WO2020135007A1 - 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用 - Google Patents

聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用 Download PDF

Info

Publication number
WO2020135007A1
WO2020135007A1 PCT/CN2019/124158 CN2019124158W WO2020135007A1 WO 2020135007 A1 WO2020135007 A1 WO 2020135007A1 CN 2019124158 W CN2019124158 W CN 2019124158W WO 2020135007 A1 WO2020135007 A1 WO 2020135007A1
Authority
WO
WIPO (PCT)
Prior art keywords
aminothiazole
poly
graphene
composite coating
epoxy resin
Prior art date
Application number
PCT/CN2019/124158
Other languages
English (en)
French (fr)
Inventor
王立平
赵海超
邱诗惠
刘栓
蓝席建
卢光明
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2020135007A1 publication Critical patent/WO2020135007A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present application relates to an anticorrosive paint, in particular to a poly(2-aminothiazole)/graphene-epoxy composite paint, its preparation method and application, and belongs to the technical field of metal surface treatment.
  • Graphene is a newly discovered two-dimensional carbon nanomaterial with excellent physicochemical properties in recent years. Its large specific surface area, chemical stability, and excellent barrier properties and rigidity make it a high-performance corrosion inhibitor for coatings and reduce friction Research hotspots of additives.
  • the graphene two-dimensional nanosheet layered structure can effectively block the pores formed by the curing solvent during the drying process. It is expected to effectively improve the corrosion resistance of epoxy resins; in addition, graphene is only one atom thick, which is very good
  • the elasticity and super toughness can be used as a small molecule additive in epoxy resin films, exerting its strong lubricity and abrasion resistance.
  • graphene has poor dispersibility in epoxy resin, and its high specific surface area, strong van der Waals force, and ⁇ - ⁇ bond action cause graphene to easily agglomerate, which not only can not shield the corrosive medium, but may also form The water vapor channel accelerates the diffusion rate of water molecules in the coating, reduces the mechanical properties and anti-corrosion performance of the coating.
  • the anti-corrosion coatings formed by using modified graphene oxide in the prior art only have anti-corrosion functions, and the preparation and dispersion processes are complicated , For graft modification, only suitable for graphene oxide. Therefore, how to avoid graphene agglomeration and simultaneously design and prepare epoxy resin materials with good barrier and friction reducing performance is a problem faced by those skilled in the art.
  • the main purpose of this application is to provide a poly(2-aminothiazole)/graphene-epoxy composite coating, its preparation method and application, and the composite epoxy resin coating prepared by this method has excellent anti-corrosion and anti-friction properties, and Overcome the shortcomings of the existing technology.
  • the embodiments of the present application provide a poly(2-aminothiazole)/graphene-epoxy composite coating, which includes: poly(2-aminothiazole) modified graphene filler, epoxy resin, and organic solvent.
  • the mass of the poly(2-aminothiazole) modified graphene filler is 0.5% to 2.5% of the mass of the epoxy resin.
  • the poly(2-aminothiazole) modified graphene filler includes 20-50 wt% poly(2-aminothiazole) and 50-80 wt% graphene.
  • the poly(2-aminothiazole)-modified graphene filler includes a small number of poly(2-aminothiazole)-functionalized graphene sheets.
  • the organic solvent includes at least one of N,N-dimethylformamide (DMF) tetrahydrofuran (THF), H 2 O, ethanol, and methanol, but is not limited thereto.
  • DMF N,N-dimethylformamide
  • THF tetrahydrofuran
  • H 2 O H 2 O
  • ethanol ethanol
  • methanol methanol
  • the epoxy resin includes any one of E20, E44, and E51, but is not limited thereto.
  • the poly(2-aminothiazole) uses benzoyl peroxide and 1,4-dioxane as initiators, and 2-aminothiazole as a polymerization monomer, and allows all
  • the polymerization monomer and the initiator are formed by in-situ polymerization under the catalytic action of the catalyst;
  • the catalyst may be ferric chloride, and the in-situ polymerization may be carried out under stirring conditions at room temperature, normal pressure, and 800 rpm.
  • the embodiment of the present application also provides a preparation method of poly(2-aminothiazole)/graphene-epoxy composite coating, which includes: (2-aminothiazole) modified graphene filler, organic solvent, epoxy resin
  • the poly(2-aminothiazole)/graphene-epoxy composite coating is mixed under the condition of 20-150°C.
  • the preparation method includes: mixing (2-aminothiazole)-modified graphene filler, an organic solvent, and an epoxy resin at 25-35°C.
  • the mass of the poly(2-aminothiazole) modified graphene filler is 0.5% to 2.5% of the mass of the epoxy resin.
  • poly(2-aminothiazole) and graphene are mixed and dispersed in an organic solvent to form the (2-aminothiazole) modified graphene filler.
  • the mass ratio of the poly(2-aminothiazole) to graphene is 1-1.5:4-6.
  • the graphene in the poly(2-aminothiazole) modified graphene filler is a few layers of poly(2-aminothiazole)-functionalized graphene sheet.
  • the preparation method of the poly(2-aminothiazole) includes: using benzoyl peroxide and 1,4-dioxane as an initiator, and 2-aminothiazole as a polymerization monomer , The initiator, the polymerization monomer and the solvent are mixed, and the poly(2-aminothiazole) is formed through the polymerization reaction.
  • the solvent may be any one of water and ethanol, but it is not limited thereto.
  • the organic solvent includes at least one of N,N-dimethylformamide (DMF) tetrahydrofuran (THF), H 2 O, ethanol, and methanol, but is not limited thereto.
  • DMF N,N-dimethylformamide
  • THF tetrahydrofuran
  • H 2 O H 2 O
  • ethanol ethanol
  • methanol methanol
  • the epoxy resin includes any one of E20, E44, and E51, but is not limited thereto.
  • the application of this application also provides graphite prepared by the poly(2-aminothiazole)/graphene-epoxy composite coating or the preparation method of the poly(2-aminothiazole)/graphene-epoxy composite coating.
  • Anti-corrosion coating formed by ene-epoxy composite anti-corrosion anti-friction coating.
  • the method for forming the anticorrosive coating includes: applying the poly(2-aminothiazole)/graphene-epoxy composite coating to the surface of the substrate, and drying to form the coating.
  • the substrate includes a metal substrate, for example, it may be one of copper, iron, aluminum, magnesium metal, and alloys thereof, but it is not limited thereto.
  • the implementation of the present application also provides a metal surface treatment method, which includes: disposing the poly(2-aminothiazole)/graphene-epoxy composite coating or the graphene-epoxy prepared by the preparation method on the surface of the substrate Anti-corrosion coating formed by resin composite anti-corrosion and anti-friction coating.
  • the substrate includes a metal substrate.
  • the poly(2-aminothiazole)/graphene-epoxy composite coating provided in the examples of this application is based on the ⁇ - ⁇ interaction between graphene and poly(2-aminothiazole) (PAT) in organic solvents Ultrasonic vibration was carried out to obtain a few layers of poly(2-aminothiazole)-functionalized graphene sheet, which made graphene have free surface defects and reduced graphene agglomeration;
  • Graphene is stably dispersed in epoxy resin. Graphene with few layers and no stacking can improve the lubrication and anti-wear performance of the coating.
  • FIG. 1 is an ultraviolet spectrum of poly(2-aminothiazole) modified graphene and poly(2-aminothiazole) provided by examples of the present application;
  • Example 3 is the electrochemical impedance spectrum of the PAT-G0.5% composite coating provided in Example 1 in a 3.5% NaCl solution;
  • FIG. 5 is the trend of the wear rate of the coating of Example 2 with different additives under constant conditions (5N, 2 Hz, 30 min).
  • Poly(2-aminothiazole) is a new type of conductive polymer, which has a high molar content of nitrogen and sulfur, so it has a selective binding effect on the functional groups on graphene, so it can effectively improve the agglomeration of graphene; in addition, Poly(2-aminothiazole)-modified graphene-based epoxy resin composite coating has the characteristics of excellent low temperature resistance, good mechanical properties, strong corrosion resistance, excellent wear reduction performance, and excellent binding force with the metal matrix. Therefore, poly(2-aminothiazole) modified graphene can be widely used as a high-performance corrosion inhibitor and wear-reducing aid for epoxy resin coatings.
  • the poly(2-aminothiazole) main chain has a ⁇ -electron delocalization effect, and the conjugated structure of the poly(2-aminothiazole) main chain has a strong interaction with the ⁇ bond, giving the polymer peeling ability
  • the poly(2-aminothiazole)/graphene-epoxy composite coating provided by this application can be used as a protective coating for coating metal surfaces to prevent corrosion and wear.
  • the modified poly(2-aminothiazole)-modified graphene as the filler is added to the epoxy resin, and the coating rod is applied to the metal surface. Finally, the treated metal-coating interface is appropriate It is dried to obtain a corrosion-resistant coating.
  • the invention prepared a modified graphene synergistic composite anti-corrosion and anti-friction coating, in which poly(2-aminothiazole) was used to modify graphene and the modified graphene was doped in epoxy resin.
  • a composite coating should be obtained after the solvent has evaporated and dried.
  • the metal substrate is Q235 steel, and a poly(2-aminothiazole) coating is formed on the surface of Q235 steel.
  • the coating forming the coating is formed at least in the following manner: using 2-aminothiazole as the monomer, in the presence of the catalyst, through the monomer
  • the in situ polymerization reaction to prepare a physical dispersant the poly (2-aminothiazole) is added to E44 epoxy resin and mixed, wherein the mass of poly (2-aminothiazole) is 0.5% of E44 epoxy resin;
  • the other does not add filler; the specific steps are as follows:
  • the poly(2-aminothiazole)/graphene-epoxy composite coating was quickly coated on the surface of the Q235 steel block, and it was dried at room temperature for 24 hours to obtain a poly(2-aminothiazole) modified graphene-epoxy coating.
  • Specific steps are as follows:
  • the initiator, monomer, solvent and catalyst are uniformly mixed and obtained by in-situ polymerization Poly(2-aminothiazole);
  • the catalyst used therein is a catalyst known to those skilled in the art, and is commercially available;
  • poly(2-aminothiazole) with a mass ratio of 1:4 and graphene are mixed and dispersed in an organic solvent, and graphene is peeled off to obtain poly(2-aminothiazole) modified graphene Filler;
  • the poly(2-aminothiazole) modified graphene filler, organic solvent and epoxy resin are uniformly mixed under the condition of 20 to 150 °C to obtain a poly(2-aminothiazole)/graphene-epoxy composite coating, wherein ,
  • the mass of poly(2-aminothiazole)-graphene filler is 0.5% of E44 epoxy resin;
  • the specific test method is: dissolve about 1 mg of poly(2-aminothiazole) and poly(2-aminothiazole)-modified graphene powder in deionized water, and transfer to a cuvette after uniform dispersion. Mode record.
  • Both poly(2-aminothiazole) and poly(2-aminothiazole) modified graphene show two peaks.
  • the peak at 277 nm of poly(2-aminothiazole) reflects the ⁇ * transition of the thiazole ring;
  • the broad absorption band of the ⁇ * transition of the conjugated polymer shifts from 445nm to 435nm relative to poly(2-aminothiazole), which indicates that (2-amino Thiazole) and graphene have a ⁇ - ⁇ interaction.
  • Electrochemical impedance measurement was performed on the sample of the composite coating on the surface of the sample treated in step (2) of the above Comparative Example 1 and step (3) of Example 1; the measurement method was: the electrolyte was a NaCl solution with a mass concentration of 3.5%, using Three-electrode method, in which the reference electrode is a calomel electrode, the counter electrode is a platinum electrode, the working electrode is the sample processed in step (2) of Comparative Example 1, and the sample processed in step (2) of Example 1.
  • Example 1 In Example 1, according to the above-mentioned electrochemical impedance results, it can be concluded that when preparing a coating of graphene filler modified with poly(2-aminothiazole) on the surface of Q235 steel, 0.5% poly(2- (Aminothiazole) modified graphene filler has better corrosion resistance.
  • the poly(2-aminothiazole)/graphene-epoxy composite coating was quickly coated on the surface of the Q235 steel block, and it was dried at room temperature for 24 hours to obtain a poly(2-aminothiazole) modified graphene-epoxy coating.
  • Specific steps are as follows:
  • the initiator, monomer, solvent and catalyst are uniformly mixed and obtained by in-situ polymerization Poly(2-aminothiazole);
  • the catalyst used therein is a catalyst known to those skilled in the art, and is commercially available;
  • the poly(2-aminothiazole) with a mass ratio of 1.5:6 and graphene are mixed and dispersed in an organic solvent, and graphene is peeled off to obtain poly(2-aminothiazole) modified graphene Filler; the poly(2-aminothiazole) modified graphene filler, organic solvent and epoxy resin are uniformly mixed at 25°C to obtain poly(2-aminothiazole)/graphene-epoxy composite coating, in which The mass of (2-aminothiazole)-graphene filler is 0.5% and 1% of E44 epoxy resin;
  • Figures 4 and 5 are the friction coefficient and wear rate of coatings with different additives under constant conditions (5N, 2Hz, 30min):
  • the wear rate of the coating can directly reflect the wear behavior. As shown in Figure 5, the wear rate of pure epoxy resin can reach 2.813 ⁇ 10 -7 mm 3 /N ⁇ m, poly(2-aminothiazole) additive It can reduce the wear rate of epoxy resin by 47.99%. In low-concentration graphene, it can be added to the epoxy resin matrix to reduce the wear of the composite material. However, excessive graphene in the epoxy resin matrix will Increasing the wear loss of the composite material, the wear rate of the PAT-G0.5% sample is the lowest (8.586 ⁇ 10 -8 mm3/N ⁇ m), which is reduced by 69.48% compared with the blank sample.
  • the poly(2-aminothiazole)/graphene-epoxy composite coating was quickly coated on the surface of the Q235 steel block, and it was dried at room temperature for 24 hours to obtain a poly(2-aminothiazole) modified graphene-epoxy coating.
  • Specific steps are as follows:
  • the initiator, monomer, solvent and catalyst are uniformly mixed and obtained by in-situ polymerization Poly(2-aminothiazole);
  • the catalyst used therein is a catalyst known to those skilled in the art, and is commercially available;
  • the physical ultrasonic vibration method is used to mix and disperse the poly(2-aminothiazole) with a mass ratio of 1:6 and graphene in an organic solvent, and peel off the graphene to obtain poly(2-aminothiazole) modified graphene Filler; the poly(2-aminothiazole)-modified graphene filler, organic solvent and epoxy resin are uniformly mixed at 35 °C to obtain poly(2-aminothiazole)/graphene-epoxy composite coating, in which The mass of (2-aminothiazole)-graphene filler is 2% of E44 epoxy resin;
  • Example 1 The above samples were tested for friction performance, and the microscopic morphology of the abrasive debris was characterized.
  • the test results are basically consistent with the test results of the samples of Example 1 and Example 2.
  • the poly(2-aminothiazole)/graphene-epoxy composite coating was quickly coated on the surface of the Q235 steel block, and it was dried at room temperature for 24 hours to obtain a poly(2-aminothiazole) modified graphene-epoxy coating.
  • Specific steps are as follows:
  • the initiator, monomer, solvent and catalyst are uniformly mixed and obtained by in-situ polymerization Poly(2-aminothiazole);
  • the catalyst used therein is a catalyst known to those skilled in the art, and is commercially available;
  • the poly(2-aminothiazole) with a mass ratio of 1.2:5 and graphene are mixed and dispersed in an organic solvent, and graphene is peeled off to obtain poly(2-aminothiazole) modified graphene Filler;
  • the poly(2-aminothiazole)-modified graphene filler, organic solvent and epoxy resin are uniformly mixed at 20°C to obtain poly(2-aminothiazole)/graphene-epoxy composite coating, in which The mass of (2-aminothiazole)-graphene filler is 1.5% of E44 epoxy resin;
  • Example 1 The above samples were tested for friction performance, and the microscopic morphology of the abrasive debris was characterized.
  • the test results are basically consistent with the test results of the samples of Example 1 and Example 2.
  • the poly(2-aminothiazole)/graphene-epoxy composite coating was quickly coated on the surface of the Q235 steel block, and it was dried at room temperature for 24 hours to obtain a poly(2-aminothiazole) modified graphene-epoxy coating.
  • Specific steps are as follows:
  • the initiator, monomer, solvent and catalyst are uniformly mixed and obtained by in-situ polymerization Poly(2-aminothiazole);
  • the catalyst used therein is a catalyst known to those skilled in the art, and is commercially available;
  • the poly(2-aminothiazole) with a mass ratio of 1.5:6 and graphene are mixed and dispersed in an organic solvent, and graphene is peeled off to obtain poly(2-aminothiazole) modified graphene Filler;
  • the poly(2-aminothiazole) modified graphene filler, organic solvent and epoxy resin are uniformly mixed at 150 °C to obtain poly(2-aminothiazole)/graphene-epoxy composite coating, in which The mass of (2-aminothiazole)-graphene filler is 2.5% of E44 epoxy resin;
  • Example 1 The above samples were tested for friction performance, and the microscopic morphology of the abrasive debris was characterized.
  • the test results are basically consistent with the test results of the samples of Example 1 and Example 2.
  • the raw materials such as organic solvents, epoxy resins, catalysts and the like used in the preparation of poly(2-aminothiazole)/graphene-epoxy composite coatings in the examples of the present application are all commercially available, and others are specifically mentioned
  • the frequency such as ultrasonic vibration can be adjusted according to the specific situation, the vibration frequency can be the value mentioned or not mentioned in the embodiments of the present application, and can be implemented by conventional technical means in the art;
  • the mass of the (2-aminothiazole) modified graphene filler is 0.5% to 2.5% of the mass of the epoxy resin.
  • Example 1 For example, 2.5%, 2%, 1.5%, 1%, 0.5% are used in the range of 0.5% to 2.5%
  • a poly(2-aminothiazole)/graphene-epoxy composite coating was prepared and tested for performance.
  • the test results were basically the same as those in Example 1 and Example 2.
  • the mass ratio of poly(2-aminothiazole) to graphene is 1-1.5:4-6, and 1: 4, 1:6, 1.5:4, 1.5:6, 1.2:4, 1.2:6, 1:5, 1.3:5 and other different ratios are prepared to form 20-50wt% poly(2-aminothiazole) and 50 -80wt% graphene poly(2-aminothiazole) modified graphene filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种聚(2-氨基噻唑)/石墨烯-环氧复合涂料,包括:聚(2-氨基噻唑)修饰的石墨烯填料、环氧树脂以及有机溶剂。该涂料的制备方法包括将(2-氨基噻唑)修饰的石墨烯填料、有机溶剂、环氧树脂于20~150℃条件下混合形成。将该涂料设置在基体表面上形成防腐涂层。

Description

聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用 技术领域
本申请涉及一种防腐涂料,特别涉及一种聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用,属于金属表面处理技术领域。
背景技术
石墨烯是近些年新发现的具有优良物化性能的二维碳纳米材料,其大的比表面积、化学稳定性以及优异的阻隔性和刚性能使其成为涂层高性能腐蚀抑制剂和减磨助剂的研究热点。石墨烯二维纳米片层状结构可以有效的封堵固化溶剂在干燥过程中形成的微孔预计可以有效的改善环氧树脂的防腐性能;另外,石墨烯只有一个原子的厚度,又有很好的弹性、超强的韧性,可以作为小分子添加剂应用在环氧树脂薄膜中,发挥其极强的润滑和抗磨性。然而石墨烯在环氧树脂中的分散性较差,其高的比表面积、强的范德华力和π-π键作用导致石墨烯极易发生团聚,非但不能对腐蚀介质产生屏蔽作用,还可能形成水汽通道,加速水分子在涂层中的扩散速率,降低涂层的机械性能和防腐性能,现有技术中使用改性氧化石墨烯形成的防腐涂料仅具有防腐蚀功能,且制备、分散过程复杂,为接枝改性,仅适用于氧化石墨烯。因此如何避免石墨烯团聚,同时设计制备具有良好阻隔与减磨性能的环氧树脂材料是本领域技术人员所面临的问题。
发明内容
本申请的主要目的在于提供一种聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用,利用该方法制备的复合环氧树脂涂层具有优异的防腐减磨性能,进而克服了现有技术的不足。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其包括:聚(2-氨基噻唑)修饰的石墨烯填料、环氧树脂以及有机溶剂。
在一些较为具体的实施方案中,所述聚(2-氨基噻唑)修饰的石墨烯填料的质量为环氧树脂质量的0.5%~2.5%。
在一些较为具体的实施方案中,所述聚(2-氨基噻唑)修饰的石墨烯填料包括20-50wt%的聚(2-氨基噻唑)和50-80wt%的石墨烯。
在一些较为具体的实施方案中,所述聚(2-氨基噻唑)修饰的石墨烯填料包括少层的聚(2-氨基噻唑)-官能化的石墨烯片。
在一些较为具体的实施方案中,所述有机溶剂包括N,N-二甲基甲酰胺(DMF)四氢呋喃(THF)、H 2O、乙醇、甲醇中的至少一种,但不限于此。
在一些较为具体的实施方案中,所述的环氧树脂包括E20、E44和E51中的任意一种,但不限于此。
在一些较为具体的实施方案中,所述聚(2-氨基噻唑)是以过氧化苯甲酰和1,4-二恶烷为引发剂、2-氨基噻唑作为聚合反应单体,并使所述聚合反应单体以及引发剂在催化剂的催化作用下经原位聚合反应形成;其中的催化剂可以采用氯化铁,原位聚合反应可以是在室温、常压、800rpm搅拌条件下进行。
本申请实施例还提供了一种聚(2-氨基噻唑)/石墨烯-环氧复合涂料的制备方法,其包括:将(2-氨基噻唑)修饰的石墨烯填料、有机溶剂、环氧树脂于20~150℃条件下混合形成所述的聚(2-氨基噻唑)/石墨烯-环氧复合涂料。
在一些较为具体的实施方案中,所述的制备方法包括:将(2-氨基噻唑)修饰的石墨烯填料、有机溶剂、环氧树脂于25~35℃条件下混合。
在一些较为具体的实施方案中,所述聚(2-氨基噻唑)修饰的石墨烯填料的质量为环氧树脂质量的0.5%~2.5%。
在一些较为具体的实施方案中,将聚(2-氨基噻唑)与石墨烯于有机溶剂中混合分散,形成所述(2-氨基噻唑)修饰的石墨烯填料。
优选的,所述聚(2-氨基噻唑)与石墨烯的质量比为1-1.5:4-6。
在一些较为具体的实施方案中,所述聚(2-氨基噻唑)修饰的石墨烯填料中的石墨烯为少层的聚(2-氨基噻唑)-官能化的石墨烯片。
在一些较为具体的实施方案中,所述聚(2-氨基噻唑)的制备方法包括:采用过氧化苯甲酰和1,4-二恶烷为引发剂、2-氨基噻唑作为聚合反应单体,将所述引发剂、聚合反应单体与溶剂混合,通过聚合反应,形成所述的聚(2-氨基噻唑)。
优选的,所述溶剂可以是水和乙醇中的任意一种,但不限于此。
在一些较为具体的实施方案中,所述的有机溶剂包括N,N-二甲基甲酰胺(DMF)四氢呋喃(THF)、H 2O、乙醇、甲醇中的至少一种,但不限于此。
在一些较为具体的实施方案中,所述的环氧树脂包括E20、E44和E51中的任意一种,但不限于此。
本申请实施还提供了由所述的聚(2-氨基噻唑)/石墨烯-环氧复合涂料或由所述聚(2-氨基噻唑)/石墨烯-环氧复合涂料的制备方法制备的石墨烯-环氧树脂复合防腐减磨涂料形成的防腐涂层。
在一些较为具体的实施方案中,所述防腐涂层的形成方法包括:将所述的聚(2-氨基噻唑)/石墨烯-环氧复合涂料涂覆于基体表面,干燥后形成所述的涂层。
优选的,所述基体包括金属基体,例如可以是铜、铁、铝、镁金属以及它们的合金中的一种,但不限于此。
本申请实施还提供了一种金属表面处理方法,包括:在基体表面设置由所述聚(2-氨基噻唑)/石墨烯-环氧复合涂料或由所述制备方法制备的石墨烯-环氧树脂复合防腐减磨涂料形成的防腐涂层。
优选的,所述基体包括金属基体。
与现有技术相比,本申请的优点包括:
1)本申请实施例提供的聚(2-氨基噻唑)/石墨烯-环氧复合涂料,基于石墨烯与聚(2-氨基噻唑)(PAT)之间的π-π相互作用,在有机溶剂中进行超声振动得到少层的聚(2-氨基噻唑)-官能化的石墨烯片,使石墨烯具有游离的表面缺陷,减少了石墨烯的团聚;
2)石墨烯稳定分散在环氧树脂中,有效地对凝胶过程中形成的微孔进行密封,从而提高了涂层的耐腐蚀介质渗透性能;
3)石墨烯稳定分散在环氧树脂中,少层、无堆叠的石墨烯可提高涂层的润滑和抗磨性能。
附图说明
图1是本申请实施例提供的聚(2-氨基噻唑)修饰石墨烯和聚(2-氨基噻唑)的紫外光谱;
图2是对比例1提供的空白复合涂层在浓度为3.5%的NaCl溶液中的电化学阻抗谱;
图3是实施例1提供的PAT-G0.5%复合涂层在浓度为3.5%的NaCl溶液中的电化学阻抗谱;
图4是实施例2的在恒定条件下(5N,2Hz,30min)具有不同添加剂的涂层的摩擦系数的变化趋势;
图5是实施例2的在恒定条件下(5N,2Hz,30min)具有不同添加剂的涂层的磨损率的变化趋势。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
聚(2-氨基噻唑)是一种新型导电聚合物,其具有很高的氮、硫摩尔含量,所以对石墨烯上的官能团具有选择性结合作用,因此可以有效改善石墨烯的团聚;另外,聚(2-氨基噻唑)修饰的石墨烯基环氧树脂复合涂层因具有优异的耐低温、力学性能好、抗腐蚀性能强、减磨性能优异以及与金属基体具有优良的结合力等特点,因此,聚(2-氨基噻唑)修饰的石墨烯可广泛应用于环氧树脂涂层的高性能腐蚀抑制剂和减磨助剂。以及,聚(2-氨基噻唑)主链具有π电子离域效应,所述的聚(2-氨基噻唑)主链的共轭结构与π键具有强相互作用,赋予了聚合物剥离能力
本申请提供的聚(2-氨基噻唑)/石墨烯-环氧复合涂料,可用作涂布金属表面以防腐蚀耐磨的保护涂层。具体使用时,将本申请的改性聚(2-氨基噻唑)修饰的石墨烯作为填料加入环氧树脂中,使用涂布棒涂在金属表面,最后,将处理后的金属-涂层界面适当进行干燥得到防腐涂层。
综上所述,该发明制备了改性石墨烯增效的复合防腐减磨涂料,其中采用聚(2-氨基噻唑)修饰石墨烯并将改性后的石墨烯掺杂在环氧树脂中,待溶剂挥发干燥后应得到复合涂层。
对比例1
本实施例是以下实施例1的对比例
金属基体为Q235钢,在Q235钢表面形成聚(2-氨基噻唑)涂层,形成涂层的涂料至少采用以下方式形成:采用2-氨基噻唑为单体,在催化剂存在条件下,通过单体的原位聚合反应而制得物理分散剂,将聚(2-氨基噻唑)加入E44环氧树脂中混合而得到的,其中聚(2-氨基噻唑)的质量为E44环氧树脂的0.5%;另一种则不添加填料;具体步骤如下:
(1)采用过氧化苯甲酰和1,4-二恶烷为引发剂,2-氨基噻唑作为聚合反应单体,将引发剂、单体、溶剂与催化剂均匀混合后通过原位聚合反应得到聚(2-氨基噻唑);将该防腐耐磨填料掺入E44环氧树脂中,待干燥后得到聚(2-氨基噻唑)-环氧树脂复合涂料;
(2)将Q235钢机械抛光、在丙酮中超声清洗后使用涂布棒将聚(2-氨基噻唑)-环氧树脂复合防腐减磨涂料和纯E44环氧树脂涂料涂抹在金属表面,常温干燥至树脂固化,得到表面覆有聚(2-氨基噻唑)-环氧树脂涂层与纯环氧树脂涂层的实施空白样品。
实施例1
将聚(2-氨基噻唑)/石墨烯-环氧复合涂料迅速涂布于Q235钢块表面,置于室温下干燥24h,得到聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层,具体步骤如下:
(1)采用过氧化苯甲酰和1,4-二恶烷为引发剂,2-氨基噻唑作为聚合反应单体,将引发剂、单体、溶剂与催化剂均匀混合后通过原位聚合反应得到聚(2-氨基噻唑);其中采用的催化剂为本领域技术人员所知的催化剂,可通过市购获得;
(2)采用物理超声震动法将质量比为1:4的聚(2-氨基噻唑)与石墨烯于有机溶剂中混合分散,进行石墨烯剥离,得到聚(2-氨基噻唑)修饰的石墨烯填料;将得到聚(2-氨基噻唑)修 饰的石墨烯填料、有机溶剂与环氧树脂在20~150℃条件下均匀混合获得聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其中,聚(2-氨基噻唑)-石墨烯填料的质量为E44环氧树脂的0.5%;
(3)将Q235钢机械抛光、在丙酮中超声清洗后使用涂布棒将聚(2-氨基噻唑)/石墨烯-环氧复合涂料涂抹在金属表面,常温干燥至树脂固化,得到表面覆有聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层的实施PAT-G0.5%样品。
对上述实施例1步骤(1)、实施例1步骤(2)和对比例1步骤(2)中的聚(2-氨基噻唑)和聚(2-氨基噻唑)修饰的石墨烯分别进行紫外测试,以表征聚(2-氨基噻唑)对于石墨烯改性的情况。
具体测试方法为:分别将1mg左右的聚(2-氨基噻唑)和聚(2-氨基噻唑)修饰的石墨烯粉末溶于去离子水中,待均匀分散后转移到比色皿中,采用透过模式记录。
紫测试结果如图1所示,从图1中可以看出:
聚(2-氨基噻唑)和聚(2-氨基噻唑)修饰的石墨烯都有两个峰显示出来,聚(2-氨基噻唑)的277nm处的峰反映了噻唑环的π→π*跃迁;而对于聚(2-氨基噻唑)修饰的石墨烯,共轭聚合物的π→π*跃迁的宽吸收带相对于聚(2-氨基噻唑)445nm偏移到435nm,这表明了(2-氨基噻唑)和石墨烯发生了π-π相互作用。
对上述对比例1步骤(2)及实施例1步骤(3)中处理后的样品表面复合涂层的样品进行电化学阻抗测量;测量方法为:电解质为质量浓度为3.5%的NaCl溶液,采用三电极法,其中参比电极为甘汞电极,对电极为铂电极,工作电极为对比例1步骤(2)中处理得到的样品,以及实施例1步骤(2)中处理得到的样品。
空白样与PAT-G0.5%的电化学阻抗Bode谱测试结果如图2和图3所示:
(1)与对比例1处理后的对比样品(图2)相比,经实施例1处理后的样品(图3)的阻抗模量更大,即腐蚀过程中电荷传递的电阻更大,表明经实施例1处理后得到的聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层能够为Q235钢提供更好的隔绝防腐效果。
(2)在实施例1中,根据上述电化学阻抗结果可以得出:在Q235钢表面制备添加聚(2-氨基噻唑)修饰的石墨烯填料的涂层时,加入0.5%的聚(2-氨基噻唑)修饰的石墨烯填料所得到的复合涂层的防腐蚀性能更佳。
实施例2
将聚(2-氨基噻唑)/石墨烯-环氧复合涂料迅速涂布于Q235钢块表面,置于室温下干燥24h,得到聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层,具体步骤如下:
(1)采用过氧化苯甲酰和1,4-二恶烷为引发剂,2-氨基噻唑作为聚合反应单体,将引发剂、单体、溶剂与催化剂均匀混合后通过原位聚合反应得到聚(2-氨基噻唑);其中采用的催化剂为本领域技术人员所知的催化剂,可通过市购获得;
(2)采用物理超声震动法将质量比为1.5:6的聚(2-氨基噻唑)与石墨烯于有机溶剂中混合分散,进行石墨烯剥离,得到聚(2-氨基噻唑)修饰的石墨烯填料;将得到聚(2-氨基噻唑)修饰的石墨烯填料、有机溶剂与环氧树脂在25℃条件下均匀混合获得聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其中,聚(2-氨基噻唑)-石墨烯填料的质量为E44环氧树脂的0.5%、1%;
(3)将Q235钢机械抛光、在丙酮中超声清洗后使用涂布棒将聚(2-氨基噻唑)/石墨烯-环氧复合涂料涂抹在金属表面,常温干燥至树脂固化,得到表面覆有聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层的实施PAT-G0.5%、PAT-G1%样品;
将以上样品进行摩擦性能测试,并对磨屑进行微观形貌表征。
对上述实施例2中处理后的样品表面进行摩擦测试。
图4和图5是实施例2的样品在恒定条件下(5N,2Hz,30min),具有不同添加剂的涂层的摩擦系数和磨损率:
(1)由于其在高温下的磨损降低和热稳定性,石墨烯被广泛认为是具有增强摩擦学性能的聚合物复合材料的重要固体润滑剂,图4显示了纯环氧树脂和不同添加剂复合材料的摩擦系数(COF)的变化趋势,对于纯环氧涂层,COF值在测试过程中缓慢增加至约0.60,这表明纯环氧样品的摩擦系数不稳定;显然,填充有纳米添加剂的复合涂层表现出比纯环氧涂层更低的摩擦系数。PAT0.5%样品的COF值是0.52,这是由于杂环聚(2-氨基噻唑)具有多齿配体的结构赋予其承载能力和低稳态摩擦系数,在测试过程中,PAT-G0.5%试样的最低COF值约为0.50,这不仅归因于石墨烯的润滑效果和优异的分散性,还因为聚(2-氨基噻唑)也有很强的耐磨性。在试验期间,PAT-G0.5%的COF值在400s后达到稳定,而PAT0.5%样品在600s时保持稳定,这意味着PAT-G0.5%可以有效降低涂层损伤。
(2)复合涂层中石墨烯含量高达1%时,COF值为0.58,说明比表面积大的石墨烯会严重聚集。
(3)涂层的磨损率可以直接反映磨损行为,如图5所示,纯环氧树脂的磨损率可达2.813×10 -7mm 3/N·m,聚(2-氨基噻唑)的添加剂可使环氧树脂的磨损率降低47.99%,在低浓度的石墨烯中,其加入到环氧树脂基体中可以对复合材料的减磨起作用,而在环氧树脂基体中过量的石墨烯会增加复合材料的磨损损失,PAT-G0.5%试样的磨损率最低(8.586×10 -8mm3/N·m),相对于空白试样减少了69.48%。
实施例3
将聚(2-氨基噻唑)/石墨烯-环氧复合涂料迅速涂布于Q235钢块表面,置于室温下干燥24h,得到聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层,具体步骤如下:
(1)采用过氧化苯甲酰和1,4-二恶烷为引发剂,2-氨基噻唑作为聚合反应单体,将引发剂、单体、溶剂与催化剂均匀混合后通过原位聚合反应得到聚(2-氨基噻唑);其中采用的催化剂为本领域技术人员所知的催化剂,可通过市购获得;
(2)采用物理超声震动法将质量比为1:6的聚(2-氨基噻唑)与石墨烯于有机溶剂中混合分散,进行石墨烯剥离,得到聚(2-氨基噻唑)修饰的石墨烯填料;将得到聚(2-氨基噻唑)修饰的石墨烯填料、有机溶剂与环氧树脂在35℃条件下均匀混合获得聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其中,聚(2-氨基噻唑)-石墨烯填料的质量为E44环氧树脂的2%;
(3)将Q235钢机械抛光、在丙酮中超声清洗后使用涂布棒将聚(2-氨基噻唑)/石墨烯-环氧复合涂料涂抹在金属表面,常温干燥至树脂固化,得到表面覆有聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层的实施PAT-G2%样品;
将以上样品进行摩擦性能测试,并对磨屑进行微观形貌表征,其测试结果与实施例1和实施例2的样品测试结果基本一致。
实施例4
将聚(2-氨基噻唑)/石墨烯-环氧复合涂料迅速涂布于Q235钢块表面,置于室温下干燥24h,得到聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层,具体步骤如下:
(1)采用过氧化苯甲酰和1,4-二恶烷为引发剂,2-氨基噻唑作为聚合反应单体,将引发剂、单体、溶剂与催化剂均匀混合后通过原位聚合反应得到聚(2-氨基噻唑);其中采用的催化剂为本领域技术人员所知的催化剂,可通过市购获得;
(2)采用物理超声震动法将质量比为1.2:5的聚(2-氨基噻唑)与石墨烯于有机溶剂中混合分散,进行石墨烯剥离,得到聚(2-氨基噻唑)修饰的石墨烯填料;将得到聚(2-氨基噻唑)修饰的石墨烯填料、有机溶剂与环氧树脂在20℃条件下均匀混合获得聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其中,聚(2-氨基噻唑)-石墨烯填料的质量为E44环氧树脂的1.5%;
(3)将Q235钢机械抛光、在丙酮中超声清洗后使用涂布棒将聚(2-氨基噻唑)/石墨烯-环氧复合涂料涂抹在金属表面,常温干燥至树脂固化,得到表面覆有聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层的实施PAT-G1.5%样品;
将以上样品进行摩擦性能测试,并对磨屑进行微观形貌表征,其测试结果与实施例1和实施例2的样品测试结果基本一致。
实施例5
将聚(2-氨基噻唑)/石墨烯-环氧复合涂料迅速涂布于Q235钢块表面,置于室温下干燥24h,得到聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层,具体步骤如下:
(1)采用过氧化苯甲酰和1,4-二恶烷为引发剂,2-氨基噻唑作为聚合反应单体,将引发剂、单体、溶剂与催化剂均匀混合后通过原位聚合反应得到聚(2-氨基噻唑);其中采用的催化剂为本领域技术人员所知的催化剂,可通过市购获得;
(2)采用物理超声震动法将质量比为1.5:6的聚(2-氨基噻唑)与石墨烯于有机溶剂中混合分散,进行石墨烯剥离,得到聚(2-氨基噻唑)修饰的石墨烯填料;将得到聚(2-氨基噻唑)修饰的石墨烯填料、有机溶剂与环氧树脂在150℃条件下均匀混合获得聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其中,聚(2-氨基噻唑)-石墨烯填料的质量为E44环氧树脂的2.5%;
(3)将Q235钢机械抛光、在丙酮中超声清洗后使用涂布棒将聚(2-氨基噻唑)/石墨烯-环氧复合涂料涂抹在金属表面,常温干燥至树脂固化,得到表面覆有聚(2-氨基噻唑)修饰的石墨烯-环氧树脂涂层的实施PAT-G2.5%样品;
将以上样品进行摩擦性能测试,并对磨屑进行微观形貌表征,其测试结果与实施例1和实施例2的样品测试结果基本一致。
需要说明的是,本申请实施例制备聚(2-氨基噻唑)/石墨烯-环氧复合涂料所采用的诸如有机溶剂、环氧树脂、催化剂等原料均可由市购获得,其他为具体提及的诸如超声振动的频率等可根据具体情况调节,其振动频率可以是本申请实施例中提及或未提及的值,可采用本领域的常规技术手段实施;以及本申请人还基由聚(2-氨基噻唑)修饰的石墨烯填料的质量为环氧树脂质量的0.5%~2.5%,在0.5%~2.5%的范围内采用例如2.5%、2%、1.5%、1%、0.5%等不同的比例,制备形成了聚(2-氨基噻唑)/石墨烯-环氧复合涂料,并对其进行性能测试,测试结果与实施例1和实施例2中的测试结果基本一致。其中,在制备聚(2-氨基噻唑)/石墨烯-环氧复合涂料中分别在聚(2-氨基噻唑)与石墨烯的质量比为1-1.5:4-6的比例关系中选用1:4、1:6、1.5:4、1.5:6、1.2:4、1.2:6、1:5、1.3:5等不同的比例制备形成包括20-50wt%的聚(2-氨基噻唑)和50-80wt%的石墨烯的述聚(2-氨基噻唑)修饰的石墨烯填料。
实验证实,该方法基于石墨烯的π-π相互作用,通过PAT插层,获得了少层的官能化石墨烯,以此作为掺杂物,得到聚(2-氨基噻唑)修饰的石墨烯-环氧树脂复合涂料。实验证实,与传统的石墨烯/氧化石墨烯相比,本申请能够有效的减少石墨烯团聚,改性后的石墨烯亦具有更好的分散性,与未加入改性石墨烯的纯环氧涂料相比,加入改性石墨烯后很好地提高了涂料的防腐和减磨性能。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其特征在于包括:聚(2-氨基噻唑)修饰的石墨烯填料、环氧树脂以及有机溶剂。
  2. 根据权利要求1所述聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其特征在于:所述聚(2-氨基噻唑)修饰的石墨烯填料的质量为环氧树脂质量的0.5%~2.5%。
  3. 根据权利要求1或2所述聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其特征在于:所述聚(2-氨基噻唑)修饰的石墨烯填料包括20-50wt%的聚(2-氨基噻唑)和50-80wt%的石墨烯;和/或,所述聚(2-氨基噻唑)修饰的石墨烯填料包括少层的聚(2-氨基噻唑)-官能化的石墨烯片;和/或,所述有机溶剂包括N,N-二甲基甲酰胺、四氢呋喃、H 2O、乙醇、甲醇中的至少一种;和/或,所述的环氧树脂包括E20、E44和E51中的任意一种。
  4. 根据权利要求3所述聚(2-氨基噻唑)/石墨烯-环氧复合涂料,其特征在于:所述聚(2-氨基噻唑)修饰的石墨烯填料由聚(2-氨基噻唑)与石墨烯在有机溶剂中混合分散制成;优选的,所述聚(2-氨基噻唑)与石墨烯的质量比为1-1.5:4-6。
  5. 一种聚(2-氨基噻唑)/石墨烯-环氧复合涂料的制备方法,其特征在于包括:将(2-氨基噻唑)修饰的石墨烯填料、有机溶剂、环氧树脂于20~150℃条件下混合形成所述的聚(2-氨基噻唑)/石墨烯-环氧复合涂料。
  6. 根据权利要求5所述的制备方法,其特征在于包括:将(2-氨基噻唑)修饰的石墨烯填料、有机溶剂、环氧树脂于25~35℃条件下混合;和/或,所述聚(2-氨基噻唑)修饰的石墨烯填料的质量为环氧树脂质量的0.5%~2.5%。
  7. 根据权利要求5所述的制备方法,其特征在于包括:将聚(2-氨基噻唑)与石墨烯于有机溶剂中混合分散,形成所述(2-氨基噻唑)修饰的石墨烯填料;优选的,所述聚(2-氨基噻唑)与石墨烯的质量比为1-1.5:4-6;和/或,所述聚(2-氨基噻唑)修饰的石墨烯填料中的石墨烯为少层的聚(2-氨基噻唑)-官能化的石墨烯片;和/或,所述聚(2-氨基噻唑)的制备方法包括:采用过氧化苯甲酰和1,4-二恶烷为引发剂、2-氨基噻唑作为聚合反应单体,将所述引 发剂、聚合反应单体与溶剂混合,通过聚合反应,形成所述的聚(2-氨基噻唑);优选的,所述溶剂包括水和乙醇中的任意一种。
  8. 根据权利要求5-7中任一项所述的制备方法,其特征在于:所述的有机溶剂包括N,N-二甲基甲酰胺、四氢呋喃、H 2O、乙醇、甲醇中的至少一种;和/或,所述的环氧树脂包括E20、E44和E51中的任意一种。
  9. 由权利要求1-4中任一项所述的聚(2-氨基噻唑)/石墨烯-环氧复合涂料或由权利要求5-8中任一项所述制备方法制备的聚(2-氨基噻唑)/石墨烯-环氧复合涂料形成的防腐涂层。
  10. 一种表面处理方法,包括:在基体表面设置由权利要求1-4中任一项所述聚(2-氨基噻唑)/石墨烯-环氧复合涂料或由权利要求5-8中任一项所述的制备方法制备的石墨烯-环氧树脂复合防腐减磨涂料形成的防腐涂层;优选的,所述基体包括金属基体。
PCT/CN2019/124158 2018-12-26 2019-12-10 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用 WO2020135007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811598305.1 2018-12-26
CN201811598305.1A CN109651927A (zh) 2018-12-26 2018-12-26 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用

Publications (1)

Publication Number Publication Date
WO2020135007A1 true WO2020135007A1 (zh) 2020-07-02

Family

ID=66115185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124158 WO2020135007A1 (zh) 2018-12-26 2019-12-10 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用

Country Status (2)

Country Link
CN (1) CN109651927A (zh)
WO (1) WO2020135007A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109651927A (zh) * 2018-12-26 2019-04-19 中国科学院宁波材料技术与工程研究所 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用
CN111777913B (zh) * 2020-07-13 2021-10-29 广东耐迪化工有限公司 一种静电防护环氧自流平彩砂的制备方法
CN111875991B (zh) * 2020-08-11 2022-06-28 湖南大学 一种聚(2-氨基噻唑)改性石墨烯的制备方法及环氧复合涂料
CN114790546B (zh) * 2022-06-22 2022-09-20 上海嘉朗实业南通智能科技有限公司 汽车发动机支架用高强度铝合金压铸件及其制备方法
CN115785762B (zh) * 2022-11-30 2023-12-15 福建师范大学 P-AT@Zn-OMMT改性环氧树脂防腐涂料的制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178074A (zh) * 2014-08-21 2014-12-03 深圳市华星光电技术有限公司 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶
CN104356860A (zh) * 2014-10-29 2015-02-18 中国科学院宁波材料技术与工程研究所 一种环氧树脂-氧化石墨烯复合涂料及其使用方法
CN108373746A (zh) * 2016-11-17 2018-08-07 中国科学院宁波材料技术与工程研究所 石墨烯环氧复合防腐涂料、其制备方法及应用
CN109651927A (zh) * 2018-12-26 2019-04-19 中国科学院宁波材料技术与工程研究所 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178074A (zh) * 2014-08-21 2014-12-03 深圳市华星光电技术有限公司 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶
CN104356860A (zh) * 2014-10-29 2015-02-18 中国科学院宁波材料技术与工程研究所 一种环氧树脂-氧化石墨烯复合涂料及其使用方法
CN108373746A (zh) * 2016-11-17 2018-08-07 中国科学院宁波材料技术与工程研究所 石墨烯环氧复合防腐涂料、其制备方法及应用
CN109651927A (zh) * 2018-12-26 2019-04-19 中国科学院宁波材料技术与工程研究所 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIU, SHIHUI ET AL.: "Noncovalent Exfoliation of Graphene and Its Multifunctional Composite Coating with Enhanced Anticorrosion and Tribological Performance", JOURNAL OF ALLOYS AND COMPOUNDS, 3 March 2018 (2018-03-03), XP085370560, ISSN: 0925-8388, DOI: 20200205145535X *

Also Published As

Publication number Publication date
CN109651927A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
WO2020135007A1 (zh) 聚(2-氨基噻唑)/石墨烯-环氧复合涂料及制法和应用
Cui et al. Processable poly (2-butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating
WO2018036429A1 (zh) 一种改性白石墨烯复合抗氧化涂料及其制备
WO2019205210A1 (zh) 一种钻井液用润滑剂及其制备方法和应用
CN104629603A (zh) 含石墨烯的金属表面处理剂以及耐腐蚀性涂层制备方法
KR102459441B1 (ko) 철제 취사도구에 사용이 가능한 그래핀 개질 수성 논스틱 코팅재의 제조 방법
Zhang et al. Improvement of wear-resistance and anti-corrosion of waterborne epoxy coating by synergistic modification of glass flake with phytic acid and Zn2+
CN107541709A (zh) 一种石墨烯薄膜的制备方法及石墨烯薄膜
Situ et al. Polyaniline encapsulated α-zirconium phosphate nanosheet for enforcing anticorrosion performance of epoxy coating
Kim et al. Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA–AAc solution
CN104962340B (zh) 无机类富勒烯二硫化钼/石墨烯复合润滑剂及其制备方法
Li et al. Grafting of polyaniline onto polydopamine-wrapped carbon nanotubes to enhance corrosion protection properties of epoxy coating
CN101717608B (zh) 电力接地网导电防腐涂料及其制备方法
Chavhan et al. Structural, physical, wear and anticorrosive properties of electroactive polyamide/Ti3C2Tx MXene nanocomposite
Chen et al. Lubrication, wear resistance and corrosion protection on aluminum alloy toward multifunctional coatings with nano-CeO2 inhibition effect
Wang et al. Preparation and corrosion resistance of AKT-waterborne polyurethane coating
Wang et al. Functionalized N-doped carbon nanosheets derived from metal− organic framework as oil-based lubricant additives for improved tribological performance
Ge et al. Si3N4@ RGO hybrids for epoxy coatings with enhanced anticorrosion performance
CN114525051B (zh) 一种防腐导电涂料及其制备方法
WO2020082330A1 (zh) 一种环氧复合涂料及其制备方法
CN115124905A (zh) 一种以石墨烯导电粉为导电剂的水性环氧导静电防腐涂料
CN1776848A (zh) 电极片和采用它的双电荷层电容器
CN112142889B (zh) 一种石墨烯复合材料的制备方法及其在润滑油中的应用
Li et al. Enhancement of the anticorrosion properties of epoxy resin composites through incorporating hydroxylated and silanised hexagonal boron nitride (H-BN)
CN113717632A (zh) 一种聚苯胺胶束石墨烯复合材料、电极涂料、工作电极及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903085

Country of ref document: EP

Kind code of ref document: A1