WO2024077744A1 - 抗磨减摩润滑油添加剂、润滑油及其制备方法 - Google Patents

抗磨减摩润滑油添加剂、润滑油及其制备方法 Download PDF

Info

Publication number
WO2024077744A1
WO2024077744A1 PCT/CN2022/136911 CN2022136911W WO2024077744A1 WO 2024077744 A1 WO2024077744 A1 WO 2024077744A1 CN 2022136911 W CN2022136911 W CN 2022136911W WO 2024077744 A1 WO2024077744 A1 WO 2024077744A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
wear
weight
parts
friction
Prior art date
Application number
PCT/CN2022/136911
Other languages
English (en)
French (fr)
Inventor
李津津
宋伟
雒建斌
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2024077744A1 publication Critical patent/WO2024077744A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/124Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Definitions

  • the present disclosure relates to the field of lubricating materials, and in particular, to an anti-wear and friction-reducing lubricating oil additive, a lubricating oil and a preparation method thereof.
  • the present disclosure aims to solve one of the technical problems in the related art at least to some extent.
  • embodiments of the present disclosure provide an anti-wear and friction-reducing lubricating oil additive.
  • An anti-wear and friction-reducing lubricating oil additive includes at least two of malic acid, fatty alcohol, malic acid ester and maleic acid ester.
  • the anti-wear and friction-reducing lubricating oil additive comprises: 0.1 to 80 parts by weight of malic acid ester and 0.2 to 20 parts by weight of maleic acid ester.
  • the anti-wear and friction-reducing lubricating oil additive comprises: 0.5 to 5 parts by weight of malic acid and 5 to 20 parts by weight of fatty alcohol.
  • the anti-wear and friction-reducing lubricating oil additive comprises: 0.5 to 20 parts by weight of malic acid, 5 to 50 parts by weight of fatty alcohol, and 0.1 to 80 parts by weight of malic acid ester.
  • the anti-wear and friction-reducing lubricating oil additive comprises: 0.5 to 20 parts by weight of malic acid, 5 to 50 parts by weight of fatty alcohol, and 0.2 to 50 parts by weight of maleate.
  • the anti-wear and friction-reducing lubricating oil additive comprises: 0.5 to 20 parts by weight of malic acid, 5 to 50 parts by weight of fatty alcohol, 0.1 to 80 parts by weight of malic acid ester, and 0.2 to 50 parts by weight of maleic acid ester.
  • the malate is produced by a dehydration esterification reaction between one or two molecules of malic acid and a monohydric fatty alcohol
  • the maleate is produced by a dehydration esterification reaction between one or two molecules of maleic acid and a monohydric fatty alcohol.
  • the monohydric fatty alcohol has 1 to 16 carbon atoms.
  • the malate ester includes at least one of dimethyl malate, di-n-butyl malate, and dioctyl malate;
  • the maleate ester includes at least one of dibutyl maleate and diisodecyl maleate.
  • the fatty alcohol is a monohydric fatty alcohol, and the monohydric fatty alcohol has 1 to 16 carbon atoms.
  • the present disclosure provides a lubricating oil.
  • a lubricating oil according to an embodiment of the present disclosure includes: a lubricating oil additive and a lubricating oil base oil, wherein the lubricating oil additive includes malate, maleate or the anti-wear and friction-reducing lubricating oil additive according to an embodiment of the present disclosure.
  • the lubricating oil includes 0.5 to 25 parts by weight of the lubricating oil additive and 75 to 99.5 parts by weight of the lubricating oil base oil.
  • the lubricating oil base oil includes at least one of mineral oil, synthetic oil, animal and vegetable oil.
  • the present disclosure provides a method for preparing lubricating oil.
  • a method for preparing lubricating oil according to an embodiment of the present disclosure comprises: adding the lubricating oil additive into the lubricating oil base oil, and dissolving by ultrasonic or stirring.
  • the ultrasonic power is 100W to 1000W
  • the ultrasonic time is 1 to 60min
  • the ultrasonic temperature is 10°C to 60°C
  • the stirring speed is 5 to 800rpm
  • the stirring time is 2 to 60min
  • the stirring temperature is 10°C to 60°C.
  • FIG. 1 is a friction coefficient-time curve graph of the lubricating oils of Example 1 and Comparative Example 1.
  • FIG2 is a diagram of wear spots formed after the lubricating oil friction test of Comparative Example 1 and Example 1, wherein (a) is Comparative Example 1; and (b) is Example 1.
  • FIG. 3 is a Raman spectrum of wear spots produced after the lubricating oil friction test of Example 1.
  • FIG. 4 is a friction coefficient-time curve diagram of the lubricating oils of Example 2 and Comparative Example 1.
  • FIG5 is a diagram of wear spots formed after the lubricating oil friction test of Comparative Example 1 and Example 2, wherein (a) is Comparative Example 1; and (b) is Example 2.
  • FIG. 6 is a friction coefficient-time curve graph of the lubricating oils of Example 3 and Comparative Example 1.
  • FIG. 7 is a diagram of wear spots formed after the lubricating oil friction test of Comparative Example 1 and Example 3, wherein (a) is Comparative Example 1; and (b) is Example 3.
  • FIG8 is a friction coefficient-time curve graph of the lubricating oils of Example 4 and Comparative Example 1.
  • FIG9 is a diagram of wear spots formed after the lubricating oil friction test of Comparative Example 1 and Example 4, wherein (a) is Comparative Example 1; and (b) is Example 4.
  • FIG. 10 is a friction coefficient-time curve graph of the lubricating oils of Example 5 and Comparative Example 1.
  • FIG11 is a diagram of wear spots formed after the lubricating oil friction test of Comparative Example 1 and Example 5, wherein (a) is Comparative Example 1; and (b) is Example 5.
  • FIG. 12 is an infrared spectrum of the product obtained by ultrasonically mixing malic acid and n-octanol.
  • FIG. 13 is a graph showing the friction coefficient-time curves of the lubricating oils of Example 6 and Comparative Example 1.
  • FIG14 is a diagram of wear spots formed after the lubricating oil friction test of Comparative Example 1 and Example 6, wherein (a) is Comparative Example 1; and (b) is Example 6.
  • FIG. 15 is a graph showing the friction coefficient-time curves of the lubricating oils of Example 7 and Comparative Example 1.
  • Figure 16 is a diagram of wear spots formed after the lubricating oil friction test of Comparative Example 1 and Example 7, wherein (a) is Comparative Example 1; (b) is Example 7.
  • FIG. 17 is a graph showing the friction coefficient-time curves of the lubricating oils of Example 8 and Comparative Example 1.
  • Figure 18 is a wear spot diagram formed after the lubricating oil friction test of Comparative Example 1 and Example 8, wherein (a) is Comparative Example 1; (b) is Example 8.
  • the present disclosure aims to solve at least one of the technical problems in the related art to a certain extent.
  • the embodiments of the present disclosure propose an anti-wear and friction-reducing lubricant additive, which can significantly reduce the friction coefficient and wear, has excellent extreme pressure resistance, and generates a graphite-like carbon structure in situ at the solid-liquid interface during the friction process, which can reduce the friction coefficient and wear scar width of the lubricant by more than 50%. It avoids the addition of sulfur and phosphorus components in traditional lubricant additives, is green and environmentally friendly, and has good compatibility with most lubricant base oils such as mineral oil, synthetic oil, animal and vegetable oils, and the raw materials are simple and easy to obtain, and easy to promote and apply.
  • An anti-wear and friction-reducing lubricating oil additive includes at least two of malic acid, fatty alcohol, malic acid ester and maleic acid ester.
  • the anti-wear and friction-reducing lubricating oil additive of the disclosed embodiment contains active oxygen-containing functional groups in malic acid, fatty alcohol, malic acid ester and maleic acid ester, which can strengthen the solid-liquid interface effect of the friction interface, block the solid-solid direct contact of the micro-convex body of the friction pair interface, and reduce the friction coefficient.
  • the lubricating oil additive generates a layer of graphite-like carbon structure in situ on the solid-liquid interface during the friction process, thereby forming a protective film, which greatly reduces the friction coefficient and wear.
  • the additive has excellent performance in reducing friction coefficient, reducing wear and resisting extreme pressure in mineral oil, synthetic oil, animal and vegetable oil.
  • adding lubricating oil additive can reduce the friction coefficient and wear scar width of lubricating oil by more than 50%, and has excellent extreme pressure resistance.
  • the lubricating oil additive composition does not contain any sulfur or phosphorus elements, only contains carbon, hydrogen and oxygen elements, will not cause environmental pollution, is green and environmentally friendly, and conforms to the concept of green chemistry development.
  • the lubricating oil additive has good solubility in lubricating oil, has good compatibility with most lubricating oils, can greatly reduce the friction coefficient and wear volume of lubricating oil, and the raw materials are simple and easy to obtain, and are easy to promote and apply.
  • the lubricant additive includes: malate and maleate. In some embodiments, the lubricant additive includes: 0.1 to 80 parts by weight of malate and 0.2 to 20 parts by weight of maleate. In some embodiments, the lubricant additive includes: 0.1 to 20 parts by weight of malate and 0.2 to 10 parts by weight of maleate. In the disclosed embodiments, the lubricant additive includes malate and maleate, which have good solubility in lubricating oil, can achieve strong adsorption effect at the friction interface, and are converted into graphite-like carbon structure in situ during the friction process, reducing friction coefficient and wear. By optimizing the amount of malate and maleate, the friction coefficient can be further reduced, wear can be reduced, and extreme pressure resistance can be optimized.
  • the lubricating oil additive comprises: malic acid and fatty alcohol. In some embodiments, the lubricating oil additive comprises: 0.5 to 5 parts by weight of malic acid and 5 to 20 parts by weight of fatty alcohol. In some embodiments, the lubricating oil additive comprises: 0.5 to 3 parts by weight of malic acid and 8 to 15 parts by weight of fatty alcohol.
  • the lubricating oil additive comprises malic acid and fatty alcohol
  • the malic acid and fatty alcohol undergo a dehydration esterification reaction with the promotion of ultrasound or the like to generate a product containing malic acid ester
  • the product can also generate a graphite-like carbon structure in situ in the friction contact area, thereby reducing the friction coefficient and wear, and the cost is lower than directly adding malic acid ester.
  • the lubricant additive comprises: malic acid, fatty alcohols and malic acid esters. In some embodiments, the lubricant additive comprises: 0.5 to 20 parts by weight of malic acid, 5 to 50 parts by weight of fatty alcohols and 0.1 to 80 parts by weight of malic acid esters. In some embodiments, the lubricant additive comprises: malic acid, fatty alcohols and maleic acid esters. In some embodiments, the lubricant additive comprises: 0.5 to 20 parts by weight of malic acid, 5 to 50 parts by weight of fatty alcohols and 0.2 to 50 parts by weight of maleic acid esters.
  • the lubricant additive can generate a graphite-like carbon structure in situ at the friction contact interface, greatly reducing the friction coefficient and reducing wear.
  • the friction coefficient can be further reduced, wear can be reduced, and extreme pressure resistance can be optimized.
  • the lubricant additive includes: malic acid, fatty alcohol, malic acid ester and maleic acid ester. In some embodiments, the lubricant additive includes: 0.5 to 20 parts by weight of malic acid, 5 to 50 parts by weight of fatty alcohol, 0.1 to 80 parts by weight of malic acid ester and 0.2 to 50 parts by weight of maleic acid ester. In some embodiments, the lubricant additive includes: 1 to 10 parts by weight of malic acid, 5 to 30 parts by weight of fatty alcohol, 10 to 80 parts by weight of malic acid ester and 5 to 40 parts by weight of maleic acid ester.
  • the lubricant additive includes malic acid, fatty alcohol, malic acid ester and maleic acid ester, and the lubricant additive can generate a graphite-like carbon structure in situ at the friction contact interface, greatly reducing the friction coefficient and reducing wear.
  • the friction coefficient can be further reduced, the wear can be reduced, and the extreme pressure resistance can be optimized.
  • the malic acid ester is produced by a dehydration esterification reaction of one or two molecules of malic acid and a monohydric fatty alcohol
  • the maleic acid ester is produced by a dehydration esterification reaction of one or two molecules of maleic acid and a monohydric fatty alcohol.
  • a higher reaction selectivity can be achieved in the process of generating carboxylic acid esters with malic acid and maleic acid.
  • the monohydric fatty alcohol has a carbon number of 1 to 16.
  • the malate ester includes at least one of dimethyl malate, di-n-butyl malate, and dioctyl malate.
  • the dioctyl malate is di-n-octyl malate;
  • the maleate ester includes at least one of dibutyl maleate and diisodecyl maleate.
  • the dibutyl maleate is di-n-butyl maleate.
  • the ester compounds can generate graphite-like carbon structures in situ in the friction contact area, thereby reducing the friction coefficient and reducing wear.
  • the fatty alcohol is a monohydric fatty alcohol, and the number of carbon atoms of the monohydric fatty alcohol is 1 to 16.
  • the monohydric fatty alcohol is octanol.
  • the octanol is n-octanol.
  • the type of fatty alcohol is further preferred, and malic acid and fatty alcohol generate a product containing malic acid ester, which can also generate a graphite-like carbon structure in situ in the friction contact area, reducing the friction coefficient and reducing wear.
  • the number of carbon atoms of the monohydric fatty alcohol is 1 to 16. When the number of carbon atoms is too high, the monohydric fatty alcohol is solid, not easy to dissolve, and the reaction yield is low.
  • a lubricating oil according to an embodiment of the present disclosure includes: a lubricating oil additive and a lubricating oil base oil, wherein the lubricating oil additive includes malate, maleate or the anti-wear and friction-reducing lubricating oil additive according to the embodiment of the present disclosure.
  • the lubricating oil according to the embodiment of the present disclosure malic acid, fatty alcohol, malate and maleate all contain active oxygen-containing functional groups, which can strengthen the solid-liquid interface effect of the friction interface, block the solid-solid direct contact of the micro-convexities on the friction pair interface, and reduce the friction coefficient.
  • the lubricating oil additive can be converted into a graphite carbon-like structure in situ, thereby forming a protective film to reduce wear, and can reduce the friction coefficient and wear scar width of the lubricating oil by more than 50%, and has excellent extreme pressure resistance.
  • the lubricant comprises 0.5 to 25 parts by weight of the lubricant additive and 75 to 99.5 parts by weight of the lubricant base oil. In some embodiments, the lubricant comprises 0.5 to 15 parts by weight of the lubricant additive and 85 to 99.5 parts by weight of the lubricant base oil. In the embodiments of the present disclosure, by optimizing the amount of the lubricant additive, the friction coefficient can be reduced by 39% to 51% and the wear spot width can be reduced by 27% to 56%.
  • the lubricating oil base oil includes at least one of mineral oil, synthetic oil, and animal and vegetable oil.
  • the synthetic oil is at least one of polyalphaolefin synthetic oil PAO2 and polyalphaolefin synthetic oil PAO10.
  • the lubricating oil additive has good solubility in the lubricating oil, has good compatibility with most lubricating oil base oils, can greatly reduce the friction coefficient and wear volume of the lubricating oil, and the raw materials are simple and easy to obtain, and are easy to promote and apply.
  • a method for preparing a lubricating oil according to an embodiment of the present disclosure comprises: adding the lubricating oil additive to the lubricating oil base oil, and dissolving by ultrasonic or stirring.
  • ultrasonic or stirring can make the lubricating oil additive fully dissolved in the lubricating oil base oil without precipitation, stratification, etc.
  • ultrasonic or stirring can promote the dehydration esterification reaction between malic acid and fatty alcohol to generate a product containing malic acid ester.
  • the product can generate a graphite-like carbon structure in situ at the friction contact interface, thereby greatly reducing the friction coefficient, reducing wear, and optimizing extreme pressure resistance.
  • the preparation method is simple and low-cost.
  • the power of the ultrasound is 100W to 1000W, for example, 400W
  • the time of the ultrasound is 1 to 60min, for example, 15min
  • the temperature of the ultrasound is 10°C to 60°C, for example, 30°C to 60°C.
  • the stirring speed is 5 to 800rpm
  • the stirring time is 2 to 60min
  • the stirring temperature is 10°C to 60°C.
  • the stirring temperature is 30°C to 60°C.
  • malic acid and fatty alcohol undergo esterification reaction
  • ultrasound can promote the dispersion and dissolution of lubricant additives in lubricant base oil.
  • ultrasound can promote the reaction of malic acid and fatty alcohol, and the reaction product can be fully dissolved in the lubricating oil.
  • the preparation method is simple and the cost is low.
  • the reagents and instruments used without indicating the manufacturer are all conventional products that can be purchased commercially.
  • the friction coefficients of the lubricating oils containing lubricating oil additives prepared in the following examples are measured respectively.
  • the specific measurement method is to use a reciprocating friction and wear tester SRV-4 to measure the friction coefficient of the lubricant.
  • the instrument is calibrated before measurement to ensure the accuracy of the measurement results.
  • the measurement conditions are load 12 to 176N, reciprocating frequency 5 to 50Hz, stroke distance 1mm, and temperature 25°C to 50°C.
  • the upper and lower friction pair samples are GCr15 steel balls with a diameter of 10mm and flat GCr15 steel plates, respectively. Before the friction test begins, 20 to 5000 ⁇ L of lubricant is dripped between the ball and the disc.
  • composition of the lubricating oil additive is: 5 parts by weight of malic acid, 17 parts by weight of n-octanol, 50 parts by weight of dimethyl malate, and 40 parts by weight of di-n-butyl maleate.
  • the components of the above lubricating oil additives were added to 1 g of poly-alpha-olefin synthetic oil (PAO2), and stirred at 200 rpm for 10 min at 30° C. to obtain a uniformly dissolved lubricating oil.
  • PAO2 poly-alpha-olefin synthetic oil
  • the tribological properties of the obtained lubricating oil were tested by a friction tester, the instrument model was SRV4 reciprocating friction and wear tester, the upper sample was a GCr15 steel ball with a diameter of 10mm, and the lower sample was a GCr15 steel sheet with a diameter of 24mm and a height of 7.88mm.
  • the load was 24N
  • the reciprocating frequency was 10Hz
  • the stroke distance was 1mm
  • the test temperature was 30°C.
  • the curve of the friction coefficient of the lubricating oil of this embodiment changing with time is shown in FIG1
  • the optical morphology of the wear spot is shown in FIG2 .
  • Example 1 Without adding the lubricating oil additive in Example 1, after the friction test, the curve of the change of friction coefficient over time is shown in FIG1 , and the optical morphology of the wear spot is shown in FIG2 .
  • the average friction coefficient of the lubricating oil without adding the lubricating oil additive is 0.218, and the fluctuation is obvious.
  • the friction coefficient is reduced to 0.109, with a reduction of 50%, and the friction coefficient remains stable.
  • the wear spot diameter of the lubricating oil without adding lubricating oil additives is about 405 ⁇ m, and obvious scratches occur on the surface, while the wear spot diameter of the lubricating oil with adding lubricating oil additives in Example 1 is reduced to 178 ⁇ m, a decrease of 56%, and no obvious scratches are found on the wear spot surface.
  • 3 mg of malic acid is selected as the first component of the lubricating oil additive; 15 mg of n-octanol is selected as the second component of the lubricating oil additive; the dehydration esterification product of two molecules of malic acid and n-octanol is selected as the third component of the lubricating oil additive, i.e., di-n-octyl malate, with a weight of 80 mg; the dehydration esterification reaction of two molecules of maleic acid and isodecyl alcohol is selected as the fourth component of the lubricating oil additive, i.e., di-isodecyl maleate, with a weight of 10 mg.
  • composition of the lubricating oil additive is: 3 parts by weight of malic acid, 15 parts by weight of n-octanol, 80 parts by weight of di-n-octyl malate, and 10 parts by weight of di-isodecyl maleate.
  • the components of the above lubricating oil additives were added to 1 g of poly-alpha-olefin synthetic oil (PAO2), and ultrasonicated at 400 W power for 15 min at 50° C. to obtain a uniformly dissolved lubricating oil.
  • PAO2 poly-alpha-olefin synthetic oil
  • the tribological properties of the obtained lubricating oil were tested by a friction tester, the instrument model was SRV4 reciprocating friction and wear tester, the upper sample was a GCr15 steel ball with a diameter of 10mm, and the lower sample was a GCr15 steel sheet with a diameter of 24mm and a height of 7.88mm.
  • the load was 24N
  • the reciprocating frequency was 10Hz
  • the stroke distance was 1mm
  • the test temperature was 30°C.
  • the curve of the friction coefficient of the lubricating oil of this embodiment changing with time is shown in FIG4
  • the optical morphology of the wear spot is shown in FIG5 .
  • the average friction coefficient of the lubricating oil without adding the lubricating oil additive is 0.218, and the fluctuation is obvious.
  • the friction coefficient is reduced to 0.134, with a decrease of 39%, and the friction coefficient remains stable.
  • the diameter of the wear spot of the lubricating oil without adding the lubricating oil additive is about 405 ⁇ m, and obvious scratches occur on the surface, while the diameter of the wear spot of the lubricating oil with the addition of the lubricating oil additive in Example 2 is reduced to 195 ⁇ m, a decrease of 52%, and no obvious scratches are found on the wear spot surface.
  • the preparation method of the lubricating oil and the friction coefficient detection method are basically the same as those of Example 2, except that malic acid, n-octanol and diisodecyl maleate are not added to the lubricating oil additive, that is, the lubricating oil additive is 108 mg of di-n-octyl malate.
  • the average friction coefficient of the lubricating oil without adding the lubricating oil additive is 0.218, and the fluctuation is obvious.
  • the friction coefficient is reduced to 0.128, with a decrease of 41%, and the friction coefficient remains stable.
  • the diameter of the wear spot of the lubricating oil without adding the lubricating oil additive is about 405 ⁇ m, and obvious scratches occur on the surface, while the diameter of the wear spot of the lubricating oil with the addition of the lubricating oil additive in Example 3 is reduced to 248 ⁇ m, a decrease of 39%, and no obvious scratches are found on the wear spot surface.
  • the preparation method of the lubricating oil and the friction coefficient detection method are basically the same as those of Example 2, except that malic acid, n-octanol and di-n-octyl malate are not added as the lubricating oil additive, that is, the lubricating oil additive is 108 mg of diisodecyl maleate.
  • the average friction coefficient of the lubricating oil without adding the lubricating oil additive is 0.218, and the fluctuation is obvious.
  • the friction coefficient is reduced to 0.125, with a decrease of 43%, and the friction coefficient remains stable.
  • the diameter of the wear spot of the lubricating oil without adding the lubricating oil additive is about 405 ⁇ m, and obvious scratches occur on the surface, while the diameter of the wear spot of the lubricating oil with the addition of the lubricating oil additive in Example 4 is reduced to 256 ⁇ m, a decrease of 37%, and no obvious scratches are found on the wear spot surface.
  • the preparation method of the lubricating oil and the friction coefficient detection method are basically the same as those of Example 2, except that malic acid and n-octanol are not added to the lubricating oil additive, that is, the lubricating oil additive is 96 mg of di-n-octyl malate and 12 mg of di-isodecyl maleate.
  • the composition of the lubricating oil additive is 80 parts by weight of di-n-octyl malate and 10 parts by weight of di-isodecyl maleate.
  • the diameter of the wear spot of the lubricating oil without adding lubricating oil additives is about 405 ⁇ m, and obvious scratches occur on the surface, while the diameter of the wear spot of the lubricating oil with adding lubricating oil additives in Example 5 is reduced to 232 ⁇ m, a decrease of 43%, and no obvious scratches are found on the wear spot surface.
  • the preparation method of the lubricating oil and the friction coefficient detection method are basically the same as those of Example 2, except that di-n-octyl malate and di-isodecyl maleate are not added to the lubricating oil additive, that is, the lubricating oil additive is 18 mg of malic acid and 90 mg of n-octanol.
  • the composition of the lubricating oil additive is 3 parts by weight of malic acid and 15 parts by weight of n-octanol.
  • Figure 12 is an infrared spectrum of the product obtained by ultrasonically mixing 3 parts by weight of malic acid and 15 parts by weight of n-octanol.
  • the diameter of the wear spot of the lubricating oil without adding lubricating oil additives is about 405 ⁇ m, and obvious scratches occur on the surface, while the diameter of the wear spot of the lubricating oil with adding lubricating oil additives in Example 6 is reduced to 294 ⁇ m, a decrease of 27%, and no obvious scratches are found on the wear spot surface.
  • the preparation method of the lubricating oil and the friction coefficient detection method are basically the same as those of Example 2, except that the lubricating oil additive does not add diisodecyl maleate, that is, the lubricating oil additive is 3.3 mg of malic acid, 16.5 mg of n-octanol and 88.2 mg of di-n-octyl malate.
  • the composition of the lubricating oil additive is 3 parts by weight of malic acid, 15 parts by weight of n-octanol and 80 parts by weight of di-n-octyl malate.
  • the average friction coefficient of the lubricant without adding the lubricant additive is 0.218, and the fluctuation is obvious.
  • the friction coefficient is reduced to 0.106, with a decrease of 51%, and the friction coefficient remains stable.
  • the diameter of the wear spot of the lubricating oil without adding lubricating oil additives is about 405 ⁇ m, and obvious scratches occur on the surface, while the diameter of the wear spot of the lubricating oil with adding lubricating oil additives in Example 7 is reduced to 207 ⁇ m, a decrease of 49%, and no obvious scratches are found on the wear spot surface.
  • the preparation method of the lubricating oil and the friction coefficient detection method are basically the same as those of Example 2, except that no di-n-octyl malate is added to the lubricating oil additive, that is, the lubricating oil additive is 11.6 mg of malic acid, 57.8 mg of n-octanol and 38.6 mg of di-isodecyl maleate.
  • the composition of the lubricating oil additive is 3 parts by weight of malic acid, 15 parts by weight of n-octanol and 10 parts by weight of di-isodecyl maleate.
  • the diameter of the wear spot of the lubricating oil without adding lubricating oil additives is about 405 ⁇ m, and obvious scratches occur on the surface, while the diameter of the wear spot of the lubricating oil with adding lubricating oil additives in Example 8 is reduced to 215 ⁇ m, a decrease of 47%, and no obvious scratches are found on the wear spot surface.
  • the terms “one embodiment”, “some embodiments”, “examples”, “specific examples”, or “some examples” and the like mean that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present disclosure.
  • the schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, unless they are contradictory.

Abstract

一种抗磨减摩润滑油添加剂、润滑油及其制备方法,其中,抗磨减摩润滑油添加剂包括苹果酸、脂肪醇、苹果酸酯和马来酸酯中的至少两种。该抗磨减摩润滑油添加剂具有优异的抗极压性能并能够大幅减小摩擦系数和降低磨损,其绿色环保且与大多数润滑油具有很好的相容性,原料简单易得,易于推广应用。

Description

抗磨减摩润滑油添加剂、润滑油及其制备方法
相关申请的交叉引用
本申请基于申请号为202211255528.4、申请日为2022年10月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及润滑材料领域,具体而言,本公开涉及一种抗磨减摩润滑油添加剂、润滑油及其制备方法。
背景技术
据不完全统计,世界上约三分之一的能源损耗是由于不当摩擦所造成的,近一半的设备损坏与磨损相关,由此造成的经济损失巨大。通过能源利用率的提升,可以减少3850亿升燃料的使用,有效减少碳排放量。因此,开发高性能润滑材料,对于减小能源消耗,提升能源利用率,减少碳排放量,具有重要意义。目前的工业应用中,常采用二烷基二硫代磷酸锌(ZDDP)作为润滑油添加剂。尽管这类添加剂具有优异的抗磨、抗极压特性,但是其中的高磷、高硫组分不具备环境友好性,排放过程中易造成水体富营养化等问题。因此低磷、低硫,甚至无磷、无硫成为新型润滑油添加剂的发展趋势。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,一方面,本公开的实施例提出一种抗磨减摩润滑油添加剂。
本公开实施例的一种抗磨减摩润滑油添加剂,包括:苹果酸、脂肪醇、苹果酸酯和马来酸酯中的至少两种。
在一些实施例中,所述抗磨减摩润滑油添加剂包括:0.1至80重量份的苹果酸酯和0.2至20重量份的马来酸酯。
在一些实施例中,所述抗磨减摩润滑油添加剂包括:0.5至5重量份的苹果酸和5至20重量份的脂肪醇。
在一些实施例中,所述抗磨减摩润滑油添加剂包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇和0.1至80重量份的苹果酸酯。
在一些实施例中,所述抗磨减摩润滑油添加剂包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇和0.2至50重量份的马来酸酯。
在一些实施例中,所述抗磨减摩润滑油添加剂包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇、0.1至80重量份的苹果酸酯和0.2至50重量份的马来酸酯。
在一些实施例中,所述苹果酸酯由苹果酸与一元脂肪醇发生一分子或者两分子脱水酯化反应所生成;所述马来酸酯由马来酸与一元脂肪醇发生一分子或者两分子脱水酯化 反应所生成。
在一些实施例中,所述一元脂肪醇的碳原子数为1至16。
在一些实施例中,所述苹果酸酯包括苹果酸二甲酯、苹果酸二正丁酯、苹果酸二辛酯中的至少一种;所述马来酸酯包括马来酸二丁酯、马来酸二异癸酯中的至少一种。
在一些实施例中,所述脂肪醇为一元脂肪醇,所述一元脂肪醇的碳原子数为1至16。
另一方面,本公开提供一种润滑油。
本公开实施例的一种润滑油,包括:润滑油添加剂以及润滑油基础油,所述润滑油添加剂包括苹果酸酯、马来酸酯或本公开实施例的抗磨减摩润滑油添加剂。
在一些实施例中,所述润滑油包括0.5至25重量份的所述润滑油添加剂和75至99.5重量份的所述润滑油基础油。
在一些实施例中,所述润滑油基础油包括矿物油、合成油、动植物油中的至少一种。
再一方面,本公开提供一种润滑油的制备方法。
本公开实施例的一种润滑油的制备方法,包括:将所述润滑油添加剂加入到所述润滑油基础油中,超声溶解或搅拌溶解。
在一些实施例中,所述超声溶解过程中,超声的功率为100W至1000W,超声的时间为1至60min,超声的温度为10℃至60℃;或者,所述搅拌溶解过程中,搅拌的速度为5至800rpm,搅拌的时间为2至60min,搅拌的温度为10℃至60℃。
附图说明
图1是实施例1和对比例1的润滑油的摩擦系数-时间曲线图。
图2是对比例1和实施例1的润滑油摩擦试验后所形成的磨斑图,其中,(a)为对比例1;(b)为实施例1。
图3是实施例1的润滑油摩擦试验后产生磨斑的拉曼光谱图。
图4是实施例2和对比例1的润滑油的摩擦系数-时间曲线图。
图5是对比例1和实施例2的润滑油摩擦试验后所形成的磨斑图,其中,(a)为对比例1;(b)为实施例2。
图6是实施例3和对比例1的润滑油的摩擦系数-时间曲线图。
图7是对比例1和实施例3的润滑油摩擦试验后所形成的磨斑图,其中,(a)为对比例1;(b)为实施例3。
图8是实施例4和对比例1的润滑油的摩擦系数-时间曲线图。
图9是对比例1和实施例4的润滑油摩擦试验后所形成的磨斑图,其中,(a)为对比例1;(b)为实施例4。
图10是实施例5和对比例1的润滑油的摩擦系数-时间曲线图。
图11是对比例1和实施例5的润滑油摩擦试验后所形成的磨斑图,其中,(a)为对比例1;(b)为实施例5。
图12是苹果酸与正辛醇混合超声所得产物的红外光谱图。
图13是实施例6和对比例1的润滑油的摩擦系数-时间曲线图。
图14是对比例1和实施例6的润滑油摩擦试验后所形成的磨斑图,其中,(a)为对比例1;(b)为实施例6。
图15是实施例7和对比例1的润滑油的摩擦系数-时间曲线图。
图16是对比例1和实施例7的润滑油摩擦试验后所形成的磨斑图,其中,(a)为对比例1;(b)为实施例7。
图17是实施例8和对比例1的润滑油的摩擦系数-时间曲线图。
图18是对比例1和实施例8的润滑油摩擦试验后所形成的磨斑图,其中,(a)为对比例1;(b)为实施例8。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开是基于发明人对以下事实和问题的发现和认识做出的。尽管近些年,科研人员在新型纳米润滑添加剂上取得了一些突破,如石墨烯、氮化硼等纳米添加剂,但是这类添加剂普遍存在易团聚、难分散等问题。因此,开发一种无磷、无硫,具有优异溶解性,并可以减小摩擦、降低磨损的润滑添加剂是目前发展先进润滑材料急需解决的技术难题。
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的实施例提出一种抗磨减摩润滑油添加剂,该润滑油添加剂能够大幅减小摩擦系数、降低磨损,具有优异的抗极压性能,在摩擦过程中的固液界面上原位生成类石墨碳结构,可以将润滑油的摩擦系数、磨痕宽度降低50%以上。避免添加传统润滑油添加剂中的硫、磷组分,绿色环保,且与矿物油、合成油、动植物油等大多数润滑油基础油均具有很好的相容性,原料简单易得,易于推广应用。
本公开实施例的一种抗磨减摩润滑油添加剂,包括:苹果酸、脂肪醇、苹果酸酯和马来酸酯中的至少两种。
本公开实施例的抗磨减摩润滑油添加剂,苹果酸、脂肪醇、苹果酸酯和马来酸酯中均含有活性含氧官能团,可以强化摩擦界面的固液界面作用,阻隔摩擦副界面微凸体的固-固直接接触,减小摩擦系数。润滑油添加剂在摩擦过程中的固液界面上原位生成一层类石墨碳结构,从而形成一层保护膜,大幅减小摩擦系数、降低磨损。添加剂在矿物油、合成油、动植物油中均具有优异的减小摩擦系数、降低磨损、抗极压的性能。相比于纯润滑油基础油,添加润滑油添加剂可以将润滑油的摩擦系数、磨痕宽度降低50%以上,且具有优异的抗极压性能。本公开实施例中,润滑油添加剂成分中不含任何硫、磷元素,只包含碳、氢、氧元素,不会造成环境污染,绿色环保,符合绿色化学发展理念。润滑油添加剂在润滑油中具有良好的溶解性,与大多润滑油具有很好的相容性,可以大幅降低润滑油的摩擦系数、磨损体积,原料简单易得,易于推广应用。
在一些实施例中,润滑油添加剂包括:苹果酸酯和马来酸酯。在一些实施例中,润滑油添加剂包括:0.1至80重量份的苹果酸酯和0.2至20重量份的马来酸酯。在一些实施例中,润滑油添加剂包括:0.1至20重量份的苹果酸酯和0.2至10重量份的马来酸酯。本公开实施例中,润滑油添加剂包括苹果酸酯和马来酸酯,苹果酸酯和马来酸酯在润滑油中具有良好溶解性,在摩擦界面可以实现强吸附效果,并在摩擦过程中被原位转化成类石墨碳结构,减小摩擦系数、降低磨损。通过优化苹果酸酯和马来酸酯的用量,由此可以进一步减小摩擦系数、降低磨损,优化抗极压性能。
在一些实施例中,润滑油添加剂包括:苹果酸和脂肪醇。在一些实施例中,润滑油添加剂包括:0.5至5重量份的苹果酸和5至20重量份的脂肪醇。在一些实施例中,润滑油添加剂包括:0.5至3重量份的苹果酸和8至15重量份的脂肪醇。本公开实施例中,润滑油添加剂包括苹果酸和脂肪醇,苹果酸和脂肪醇经超声等促进作用发生脱水酯化反应生成含有苹果酸酯的产物,该产物也可以在摩擦接触区域原位产生类石墨碳的结构,减小摩擦系数、降低磨损,相比于直接加入苹果酸酯,成本更加低廉。通过优化苹果酸和脂肪醇的用量,由此可以进一步减小摩擦系数、降低磨损,优化抗极压性能。
在一些实施例中,润滑油添加剂包括:苹果酸、脂肪醇和苹果酸酯。在一些实施例中,润滑油添加剂包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇和0.1至80重量份的苹果酸酯。在一些实施例中,润滑油添加剂包括:苹果酸、脂肪醇和马来酸酯。在一些实施例中,润滑油添加剂包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇和0.2至50重量份的马来酸酯。本公开实施例中,润滑油添加剂可以在摩擦接触界面原位生成类石墨碳结构,大幅减小摩擦系数、降低磨损。通过优化各成分用量,由此可以进一步减小摩擦系数、降低磨损,优化抗极压性能。
在一些实施例中,润滑油添加剂包括:苹果酸、脂肪醇、苹果酸酯和马来酸酯。在一些实施例中,润滑油添加剂包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇、0.1至80重量份的苹果酸酯和0.2至50重量份的马来酸酯。在一些实施例中,润滑油添加剂包括:1至10重量份的苹果酸、5至30重量份的脂肪醇、10至80重量份的苹果酸酯和5至40重量份的马来酸酯。本公开实施例中,润滑油添加剂包括苹果酸、脂肪醇、苹果酸酯和马来酸酯,润滑油添加剂可以在摩擦接触界面原位生成类石墨碳结构,大幅减小摩擦系数、降低磨损。通过优化各成分用量,由此可以进一步减小摩擦系数、降低磨损,优化抗极压性能。
在一些实施例中,所述苹果酸酯由苹果酸与一元脂肪醇发生一分子或者两分子脱水酯化反应所生成;所述马来酸酯由马来酸与一元脂肪醇发生一分子或者两分子脱水酯化反应所生成。本公开实施例中,一元脂肪醇在与苹果酸、马来酸生成羧酸酯的过程中,可以实现更高的反应选择性。
在一些实施例中,所述一元脂肪醇的碳原子数为1至16。在一些实施例中,所述苹果酸酯包括苹果酸二甲酯、苹果酸二正丁酯、苹果酸二辛酯中的至少一种。在一些实施例中,所述苹果酸二辛酯为苹果酸二正辛酯;所述马来酸酯包括马来酸二丁酯、马来酸 二异癸酯中的至少一种。在一些实施例中,所述马来酸二丁酯为马来酸二正丁酯。本公开实施例中,所述酯类化合物均可以在摩擦接触区原位生成类石墨碳结构,从而减小摩擦系数、降低磨损。
在一些实施例中,所述脂肪醇为一元脂肪醇,所述一元脂肪醇的碳原子数为1至16。在一些实施例中,所述一元脂肪醇为辛醇。在一些实施例中,所述辛醇为正辛醇。本公开实施例中,进一步优选脂肪醇的种类,苹果酸和脂肪醇生成含有苹果酸酯的产物,该产物也可以在摩擦接触区域原位产生类石墨碳的结构,减小摩擦系数、降低磨损。本公开实施例中,一元脂肪醇的碳原子数为1至16,碳原子数过高时,一元脂肪醇为固体,不易溶解,且反应产率低。
本公开实施例的一种润滑油,包括:润滑油添加剂以及润滑油基础油,所述润滑油添加剂包括苹果酸酯、马来酸酯或本公开实施例的抗磨减摩润滑油添加剂。本公开实施例的润滑油,苹果酸、脂肪醇、苹果酸酯和马来酸酯中均含有活性含氧官能团,可以强化摩擦界面的固液界面作用,阻隔摩擦副界面微凸体的固-固直接接触,减小摩擦系数。在摩擦过程中,润滑油添加剂可以被原位转化为类石墨碳的结构,从而形成一层保护膜,降低磨损,可以将润滑油的摩擦系数、磨痕宽度降低50%以上,且具有优异的抗极压性能。
在一些实施例中,润滑油包括0.5至25重量份的所述润滑油添加剂和75至99.5重量份的所述润滑油基础油。在一些实施例中,润滑油包括0.5至15重量份的所述润滑油添加剂和85至99.5重量份的所述润滑油基础油。本公开实施例中,通过优化润滑油添加剂的用量,可以使得摩擦系数降低39%至51%,磨斑宽度降低27%至56%。
在一些实施例中,所述润滑油基础油包括矿物油、合成油、动植物油中的至少一种。在一些实施例中,所述合成油为聚α烯烃合成油PAO2和聚α烯烃合成油PAO10中的至少一种。本公开实施例中,润滑油添加剂在润滑油中具有良好的溶解性,与大多润滑油基础油具有很好的相容性,可以大幅降低润滑油的摩擦系数、磨损体积,原料简单易得,易于推广应用。
本公开实施例的一种润滑油的制备方法,包括:将所述润滑油添加剂加入所述润滑油基础油中,超声溶解或搅拌溶解。本公开实施例的润滑油的制备方法,超声或搅拌可以使得润滑油添加剂充分溶解于润滑油基础油中,不产生沉淀、分层等现象。本公开实施例中,超声或搅拌可以促进苹果酸与脂肪醇发生脱水酯化反应,生成含有苹果酸酯的产物,该产物作为润滑油添加剂,可以在摩擦接触界面原位生成类石墨碳结构,从而大幅减小摩擦系数、降低磨损,优化抗极压性能,制备方法简单,成本低廉。
在一些实施例中,所述超声溶解过程中,超声的功率为100W至1000W,例如,400W,超声的时间为1至60min,例如,15min,超声的温度为10℃至60℃,例如,30℃至60℃。在一些实施例中,所述搅拌溶解过程中,搅拌的速度为5至800rpm,搅拌的时间为2至60min,搅拌的温度为10℃至60℃。在一些实施例中,搅拌的温度为30℃至60℃。本公开实施例中,苹果酸和脂肪醇发生酯化反应,超声能够促进润滑油添加剂在润滑油 基础油中的分散溶解,同时超声能够促进苹果酸和脂肪醇的反应,反应产物在润滑油中可以充分溶解,制备方法简单,成本低廉。
下面参考具体实施例,对本公开进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本公开。
所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
下述实施例所制备的含润滑油添加剂的润滑油,分别测定其摩擦系数,具体测定方法为采用往复式摩擦磨损试验机SRV-4,测定润滑剂的摩擦系数,测量前对仪器进行校准,确保测量结果的准确性。测定条件为载荷12至176N,往复频率5至50Hz,冲程距离为1mm,温度为25℃至50℃。上下摩擦副试样分别为直径为10mm的GCr15钢球和平面型GCr15钢板。摩擦试验开始前,在球盘之间滴加20至5000μL润滑剂。
实施例1
1、润滑油的制备
选取5mg苹果酸作为润滑油添加剂的第一组份;选取17mg正辛醇作为润滑油添加剂的第二组份;选取苹果酸与甲醇的两分子脱水酯化反应产物作为润滑油添加剂的第三组分,即苹果酸二甲酯,重量为50mg;选取马来酸与正丁醇的两分子脱水酯化反应作为润滑油添加剂的第四组分,即马来酸二正丁酯,重量为40mg。即润滑油添加剂的组成为:苹果酸5重量份,正辛醇17重量份,苹果酸二甲酯50重量份,马来酸二正丁酯40重量份。
将上述润滑油添加剂的各组分加入到1g聚α烯烃合成油(PAO2)中,在30℃下,用200rpm转速搅拌10min,得到均匀溶解的润滑油。
2、摩擦系数检测
采用摩擦试验机对所得的润滑油进行摩擦学性能测试,仪器型号为SRV4往复式摩擦磨损试验机,其中上试样为直径10mm的GCr15钢球,下试样为直径24mm,高度7.88mm的GCr15钢片。测试过程中载荷为24N,往复频率为10Hz,冲程距离为1mm,测试温度为30℃。
本实施例的润滑油的摩擦系数随时间变化曲线如图1所示,磨斑的光学形貌图如图2所示。
本实施例润滑油在摩擦试验后,磨斑的拉曼光谱图如图3所示,在1580cm -1处有明显的类石墨碳的G峰生成,从而达到减小摩擦,降低了磨损的效果。
对比例1
不加入实施例1中的润滑油添加剂,经过摩擦试验后,摩擦系数随时间变化曲线见图1,磨斑的光学形貌图见图2。
由图1可知,对比例1中,未加入润滑油添加剂的润滑油的平均摩擦系数为0.218,且波动明显,实施例1加入润滑油添加剂后,摩擦系数降低至0.109,降幅达到50%,且摩擦系数保持稳定。
由图2可知,对比例1中,未加入润滑油添加剂的润滑油磨斑直径约为405μm,且 表面发生明显划伤,而实施例1中加入润滑油添加剂的润滑油磨斑直径降低至178μm,降幅达到56%,且磨斑表面没有发现明显划伤。
实施例2
1、润滑油的制备
选取3mg苹果酸作为润滑油添加剂的第一组份;选取15mg正辛醇作为润滑油添加剂的第二组份;选取苹果酸与正辛醇的两分子脱水酯化反应产物作为润滑油添加剂的第三组分,即苹果酸二正辛酯,重量为80mg;选取马来酸与异癸醇的两分子脱水酯化反应作为润滑油添加剂的第四组分,即马来酸二异癸酯,重量为10mg。即润滑油添加剂的组成为:苹果酸3重量份,正辛醇15重量份,苹果酸二正辛酯80重量份,马来酸二异癸酯10重量份。
将上述润滑油添加剂的各组分加入到1g聚α烯烃合成油(PAO2)中,在50℃下,用400W功率超声15min,得到均匀溶解的润滑油。
2、摩擦系数检测
采用摩擦试验机对所得的润滑油进行摩擦学性能测试,仪器型号为SRV4往复式摩擦磨损试验机,其中上试样为直径10mm的GCr15钢球,下试样为直径24mm,高度7.88mm的GCr15钢片。测试过程中载荷为24N,往复频率为10Hz,冲程距离为1mm,测试温度为30℃。
本实施例的润滑油的摩擦系数随时间变化曲线如图4所示,磨斑的光学形貌图如图5所示。
由图4可知,对比例1中,未加入润滑油添加剂的润滑油的平均摩擦系数为0.218,且波动明显,实施例2加入润滑油添加剂后,摩擦系数降低至0.134,降幅达到39%,且摩擦系数保持稳定。
由图5可知,对比例1中,未加入润滑油添加剂的润滑油磨斑直径约为405μm,且表面发生明显划伤,而实施例2中加入润滑油添加剂的润滑油磨斑直径降低至195μm,降幅达到52%,且磨斑表面没有发现明显划伤。
实施例3
与实施例2的润滑油的制备方法以及摩擦系数检测方法基本相同,不同之处在于,润滑油添加剂不添加苹果酸、正辛醇和马来酸二异癸酯,即润滑油添加剂为108mg苹果酸二正辛酯。
由图6可知,对比例1中,未加入润滑油添加剂的润滑油的平均摩擦系数为0.218,且波动明显,实施例3加入润滑油添加剂后,摩擦系数降低至0.128,降幅达到41%,且摩擦系数保持稳定。
由图7可知,对比例1中,未加入润滑油添加剂的润滑油磨斑直径约为405μm,且表面发生明显划伤,而实施例3中加入润滑油添加剂的润滑油磨斑直径降低至248μm,降幅达到39%,且磨斑表面没有发现明显划伤。
实施例4
与实施例2的润滑油的制备方法以及摩擦系数检测方法基本相同,不同之处在于,润滑油添加剂不添加苹果酸、正辛醇和苹果酸二正辛酯,即润滑油添加剂为108mg马来酸二异癸酯。
由图8可知,对比例1中,未加入润滑油添加剂的润滑油的平均摩擦系数为0.218,且波动明显,实施例4加入润滑油添加剂后,摩擦系数降低至0.125,降幅达到43%,且摩擦系数保持稳定。
由图9可知,对比例1中,未加入润滑油添加剂的润滑油磨斑直径约为405μm,且表面发生明显划伤,而实施例4中加入润滑油添加剂的润滑油磨斑直径降低至256μm,降幅达到37%,且磨斑表面没有发现明显划伤。
实施例5
与实施例2的润滑油的制备方法以及摩擦系数检测方法基本相同,不同之处在于,润滑油添加剂不添加苹果酸和正辛醇,即润滑油添加剂为96mg苹果酸二正辛酯和12mg马来酸二异癸酯。润滑油添加剂的组成为苹果酸二正辛酯80重量份和马来酸二异癸酯10重量份。
由图10可知,对比例1中,未加入润滑油添加剂的润滑油的平均摩擦系数为0.218,且波动明显,实施例5加入润滑油添加剂后,摩擦系数降低至0.116,降幅达到47%,且摩擦系数保持稳定。
由图11可知,对比例1中,未加入润滑油添加剂的润滑油磨斑直径约为405μm,且表面发生明显划伤,而实施例5中加入润滑油添加剂的润滑油磨斑直径降低至232μm,降幅达到43%,且磨斑表面没有发现明显划伤。
实施例6
与实施例2的润滑油的制备方法以及摩擦系数检测方法基本相同,不同之处在于,润滑油添加剂不添加苹果酸二正辛酯和马来酸二异癸酯,即润滑油添加剂为18mg苹果酸和90mg正辛醇。润滑油添加剂的组成为苹果酸3重量份和正辛醇15重量份。
图12为3重量份苹果酸与15重量份正辛醇混合超声所得产物的红外光谱图。由图中可以看出,苹果酸与正辛醇混合物中,没有发现苹果酸在1680cm -1处羧酸的C=O伸缩振动特征峰,而在1730cm -1发现了酯类化合物的C=O伸缩振动峰,验证了超声后的混合物中具有酯类化合物生成。
由图13可知,对比例1中,未加入润滑油添加剂的润滑油的平均摩擦系数为0.218,且波动明显,实施例6加入润滑油添加剂后,摩擦系数降低至0.113,降幅达到48%,且摩擦系数保持稳定。
由图14可知,对比例1中,未加入润滑油添加剂的润滑油磨斑直径约为405μm,且表面发生明显划伤,而实施例6中加入润滑油添加剂的润滑油磨斑直径降低至294μm,降幅达到27%,且磨斑表面没有发现明显划伤。
实施例7
与实施例2的润滑油的制备方法以及摩擦系数检测方法基本相同,不同之处在于, 润滑油添加剂不添加马来酸二异癸酯,即润滑油添加剂为3.3mg苹果酸、16.5mg正辛醇和88.2mg苹果酸二正辛酯。润滑油添加剂的组成为苹果酸3重量份、正辛醇15重量份和苹果酸二正辛酯80重量份。
由图15可知,对比例1中,未加入润滑油添加剂的润滑油的平均摩擦系数为0.218,且波动明显,实施例7加入润滑油添加剂后,摩擦系数降低至0.106,降幅达到51%,且摩擦系数保持稳定。
由图16可知,对比例1中,未加入润滑油添加剂的润滑油磨斑直径约为405μm,且表面发生明显划伤,而实施例7中加入润滑油添加剂的润滑油磨斑直径降低至207μm,降幅达到49%,且磨斑表面没有发现明显划伤。
实施例8
与实施例2的润滑油的制备方法以及摩擦系数检测方法基本相同,不同之处在于,润滑油添加剂不添加苹果酸二正辛酯,即润滑油添加剂为11.6mg苹果酸、57.8mg正辛醇和38.6mg马来酸二异癸酯。润滑油添加剂的组成为苹果酸3重量份、正辛醇15重量份和马来酸二异癸酯10重量份。
由图17可知,对比例1中,未加入润滑油添加剂的润滑油的平均摩擦系数为0.218,且波动明显,实施例8加入润滑油添加剂后,摩擦系数降低至0.113,降幅达到48%,且摩擦系数保持稳定。
由图18可知,对比例1中,未加入润滑油添加剂的润滑油磨斑直径约为405μm,且表面发生明显划伤,而实施例8中加入润滑油添加剂的润滑油磨斑直径降低至215μm,降幅达到47%,且磨斑表面没有发现明显划伤。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了上述实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域普通技术人员对上述实施例进行的变化、修改、替换和变型均在本公开的保护范围内。

Claims (15)

  1. 一种抗磨减摩润滑油添加剂,包括:苹果酸、脂肪醇、苹果酸酯和马来酸酯中的至少两种。
  2. 根据权利要求1所述的抗磨减摩润滑油添加剂,包括:0.1至80重量份的苹果酸酯和0.2至20重量份的马来酸酯。
  3. 根据权利要求1所述的抗磨减摩润滑油添加剂,包括:0.5至5重量份的苹果酸和5至20重量份的脂肪醇。
  4. 根据权利要求1所述的抗磨减摩润滑油添加剂,包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇和0.1至80重量份的苹果酸酯。
  5. 根据权利要求1所述的抗磨减摩润滑油添加剂,包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇和0.2至50重量份的马来酸酯。
  6. 根据权利要求1所述的抗磨减摩润滑油添加剂,包括:0.5至20重量份的苹果酸、5至50重量份的脂肪醇、0.1至80重量份的苹果酸酯和0.2至50重量份的马来酸酯。
  7. 根据权利要求1所述的抗磨减摩润滑油添加剂,其中,所述苹果酸酯由苹果酸与一元脂肪醇发生一分子或者两分子脱水酯化反应所生成;所述马来酸酯由马来酸与一元脂肪醇发生一分子或者两分子脱水酯化反应所生成。
  8. 根据权利要求7所述的抗磨减摩润滑油添加剂,其中,所述一元脂肪醇的碳原子数为1至16。
  9. 根据权利要求1所述的抗磨减摩润滑油添加剂,其中,所述苹果酸酯包括苹果酸二甲酯、苹果酸二正丁酯、苹果酸二辛酯中的至少一种;所述马来酸酯包括马来酸二丁酯、马来酸二异癸酯中的至少一种。
  10. 根据权利要求1所述的抗磨减摩润滑油添加剂,其中,所述脂肪醇为一元脂肪醇,所述一元脂肪醇的碳原子数为1至16。
  11. 一种润滑油,包括:润滑油添加剂以及润滑油基础油,所述润滑油添加剂包括苹果酸酯、马来酸酯或权利要求1至10中任一项所述的抗磨减摩润滑油添加剂。
  12. 根据权利要求11所述的润滑油,包括0.5至25重量份的所述润滑油添加剂和75至99.5重量份的所述润滑油基础油。
  13. 根据权利要求11所述的润滑油,其中,所述润滑油基础油包括矿物油、合成油、动植物油中的至少一种。
  14. 一种权利要求11至13中任一项所述的润滑油的制备方法,包括:将所述润滑油添加剂加入到所述润滑油基础油中,超声溶解或搅拌溶解。
  15. 根据权利要求14所述的润滑油的制备方法,其中,所述超声溶解过程中,超声的功率为100W至1000W,超声的时间为1至60min,超声的温度为10℃至60℃;或者,所述搅拌溶解过程中,搅拌的速度为5至800rpm,搅拌的时间为2至60min,搅拌的温度为10℃至60℃。
PCT/CN2022/136911 2022-10-13 2022-12-06 抗磨减摩润滑油添加剂、润滑油及其制备方法 WO2024077744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211255528.4A CN115612537A (zh) 2022-10-13 2022-10-13 一种抗磨减摩润滑油添加剂、润滑油及其制备方法
CN202211255528.4 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024077744A1 true WO2024077744A1 (zh) 2024-04-18

Family

ID=84863069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136911 WO2024077744A1 (zh) 2022-10-13 2022-12-06 抗磨减摩润滑油添加剂、润滑油及其制备方法

Country Status (2)

Country Link
CN (1) CN115612537A (zh)
WO (1) WO2024077744A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067995A (ja) * 1996-08-28 1998-03-10 Yachiyo Res Kk 耐荷重性潤滑油組成物
JPH11158483A (ja) * 1997-11-27 1999-06-15 Yachiyo Research Kk エステル系潤滑油組成物
CN1946833A (zh) * 2004-03-11 2007-04-11 科聚亚公司 含有羟基多羧酸酯的润滑剂和燃料组合物
CN103314084A (zh) * 2010-10-26 2013-09-18 卡斯特罗尔有限公司 含有羟基羧酸的脂肪酸酯的非水润滑剂和燃料组合物及其用途
CN103805312A (zh) * 2012-11-14 2014-05-21 重庆工商大学 一种高效无硫磷多功能润滑添加剂
CN112625782A (zh) * 2020-12-22 2021-04-09 上海金兆节能科技有限公司 一种清新环境微量润滑油及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580603A (en) * 1943-04-13 1946-09-13 Standard Oil Co California Turbine lubricating oil compositions
US7423000B2 (en) * 1999-01-19 2008-09-09 International Lubricants, Inc. Non-phosphorous, non-metallic anti-wear compound and friction modifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067995A (ja) * 1996-08-28 1998-03-10 Yachiyo Res Kk 耐荷重性潤滑油組成物
JPH11158483A (ja) * 1997-11-27 1999-06-15 Yachiyo Research Kk エステル系潤滑油組成物
CN1946833A (zh) * 2004-03-11 2007-04-11 科聚亚公司 含有羟基多羧酸酯的润滑剂和燃料组合物
CN103314084A (zh) * 2010-10-26 2013-09-18 卡斯特罗尔有限公司 含有羟基羧酸的脂肪酸酯的非水润滑剂和燃料组合物及其用途
CN103805312A (zh) * 2012-11-14 2014-05-21 重庆工商大学 一种高效无硫磷多功能润滑添加剂
CN112625782A (zh) * 2020-12-22 2021-04-09 上海金兆节能科技有限公司 一种清新环境微量润滑油及制备方法

Also Published As

Publication number Publication date
CN115612537A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN111234907B (zh) 一种煤基全合成sn级润滑油及其制备方法
CN111592883B (zh) 一种镁离子掺杂碳量子点及其制备和应用方法
WO2020135007A1 (zh) 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用
WO2024077744A1 (zh) 抗磨减摩润滑油添加剂、润滑油及其制备方法
JP2019046796A (ja) 炭素材料用分散剤、炭素材料用分散剤を含有する分散物、全固体リチウムイオン二次電池用電極スラリー、全固体リチウムイオン二次電池用電極の製造方法、全固体リチウムイオン二次電池用電極及び全固体リチウムイオン二次電池
Li et al. Pyrazine–nitrogen–rich exfoliated C4N nanosheets as efficient metal–free polymeric catalysts for oxygen reduction reaction
CN115353922B (zh) 氮化碳量子点基聚乙二醇润滑添加剂及其制备方法
CN109576063A (zh) 一种一步法合成低硫柴油抗磨剂的方法
CN109135890A (zh) 一种改性润滑油及其制备方法
KR20090092619A (ko) 탄소 코팅된 금속 나노 입자를 포함하는 윤활제 조성물 및그 제조 방법
CN107086305A (zh) 一种硅碳负极材料及其制备方法
CN102154053A (zh) 一种纳米石墨水基切削液添加剂及其制备方法
CN107338086A (zh) 石墨烯掺杂复合分散剂的润滑油添加剂及其制备方法
CN102931560B (zh) 一种性能优良的电刷材料及其制备方法
CN106381206A (zh) 一种含碳纳米管和石墨烯的润滑油的制备方法
CN113652286A (zh) 冷冻机油组合物及其制备方法
CN111269351B (zh) 一种二元聚合物柴油降凝剂及其制备方法和应用
CN109082329A (zh) 一种三元纳米自润滑复合材料及其制备方法
CN108841436B (zh) 含石墨烯-聚合物纤维的植物润滑油
CN109825344A (zh) 一种高导热润滑添加剂及其制备方法
CN112410107A (zh) 一种纳米合成润滑油及其制备方法
CN111411009B (zh) 一种金属拉拔润滑剂及其制备方法
CN107384520A (zh) 一种石墨烯润滑油
CN110484330A (zh) 一种抗磨剂的制备方法
CN112142889B (zh) 一种石墨烯复合材料的制备方法及其在润滑油中的应用