WO2024078563A1 - 一种新型屏蔽结构线缆 - Google Patents

一种新型屏蔽结构线缆 Download PDF

Info

Publication number
WO2024078563A1
WO2024078563A1 PCT/CN2023/124186 CN2023124186W WO2024078563A1 WO 2024078563 A1 WO2024078563 A1 WO 2024078563A1 CN 2023124186 W CN2023124186 W CN 2023124186W WO 2024078563 A1 WO2024078563 A1 WO 2024078563A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive coating
coating layer
conductive
cable
Prior art date
Application number
PCT/CN2023/124186
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车科技股份有限公司 filed Critical 长春捷翼汽车科技股份有限公司
Publication of WO2024078563A1 publication Critical patent/WO2024078563A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/40Insulated conductors or cables characterised by their form with arrangements for facilitating mounting or securing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the present application relates to the field of cable technology, and more specifically, to a new type of shielded structure cable.
  • the current passing through is relatively large, and a magnetic field is generated around the cable.
  • a shielding structure is required for the cable.
  • the currently commonly used shielding net is woven with metal wire, and metal foil is spirally wrapped around the inner or outer layer of the metal wire.
  • the winding of the metal foil will reduce the flexibility of the cable.
  • the use of large equipment when setting metal wire and metal foil on the cable will also increase the production cost of the cable.
  • One purpose of the present application is to provide a new technical solution for a new shielded structure cable.
  • a new shielded structure cable comprising a sheath and at least one wire sheathed in the sheath, the wire comprising a conductor, an insulating layer arranged on the periphery of the conductor, a shielding structure arranged between the insulating layer and the sheath, the shielding structure comprising a conductive coating layer.
  • the conductive coating layer is attached to any one of the outer circumference of the insulating layer and the inner circumference of the sheath.
  • the conductive paint layer is attached to the inner periphery of the sheath, and the shielding structure further includes a first porous conductive layer, which is arranged between the conductive paint layer and the outer periphery of the insulating layer.
  • the conductive paint layer is attached to the outer periphery of the insulating layer, and the shielding structure further includes a first porous conductive layer, which is arranged between the conductive paint layer and the inner periphery of the sheath.
  • the conductive coating layer includes a first conductive coating layer and a second conductive coating layer; the first conductive coating layer is attached to the outer periphery of the insulating layer; and the second conductive coating layer is attached to the inner periphery of the sheath.
  • the shielding structure further comprises a second porous conductive layer, which is sleeved between the first conductive coating layer and the second conductive coating layer. Between the two conductive coating layers.
  • the impedance between the second porous conductive layer and the first conductive coating layer is less than 80 m ⁇ ; the impedance between the second porous conductive layer and the second conductive coating layer is less than 80 m ⁇ .
  • an insulating pressure-resistant layer is provided at least at one location between the second porous conductive layer and the first conductive paint layer and between the second porous conductive layer and the second conductive paint layer.
  • the insulating pressure-resistant layer has multiple airbags filled with inert gas, which are long strips, are evenly spaced along the circumferential direction of the cable and are arranged through the axial direction of the cable; or, the airbags are cylindrical, and are connected end to end along the axial direction of the cable.
  • the insulating pressure-resistant layer is fire-proof mud or flame-retardant sponge.
  • the first conductive coating layer and the second conductive coating layer are respectively formed on the outer periphery of the insulating layer and the inner periphery of the sheath by spraying, brushing, dipping or infiltration, and the thickness of the first conductive coating layer and the second conductive coating layer are both 0.01mm-3.5mm.
  • the elongation of the conductive coating layer is greater than or equal to 150%.
  • the difference between the maximum thickness and the minimum thickness of the conductive coating layer is less than 1.7 mm.
  • the transfer impedance of the conductive coating layer in the axial direction of the cable is less than or equal to 100 m ⁇ .
  • the shielding layer is provided in the form of a conductive coating layer on the outside of the insulating layer, which can simplify the structure of the shielding layer, simplify the production process of the shielding layer, do not affect the flexibility of the cable, facilitate the bending of the cable during installation, simplify the difficulty of installing the cable on vehicles and other carriers, and facilitate pulling and dragging when connecting the charging pile and the charging gun as a charging cable, which is convenient for users to use.
  • the shielding structure comprises a first conductive coating layer arranged on the outer side of the insulating layer and a second conductive coating layer arranged on the inner periphery of the sheath, which can improve the shielding effect of the cable.
  • a conductive coating layer is used to replace the shielding mesh woven with metal wires and the metal foil spirally arranged with the shielding mesh, thereby reducing the use of shielding mesh weaving equipment and spirally wound metal foil equipment, occupying a small area, reducing the processing cost of the cable, and at the same time reducing the production cost of the cable.
  • the conductive coating layer as the shielding layer of the cable, the use of metal woven shielding mesh and metal foil is saved, the raw material production cost of the cable is reduced, and at the same time the weight of the cable is reduced, the flexibility of the cable is enhanced, and the cable can be pulled, dragged, or bent as needed during use, simplifying the cable installation process.
  • the electromagnetic waves generated by the cable during the power-on process can be absorbed, and the shielding effect of the shielding structure can be enhanced; the magnetic field generated by the cable during the power-on process is prevented from interfering with the normal use of other control systems, and at the same time, the signal transmission in the cable is prevented from being interfered with by other electromagnetic fields, resulting in signal distortion.
  • the insulating pressure-resistant layer can be set between the first conductive coating layer and the second porous conductive layer, or between the second conductive coating layer and the second porous conductive layer, which can protect one of the first conductive coating layer and the second conductive coating layer to avoid damage to the first conductive coating layer or the second conductive coating layer.
  • the insulating pressure-resistant layer is made of flame-retardant material, which can prevent the cable from burning during charging.
  • the insulating pressure-resistant layer can be used to make the shielding structure have multiple separated shielding means, so that the electromagnetic field can be shielded multiple times with different emphases.
  • a thick second conductive coating layer is used on the outer layer to focus on effectively shielding the magnetic field, and a thin first conductive coating layer is used on the inner side to focus on effectively shielding the electric field.
  • a second porous conductive layer is added on the inner or outer side of the insulating pressure-resistant layer to increase the reflection and absorption of the electromagnetic field in the hole.
  • the asymmetric structure on both sides of the insulating pressure-resistant layer improves the stiffness of the first conductive coating layer and the second conductive coating layer, thereby improving the mechanical properties of the shielding structure.
  • FIG1 is a schematic structural diagram of a novel shielded structure cable according to a first embodiment of the present application
  • FIG2 is a schematic structural diagram of a novel shielded structure cable according to a second embodiment of the present application.
  • FIG3 is a schematic structural diagram of a novel shielded structure cable according to a third embodiment of the present application.
  • FIG4 is a schematic structural diagram of a novel shielded structure cable according to a fourth embodiment of the present application.
  • FIG5 is a schematic structural diagram of a novel shielded structure cable according to a fifth embodiment of the present application.
  • FIG6 is a schematic structural diagram of a novel shielded structure cable according to a sixth embodiment of the present application.
  • FIG7 is a schematic structural diagram of a novel shielded structure cable according to a seventh embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a new shielded structure cable according to the eighth embodiment of the present application.
  • a new shielded structure cable includes a sheath 1 and at least one wire sheathed in the sheath 1, the wire includes a conductor 21, an insulating layer 22 arranged on the periphery of the conductor 21, and a shielding structure arranged between the insulating layer 22 and the sheath 1, the shielding structure includes a conductive coating layer 3.
  • the shielding structure is set in the form of a conductive coating layer 3 on the outside of the insulating layer 22, which can simplify the structure of the shielding layer, simplify the production process of the shielding layer, do not affect the flexibility of the cable, facilitate the bending of the cable during installation, simplify the difficulty of installing the cable on carriers such as vehicles, and facilitate pulling and dragging when connecting the charging pile and the charging gun as a charging cable, which is convenient for users to use.
  • Conductive coating is used to form a conductive coating layer 3 on the outside of the insulating layer 22, so as to replace the metal woven shielding mesh and the metal foil spirally arranged to match the shielding mesh, thereby reducing the use of shielding mesh manufacturing equipment and spirally wound metal foil equipment, occupying a small area, reducing the processing cost of the cable, and at the same time reducing the production cost of the cable.
  • the conductive coating layer 3 as the shielding structure of the cable, the use of metal woven shielding mesh and metal foil is saved, the raw material production cost of the cable is reduced, and at the same time the weight of the cable is reduced, the flexibility of the cable is enhanced, and the cable can be pulled, dragged, or bent as needed during use, thereby simplifying the cable installation process.
  • one conductor may be arranged in the sheath 1; in a new shielding structure cable as shown in FIGS. 1 to 7 , more than one conductor may also be arranged as shown in FIG. 8 .
  • the conductive coating layer 3 is attached to any one of the outer periphery of the insulating layer 22 and the inner periphery of the sheath 1 .
  • the conductive coating layer 3 is disposed on the outer periphery of the insulating layer 22 or the inner periphery of the sheath 1 , and can be selected according to actual needs.
  • the conductive coating layer 3 is attached to the inner periphery of the sheath 1 , and the shielding structure further includes a first porous conductive layer 41 , which is disposed between the inner periphery of the conductive coating layer 3 and the outer periphery of the insulating layer 22 .
  • the first porous conductive layer 41 can absorb the electromagnetic waves generated by the cable during the power-on process, thereby enhancing the shielding effect of the shielding structure; preventing the magnetic field generated by the cable during the power-on process from interfering with the normal use of other control systems, and at the same time, preventing the signal transmission in the cable from being interfered with by other electromagnetic fields and causing signal distortion.
  • the conductive coating layer 3 is attached to the outer periphery of the insulating layer, and the shielding structure further includes a first porous conductive layer 41 , which is disposed between the conductive coating layer 3 and the inner periphery of the sheath 1 .
  • the first porous conductive layer 41 can absorb the electromagnetic waves generated by the cable during the power-on process, thereby enhancing the shielding effect of the shielding structure and preventing the magnetic field generated by the cable during the power-on process from interfering with other control systems. It can ensure the normal use of the system and prevent the signal transmission in the cable from being interfered by other electromagnetic fields and causing signal distortion.
  • the conductive coating layer 3 includes a first conductive coating layer 31 and a second conductive coating layer 32; the first conductive coating layer 31 is attached to the outer periphery of the insulating layer 22; the second conductive coating layer 32 is attached to the inner periphery of the sheath 1.
  • the shielding effect of the shielding structure can be enhanced to prevent the magnetic field generated by the cable during power-on from interfering with the normal use of other control systems.
  • the signal transmission in the cable can be prevented from being interfered with by other electromagnetic fields and causing signal distortion.
  • the shielding structure further includes a second porous conductive layer 42 , and the second porous conductive layer 42 is sleeved between the first conductive coating layer 31 and the second conductive coating layer 32 .
  • the second porous conductive layer 42 can absorb the electromagnetic waves generated by the cable during the power-on process, thereby enhancing the shielding effect of the shielding structure, preventing the magnetic field generated by the cable during the power-on process from interfering with the normal use of other control systems, and at the same time preventing the signal transmission in the cable from being interfered with by other electromagnetic fields and causing signal distortion.
  • the first porous conductive layer 41 and the second porous conductive layer 42 can both be foamed metals.
  • Foamed metals are porous metal materials that form numerous three-dimensional spatial network structures in a metal matrix, also known as porous foamed metals.
  • the first porous conductive layer 41 and the second porous conductive layer 42 may also be conductive sponges.
  • the conductive sponges are produced by the foaming technology of polymer composite materials and are porous conductive materials with uniform foaming pores, softness, elasticity, and no flaking.
  • the impedance between the second porous conductive layer 42 and the first conductive coating layer 31 is less than 80 m ⁇ ; the impedance between the second porous conductive layer 42 and the second conductive coating layer 32 is less than 80 m ⁇ .
  • the inventor selected a new shielding structure cable of the same specification, which did not have a second conductive coating layer 32, and selected different impedances between the first porous conductive layer 41 and the first conductive coating layer 31, and made a series of samples to test the shielding effect respectively.
  • the experimental results are shown in Table 1 below.
  • the shielding performance value greater than 40dB is an ideal value.
  • the shielding performance value is less than 40dB, which does not meet the ideal value requirement.
  • the shielding performance values all meet the ideal value requirements, and the shielding performance becomes better and better as the impedance value decreases. Therefore, the inventor sets the impedance between the first porous conductive layer 41 and the first conductive coating layer 31 to be less than 80m ⁇ .
  • the inventors use a similar method to set the impedance between the second porous conductive layer 42 and the second conductive paint layer 32 to be less than 80 m ⁇ .
  • an insulating pressure-resistant layer 5 is provided at least at one location between the second porous conductive layer 42 and the first conductive coating layer 31 and between the second porous conductive layer 42 and the second conductive coating layer 32 .
  • the insulating pressure-resistant layer 5 can be set between the first conductive coating layer 31 and the second porous conductive layer 42, or between the second conductive coating layer 32 and the second porous conductive layer 42, which can protect one of the first conductive coating layer 31 and the second conductive coating layer 32 to avoid damage to the first conductive coating layer 31 or the second conductive coating layer 32.
  • the insulating pressure-resistant layer 5 is made of flame-retardant material, which can prevent the cable from burning during charging.
  • the insulating pressure-resistant layer 5 can be used to make the shielding structure have the means of separating multiple shielding, so as to shield the electromagnetic field multiple times with different emphases.
  • a thick second conductive coating layer 32 is used on the outer layer to focus on effectively shielding the magnetic field, and a thin first conductive coating layer 31 is used on the inner side to focus on effectively shielding the electric field.
  • a second porous conductive layer 42 is added on the inner or outer side of the insulating pressure-resistant layer 5 to increase the reflection and absorption of the electromagnetic field in the holes.
  • the asymmetric structure on both sides of the insulating pressure-resistant layer 5 improves the stiffness of the first conductive coating layer 31 and the second conductive coating layer 32 under stress, thereby improving the mechanical properties of the shielding structure.
  • the insulating pressure-resistant layer 5 has a plurality of airbags 51 filled with inert gas, the airbags 51 are in the shape of long strips, the airbags 51 are evenly spaced along the circumferential direction of the cable and are arranged through the axial direction of the cable; or, the airbags 51 are in the shape of circular tubes, and the airbags 51 are connected end to end along the axial direction of the cable.
  • the airbag 51 is filled with inert gas, which plays a flame retardant role when the cable burns. At the same time, the airbag 51 can protect the internal structure of the cable when the cable is hit by external force.
  • the insulating pressure-resistant layer 5 is fireproof mud or flame-retardant sponge.
  • Fire retardant mud or flame retardant sponge can play a flame retardant role when the cable burns. At the same time, fire retardant mud or flame retardant sponge can protect the internal structure of the cable when the cable is hit by external force.
  • the first conductive coating layer 31 and the second conductive coating layer 32 are respectively formed on the outer periphery of the insulating layer 22 and the inner periphery of the sheath 1 by spraying, brushing, dipping or infiltration, and the thickness of the first conductive coating layer 31 and the second conductive coating layer 32 are both 0.01mm-3.5mm.
  • Spraying is a coating method that uses a spray gun or a disc atomizer to disperse uniform and fine droplets by pressure or centrifugal force and apply them to the surface of the insulating layer 22. It can be divided into air spraying, airless spraying, electrostatic spraying and various derivative methods of the above basic spraying forms, such as high-flow low-pressure atomization spraying, thermal spraying, automatic spraying, multi-group spraying, etc.
  • Brush coating is a method of using various paintbrushes and paintbrushes to apply paint on the surface of the product to form a uniform coating. It is the earliest and most commonly used coating method. The advantages of brush coating are that it requires almost no investment in equipment and fixtures, saves coating materials, and generally does not require a masking process.
  • Impregnation refers to a treatment method in which the conductive coating penetrates into the outer peripheral surface of the insulating layer 22 to solidify the conductive coating and form a cured film on the insulating layer 22 of the cable.
  • Dip coating is to immerse the object to be coated in a tank containing paint, take it out of the tank after a short time, and return the excess coating liquid to the tank.
  • the characteristics of dip coating are high production efficiency, simple operation and less paint loss.
  • the inventor selected cables of the same specification, changed the thickness of the first conductive coating layer 31, produced a series of samples, and tested the shielding effect respectively.
  • the experimental results are shown in Table 2 below.
  • the shielding performance value greater than 40dB is an ideal value.
  • the shielding performance value is less than 40 dB, which does not meet the ideal value requirements.
  • the shielding performance values all meet the ideal value requirements, and the shielding performance becomes better and better with the increase of the thickness of the first conductive coating layer 31.
  • the shielding performance value of the first conductive coating layer 31 has no obvious improvement trend, and due to the increase in the thickness of the first conductive coating layer 31, the use of the conductive coating and the cable diameter will be affected. Therefore, the inventor sets the thickness of the first conductive coating layer 31 to 0.01 mm-3.5 mm.
  • the inventor selected cables of the same specification, changed the thickness of the second conductive coating layer 32, produced a series of samples, and tested the shielding effect respectively.
  • the experimental results are shown in Table 3 below.
  • the shielding performance value greater than 40dB is an ideal value.
  • the shielding performance value is less than 40 dB, which does not meet the ideal value requirement.
  • the shielding performance values all meet the ideal value requirements, and the shielding performance becomes better and better with the increase of the thickness of the second conductive coating layer 32.
  • the shielding performance value of the second conductive coating layer 32 has no obvious improvement trend, and due to the increase in the thickness of the second conductive coating layer 32, the amount of conductive coating used and the cable diameter will be affected. Therefore, the inventor sets the thickness of the second conductive coating layer 32 to 0.01 mm-3.5 mm.
  • the conductive coating layer 3 is a coating containing conductive particles, and the conductive particles are made of one of metals, conductive ceramics, carbon-containing conductors, solid electrolytes, and mixed conductors.
  • conductive coating is a functional coating that is mixed with conductive particles in a chemical solvent and can be sprayed on non-metallic materials to shield electromagnetic waves. It has the advantages of room temperature curing and strong adhesion.
  • the coating containing conductive particles has conductive properties, that is, it has a shielding function. The biggest advantage is low cost, simple and practical, and wide application.
  • the most used is silver-based conductive coating, which is also one of the earliest developed varieties.
  • mixed conductors refer to a type of conductor in which ionic conductivity and electronic conductivity exist at the same time. Also called mixed ion-electron conductors, it is a type of solid material between ionic conductors and electronic conductors. It has both ionic conductivity and electronic conductivity. The ionic conductivity and electronic conductivity of mixed conductors with practical value are both quite high.
  • the volume proportion of the conductive particles in the conductive coating is 3%-95%.
  • the inventor chooses the volume proportion of the conductive particles in the conductive coating to be 3%-95%.
  • the carbon-containing conductor is one or more of graphite silver, graphene silver, graphite powder, carbon nanotube material, and graphene material.
  • Graphite powder is a mineral powder, the main component of which is carbon. It is soft and black-gray. Graphite powder is a very good non-metallic conductive material. Carbon nanotubes have good electrical conductivity. Since the structure of carbon nanotubes is the same as the layer structure of graphite, they have very good electrical properties. Graphene has extremely high electrical properties. Carbon-containing conductors containing these three materials have high electrical conductivity and good shielding properties, and can well achieve electromagnetic shielding of wires.
  • the elongation of the conductive coating layer 3 is greater than or equal to 150%.
  • the elasticity of the conductive coating layer 3 determines whether the conductive coating layer 3 will crack or break during the bending of the cable, which affects the shielding effect of the conductive coating layer 3.
  • the inventor has selected the conductive coating layer 3 of the cable in this embodiment to have an elongation greater than or equal to 150%, ensuring that the conductive coating layer 3 will not crack or break during long-term use of the cable, thereby ensuring that the conductive coating layer 3 has an excellent shielding effect.
  • the elongation is calculated according to the following formula:
  • L1 is the maximum length that the first conductive coating layer 31 can be stretched, at which point the conductive coating layer 3 has cracks or cracks;
  • L0 is the original length of the specimen.
  • Conductive coating is a polymer composite material.
  • the elongation of the coating film formed by the conductive coating can be adjusted by adjusting the mass ratio of the components polyurethane prepolymer and MOCA (i.e., polyurethane vulcanizer; also known as: 3,3'-dichloro-4,4'-diaminodiphenylmethane or di-o-chlorodiphenylamine methane).
  • MOCA polyurethane vulcanizer
  • Our inventors have verified the effect of the mass ratio of polyurethane prepolymer and MOCA on the elongation of the conductive coating layer through experimental methods. Please see the table below:
  • the elongation of the conductive coating layer 3 can reach more than 150%, and the existing conductive coating can obtain a conductive coating layer that meets the requirements.
  • the difference between the maximum thickness and the minimum thickness of the conductive coating layer 3 is less than 1.7 mm.
  • the difference between the maximum thickness and the minimum thickness of the conductive coating layer 3 is less than 1.7 mm, which can ensure that the shielding performance of the conductive shielding layer is not affected, and ensure that the conductive coating layer has good shielding performance.
  • the transfer impedance of the conductive coating layer 3 in the axial direction of the cable is less than or equal to 100 m ⁇ .
  • the shielding material usually uses transfer impedance to characterize the shielding effect of the conductive coating layer 3.
  • the transfer impedance of the conductive coating layer 3 is defined as the ratio of the differential mode voltage U induced by the shield per unit length to the current Is passing through the surface of the shield, that is:
  • the inventor selected a new shielding structure cable of the same specification and used a conductive coating layer 3 with different transfer impedance values to produce a series of samples, and tested the shielding effect respectively.
  • the experimental results are shown in Table 6 below.
  • the shielding performance value greater than 40dB is an ideal value.
  • the shielding performance value of the conductive coating layer 3 is less than 40dB, which does not meet the ideal value requirement.
  • the transfer impedance value of the conductive coating layer 3 is less than 100m ⁇ , the shielding performance values of the conductive coating layer 3 all meet the ideal value requirements, and the shielding performance becomes better and better as the transfer impedance value of the conductive coating layer 3 decreases. Therefore, the inventor sets the transfer impedance of the conductive coating layer 3 to be less than or equal to 100m ⁇ .

Landscapes

  • Insulated Conductors (AREA)

Abstract

本申请公开了一种新型屏蔽结构线缆,包括,护套和套设在所述护套内的至少一根导线,所述导线包括导体、设置于所述导体外周的绝缘层,设置于所述绝缘层外周的第一导电涂料层。根据本公开的一种新型屏蔽结构线缆,可简化屏蔽层的结构,简化屏蔽层的生产工艺,不影响线缆的柔性,方便线缆在安装过程中弯曲,简化线缆在车辆等载体上的安装难度,以及作为充电线连接充电桩和充电枪时方便拉扯拖拽,方便用户使用。

Description

一种新型屏蔽结构线缆
相关申请
本申请要求于2022年10月14日递交的申请号为202222705140.1的中国专利申请的优先权,并引用上述专利申请公开的内容作为本申请的一部分。
技术领域
本申请涉及线缆技术领域,更具体地,涉及一种新型屏蔽结构线缆。
背景技术
线缆在充电的过程中,通过的电流比较大,线缆周围会产生磁场,为了避免线缆以外的元件被磁场干扰,或者,在线缆内部设置的控制线的信号传输受其他电磁场的干扰导致信号失真,所以需要为线缆设置屏蔽结构,目前常用的屏蔽网是采用金属丝编织而成,以及在金属丝的内层或外侧螺旋缠绕金属箔,但金属箔的缠绕会降低线缆的柔性,同时,在线缆上设置金属丝以及金属箔时使用大型设备,也会增加线缆的生产成本。
因此,线缆技术领域急需生产工艺简单,成本低,柔性佳的一种新型屏蔽结构线缆。
发明内容
本申请的一个目的是提供一种新型屏蔽结构线缆的新技术方案。
根据本申请的第一方面,提供了一种新型屏蔽结构线缆,包括,护套和套设在护套内的至少一根导线,导线包括导体、设置于导体外周的绝缘层,设置于绝缘层与护套之间的屏蔽结构,屏蔽结构包括导电涂料层。
可选地,导电涂料层附着在绝缘层外周与护套内周中的任意一者上。
可选地,导电涂料层附着在护套内周,屏蔽结构还包括第一多孔导电层,第一多孔导电层设置在导电涂料层和绝缘层外周之间。
可选地,导电涂料层附着在绝缘层外周,屏蔽结构还包括第一多孔导电层,第一多孔导电层设置在导电涂料层和护套内周之间。
可选地,导电涂料层包括第一导电涂料层和第二导电涂料层;第一导电涂料层附着在绝缘层外周;第二导电涂料层附着在护套内周。
可选地,屏蔽结构还包括第二多孔导电层,第二多孔导电层套设在第一导电涂料层和第 二导电涂料层之间。
可选地,第二多孔导电层与第一导电涂料层之间的阻抗小于80mΩ;第二多孔导电层与第二导电涂料层之间的阻抗小于80mΩ。
可选地,第二多孔导电层与第一导电涂料层之间、第二多孔导电层与第二导电涂料层之间至少一处设置绝缘抗压层。
可选地,绝缘抗压层具有多个充满惰性气体的气囊,气囊为长条形,气囊沿线缆的周向方向等间距且沿线缆轴向方向贯通设置;或者,气囊为圆管状,气囊沿线缆的轴向方向首尾相接。
可选地,绝缘抗压层为防火泥或阻燃海绵。
可选地,第一导电涂料层和第二导电涂料层均通过喷涂、刷涂、浸涂或浸渗工艺将导电涂料分别成型于绝缘层外周和护套内周,第一导电涂料层以及第二导电涂料层的厚度均为0.01mm-3.5mm。
可选地,导电涂料层的可伸长率大于等于150%。
可选地,导电涂料层的最大厚度与最小厚度之差小于1.7mm。
可选地,导电涂料层在线缆轴向方向的转移阻抗为小于等于100mΩ。
根据本公开的一种新型屏蔽结构线缆,具有如下有益效果:
1、采用在绝缘层外侧设置导电涂料层的形式设置屏蔽层,可简化屏蔽层的结构,简化屏蔽层的生产工艺,不影响线缆的柔性,方便线缆在安装过程中弯曲,简化线缆在车辆等载体上的安装难度,以及作为充电线连接充电桩和充电枪时方便拉扯拖拽,方便用户使用。
屏蔽结构包括绝缘层外侧设置第一导电涂料层和护套内周设置第二导电涂料层,可提高线缆的屏蔽效果。
使用导电涂料层替代代替金属丝编织的屏蔽网和配合屏蔽网螺旋设置的金属箔片,减少屏蔽网编织设备以及螺旋缠绕金属箔片设备的使用,占地面积小,降低了线缆的加工成本,同时降低了线缆的生产成本。
通过导电涂料层作为线缆的屏蔽层使用,节省了金属编织的屏蔽网以及金属箔片的使用,降低了线缆的原料生产成本,同时降低了线缆的重量,增强线缆的柔性,方便线缆在使用过程中进行拉扯、拖拽、或者根据需要进行折弯,简化线缆安装流程。
2、通过在导电涂料层外周或者内周设置第一多孔导电层,或者,通过在第一导电涂料层和第二导电涂料层之间设置第二多孔导电层,可吸收线缆在通电的过程中产生的电磁波,可以增强屏蔽结构的屏蔽效果;防止线缆在通电的过程中产生的磁场干扰其他控制系统的正常使用,同时,防止线缆中信号传输受其他电磁场干扰导致信号失真。
3、通过设置绝缘抗压层,绝缘抗压层可以设置在第一导电涂料层和第二多孔导电层之间,或者设置在第二导电涂料层和第二多孔导电层之间,可以对第一导电涂料层和第二导电涂料层其中一者起到保护作用,避免第一导电涂料层或第二导电涂料层损伤,绝缘抗压层材质为阻燃材料,可以防止线缆在充电过程中发生燃烧事故。
4、通过绝缘抗压层可使得屏蔽结构具有分离多次屏蔽手段,将电磁场进行多次不同侧重的屏蔽,在外层采用厚结构的第二导电涂料层进行屏蔽侧重对磁场进行有效屏蔽,内侧采用薄的第一导电涂料层侧重对电场进行有效屏蔽,同时在绝缘抗压层内侧或外侧增加第二多孔导电层增加电磁场在孔内的反射和吸收,在绝缘抗压层两侧的不对称结构,提高了第一导电涂料层和第二导电涂料层的受力的刚度,提高屏蔽结构的机械性能。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1为本申请第一实施例的一种新型屏蔽结构线缆的结构示意图;
图2为本申请第二实施例的一种新型屏蔽结构线缆的结构示意图;
图3为本申请第三实施例的一种新型屏蔽结构线缆的结构示意图;
图4为本申请第四实施例的一种新型屏蔽结构线缆的结构示意图;
图5为本申请第五实施例的一种新型屏蔽结构线缆的结构示意图;
图6为本申请第六实施例的一种新型屏蔽结构线缆的结构示意图;
图7为本申请第七实施例的一种新型屏蔽结构线缆的结构示意图;
图8为本申请第八实施例的一种新型屏蔽结构线缆的结构示意图。
图中标示如下:
1-护套;21-导体;22-绝缘层;3-导电涂料层;31-第一导电涂料层;32-第二导电涂料层;
41-第一多孔导电层;42-第二多孔导电层;5-抗压层;51-气囊。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应 用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
根据本公开的一种新型屏蔽结构线缆,如图1所示,包括护套1和套设在护套1内的至少一根导线,导线包括导体21、设置于导体21外周的绝缘层22,设置于绝缘层22与护套1之间的屏蔽结构,屏蔽结构包括导电涂料层3。
采用在绝缘层22外侧设置导电涂料层3的形式设置屏蔽结构,可简化屏蔽层的结构,简化屏蔽层的生产工艺,不影响线缆的柔性,方便线缆在安装过程中弯曲,简化线缆在车辆等载体上的安装难度,以及作为充电线连接充电桩和充电枪时方便拉扯拖拽,方便用户使用。
使用导电涂料在绝缘层22外侧形成导电涂料层3,以此代替金属编织的屏蔽网和配合屏蔽网螺旋设置的金属箔片,减少屏蔽网制作设备以及螺旋缠绕金属箔片设备的使用,占地面积小,降低了线缆的加工成本,同时降低了线缆的生产成本。
通过导电涂料层3作为线缆的屏蔽结构使用,节省了金属编织的屏蔽网以及金属箔片的使用,降低了线缆的原料生产成本,同时降低了线缆的重量,增强线缆的柔性,方便线缆在使用过程中进行拉扯、拖拽、或者根据需要进行折弯,简化线缆安装流程。
具体实施时,护套1内可以设置一根导线;如图1至图7所示的一种新型屏蔽结构线缆中,也可以如图8所示设置一根以上的导线。
根据本公开的一种新型屏蔽结构线缆的一实施例中,如图2和图3所示,导电涂料层3附着在绝缘层22的外周与护套1的内周中的任意一者上。
导电涂料层3设置在绝缘层22的外周或护套1的内周,可以根据实际需要进行选择。
具体的,如图3所示,导电涂料层3附着在护套1的内周,屏蔽结构还包括第一多孔导电层41,第一多孔导电层41设置在导电涂料层3的内周和绝缘层22的外周之间。
通过设置第一多孔导电层41,第一多孔导电层41可吸收线缆在通电的过程中产生的电磁波,可以增强屏蔽结构的屏蔽效果;防止线缆在通电的过程中产生的磁场干扰其他控制系统的正常使用,同时,防止线缆中信号传输受其他电磁场干扰导致信号失真。
具体的,如图2所示,导电涂料层3附着在绝缘层外周,屏蔽结构还包括第一多孔导电层41,第一多孔导电层41设置在导电涂料层3和护套1内周之间。
通过设置第一多孔导电层41,第一多孔导电层41可吸收线缆在通电的过程中产生的电磁波,可以增强屏蔽结构的屏蔽效果,防止线缆在通电的过程中产生的磁场干扰其他控制系 统的正常使用,同时,防止线缆中信号传输受其他电磁场干扰导致信号失真。
根据本公开的一种新型屏蔽结构线缆的一实施例中,如图4至图8所示,导电涂料层3包括第一导电涂料层31和第二导电涂料层32;第一导电涂料层31附着在绝缘层22外周;第二导电涂料层32附着在护套1内周。
通过设置两处导电涂料层3,可以增强屏蔽结构的屏蔽效果,防止线缆在通电的过程中产生的磁场干扰其他控制系统的正常使用,同时,防止线缆中信号传输受其他电磁场干扰导致信号失真。
具体的,如图4至图8所示,屏蔽结构还包括第二多孔导电层42,第二多孔导电层42套设在第一导电涂料层31和第二导电涂料层32之间。
通过将第一导电涂料层31附着在绝缘层22外周;第二导电涂料层32附着在护套1内周,同时在第一导电涂料层31和第二导电涂料层32之间设置第二多孔导电层42,第二多孔导电层42可吸收线缆在通电的过程中产生的电磁波,可以增强屏蔽结构的屏蔽效果,防止线缆在通电的过程中产生的磁场干扰其他控制系统的正常使用,同时,防止线缆中信号传输受其他电磁场干扰导致信号失真。
第一多孔导电层41以及第二多孔导电层42均可以是泡沫金属。泡沫金属是一种在金属基体中形成无数三维空间网状结构的多孔金属材料,又称多孔性泡沫金属。
第一多孔导电层41以及第二多孔导电层42均也可以是导电海绵,导电海绵是由高分子复合材料发泡技术生产的,发泡孔径均匀、柔软、富有弹性、不脱屑的多孔导电材料。
具体的,第二多孔导电层42与第一导电涂料层31之间的阻抗小于80mΩ;第二多孔导电层42与第二导电涂料层32之间的阻抗小于80mΩ。
为了验证第一多孔导电层41与第一导电涂料层31之间的阻抗值对屏蔽效果的影响,发明人选用相同规格的新型屏蔽结构线缆、其未设置第二导电涂料层32,选用不同的第一多孔导电层41与第一导电涂料层31之间的阻抗,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表1所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对新型屏蔽结构线缆输出一个信号值(此数值为测试值2),在第一多孔导电层41外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表1:第二多孔导电层42与第一导电涂料层31之间的阻抗对屏蔽性能的影响

从表1可以看出,当第一多孔导电层41与第一导电涂料层31之间的阻抗值大于80mΩ时,屏蔽性能值小于40dB,不符合理想值要求,而第一多孔导电层41与第一导电涂料层31之间的阻抗值为小于80mΩ时,屏蔽性能值全部符合理想值要求,而且屏蔽性能随着阻抗值的减小越来越好,因此,发明人设定第一多孔导电层41与第一导电涂料层31之间的阻抗为小于80mΩ。
发明人用类似的方法设定了第二多孔导电层42与第二导电涂料层32之间的阻抗小于80mΩ。
具体的,如图5至图8所示,第二多孔导电层42与第一导电涂料层31之间、第二多孔导电层42与第二导电涂料层32之间至少一处设置绝缘抗压层5。
通过设置绝缘抗压层5,绝缘抗压层5可以设置在第一导电涂料层31和第二多孔导电层42之间,或者设置在第二导电涂料层32和第二多孔导电层42之间,可以对第一导电涂料层31和第二导电涂料层32其中一者起到保护作用,避免第一导电涂料层31或第二导电涂料层32损伤,绝缘抗压层5材质为阻燃材料,可以防止线缆在充电过程中发生燃烧事故。
通过绝缘抗压层5可使得屏蔽结构具有分离多次屏蔽手段,将电磁场进行多次不同侧重的屏蔽,在外层采用厚结构的第二导电涂料层32进行屏蔽侧重对磁场进行有效屏蔽,内侧采用薄的第一导电涂料层31侧重对电场进行有效屏蔽,同时在绝缘抗压层5内侧或外侧增加第二多孔导电层42增加电磁场在孔内的反射和吸收,在绝缘抗压层5两侧的不对称结构,提高了第一导电涂料层31和第二导电涂料层32的受力的刚度,提高屏蔽结构的机械性能。
具体的,如图7和图8所示,绝缘抗压层5具有多个充满惰性气体的气囊51,气囊51为长条形,气囊51沿线缆的周向方向等间距且沿线缆轴向方向贯通设置;或者,气囊51为圆管状,气囊51沿线缆的轴向方向首尾相接。
如图7和图8所示,气囊51里面填充惰性气体,惰性气体在线缆燃烧时起到阻燃作用。同时,气囊51可以在线缆受到外力撞击时保护线缆内部结构。
具体的,如图7和图8所示,绝缘抗压层5为防火泥或阻燃海绵。
防火泥或阻燃海绵在线缆燃烧时起到阻燃作用。同时,防火泥或阻燃海绵可以在线缆受到外力撞击时保护线缆内部结构。
具体的,第一导电涂料层31和第二导电涂料层32均通过喷涂、刷涂、浸涂或浸渗工艺将导电涂料分别成型于绝缘层22的外周和护套1的内周,第一导电涂料层31以及第二导电涂料层32的厚度均为0.01mm-3.5mm。
喷涂是通过喷枪或碟式雾化器,借助于压力或离心力,分散成均匀而微细的雾滴,施涂于绝缘层22表面的涂装方法。可分为空气喷涂、无空气喷涂、静电喷涂以及上述基本喷涂形式的各种派生的方式,如大流量低压力雾化喷涂、热喷涂、自动喷涂、多组喷涂等。
刷涂是利用各种漆刷和排笔蘸涂料在制品表面进行涂刷,并形成均匀涂层的一种方法,是一种应用最早、最普遍的涂装方法。刷涂法的优点是几乎不需设备夹具投资,节省涂覆材料,一般不需要遮盖工序。
浸渗是指导电涂料渗入绝缘层22外周表面,使导电涂料固化,在线缆的绝缘层22形成一层固化膜的处理方式。
浸涂是将被涂物体全部浸没在盛有涂料的槽中,经过很短的时间,再从槽中取出,并将多余的涂液重新流回槽内。浸涂的特点是生产效率高,操作简单,涂料损失少。
为了验证第一导电涂料层31厚度对屏蔽效果的影响,发明人选用相同规格的线缆,将第一导电涂料层31的厚度做出改变,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表2所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对导体21输出一个信号值(此数值为测试值2),在一种新型屏蔽结构线缆外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表2:第一导电涂料层31厚度对屏蔽性能的影响
从表2可以看出,当第一导电涂料层31厚度小于0.01mm时,屏蔽性能值小于40dB,不符合理想值要求,而第一导电涂料层31厚度大于等于0.01mm时,屏蔽性能值全部符合理想值要求,而且屏蔽性能随着第一导电涂料层31厚度的增大越来越好,但在第一导电涂料层31厚度大于3.5mm,第一导电涂料层31的屏蔽性能值没有明显提高趋势,且由于第一导电涂料层31的厚度增加,导电涂料的使用量以及线缆线径等都会受到影响,因此,发明人设定第一导电涂料层31的厚度为0.01mm-3.5mm。
为了验证第二导电涂料层32厚度对屏蔽效果的影响,发明人选用相同规格的线缆,将第二导电涂料层32的厚度做出改变,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表3所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对导体21输出一个信号值(此数值为测试值2),在 一种新型屏蔽结构线缆外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表3:第二导电涂料层32厚度对屏蔽性能的影响
从表3可以看出,当第二导电涂料层32厚度小于0.01mm时,屏蔽性能值小于40dB,不符合理想值要求,而第二导电涂料层32厚度大于等于0.01mm时,屏蔽性能值全部符合理想值要求,而且屏蔽性能随着第二导电涂料层32厚度的增大越来越好,但在第二导电涂料层32厚度大于3.5mm,第二导电涂料层32的屏蔽性能值没有明显提高趋势,且由于第二导电涂料层32的厚度增加,导电涂料的使用量以及线缆线径等都会受到影响,因此,发明人设定第二导电涂料层32的厚度为0.01mm-3.5mm。
根据本公开的一种新型屏蔽结构线缆的一实施例中,导电涂料层3为包含导电颗粒的涂料,导电颗粒材质为金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种。
具体实施时,导电涂料是一种在化学溶剂中掺入导电颗粒,并能喷涂于非金属材料上,对电磁波进行屏蔽的功能性涂料。具有室温固化、附着力强的优点,含有导电颗粒的涂料具有导电性能,即具有屏蔽功能,最大优点是成本低,简单实用且适用面广,使用最多的是银系导电涂料,也是开发最早的品种之一。其中,混合导体是指离子导电和电子导电同时存在的一类导体。又叫混合离子-电子导体,是介于离子导体和电子导体之间的一类固体材料,它同时兼有离子导电性和电子导电性。有实用价值的混合导体的离子电导率和电子电导率都相当高。
具体的,导电涂料中导电颗粒的体积占比为3%-95%。
如果导电颗粒的体积占比过小,则导电率不足,达不到理想的屏蔽效果。因此发明人对不同导电颗粒的体积占比的导电涂料进行了测试,如果导电涂料的导电率小于99%为不合格,测试结果如表4所示。
表4:不同导电颗粒的体积占比的导电涂料对导电涂料层导电率的影响
从表4可知,当导电涂料的导电颗粒的体积占比小于3%时,导电涂料层的导电率小于99%,不能够满足需要,而当导电涂料的导电颗粒的体积占比大于95%后导电率并无增加,且所需工艺要求也越来越高,因此本实施例中发明人选择导电涂料中导电颗粒的体积占比为3%-95%。
具体的,含碳导体为石墨银、石墨烯银、石墨粉、碳纳米管材料、石墨烯材料中的一种或多种。
石墨粉是一种矿物粉末,主要成分为碳单质,质软,黑灰色;石墨粉是很好的非金属导电物质。碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。石墨烯更是具有极高的电学性能,含有这三种材料的含碳导体导电率高,屏蔽性能好,能够很好的实现对导线的电磁屏蔽。
根据本公开的一种新型屏蔽结构线缆的一实施例中,导电涂料层3的可伸长率大于等于150%。
导电涂料层3的弹性决定了导电涂料层3在线缆弯折的过程中是否出现皲裂或裂痕,影响导电涂料层3的屏蔽效果,发明人选定本实施例中的线缆的导电涂料层3的可伸长率大于等于150%,确保线缆在长期使用过程中导电涂料层3不会出现皲裂或裂痕,以保证导电涂料层3具有优异的屏蔽效果。
可伸长率按照以下公式计算得出:
其中,L1为第一导电涂料层31可伸长的最大长度,此时,导电涂料层3产生皲裂或裂痕;
L0为试样的原始长度。
导电涂料是高分子复合材料,可通过调整成分聚氨酯预聚物和MOCA(即:聚氨酯硫化剂;也称:3,3'-二氯-4,4'-二氨基二苯基甲烷或二邻氯二苯胺甲烷)的质量比,调整导电涂料形成的涂膜的可伸长率,我方发明人通过实验方法验证了以下获得聚氨酯预聚物和MOCA质量比对导电涂料层可伸长率的影响,请见下表:
表5:聚氨酯预聚物和MOCA质量比对导电涂料层可伸长率的影响
所以,导电涂料层3的可伸长率可以达到150%以上,现有的导电涂料可以得到符合要求的导电涂料层。
根据本公开的一种新型屏蔽结构线缆的一实施例中,导电涂料层3的最大厚度与最小厚度之差小于1.7mm。
导电涂料层3的最大厚度与最小厚度之差小于1.7mm,可保证导电屏蔽层的屏蔽性能不受影响,确保导电涂料层具有良好的屏蔽性能。
根据本公开的一种新型屏蔽结构线缆的一实施例中,导电涂料层3在线缆轴向方向的转移阻抗为小于等于100mΩ。
屏蔽材料通常用转移阻抗来表征导电涂料层3的屏蔽效果,转移阻抗越小,屏蔽效果越好。导电涂料层3的转移阻抗定义为单位长度屏蔽体感应的差模电压U与屏蔽体表面通过的电流Is之比,即:
ZT=U/IS,所以可以理解为,导电涂料层3的转移阻抗将导电涂料层3电流转换成差模干扰。转移阻抗越小越好,即减小差模干扰转换,可以得到较好的屏蔽性能。
为了验证不同转移阻抗值的导电涂料层3对屏蔽效果的影响,发明人选用相同规格的新型屏蔽结构线缆,采用不同转移阻抗值的导电涂料层3,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表6所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对导体21输出一个信号值(此数值为测试值2),在一种新型屏蔽结构线缆外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表6:导电涂料层3的转移阻抗对屏蔽性能的影响
从上表6可以看出,当导电涂料层3的转移阻抗值大于100mΩ时,导电涂料层3的屏蔽性能值小于40dB,不符合理想值要求,而导电涂料层3的转移阻抗值为小于100mΩ时,导电涂料层3的屏蔽性能值全部符合理想值要求,而且屏蔽性能随着导电涂料层3的转移阻抗值的减小越来越好,因此,发明人设定导电涂料层3的转移阻抗为小于等于100mΩ。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员 应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (14)

  1. 一种新型屏蔽结构线缆,其特征在于,包括,护套和套设在所述护套内的至少一根导线,所述导线包括导体、设置于所述导体外周的绝缘层,设置于所述绝缘层与所述护套之间的屏蔽结构,所述屏蔽结构包括导电涂料层。
  2. 根据权利要求1所述的一种新型屏蔽结构线缆,其特征在于,所述导电涂料层附着在所述绝缘层外周与所述护套内周中的任意一者上。
  3. 根据权利要求2所述的一种新型屏蔽结构线缆,其特征在于,所述导电涂料层附着在所述护套内周,所述屏蔽结构还包括第一多孔导电层,所述第一多孔导电层设置在所述导电涂料层和所述绝缘层外周之间。
  4. 根据权利要求2所述的一种新型屏蔽结构线缆,其特征在于,所述导电涂料层附着在所述绝缘层外周,所述屏蔽结构还包括第一多孔导电层,所述第一多孔导电层设置在所述导电涂料层和所述护套内周之间。
  5. 根据权利要求1所述的一种新型屏蔽结构线缆,其特征在于,所述导电涂料层包括第一导电涂料层和第二导电涂料层;所述第一导电涂料层附着在所述绝缘层外周;所述第二导电涂料层附着在护套内周。
  6. 根据权利要求5所述的一种新型屏蔽结构线缆,其特征在于,所述屏蔽结构还包括第二多孔导电层,所述第二多孔导电层套设在所述第一导电涂料层和所述第二导电涂料层之间。
  7. 根据权利要求6所述的一种新型屏蔽结构线缆,其特征在于,所述第二多孔导电层与所述第一导电涂料层之间的阻抗小于80mΩ;所述第二多孔导电层与所述第二导电涂料层之间的阻抗小于80mΩ。
  8. 根据权利要求6所述的一种新型屏蔽结构线缆,其特征在于,所述第二多孔导电层与所述第一导电涂料层之间、所述第二多孔导电层与所述第二导电涂料层之间至少一处设置绝缘抗压层。
  9. 根据权利要求8所述的一种新型屏蔽结构线缆,其特征在于,所述绝缘抗压层具有多个充满惰性气体的气囊,所述气囊为长条形,所述气囊沿所述线缆的周向方向等间距且沿线缆轴向方向贯通设置;或者,所述气囊为圆管状,所述气囊沿所述线缆的轴向方向首尾相接。
  10. 根据权利要求8所述的一种新型屏蔽结构线缆,其特征在于,所述绝缘抗压层为防火泥或阻燃海绵。
  11. 根据权利要求5所述的一种新型屏蔽结构线缆,其特征在于,所述第一导电涂料层和所述第二导电涂料层均通过喷涂、刷涂、浸涂或浸渗工艺将导电涂料分别成型于所述绝缘层外周和所述护套内周,所述第一导电涂料层以及所述第二导电涂料层的厚度均为 0.01mm-3.5mm。
  12. 根据权利要求1所述的一种新型屏蔽结构线缆,其特征在于,所述导电涂料层的可伸长率大于等于150%。
  13. 根据权利要求1所述的一种新型屏蔽结构线缆,其特征在于,所述导电涂料层的最大厚度与最小厚度之差小于1.7mm。
  14. 根据权利要求1所述的一种新型屏蔽结构线缆,其特征在于,所述导电涂料层在所述线缆轴向方向的转移阻抗为小于等于100mΩ。
PCT/CN2023/124186 2022-10-14 2023-10-12 一种新型屏蔽结构线缆 WO2024078563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222705140.1 2022-10-14
CN202222705140.1U CN218826261U (zh) 2022-10-14 2022-10-14 一种新型屏蔽结构线缆

Publications (1)

Publication Number Publication Date
WO2024078563A1 true WO2024078563A1 (zh) 2024-04-18

Family

ID=87248302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124186 WO2024078563A1 (zh) 2022-10-14 2023-10-12 一种新型屏蔽结构线缆

Country Status (2)

Country Link
CN (1) CN218826261U (zh)
WO (1) WO2024078563A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218826261U (zh) * 2022-10-14 2023-04-07 长春捷翼汽车科技股份有限公司 一种新型屏蔽结构线缆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235716A (ja) * 2004-02-23 2005-09-02 Sumitomo Electric Ind Ltd ワイヤハーネス用電線
CN105139923A (zh) * 2015-09-21 2015-12-09 杨天纬 一种用于线缆的屏蔽膜及制造方法及线材的制造方法
JP2016197509A (ja) * 2015-04-02 2016-11-24 日立金属株式会社 磁性シールドケーブル及びその製造方法
CN106531344A (zh) * 2016-12-26 2017-03-22 南昌联能科技有限公司 一种用于线缆的电磁屏蔽膜、电磁屏蔽膜的制造方法及线材的制造方法
CN207781237U (zh) * 2018-01-19 2018-08-28 上海熊猫线缆股份有限公司 汽车用导电石墨屏蔽层圆形控制电缆
CN114709682A (zh) * 2022-03-14 2022-07-05 吉林省中赢高科技有限公司 一种新型屏蔽材料的连接器总成及一种车辆
CN115424771A (zh) * 2022-08-12 2022-12-02 长春捷翼汽车零部件有限公司 一种具有屏蔽结构的线缆
CN218826261U (zh) * 2022-10-14 2023-04-07 长春捷翼汽车科技股份有限公司 一种新型屏蔽结构线缆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235716A (ja) * 2004-02-23 2005-09-02 Sumitomo Electric Ind Ltd ワイヤハーネス用電線
JP2016197509A (ja) * 2015-04-02 2016-11-24 日立金属株式会社 磁性シールドケーブル及びその製造方法
CN105139923A (zh) * 2015-09-21 2015-12-09 杨天纬 一种用于线缆的屏蔽膜及制造方法及线材的制造方法
CN106531344A (zh) * 2016-12-26 2017-03-22 南昌联能科技有限公司 一种用于线缆的电磁屏蔽膜、电磁屏蔽膜的制造方法及线材的制造方法
CN207781237U (zh) * 2018-01-19 2018-08-28 上海熊猫线缆股份有限公司 汽车用导电石墨屏蔽层圆形控制电缆
CN114709682A (zh) * 2022-03-14 2022-07-05 吉林省中赢高科技有限公司 一种新型屏蔽材料的连接器总成及一种车辆
CN115424771A (zh) * 2022-08-12 2022-12-02 长春捷翼汽车零部件有限公司 一种具有屏蔽结构的线缆
CN218826261U (zh) * 2022-10-14 2023-04-07 长春捷翼汽车科技股份有限公司 一种新型屏蔽结构线缆

Also Published As

Publication number Publication date
CN218826261U (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024078563A1 (zh) 一种新型屏蔽结构线缆
CN101286383B (zh) 电磁屏蔽线缆
CN101286384B (zh) 电磁屏蔽线缆
CN102056963B (zh) 高性能耐高温电线或电缆
EP2826043B1 (en) Compositions, methods, and devices providing shielding in communications cables
US20030186602A1 (en) Heat-shrinkable EMI/RFI shielding material
EP2837006A1 (en) Cns-shielded wires
WO2024032757A1 (zh) 一种具有屏蔽结构的线缆
US20050098344A1 (en) Shielded electrical wire construction and method of manufacture
JP2009272105A (ja) 電磁波抑制ケーブル
CN205451803U (zh) 多芯聚酰亚胺绝缘复合膜石墨涂覆护层通信电缆
CN107358999B (zh) 一种电磁屏蔽线缆
WO2000022630A1 (fr) Fil pour courant de faible intensite
CN109326375B (zh) 柔性超a类铝合金芯新能源汽车用车内高压电缆
JP3602634B2 (ja) 半導電性複合碍子
JP3616652B2 (ja) 同軸ケーブル及びその製造方法
CN114334238B (zh) 双层共挤绝缘型b1级阻燃电缆
CN220856132U (zh) 一种聚酰亚胺绝缘纤维编织护层耐温综合电缆
CN205451802U (zh) 单芯聚酰亚胺绝缘复合膜导电石墨粉涂覆护层电线
CN219163061U (zh) 一种新型屏蔽线缆
CN205451827U (zh) 多芯聚酰亚胺绝缘复合膜石墨涂覆护层控制电缆
CN219180225U (zh) 一种可实现电磁兼容的石墨烯屏蔽母线
CN208093234U (zh) 一种应用于电动汽车传导充电系统的铜丝编织屏蔽电缆
CN211604729U (zh) 一种宇航用聚酰亚胺复合绝缘电线、复合绝缘电缆
CN211045127U (zh) 一种纳米石墨烯高频基站同轴电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876763

Country of ref document: EP

Kind code of ref document: A1