass liquid in different areas.
  • two upper material guide plates 110 corresponding to the first outer plate 101 and the second outer plate 102 are vertically provided at the bottom outlet of the upper portion of the molding cavity 103 (i.e., the bottom of the first cavity 1031 and the second cavity 1032 ), and transverse partitions 111 are respectively slidably provided between the upper material guide plates 110 and the first outer plate 101 and the second outer plate 102 .
  • the diaphragm 111 can form a downward draw outlet 105 of the molten glass between the diaphragm 104, which is used to control the width of the glass ribbon.
  • the spacing between each diaphragm 111 and the diaphragm 104 can be controlled to be 2.5 mm, so that the width of the glass ribbon formed by the molten glass reaching the bottom of the diaphragm 104 is 5 mm.
  • the gap between the diaphragm 111 and the diaphragm 104 is the double gap structure.
  • transverse partition 111 can also contact the partition 104 to cut off the molten glass. When cutting, the molten glass is prevented from continuing to enter the glass ribbon cavity 1033.
  • the bottom of the upper guide plate 110 is substantially flush with the bottom of the partition 104 (ie, the bottom of the end of the partition).
  • Two lower guide plates 112 are provided below the two upper guide plates 110; a cutting wire 113 is provided between the upper guide plate 110 and the lower guide plate 112; the cutting wire 113 can be a platinum cutting wire; both ends of the cutting wire 113 are respectively connected to the cross-cutting device 4 to drive the cutting wire 113 to cut the initially formed glass ribbon.
  • a grabbing device 5 is provided below the lower material guiding plate 112 .
  • the space formed between the two upper guide plates 110 constitutes a part of the glass ribbon cavity 1033 ; the space formed between the two lower guide plates 112 also constitutes a part of the glass ribbon cavity 1033 .
  • the physical property sensor and the second temperature sensor 204 are disposed on the inner walls of the upper guide plate 110 and the lower guide plate 112 to monitor the physical property parameters and temperature of the glass ribbon.
  • a second regulating electrode may be disposed inside the upper guide plate 110 and the lower guide plate 112 to regulate the temperature in the glass ribbon cavity.
  • the temperature of the glass ribbon in the glass ribbon cavity may affect the final forming effect of the glass ribbon; therefore, temperature regulation is provided here.
  • the flow of the drawn molten glass can be controlled; by setting the upper guide plate 110 and the lower guide plate 112, they can cooperate with each other so that the top of the drawn glass ribbon remains hot, which is convenient for the cutting wire 113 to cut the hot glass ribbon.
  • the cutting wire 113 and the cross-cutting device 4 it can move along the gap between the upper guide plate 110 and the lower guide plate 112, cut the hot glass ribbon in the middle, and will not generate glass dust, thereby improving the glass yield.
  • the glass ribbon that has been cooled under the lower guide plate 112 can be clamped, and the cutting wire 113 and the cross-cutting device 4 can be assisted in cutting the hot glass ribbon, and after cutting, the grabbing device 5 can transport it.
  • the temperature field of the entire molten glass can be accurately controlled, and the temperature field of the glass ribbon between the upper guide plate 110 and the lower guide plate 112 can be controlled, so as to facilitate the cutting wire 113 and the cross-cutting device 4 to cut the hot glass.
  • the end 1041 of the partition is inclined toward the center, and the longitudinal section of the end of the partition is roughly triangular (the V-shaped structure described above), and the bottom is flush with the bottom of the upper guide plate 110.
  • This triangular arrangement enables the molten glass liquid pulled down to be reunited at the bottom of the end 1041 of the partition, effectively reducing the internal stress; by setting the bottom of the partition 1041 to be flush with the bottom of the upper guide plate 110, the cutting effect of the cutting wire 113 can be improved.
  • each diaphragm 111 is in close contact with the bottom of the corresponding outer plate, and the lower surface of the diaphragm 111 is in close contact with the top of the corresponding upper guide plate 110, which can prevent the leakage of molten glass;
  • the outer end of the diaphragm 111 is connected to the telescopic device 3 to drive the diaphragm 111 to slide left and right, thereby approaching or moving away from the diaphragm 104, so as to control the outflow width of the molten glass, and then control the width of the glass ribbon, which can be used to produce glass ribbons with different width requirements;
  • the diaphragm 111 can also be controlled to contact with the diaphragm 104 to cut off the molten glass.
  • the telescopic device 3 includes a first motor 301, a first screw rod 302, a slide 303 and a slide 304.
  • the first motor 301 is provided on the side of the slide 304 away from the molding cavity 103, and the output end of the first motor 301 is connected to the first screw rod 302;
  • the first screw rod 302 is provided with a screw nut (i.e., a first nut, which is fixed below the slide 303, not shown in the figure), and the screw nut is fixedly connected to the middle of the slide 303; both sides of the slide 303 are slidably arranged on the slide 304; the diaphragm 111 is arranged on the slide 303 to drive the first screw rod 302.
  • the first motor 301 can drive the first screw rod 302 to rotate; the first screw rod 302 and the screw nut 304 can be used to push the slide 303 to slide linearly on the slide 304, and the rotational motion of the first screw rod is converted into the linear motion of the slide, thereby driving the diaphragm 111 to slide between the upper guide plate 110 and the first outer plate 101 and the second outer plate 102, and accurately controlling the flow of the molten glass pulled down.
  • the slide 303 and the slide 304 are in a sliding connection relationship, which can be realized in a variety of ways, such as the way of slide rails and sliders, the way of bearing movement, etc., which are well known to technicians in the mechanical field.
  • the telescopic device 3 can also use other existing mechanical or electronic control products that can realize the horizontal movement of the diaphragm 111.
  • the cross-cutting device 4 comprises a mounting plate 401, a second motor 402, a translation platform 403 and a connecting block 404; wherein, the second motor 402 is provided on the side of the mounting plate 401 away from the molding cavity 103, and a driving wheel 405, a driven wheel 406 and a slide rail 407 are provided on the side of the mounting plate 401 close to the molding cavity 103.
  • the driving wheel 405 and the driven wheel 406 are respectively located at the two ends of the horizontal direction of the mounting plate 401.
  • the output end of the second motor 402 is connected to the driving wheel 405 to drive the driving wheel 405 to rotate; the driving wheel 405 is connected to the driven wheel 406 through a transmission belt 408.
  • Slide rails 407 are provided above and below the transmission belt 408, and the slide rails 407 are installed on the mounting plate 401, in the same translation direction as the transmission belt 403; the top and bottom of the translation platform 403 are respectively matched with the slide rails 407 on the mounting plate 401 through sliders 409.
  • the middle part of the translation platform 403 is connected to the transmission belt 408 through the connecting block 404 to move with the transmission belt 403.
  • the translation platform 403 is provided with a mounting block 410, and the end of the cutting wire 113 is connected to the mounting block 410 to fix the cutting wire 113 on the cross-cutting device 4 and move with the translation platform 403.
  • the second motor 402, the translation stage 403, the driving wheel 405, the driven wheel 406 and the slide rail 407 can be installed; this embodiment enables the second motor 402 to drive the translation stage 403 to perform reciprocating linear motion through the transmission belt 408, thereby driving the mounting block 410 and the cutting wire 113 to perform reciprocating linear motion to cut the hot glass; by setting the slide rail 407 and the slider 409, the stability of the movement of the translation stage 403 can be ensured and the cutting quality can be improved.
  • the cross-cutting device 4 may further include support legs 411, which are arranged on both sides of the bottom of the mounting plate 401. By providing the support legs 411, the mounting plate 401 can be stably supported.
  • the cross-cutting device 4 may further include a plurality of photoelectric sensors 412 and light shielding plates 413; wherein the photoelectric sensor 412 is arranged on the top of the mounting plate 401, and a slot-type photoelectric sensor may be adopted; the light shielding plate 413 is arranged on the translation stage 403, and the light shielding plate 413 cooperates with the photoelectric sensor 412. By providing the photoelectric sensor 412 and the light shielding plate 413, the position of the translation stage 403 can be monitored in real time, thereby judging the position of the cutting wire 113 and the cutting progress of the glass.
  • each photoelectric sensor 412 is connected to the signal processor 205.
  • Each photoelectric sensor 412 has a light-emitting element 4121 and a light-receiving element 4122 arranged opposite to each other, and a gap 4123 is formed between the two through which the light shielding plate 413 can pass.
  • the light-emitting element 4121 can emit visible light such as infrared light; when the gap 4123 is unobstructed, the light-receiving element 4122 can receive the light emitted by the light-emitting element 4121, and the signal processor 205 does not make a judgment; when the light shielding plate 413 runs into the gap 4123, it blocks the emitted light, and the light-receiving element 4122 cannot receive the light, and the signal processor 205 can obtain the signal, thereby controlling the second motor 402 to start or stop working, and the cutting wire 113 to start cutting or stop cutting.
  • the working principle of the photoelectric sensor 412 and the light shielding plate 413 belongs to the conventional technical method in the field of electric control, which is very easy to implement.
  • the first photoelectric sensor on the left is the initial end
  • the second photoelectric sensor on the left is the initial end.
  • the first photoelectric sensor and the third photoelectric sensor are both stop ends, and the width between the first photoelectric sensor and the third photoelectric sensor at both ends is slightly larger than the maximum width of the glass ribbon that can be cut;
  • the second photoelectric sensor in the middle is movably arranged on the mounting plate 401, and by adjusting the width between the first photoelectric sensor and the third photoelectric sensor (at this time, the third photoelectric sensor does not work), it can be applied to the cutting of glass ribbons of various widths.
  • the signal processor 205 can determine that the translation stage 403 is at the initial end, thereby controlling the second motor 402 to start working; when the shading plate 413 reaches the second photoelectric sensor or the third photoelectric sensor, the signal processor 205 can determine that the translation stage 403 is at the stop end (cutting is completed), thereby controlling the second motor 402 to stop working.
  • the positions of the cutting wire 113 and the translation stage 403 can also be determined, thereby determining the positions of the two and the cutting progress.
  • the gripping device 5 comprises a lifting device 501, a reduction motor 502 and a glass clamp 503; wherein, the reduction motor 502 is provided on the lifting platform 5013 of the lifting device 501, and the glass clamp 503 is provided at the output end of the reduction motor 502.
  • the lifting device 501 the height position of the reduction motor 502 and the glass clamp 503 can be adjusted, so as to clamp the glass and transfer the glass;
  • the reduction motor 502 the spatial state of the glass clamp and the glass can be adjusted, and the glass can be adjusted from a vertical state to a horizontal state, which is convenient for subsequent transportation; by setting the glass clamp 503, the glass can be stably clamped.
  • the lifting device 501 includes a third motor 5011 and a second vertically arranged screw rod 5012.
  • the third motor 5011 may be a servo motor, and its output end is connected to the second screw rod 5012 to drive it to rotate.
  • a second nut (not shown in the figure) is provided on the second screw rod 5012, and at least one side thereof is limited so that it can only move up and down with the second screw rod 5012.
  • the lifting platform 5013 is connected to the second nut to move up and down with it.
  • the lifting device 501 can also adopt other mechanical or electronic control devices that can realize lifting, such as piston rod pushing, etc., to realize the up and down movement of the lifting platform 5013.
  • the lifting platform 5013 of the lifting device 501 is provided with a fourth motor 504 which can move up and down with the lifting device 501, and can be a servo motor, whose output end is connected to the input end of the reduction motor 502, and the output end of the reduction motor 502 is connected to the glass clamp.
  • the reduction motor 502 can vertically convert the output direction of the fourth motor 504, so as to control the glass clamp 503 to flip, for example, from the vertical direction to the horizontal direction.
  • the glass clamp 503 includes two oppositely arranged clamping plates (i.e., a first clamping plate 5031 and a second clamping plate 5032) for clamping the glass ribbon and a support plate 5033; wherein, the two clamping plates 5031, 5032 are slidably arranged on the first side of the support plate 5033, and the second side of the support plate 5033 opposite to the first side is connected to the output end of the reduction motor 502, so that the reduction motor 502 can control the rotation of the support plate 5033, thereby causing the clamping plate to drive the glass ribbon to rotate.
  • a first clamping plate 5031 and a second clamping plate 5032 for clamping the glass ribbon and a support plate 5033
  • the two clamping plates 5031, 5032 are slidably arranged on the first side of the support plate 5033, and the second side of the support plate 5033 opposite to the first side is connected to the output end of the reduction motor 502, so that the reduction motor 502 can control the rotation of the support plate 5033, thereby
  • the glass clamp 503 further includes a fifth motor 5034 (a servo motor may be selected) and a main gear 5035; the output end of the fifth motor 5034 is connected to the main gear 5035 to drive the main gear 5035 to rotate.
  • the main gear 5035 is also meshed with a first slave gear 5036 and a second slave gear 5037 respectively to drive the two to rotate.
  • the two slave gears 5036, 5037 may be rotatably disposed on the second side of the support plate 5033 via a pin shaft or the like.
  • the first clamping plate 5031 is connected to the first rack 5038, which is meshed with the first slave gear 5036 to drive the first rack 5038 to move, thereby driving the first clamping plate 5031 to slide;
  • the second clamping plate 5032 is connected to the second rack 5039, which is meshed with the second slave gear 5037 to drive the second rack 5039 to move, thereby driving the second clamping plate 5032 to slide.
  • the two racks 5038 and 5039 are arranged in parallel.
  • the first slave gear 5036 and the second slave gear 5037 are arranged in parallel.
  • two guide rails 5040 are further provided on the first side of the support plate 5033.
  • the extension direction of each guide rail 5040 is parallel to the movement direction of the first rack 5038 and the second rack 5039.
  • the backs of the two clamping plates can be respectively embedded in the two guide rails 5040 through sliders (not shown in the figure) to slide along the guide rails, thereby constraining and supporting the sliding of the clamping plates.
  • the two guide rails 5040 When the two guide rails 5040 are extended and merged, they can also be regarded as one guide rail.
  • the conventional glass suction cup By setting the clamping plate and the support plate 5033, the conventional glass suction cup can be replaced.
  • the two clamping plates 5031 and 5032 slide on the support plate 5033 to stably clamp the glass from both sides.
  • the service life is long and regular replacement is not required, which reduces production costs and improves production efficiency.
  • the gripping device 5 in the present application can also be directly purchased or customized as a robot arm to achieve the gripping of the formed glass ribbon.
  • the telescopic device 3 has two, which are respectively connected to two transverse partitions 111 to throttle the molten glass from opposite sides.
  • the cross-cutting device 4 also has two, which respectively fix the two ends of the cutting wire 113, and move the cutting wire in the front and rear directions in FIG3 to cut the preliminarily formed glass ribbon.
  • the gripping device has two, which can grip the same glass ribbon from two directions respectively, and has better stability.
  • the various motors in this application can select servo motors with better control accuracy according to actual needs, or other motors that meet the needs can be selected.
  • a second embodiment of the present application provides a method for manufacturing a carrier glass, which can adopt the carrier glass manufacturing device described in any of the above embodiments, and the manufacturing method includes:
  • the molten glass enters the molding cavity between the first outer plate 102 and the second outer plate 103, and the molten glass in the molding cavity 113 is divided into two parts by the partition plate 105;
  • the two parts of molten glass are respectively in the first cavity 1031 and the second cavity 1032 and flow toward the glass ribbon cavity 1033 along the side of the partition 105 at the same time;
  • the molten glasses flowing from the first cavity 1031 and the second cavity 1032 to the end 1041 of the partition are combined into one and drawn downward in the glass ribbon cavity 1033 to form a glass ribbon.
  • the fluidity of the molten glass can be controlled by the first temperature sensor 201 and the temperature control unit 202 .
  • the physical properties of the glass ribbon can be sensed by the physical property sensor and the second temperature sensor 204, and the signals are fed back to the signal processor 205.
  • the signal processor 205 controls the temperature control units in different areas to control the fluidity of the molten glass in the molding cavity.
  • the method for manufacturing carrier glass comprises the following steps:
  • Glass ribbon forming Control the distance between the two transverse partitions 111 and the partition 104 to control the width of the glass ribbon. degree; the molten glass liquid in the molding cavity 103 is drawn downward along the first cavity 1031 and the second cavity 1032 to form, and is combined into one at the bottom of the end 1041 of the partition, and then drawn downward to form a glass ribbon; after the glass ribbon is formed between the two upper guide plates 110 and the two lower guide plates 112, it continues to move downward, and when it reaches the glass clamp range of the grasping device 5, the two telescopic devices 3 synchronously control the two transverse partitions 111 to move horizontally, the first motor 301 drives the first screw rod 302 to rotate, and drives the slide 303 to slide on the slide seat 304 through the screw rod nut, and the slide 303 drives the transverse partition 111 to move horizontally, so that the two transverse partitions 111 synchronously move horizontally toward the partition 104 to cut off the molten glass;
  • glass ribbon clamping the gripping device 5 is started, the glass clamp 503 clamps the glass ribbon, and the fifth motor 5034 pushes the two clamping plates to slide synchronously toward the middle along the support plate 5033 through the gear and the rack, clamping the glass ribbon between the two clamping plates;
  • the two cross-cutting devices 4 are started synchronously, the second motor 402 drives the driving wheel 405 to rotate, so that the transmission belt 408 rotates between the driving wheel 405 and the driven wheel 406, and the transmission belt 408 drives the translation table 403 to move horizontally on the slide rail 407 through the connecting block 404, so that the mounting blocks 410 of the two translation tables 403 drive the cutting wire 113 to cut the hot glass ribbon along the gap between the upper guide plate 110 and the lower guide plate 112, and separate the formed glass ribbon from the molten glass on the partition 104;
  • the lifting device 501 is started, driving the glass clamp 503 to move downward, and the glass ribbon is brought out from between the two lower guide plates 112.
  • the fourth motor 504 and the reduction motor 502 are started, and the glass clamp 503 is rotated to rotate the glass ribbon from the vertical state to the horizontal state, so as to facilitate the removal and transfer for secondary processing.

Abstract

一种载板玻璃制造装置及制造方法,该装置包括使熔融玻璃成型的玻璃成型器本体(100);该本体包括第一外板(101)和第二外板(102),二者之间形成成型腔(103);所述第一外板(101)和第二外板(102)之间的中部竖向设置有隔板(104),将成型腔的上部分隔成第一容腔(1031)和第二容腔(1032),所述成型腔(103)还包括位于成型腔的下部的玻璃带腔(1033)。能够很好的完成载板玻璃的成型,具有成型速度快的优点。

Description

载板玻璃制造装置及制造方法
本申请要求在2022年12月13日提交中国专利局、申请号为202211593579.8、发明名称为“一种载板玻璃成型装置及成型方法”,以及在2023年09月15日提交中国专利局、申请号为2023111950353.0、发明名称为“高世代OLED载板玻璃制造装置及工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于载板玻璃生产技术领域,涉及一种载板玻璃制造装置及制造方法。
背景技术
目前,载板玻璃成型过程中,关键的设备是成型槽。传统的载板玻璃成型槽为向外溢流的方式,溢流的过程中接触空气面积过大,导致污染物附着,影响玻璃品质。传统的载板玻璃成型槽加热方式为外部马弗炉加热,体积大效率低,且加热效果不均匀,容易产生不均匀纹理,造成不良品多发。传统的马弗炉加热方式,控温不精确,易导致玻璃受热不均匀影响成型,影响内部应力,导致碎片或拉断,不良多发的问题。
中国申请CN112279496A公开了一种用于制造玻璃带的改进的设备。该设备包括拉伸槽,该拉伸槽具有下部细长喷嘴口,熔融玻璃可通过喷嘴口向下排出,并且该拉伸槽包括直接加热装置和间接加热装置。
发明内容
本申请提出了一种载板玻璃制造装置及制造方法,能够很好的完成载板玻璃的成型,具有成型速度快的优点。
本申请第一方面提供的载板玻璃制造装置,包括使熔融玻璃成型的玻璃成型器本体;所述玻璃成型器本体包括:
间隔对称设置的第一外板和第二外板,二者之间形成成型腔,熔融玻璃在所述成型腔内从上到下流动;
所述第一外板和第二外板之间的中部竖向设置有隔板,所述隔板将成型腔的上部分隔成第一容腔和第二容腔;
所述成型腔还包括位于成型腔的下部的玻璃带腔,其中,所述隔板的末端位于玻璃带腔上部,所述玻璃带腔上端为熔融玻璃的下拉出口,所述下拉出口呈双缝结构且该下拉出口分别与第一容腔和第二容腔的底部连通;
熔融玻璃在所述第一容腔和第二容腔内从上到下流动且第一容腔和第二容腔内的熔融玻璃同时流入玻璃带腔中。
在一些实施例中,所述第一外板和第二外板的顶部高于隔板的顶部;所述隔板与第一外板和第二外板相对的侧面分别固定设置有第一温度传感器,所述第一外板和第二外板与隔板相对的侧面分别固定设置有第一温度传感器及第一调节电极,均与信号处理器电性连 接。
所述第一温度传感器被配置为实时采集温度,并将采集到的温度传送给信号处理器;所述信号处理器被配置为接收温度传感器采集的温度,并将其与设定的第一目标温度进行比较;当采集的温度低于第一目标温度时,发送指令给第一调节电极;所述第一调节电极被配置为接收信号处理器的指令,并进行温度调整。
在一些实施例中,所述玻璃带腔的两侧分别固定设置有物性感应器和第二温度传感器,所述物性感应器与信号处理器电性连接。所述物性感应器为照相机,被配置为实时拍照、并将拍摄的照片发送给信号处理器;所述信号处理器被配置为接收物性感应器拍摄的照片,并从中分析玻璃带的厚度、透光率、杂质含量、以及流动速度参数,判断这些参数是否符合预定范围;当不符合时,则控制第一调节电极,调节成型腔内的温度,以改善这些参数。所述第二温度传感器被配置为实时采集温度,并将采集到的温度发送给信号处理器;信号处理器被配置为接收第二温度传感器采集的温度,并将其与设定的第二目标温度进行比较;当采集的温度低于第二目标温度时,发送指令给第一调节电极;所述第一调节电极被配置为接收信号处理器的指令,并对成型腔内的温度进行调整。
在一些实施例中,所述第一外板和第二外板均呈折型且二者结构相同,所述第一外板和第二外板均分别包括竖直板体和倾斜板体,各个倾斜板体位于竖直板体底部,各个倾斜板体顶部与隔板之间的距离大于其底部与隔板之间的距离。
在一些实施例中,所述倾斜板体与隔板侧面相对的一侧为倾斜平面或者倾斜曲面中的任一种。
在一些实施例中,所述玻璃带腔的上部为上宽下窄的V型结构;所述隔板的末端为上宽下窄的V型结构。
在一些实施例中,第一外板和第二外板可统称为外板;各个外板的下方分别竖直设置有上导料板;上导料板与外板之间滑动设有横隔板。
各个上导料板的下方分别竖直设有下导料板;上导料板和下导料板之间设有切割丝,切割丝的两端分别与横切装置连接,以切割玻璃带;下导料板的下方设有用于抓取玻璃带的抓取装置。
在一些实施例中,横隔板的上表面与外板的底部紧贴,横隔板的下表面与上导料板的顶部紧贴,横隔板的外端与伸缩装置连接,以驱动横隔板滑动。各横隔板与隔板之间能够形成所述的双缝结构,以控制玻璃带的宽度;以及各横隔板能够与隔板接触,以截断熔融玻璃;上导料板的底部与隔板的底部(即隔板的末端的底部)平齐。
在一些实施例中,所述物性感应器和第二温度传感器设置于上导料板和下导料板的内壁。
在一些实施例中,隔板的顶部低于各个外板的顶部,隔板的末端向中央倾斜,使其纵截面呈三角形,隔板的末端的底部与上导料板的底部平齐。
在一些实施例中,所述伸缩装置包括第一电机、第一丝杆、滑台和滑座,其中,滑座 远离成型腔的一侧设有第一电机,第一电机的输出端与第一丝杆连接,第一丝杆上设有第一螺母,第一螺母与滑台固定连接,滑台可滑动地设置在滑座上,横隔板设置在滑台上,以在第一电机的驱动下随滑台一起运动。
在一些实施例中,所述横切装置包括安装板、第二电机、平移台和连接块,安装板远离成型腔的一侧设有第二电机,安装板靠近成型腔的一侧的设有主动轮、从动轮和滑轨;主动轮和从动轮分别位于安装板的两端;第二电机的输出端与主动轮连接,主动轮通过传动带与从动轮连接;安装板上设有与传动带的平移方向一致的滑轨,平移台通过滑块与安装板上的滑轨配合;平移台通过连接块与传动带连接,以随传动带一起运动;平移台上设有安装块,切割丝的端头与安装块连接。
在一些实施例中,所述横切装置还包括支撑腿,支撑腿设置在安装板的底部两侧。
在一些实施例中,所述横切装置还包括至少两个光电传感器和遮光板;其中,光电传感器沿着传动带的平移方向设置在安装板上,遮光板设置在平移台上。所述光电传感器具有相对设置的发光元件和受光元件,二者之间形成遮光板能够通过的间隙;通过遮光板位于间隙中或者间隙外,以判断切割丝的位置。
在一些实施例中,所述抓取装置包括升降装置、减速电机和玻璃夹具,升降装置的升降台上设有减速电机,减速电机的输出端设有玻璃夹具。
在一些实施例中,所述抓取装置包括能够推动升降台上下移动的升降装置;所述升降台上设有第四电机;第四电机的输出端连接减速电机的输入端,减速电机的输出端连接玻璃夹具。
在一些实施例中,所述升降装置包括第三电机以及竖直设置的第二丝杆;第三电机的输出端连接第二丝杆以驱动其转动;第二丝杆上设有至少一侧被限位的第二螺母;所述升降台位于第二螺母上。
在一些实施例中,所述玻璃夹具包括夹板和支撑板,支撑板的第一侧滑动设有两个夹板,支撑板的第二侧与减速电机的输出端连接。
在一些实施例中,所述玻璃夹具包括相对设置的第一夹板和第二夹板,以及支撑板;其中,支撑板的第一侧具有两个导轨,第一夹板和第二夹板分别可滑动地嵌入导轨中,以限位和支撑;所述支撑板的第二侧与减速电机的输出端连接。所述玻璃夹具还具有第五电机,第五电机的输出端连接主齿轮,以驱动主齿轮转动;主齿轮分别啮合有第一从齿轮和第二从齿轮,以同时驱动二者转动;所述第一夹板连接与第一从齿轮啮合的第一齿条,第二夹板连接与第二从齿轮啮合的第二齿条;导轨、第一齿条和第二齿条的运动方向平行。
本申请第二方面提供的载板玻璃制造方法,采用前文任一实施例所述的载板玻璃制造装置,该制造方法包括:
熔融玻璃进入到第一外板和第二外板之间的成型腔内,且通过隔板将成型腔内的熔融玻璃分成两部分;
两部分熔融玻璃分别在第一容腔和第二容腔且沿着隔板的侧面同时向玻璃带腔方向 流动;
从第一容腔和第二容腔流动到隔板的末端的熔融玻璃合二为一并在玻璃带腔内向下拉制形成玻璃带。
在一些实施例中,熔融玻璃分别在所述第一容腔和第二容腔向下流动过程中,所述第一温度传感器实时采集温度,并将采集到的温度传送给信号处理器;所述信号处理器接收采集的温度,并将其与设定的第一目标温度进行比较;当采集的温度低于第一目标温度时,发送指令给第一调节电极,进行温度调整。
在一些实施例中,熔融玻璃在所述玻璃带腔内流动过程中,所述物性感应器实时拍照、并将拍摄的照片发送给信号处理器;所述信号处理器从拍摄的照片中分析玻璃带的厚度、透光率、杂质含量、以及流动速度参数,判断这些参数是否符合预定范围;当不符合时,则控制第一调节电极,调节成型腔内的温度,以改善这些参数。所述第二温度传感器实时采集温度,并将采集到的温度发送给信号处理器;信号处理器接收采集的温度,并将其与设定的第二目标温度进行比较;当采集的温度低于第二目标温度时,发送指令给第一调节电极,对成型腔内的温度进行调整。
更具体地,所述载板玻璃制造方法,包括以下步骤:
玻璃带成型:两个伸缩装置启动,控制各个横隔板与隔板之间的间距,以控制玻璃带的宽度;成型腔内的熔融玻璃液沿着隔板和外板向下拉制成形,在隔板的底部合二为一,然后向下拉制形成玻璃带;
玻璃带夹取:两个抓取装置启动,玻璃夹具夹住玻璃带;两个伸缩装置再次启动,控制各个横隔板与隔板接触,以截断熔融玻璃;
玻璃带切割:两个横切装置同步启动,带动切割丝沿着上导料板和下导料板之间的间隙切割热态下的玻璃带;
玻璃带转移:两个升降装置启动,带动玻璃夹具向下移动,将玻璃带从两个下导料板之间带出,然后第四电机和减速电机启动,旋转玻璃夹具,将竖直状态下的玻璃带旋转至水平状态,进行转移。
与现有技术相比,本申请具有如下有益效果:
本申请至少一种实施例提供的载板玻璃制造装置,通过设置成型腔,能够容纳并加热熔融玻璃液;通过设置隔板,能够将成型腔划分成两个区域,使两个区域内的熔融玻璃沿着隔板向下拉制成形;通过设置横隔板,能够控制下拉熔融玻璃的流量;通过设置上导料板和下导料板,能够互相配合,使拉制成形的玻璃带顶部仍保持为热态,方便切割丝对热态下的玻璃带进行切割;通过设置切割丝和横切装置,能够沿着上导料板和下导料板之间的间隙移动,拦腰切割热态下的玻璃带,不会产生玻璃粉尘,提高玻璃良品率;通过设置抓取装置,能够抓取夹住下导料板下方冷却完毕的玻璃带,辅助切割丝和横切装置切割热态下的玻璃带,并且在切割完毕后,抓取装置能够将其转运;通过设置加热器和温度传感器,能够精准控制成型腔内熔融玻璃液的温场,控制上导料板和下导料板之间的玻璃温场,从而有利于切割丝和横切装置切割热态下的玻璃带。
本申请至少一种实施例提供的载板玻璃制造装置既能高效切割拉制成形的载板玻璃,不会产生玻璃粉尘,又可方便抓取转运,有效提高了载板玻璃的生产效率和良品率,降低了企业生产成本。
附图说明
图1为一种实施方式的载板玻璃制造装置的结构示意图;
图2a为双直线型外板的结构示意图;
图2b为双曲线型外板的结构示意图;
图3为一种实施方式的载板玻璃制造装置的结构示意图;
图4为一种实施方式的横隔板和伸缩装置的立体图;
图5为一种实施方式的横切装置的主视图;
图6为一种实施方式的横切装置的立体图;
图7为一种实施方式的抓取装置的立体图;
图8为一种实施方式的抓取装置抓取玻璃带的示意图;
图9为一种实施方式的玻璃夹具的示意图;
图中,100玻璃成型器本体,101第一外板,102第二外板,103成型腔,1031第一容腔,1032第二容腔,1033玻璃带腔,104隔板,1041隔板的末端,1042隔板形成的平面,105熔融玻璃下拉出口,106竖直板体,107倾斜板体,108双直线型外板,109双曲线型外板,110上导料板,111横隔板,112下导料板,113切割丝;
201第一温度传感器,202温控单元,203数模转换器,204物性感应器和第二温度传感器,205信号处理器;
3伸缩装置,301第一电机,302第一丝杆,303滑台,304滑座;
4横切装置,401安装板,402第二电机,403平移台,404连接块,405主动轮,406从动轮,407滑轨,408传动带,409滑块,410安装块,411支撑腿,412光电传感器,4121发光元件,4122受光元件,4123间隙,413遮光板;
5抓取装置,501升降装置,5011第三电机,5012第二丝杆,5013升降台,502减速电机,503玻璃夹具,5031第一夹板,5032第二夹板,5033支撑板,5034第五电机,5035主齿轮,5036第一从齿轮,5037第二从齿轮,5038第一齿条,5039第二齿条,5040导轨,504第四电机。
具体实施方式
以下结合具体实施方式对本申请的技术方案进行详实的阐述,然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不 能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,需要理解的是,术语“上”、“下”、“底”、“内”等指示的方位或位置关系为基于附图3所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如图1-3所示,本申请第一种实施方式提供了一种载板玻璃制造装置,包括使熔融玻璃成型的玻璃成型器本体100;所述玻璃成型器本体100包括间隔对称设置的两个外板,即第一外板101和第二外板102,二者之间形成成型腔103;呈液态状的熔融玻璃在所述成型腔103内从上到下流动。所述第一外板101和第二外板102之间的中部竖向设置有隔板104,所述隔板104将成型腔103的上部分隔成第一容腔1031和第二容腔1032。
如图1和图3所示,所述成型腔103还包括位于成型腔103的下部的玻璃带腔1033。所述隔板104的末端1041位于玻璃带腔1033的上部;所述玻璃带腔1033上端为熔融玻璃下拉出口105;所述下拉出口105呈双缝结构且该下拉出口105与第一容腔1031和第二容腔1032的底部连通。熔融玻璃在所述第一容腔和第二容腔内从上到下流动且第一容腔和第二容腔内的熔融玻璃同时流入玻璃带腔1033。
所述下拉出口105位于成型腔103上部的第一容腔1031和第二容腔1032与位于成型腔103下部的玻璃带腔1033之间。下拉出口105为双缝结构主要是指该处的宽度,相对于第一容腔1031、第二容腔1032和玻璃带腔1033的宽度而言,比较窄,熔融玻璃在该处呈挤压状态然后沿着隔板104进入玻璃带腔1033中。由图1和图3可知,下拉出口105的双缝结构是形成在两个外板101,102和隔板104之间的最窄处。在一实施方式中,下拉出口105与隔板的末端1041相邻,但并未不位于隔板的末端1041的底部。
熔融玻璃进入到第一外板101和第二外板102之间的成型腔103内,且通过隔板104将成型腔103内的熔融玻璃分成两部分;两部分熔融玻璃分别在第一容腔1031和第二容腔1032内且沿着隔板104的侧面同时向玻璃带腔1033方向流动;从第一容腔1031和第二容腔1032流动到隔板的末端1041(即熔融玻璃下拉出口105处)的熔融玻璃在隔板的末端的底部合二为一并在玻璃带腔1033内向下拉制形成玻璃带,如图3所示。
所述第一外板101和第二外板102顶部所在位置的高度高于隔板104顶部所在位置的高度;通过设置隔板104的顶部低于外板的顶部,能保证隔板104两侧熔融玻璃的均匀性。此外,所述隔板104具有两个相对的侧面,一个侧面面向第一外板101,另一个侧面面向第二外板102。
所述隔板104与第一外板101和第二外板102相对的侧面分别固定设置有第一温度传 感器201,所述第一外板101和第二外板102与隔板104相对的侧面分别固定设置有第一温度传感器201及温控单元202;二者均与信号处理器205电性连接;温控单元202为第一调节电极,位于成型腔103的内壁,通过调节电极能够控制成型腔内的温度。所述调节电极可直接购买市场上销售的能够调温的成品。
所述第一温度传感器201采用常规的温度传感器即能实现测温的功能;所述温控单元202可以采用调节电极等能够调温的硬件;所述信号处理器205采用CPU,单片机、PLC、MCU、FPGA等能够实现相应功能的硬件设备。本实施方式还包括存储器和至少一个程序,其中,该至少一个程序存储在存储器中并被配置成由所述的信号处理器205执行;所述的至少一个程序包括:
所述第一温度传感器201接收实时采集温度,并将采集到的温度传送给信号处理器205的指令;
信号处理器205接收温度传感器201采集的温度,并将其与设定的第一目标温度进行比较;当采集的温度低于第一目标温度时,发送指令给第一调节电极;
所述第一调节电极接收信号处理器205的指令,并进行温度调整。
所述第一目标温度是为了控制第一容腔1031和第二容腔1032内的熔融玻璃的温度而根据实际的需求设定的。
熔融玻璃位于成型腔103内,熔融玻璃在第一容腔1031和第二容腔1032内的流动及温度调节通过其内壁设置的温控单元202实现,加热设备体积小,减少热能流动损失,降低能耗,提高产品产出效率。隔板104的侧面、外板的内表面设置的第一温度传感器201能对流经其内部的熔融玻璃进行测温,测温的数据反馈至信号处理器205,信号处理器205控制温控单元202加热,灵活调节熔融玻璃流动时的温度。成型腔103的内部满布第一调节电极,控制第一调节电极分区控制温度,有效调节熔融玻璃的物性,减少成型过程中的纹理,减少不良品发生。拉制过程与外界接触面减少,仅限于出口拉制处,减少污染物的附着,提高产出品的物性。
所述玻璃带腔1033的两侧分别固定设置有物性感应器和第二温度传感器204,所述物性感应器和第二温度传感器204均与信号处理器205电性连接。所述物性感应器采用照相机。所述第二温度传感器采用常规的温度传感器即可。所述的至少一个程序还包括:
物性感应器接收实时拍照、并将拍摄的照片发送给信号处理器205的指令;
信号处理器205接收物性感应器拍摄的照片,并从中分析玻璃带的厚度、透光率、杂质含量、以及流动速度等参数,判断这些参数是否符合预定范围;当不符合时,则控制第一调节电极,通过调节成型腔103内不同区域的温度,来改善这些参数。
所述第二温度传感器接收实时采集温度,并将采集到的温度发送给信号处理器205的指令;
信号处理器205还接收第二温度传感器采集的温度,并将其与设定的第二目标温度进行比较;当采集的温度低于第二目标温度时,发送指令给第一调节电极;
所述第一调节电极接收信号处理器205的指令,并对成型腔内的温度进行调整。
所述第二目标温度是为了控制玻璃带腔1033内的玻璃带的温度而根据实际的需求设定的。
所述第一外板101和第二外板102均呈折型且二者结构相同;如图2a所示,每个外板均包括竖直板体106和倾斜板体107,所述倾斜板体107位于竖直板体106的底部,所述倾斜板体107的顶部与隔板104之间的距离大于其底部与隔板104之间的距离;即所述成型腔103从上到下逐渐缩小。所述倾斜板体107与隔板104侧面相对的一侧为倾斜平面或者倾斜曲面中的任一种。
如图2a和图2b所示,所述玻璃带腔1033的上部为上宽下窄的大致V型结构。如图1和图3所示,所述隔板的末端1041为上宽下窄的V型结构;便于引导熔融玻璃从上到下沿着隔板104流入玻璃带腔1033中。
玻璃成型器本体100包括第一外板101和第二外板102,用于将上一道工序产生的呈液态状的熔融玻璃,沿着玻璃成型器本体100的中心平面(即隔板形成的平面1042)向下拉制成型。隔板104用于将上一道该工序的熔融玻璃在成型腔103中划分为2个区域(即第一容腔和第二容腔),在隔板的末端1041处,第一容腔1031和第二容腔1032两区的熔融玻璃合二为一,然后在玻璃带腔1033处向下拉制形成玻璃带。隔板104的高度略低于第一外板101和第二外板102,以保证两侧熔融玻璃均匀。玻璃成型器本体100上部第一外板101和第二外板102的倾斜板体107的形状可以为:与隔板104侧面相对一侧形成倾斜平面的双直线型外板108,如图2a所示;也可以为:与隔板104侧面相对一侧形成倾斜曲面的双曲线型外板109,如图2b所示。双曲线型外板109可以保证熔融玻璃保持更好的流动性和均匀性。玻璃成型器本体100,两侧内壁及隔板104两侧外壁(即两侧面),装有第一温度传感器201,及温控单元202,在横向和纵向上划成多个区域。
不同感应区相关信号通过数模转换器203传至信号处理器205,再控制各不同区域温控单元202(第一调节电极),调整温度以保证不同区域的熔融玻璃的流动性及物理特性。同时,隔板的末端1041下方,两侧熔融玻璃拉制汇合后,形成玻璃带,玻璃带两侧设置四组物性感应器和第二温度传感器204,感应玻璃带的物理特性(包括温度,透光度,厚度,流速等),将信号反馈给信号处理器205。再控制各不同区域温控单元,调整温度以保证不同区域的玻璃液体流动性及物理特性。
在一种实施方式中,如图3所示,成型腔103的上部的底部(即第一容腔1031和第二容腔1032的底部)出口处竖直设有两个与第一外板101和第二外板102相对应的上导料板110,上导料板110与第一外板101和第二外板102之间分别滑动设有横隔板111。
所述横隔板111能够与隔板104之间形成所述熔融玻璃的下拉出口105,用于控制玻璃带的宽度。例如,若希望得到宽度为5mm的玻璃带,那么可以控制各个横隔板111与隔板104的间距为2.5mm,从而使得熔融玻璃到达隔板104的底部所形成的玻璃带的宽度为5mm。在本实施方式中,横隔板111与隔板104之间的缝隙即为所述的双缝结构。
此外,所述所述横隔板111还能够与隔板104接触,以截断熔融玻璃。当切割装置进 行切割时,阻止熔融玻璃继续进入玻璃带腔1033中。
上导料板110的底部与隔板104的底部(即隔板的末端的底部)大致平齐。
两个上导料板110的下方对应设有两个下导料板112;上导料板110和下导料板112之间设有切割丝113;切割丝113可采用铂金切割丝;切割丝113的两端分别与横切装置4连接,以驱动切割丝113对初步成型的玻璃带进行切割。
所述下导料板112的下方设有抓取装置5。
所述两个上导料板110之间形成的空间构成所述玻璃带腔1033的一部分;两个下导料板112之间形成的空间也构成所述玻璃带腔1033的一部分。
所述物性感应器和第二温度传感器204设置在上导料板110和下导料板112的内壁,从而监控玻璃带的物性参数和温度。
上导料板110和下导料板112的内部还可以设置第二调节电极,对玻璃带腔内进行温度调节。玻璃带在玻璃带腔中的温度可能会影响玻璃带的最终成型效果;因此在此设置温度调节。
通过设置横隔板111,能够控制下拉熔融玻璃的流量;通过设置上导料板110和下导料板112,能够互相配合,使拉制成形的玻璃带顶部仍保持为热态,方便切割丝113对热态下的玻璃带进行切割。通过设置切割丝113和横切装置4,能够沿着上导料板110和下导料板112之间的间隙移动,拦腰切割热态下的玻璃带,不会产生玻璃粉尘,提高玻璃良品率。通过设置抓取装置5,能够夹住下导料板112下方冷却完毕的玻璃带,辅助切割丝113和横切装置4切割热态下的玻璃带,并且在切割完毕后,抓取装置5能够将其转运。通过设置物性感应器、第二温度传感器和第二调节电极,能够精准控制整个熔融玻璃的温场,控制上导料板110和下导料板112之间的玻璃带温场,从而有利于切割丝113和横切装置4切割热态下的玻璃。
隔板的末端1041向中央倾斜,隔板的末端的纵截面大致呈三角形(前文所述的V型结构),底部与上导料板110的底部平齐。该三角形设置能够使下拉的熔融玻璃液在隔板的末端1041的底部重新合二为一,有效减小内部应力;通过设置隔板1041的底部与上导料板110的底部平齐,能够提高切割丝113的切割效果。
如图3所示,各个横隔板111的上表面与对应的外板的底部紧贴,横隔板111的下表面与对应的上导料板110的顶部紧贴,能够防止熔融玻璃液泄露;横隔板111的外端与伸缩装置3连接,以驱动横隔板111左右滑动,从而靠近或远离隔板104,以便控制熔融玻璃的流出宽度,进而控制玻璃带的宽度,能够用于生产不用宽度要求的玻璃带;还可以控制横隔板111与隔板104接触,以截断熔融玻璃。
在一种具体的实施方式中,如图4所示,所述伸缩装置3包括第一电机301、第一丝杆302、滑台303和滑座304。其中,滑座304远离成型腔103的一侧设有第一电机301,第一电机301的输出端与第一丝杆302连接;第一丝杆302上设有丝杆螺母(即第一螺母,其固定于滑台303的下方,图中未示出),丝杆螺母与滑台303的中部固定连接;滑台303的两侧滑动设置在滑座304上;横隔板111设置在滑台303上,以在第一丝杆302的驱动 下随滑台303一起运动。通过设置第一电机301,能够带动第一丝杆302转动;通过设置第一丝杆302和丝杆螺母304,能够推动滑台303在滑座304上直线滑动,将第一丝杆的旋转运动转化为滑台的直线运动,从而带动横隔板111在上导料板110与第一外板101和第二外板102之间滑动,精准控制下拉的熔融玻璃的流量。此外,滑台303与滑座304之间为滑动连接关系,其可以采用多种设置方式实现,例如,滑轨和滑块的方式,轴承运动的方式等等,这是机械领域的技术人员所熟知的。此外,伸缩装置3还可以采用其他能够实现推动横隔板111水平移动的现有的机械或电控产品。
如图5和图6所示,所述横切装置4包括安装板401、第二电机402、平移台403和连接块404;其中,安装板401远离成型腔103的一侧设有第二电机402,安装板401靠近成型腔103的一侧设有主动轮405、从动轮406和滑轨407。主动轮405和从动轮406分别位于安装板401的横向的两端。第二电机402的输出端与主动轮405连接,以驱动主动轮405转动;主动轮405通过传动带408与从动轮406连接。传动带408的上方和下方均设有滑轨407,滑轨407安装在安装板401上,与传动带403的平移方向一致;平移台403的顶部和底部分别通过滑块409与安装板401上的滑轨407配合。平移台403的中部通过连接块404与传动带408连接,以随传动带403运动。平移台403上设有安装块410,切割丝113的端头与安装块410连接,以将切割丝113固定在横切装置4上,随平移台403运动。
通过设置安装板401,能够安装第二电机402、平移台403、主动轮405、从动轮406和滑轨407;本实施方式能够使得第二电机402通过传动带408带动平移台403做往复直线运动,从而带动安装块410和切割丝113做往复直线运动,切割热态下的玻璃;通过设置滑轨407和滑块409,能够保证平移台403运动的稳定性,提高切割质量。
如图6所示,所述横切装置4还可以包括支撑腿411,其设置在安装板401的底部两侧。通过设置支撑腿411,能够稳定地支撑安装板401。此外,所述横切装置4还可以包括多个光电传感器412和遮光板413;其中,光电传感器412设置在安装板401的顶部,可采用槽型光电传感器;遮光板413设置在平移台403上,遮光板413与光电传感器412相配合。通过设置光电传感器412和遮光板413,能够实时监测平移台403的位置,从而判断切割丝113的位置和玻璃的切割进度。
在一实施方式中,两个工作中的光电传感器412之间的距离略大于所需切割的玻璃带的宽度,从而当玻璃带被切割完毕后,可以控制横切装置4停止工作。具体地,各个光电传感器412分别与信号处理器205相连。各个光电传感器412具有相对设置的发光元件4121和受光元件4122,二者之间形成遮光板413能够通过的间隙4123。所述发光元件4121能够发出红外光等可见光;当间隙4123无阻时,受光元件4122能够接收到发光元件4121发出的光,信号处理器205不作判断;当遮光板413运行至间隙4123中时,阻挡了发出的光,受光元件4122无法接收到光,信号处理器205能够获取该信号,从而控制第二电机402开始工作或者停止工作,切割丝113开始切割或停止切割。光电传感器412和遮光板413的工作原理属于电控领域的常规技术方式,是很容易实现的。
如图6中设置了三个光电传感器,左边第一光电传感器为初始端,左边第二光电传感 器和第三光电传感器均为停止端,位于两端的第一光电传感器和第三光电传感器之间的宽度略大于所能切割的玻璃带的最大宽度;中间的第二光电传感器可移动地设置在安装板401上,通过调整与第一光电传感器之间的宽度(此时,第三光电传感器不工作),从而可以适用于多种不同宽度的玻璃带的切割。当遮光板413到达第一光电传感器时,信号处理器205能够判断平移台403位于初始端,从而控制第二电机402开始工作;当遮光板413到达第二光电传感器或第三光电传感器时,信号处理器205能够判断平移台403位于停止端(切割完成),从而控制第二电机402停止工作。通过该设置还可以确定切割丝113和平移台403的位置,从而判断二者的位置和切割进度。
如图7和图8所示,所述抓取装置5包括升降装置501、减速电机502和玻璃夹具503;其中,升降装置501的升降台5013上设有减速电机502,减速电机502的输出端设有玻璃夹具503。通过设置升降装置501,能够调整减速电机502和玻璃夹具503的高度位置,从而夹取玻璃,转移玻璃;通过设置减速电机502,能够调整玻璃夹具和玻璃的空间状态,将玻璃由竖直状态调整为水平状态,方便后续转运;通过设置玻璃夹具503,能够稳定夹取玻璃。
在一种具体的实施方式中,如图7所示,所述升降装置501包括第三电机5011以及竖直设置的第二丝杆5012,第三电机5011可为伺服电机,其输出端连接第二丝杆5012以驱动其转动。所述第二丝杆5012上设置有第二螺母(图中未示出),其至少一侧被限位,从而仅能随第二丝杆5012上下移动。所述升降台5013与第二螺母连接,以随其上下运动。此外,所述升降装置501还可以采用其他能够实现升降的机械或电控装置,例如活塞杆推动等方式,以实现升降台5013的上下移动。
所述升降装置501的升降台5013上设有能够随其上下移动的第四电机504,可为伺服电机,其输出端连接减速电机502的输入端,减速电机502的输出端连接玻璃夹具。减速电机502能够将第四电机504的输出方向进行垂直转换,从而可以控制玻璃夹具503进行翻转,例如由竖直方向转为水平方向。
如图7所示,所述玻璃夹具503包括两个相对设置的用于夹取玻璃带的夹板(即第一夹板5031和第二夹板5032)以及支撑板5033;其中,支撑板5033的第一侧滑动地设置所述的两个夹板5031,5032,支撑板5033的与第一侧相对的第二侧与减速电机502的输出端连接,从而减速电机502能够控制支撑板5033的转动,进而使得夹板带动玻璃带旋转。
为了使得两个夹板5031,5032可滑动地设置于支撑板5033上,在一种具体的实施方式中,如图7和图9所示,所述玻璃夹具503还包括第五电机5034(可选择伺服电机)和主齿轮5035;第五电机5034的输出端连接主齿轮5035,以驱动主齿轮5035转动。所述主齿轮5035还分别啮合有第一从齿轮5036和第二从齿轮5037,以驱动二者转动。两个从齿轮5036,5037可通过销轴等可转动地设置于支撑板5033的第二侧。所述第一夹板5031连接第一齿条5038,第一齿条5038与第一从齿轮5036相互啮合,以驱动第一齿条5038移动,从而带动第一夹板5031滑动;所述第二夹板5032连接第二齿条5039,第二齿条5039与第二从齿轮5037相互啮合,以驱动第二齿条5039移动,从而带动第二夹板5032滑动。两个齿条5038,5039平行设置。进一步地,所述第一从齿轮5036和第二从齿轮5037 分别位于主齿轮5035的相对的两侧,图9中第一从齿轮5036在上侧,第二从齿轮5037在下侧;从而使得两个齿条的运动方向相反,进而促使两个夹板相互靠近或相互远离。例如在图9中,当主齿轮5035顺时针转动时,第一从齿轮5036逆时针转动,带动第一齿条5038和第一夹板5031向左侧运动;此时,第二从齿轮5037逆时针转动,带动第二齿条5039和第二夹板5032向右侧运动;从而使得两个夹板相互远离;反之,当主齿轮5035逆时针转动时,两个夹板相互靠近。
此外,如图7所示,所述支撑板5033的第一侧还设置有两个导轨5040。各个导轨5040的延伸方向与第一齿条5038和第二齿条5039的运动方向平行。两个夹板的背部可通过滑块(图中未示出)分别嵌入这两个导轨5040中,以沿着导轨滑动,从而对夹板的滑动起约束和支撑作用。当两个导轨5040延伸并合并时,也可以看做一个导轨。
通过设置夹板和支撑板5033,能够代替常规的玻璃吸盘,两个夹板5031,5032在支撑板5033上滑动,从两侧稳定夹持玻璃,使用寿命长,不需要定期更换,降低生产成本,提高生产效率。此外,随着机器人技术的发展,本申请中的抓取装置5还可以直接购买或者定做机器手臂,用于实现对成型的玻璃带的抓取工作。
在本实施方式中,如图3所示,所述伸缩装置3具有两个,分别连接两个横隔板111,从相对的两侧对熔融玻璃进行节流。所述横切装置4也具有两个,分别固定切割丝113的两端,将切割丝在图3中的前后方向进行移动,以对初步成型的玻璃带进行切割。如图8所示,所述抓取装置具有两个,能够从两个方向分别抓取同一玻璃带,稳定性更好。此外,值得理解的是,本申请中的各个电机,根据实际的需求,可以选择控制精度较好的伺服电机,也可以选择其他满足需求的电机。
本申请第二种实施方式提供了一种载板玻璃的制造方法,可采用前文任一实施方式所述的载板玻璃制造装置,该制造方法包括:
熔融玻璃进入到第一外板102和第二外板103之间的成型腔内,且通过隔板105将成型腔113内的熔融玻璃分成两部分;
两部分熔融玻璃分别在第一容腔1031和第二容腔1032内且沿着隔板105的侧面同时向玻璃带腔1033方向流动;
从第一容腔1031和第二容腔1032流动到隔板的末端1041的熔融玻璃合二为一并在玻璃带腔1033内向下拉制形成玻璃带。
熔融玻璃分别在所述第一容腔1031和第二容腔1032向下流动过程中,还可以通过所述第一温度感应器201和温控单元202控制熔融玻璃的流动性。
熔融玻璃在所述玻璃带腔1033内流动过程中,还可以通过所述物性感应器和第二温度传感器204感应玻璃带的物理特性,并通过信号反馈给信号处理器205,所述信号处理器205控制各不同区域温控单元对成型腔内熔融玻璃的流动性进行控制。
在一种更具体的实施方式中,所述载板玻璃制造方法,包括以下步骤:
S1、玻璃带成型:控制两个横隔板111与隔板104之间的间距,以便控制玻璃带的宽 度;成型腔103内的熔融玻璃液沿着第一容腔1031和第二容腔1032向下拉制成型,在隔板的末端1041的底部合二为一,然后向下拉制形成玻璃带;玻璃带在两个上导料板110和两个下导料板112之间成型后,继续向下移动,到达抓取装置5的玻璃夹具范围内时,两个伸缩装置3同步控制两个横隔板111水平移动,第一电机301带动第一丝杆302转动,通过丝杆螺母带动滑台303在滑座304上滑动,滑台303带动横隔板111水平移动,从而使两个横隔板111同步朝向隔板104水平移动,截断熔融玻璃;
S2、玻璃带夹取:抓取装置5启动,玻璃夹具503夹住玻璃带,第五电机5034通过齿轮及齿条分别推动两个夹板沿着支撑板5033同步向中间滑动,夹取两个夹板之间的玻璃带;
S3、玻璃带切割:两个横切装置4同步启动,第二电机402带动主动轮405转动,使传动带408在主动轮405和从动轮406之间转动,传动带408通过连接块404带动平移台403在滑轨407上水平移动,使得两个平移台403的安装块410一起带动切割丝113沿着上导料板110和下导料板112之间的间隙切割热态下的玻璃带,将成型后的玻璃带与隔板104上的熔融玻璃分离;
S4、玻璃带转移:升降装置501启动,带动玻璃夹具503向下移动,将玻璃带从两个下导料板112之间带出,第四电机504和减速电机502启动,旋转玻璃夹具503,将竖直状态下的玻璃带旋转至水平状态,方便取下转移,进行二次加工。
所述的实施方式仅仅是对本申请的优选实施方式进行描述,并非对本申请的范围进行限定,在不脱离本申请设计精神的前提下,本领域普通技术人员对本申请的技术方案作出的各种变形和改进,均应落入本申请权利要求书确定的保护范围内。

Claims (11)

  1. 一种载板玻璃制造装置,其中,包括使熔融玻璃成型的玻璃成型器本体;所述玻璃成型器本体包括:
    间隔对称设置的第一外板和第二外板,二者之间形成成型腔,熔融玻璃在所述成型腔内从上到下流动;
    所述第一外板和第二外板之间的中部竖向设置有隔板,所述隔板将成型腔的上部分隔成第一容腔和第二容腔;
    所述成型腔还包括位于成型腔的下部的玻璃带腔,其中,所述隔板的末端位于玻璃带腔上部,所述玻璃带腔上端为熔融玻璃的下拉出口,所述下拉出口呈双缝结构且该下拉出口分别与第一容腔和第二容腔的底部连通;
    熔融玻璃在所述第一容腔和第二容腔内从上到下流动且第一容腔和第二容腔内的熔融玻璃同时流入玻璃带腔中。
  2. 根据权利要求1所述的载板玻璃制造装置,其中,所述第一外板和第二外板的顶部高于隔板的顶部;所述隔板与第一外板和第二外板相对的侧面分别固定设置有第一温度传感器,所述第一外板和第二外板与隔板相对的侧面分别固定设置有第一温度感应器及第一调节电极,均与信号处理器电性连接;所述玻璃带腔的两侧分别固定设置有物性感应器,所述物性感应器与信号处理器电性连接。
  3. 根据权利要求1所述的载板玻璃制造装置,其中,所述第一外板和第二外板均呈折型且二者结构相同,各个外板包括竖直板体和倾斜板体,倾斜板体位于竖直板体底部,所述倾斜板体顶部与隔板之间的距离大于其底部与隔板之间的距离;所述倾斜板体与隔板侧面相对的一侧为倾斜平面或者倾斜曲面中的任一种;所述玻璃带腔的上部为上宽下窄的V型结构,所述隔板的末端为上宽下窄的V型结构。
  4. 根据权利要求1所述的载板玻璃制造装置,其中,第一外板和第二外板统称为外板;各个外板的下方分别竖直设置有上导料板;上导料板与外板之间滑动设有横隔板;各个上导料板的下方分别竖直设有下导料板;上导料板和下导料板之间设有切割丝,切割丝的两端分别与横切装置连接,以切割玻璃带;下导料板的下方设有用于抓取玻璃带的抓取装置。
  5. 根据权利要求4所述的载板玻璃制造装置,其中,横隔板的上表面与外板的底部紧贴,横隔板的下表面与上导料板的顶部紧贴,横隔板的外端与伸缩装置连接,以驱动横隔板滑动;各横隔板被配置为能够与隔板之间形成所述的双缝结构,以控制玻璃带的宽度;以及能够与隔板接触,以截断熔融玻璃;上导料板的底部与隔板的末端的底部平齐。
  6. 根据权利要求5所述的载板玻璃制造装置,其中,所述伸缩装置包括第一电机、第一丝杆、滑台和滑座,其中,滑座远离成型腔的一侧设有第一电机,第一电机的输出端与第一丝杆连接,第一丝杆上设有第一螺母,第一螺母与滑台固定连接,滑台可滑动地设置在滑座上,横隔板设置在滑台上,以在第一电机的驱动下随滑台一起运动。
  7. 根据权利要求4所述的载板玻璃制造装置,其中,所述横切装置包括安装板、第二电机、平移台和连接块,安装板远离成型腔的一侧设有第二电机,安装板靠近成型腔的一侧的设有主动轮、从动轮和滑轨;主动轮和从动轮分别位于安装板的两端;第二电机的输出端与主动轮连接,主动轮通过传动带与从动轮连接;安装板上设有与传动带的平移方向一致的滑轨,平移台通过滑块与安装板上的滑轨配合;平移台通过连接块与传动带连接,以随传动带一起运动;平移台上设有安装块,切割丝的端头与安装块连接。
  8. 根据权利要求7所述的载板玻璃制造装置,其中,所述横切装置还包括至少两个光电传感器和遮光板;其中,光电传感器沿着传动带的平移方向设置在安装板上,遮光板设置在平移台上;各个光电传感器具有相对设置的发光元件和受光元件,二者之间形成遮光板能够通过的间隙;通过遮光板位于间隙中或者间隙外,以判断切割丝的位置。
  9. 根据权利要求4所述的载板玻璃制造装置,其中,所述抓取装置包括能够推动升降台上下移动的升降装置、减速电机和玻璃夹具,升降台上设有第四电机,第四电机的输出端连接减速电机的输入端,减速电机的输出端连接玻璃夹具;所述玻璃夹具包括相对设置的第一夹板和第二夹板,以及支撑板;其中,支撑板的第一侧具有两个导轨,第一夹板和第二夹板分别可滑动地嵌入导轨中,以限位;所述支撑板的第二侧与减速电机的输出端连接;所述玻璃夹具还具有第五电机,第五电机的输出端连接主齿轮,以驱动主齿轮转动;主齿轮分别啮合有第一从齿轮和第二从齿轮,以同时驱动二者转动;所述第一夹板连接与第一从齿轮啮合的第一齿条,第二夹板连接与第二从齿轮啮合的第二齿条;导轨、第一齿条和第二齿条的运动方向平行。
  10. 一种载板玻璃制造方法,采用如权利要求1-9任一项所述的载板玻璃制造装置,其中,所述制造方法包括:
    熔融玻璃进入到第一外板和第二外板之间的成型腔内,且通过隔板将成型腔内的熔融玻璃分成两部分;
    两部分熔融玻璃分别在第一容腔和第二容腔且沿着隔板的侧面同时向玻璃带腔方向流动;
    从第一容腔和第二容腔流动到隔板末端的熔融玻璃合二为一并在玻璃带腔内向下拉制形成玻璃带。
  11. 根据权利要求10所述的载板玻璃制造方法,其中,更具体的包括以下步骤:
    玻璃带成型:两个伸缩装置启动,控制各个横隔板与隔板之间的间距,以控制玻璃带的宽度;成型腔内的熔融玻璃液沿着隔板和外板向下拉制成形,在隔板的末端的底部合二为一,然后向下拉制形成玻璃带;
    玻璃带夹取:两个抓取装置启动,抓取装置的玻璃夹具夹住玻璃带;两个伸缩装置再次启动,控制各个横隔板与隔板接触,以截断熔融玻璃;
    玻璃带切割:两个横切装置同步启动,带动切割丝沿着上导料板和下导料板之间的间隙切割热态下的玻璃带;
    玻璃带转移:两个抓取装置的两个升降装置启动,带动玻璃夹具向下移动,将玻璃带从两个下导料板之间带出;然后两个抓取装置的减速电机启动,旋转玻璃夹具,将竖直状态下的玻璃带旋转至水平状态,进行转移。
PCT/CN2023/135820 2022-12-13 2023-12-01 载板玻璃制造装置及制造方法 WO2024078642A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211593579.8A CN115650564B (zh) 2022-12-13 2022-12-13 一种载板玻璃成型装置及成型方法
CN202211593579.8 2022-12-13
CN202311197353.0 2023-09-15
CN202311197353.0A CN117142751A (zh) 2023-09-15 2023-09-15 高世代oled载板玻璃制造装置及工艺

Publications (1)

Publication Number Publication Date
WO2024078642A1 true WO2024078642A1 (zh) 2024-04-18

Family

ID=90668884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135820 WO2024078642A1 (zh) 2022-12-13 2023-12-01 载板玻璃制造装置及制造方法

Country Status (1)

Country Link
WO (1) WO2024078642A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225452A (ja) * 2011-08-17 2011-11-10 Avanstrate Inc ガラス板の製造方法および製造装置
CN102674661A (zh) * 2012-03-31 2012-09-19 彩虹显示器件股份有限公司 溢流下拉装置中玻璃板成形区域温度控制方法
US20210024400A1 (en) * 2019-07-24 2021-01-28 Schott Ag Apparatus and method for producing glass ribbons
CN112279496A (zh) * 2019-07-24 2021-01-29 肖特股份有限公司 制造玻璃带的设备和方法
CN112608013A (zh) * 2020-12-29 2021-04-06 辽宁东戴河新区中远玻璃工业装备有限公司 玻璃成型装置
US20210269347A1 (en) * 2018-11-21 2021-09-02 Schott Ag Method and apparatus for producing thin glass and thin glass ribbon produced thereby
CN114644445A (zh) * 2022-05-20 2022-06-21 武汉荣佳达光电科技有限公司 一种载板玻璃成型生产成型装置及其方法
CN115650564A (zh) * 2022-12-13 2023-01-31 潍坊佳昇光电科技有限公司 一种载板玻璃成型装置及成型方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225452A (ja) * 2011-08-17 2011-11-10 Avanstrate Inc ガラス板の製造方法および製造装置
CN102674661A (zh) * 2012-03-31 2012-09-19 彩虹显示器件股份有限公司 溢流下拉装置中玻璃板成形区域温度控制方法
US20210269347A1 (en) * 2018-11-21 2021-09-02 Schott Ag Method and apparatus for producing thin glass and thin glass ribbon produced thereby
US20210024400A1 (en) * 2019-07-24 2021-01-28 Schott Ag Apparatus and method for producing glass ribbons
CN112279496A (zh) * 2019-07-24 2021-01-29 肖特股份有限公司 制造玻璃带的设备和方法
CN112608013A (zh) * 2020-12-29 2021-04-06 辽宁东戴河新区中远玻璃工业装备有限公司 玻璃成型装置
CN114644445A (zh) * 2022-05-20 2022-06-21 武汉荣佳达光电科技有限公司 一种载板玻璃成型生产成型装置及其方法
CN115650564A (zh) * 2022-12-13 2023-01-31 潍坊佳昇光电科技有限公司 一种载板玻璃成型装置及成型方法

Similar Documents

Publication Publication Date Title
CN109203456A (zh) 一种基于激光技术的丝材增减材一体化成形系统及方法
CN213141821U (zh) 一种石英玻璃棒火焰抛光和退火的装置
WO2024078642A1 (zh) 载板玻璃制造装置及制造方法
CN104860520A (zh) 一种玻璃钢化炉用辊道的辊子绕绳装置
CN108996893A (zh) 一种平板玻璃翘曲品质的控制装置及方法
CN112976587A (zh) 一种用于生产复合板的全自动滚压加工设备
CN212682812U (zh) 一种激光切割装置的激光切割机构
CN210651924U (zh) 一种双向中空板封边模具及中空板双向封边机
CN208232313U (zh) 一种悬臂式3d打印机
CN110919727A (zh) 一种便于生产的板材加工装置
CN219151169U (zh) 扎轮机
CN101492239B (zh) 一种玻璃钢化设备的平风栅高度调节装置
CN116119903B (zh) 一种光学玻璃小条料成型装置
CN217257371U (zh) 一种光学玻璃单线切割居中装置
CN117142751A (zh) 高世代oled载板玻璃制造装置及工艺
CN213613423U (zh) 热熔机
CN220901888U (zh) 一种浇包预热装置
CN218398919U (zh) 触摸屏面板切割夹具
TWM555564U (zh) 多功能熱處理機
CN216738785U (zh) 热粘合装置
CN214490003U (zh) 一种方便使用的镜头打磨固定机构
CN219647977U (zh) 一种在线式3d引导点胶机
CN217834864U (zh) 一种新型可更换模具的饺子皮机
JPH1120015A (ja) シート成形機におけるシートクランプ装置
CN216219826U (zh) 一种用于曲奇生产的挤花机