WO2019205210A1 - 一种钻井液用润滑剂及其制备方法和应用 - Google Patents

一种钻井液用润滑剂及其制备方法和应用 Download PDF

Info

Publication number
WO2019205210A1
WO2019205210A1 PCT/CN2018/088001 CN2018088001W WO2019205210A1 WO 2019205210 A1 WO2019205210 A1 WO 2019205210A1 CN 2018088001 W CN2018088001 W CN 2018088001W WO 2019205210 A1 WO2019205210 A1 WO 2019205210A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling fluid
lubricant
styrene
industrial
stirring
Prior art date
Application number
PCT/CN2018/088001
Other languages
English (en)
French (fr)
Inventor
柯扬船
于呈呈
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Publication of WO2019205210A1 publication Critical patent/WO2019205210A1/zh
Priority to US17/080,173 priority Critical patent/US11566156B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/032Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/02Spotting, i.e. using additives for releasing a stuck drill
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/34Lubricant additives

Definitions

  • the invention relates to a drilling fluid auxiliary, in particular to a lubricant for drilling fluid and a preparation method and application thereof, and belongs to the technical field of oilfield drilling and completion engineering.
  • the drilling fluid is the working fluid circulating in the borehole during the oil and gas drilling process. It has the functions of flushing the bottom of the well, carrying cuttings, balancing the formation pressure, cooling and lubricating the drill bit, stabilizing the borehole wall, transmitting power and obtaining formation information.
  • Well fluid refers to the working fluid used in the completion operation, which has the functions of inhibiting rock dispersion of oil and gas reservoirs, balancing formation pressure, protecting reservoir permeability and reducing reservoir damage. Adding a certain amount of lubricant to the drilling fluid or completion fluid is one of the main ways to improve the economic and technical benefits of drilling or completion engineering.
  • Lubricant refers to a chemical treatment agent that reduces the frictional resistance between the drill and the wellbore. It is mainly a mixture of various base materials and surfactants.
  • Commonly used drilling fluid lubricants mainly include liquid lubricants and solid lubricants.
  • Liquid lubricants mainly include polymeric alcohol lubricants, polymeric ether lubricants, mineral oil lubricants or vegetable oil lubricants.
  • Solid lubricants mainly include glass beads, plastic pellets, graphite powder, and molybdenum disulfide. Among them, solid lubricants have attracted more and more attention due to their advantages of high load stability, corrosion resistance and good chemical stability.
  • the glass beads have a high crushing rate and a low ball rate, which limits their application.
  • Graphite powder and molybdenum disulfide are easily powdered on the liquid surface because of their powdery nature. It is inefficient to use.
  • plastic pellets are non-toxic, non-fluorescent, and have high pressure bearing properties, and can significantly improve the lubricity of drilling fluids, etc., which are widely concerned, but have low softening points and are easy to soften at high temperatures. The disadvantages of using the temperature not exceeding its softening point limit its wide application.
  • a plastic ball lubricant for drilling fluids that is non-toxic, non-fluorescent, high pressure-bearing, has good heat resistance and high softening point, and will be drilled for oil. Development plays an important role in promoting.
  • the friction factors in the drilling process such as the friction between the drill string and the drilling fluid, the friction between the drill bit and the well wall, the friction between the drilling fluid and the casing, etc.
  • the lubricating film layer is mainly formed by adsorption between metal-metal or metal-rock to reduce frictional resistance.
  • the lubrication film layer is not reliable, easy to desorb and easy to be scraped and erased, and even causes accelerated wear and corrosion, which seriously affects the efficiency of oil and gas drilling and completion engineering.
  • the present invention provides a lubricant for a drilling fluid and a preparation method and application thereof, the drilling fluid lubricant can effectively improve the lubricating performance of the drilling fluid, reduce the frictional resistance during the drilling process, and be compatible with the drilling fluid. It has good properties and is easy to be evenly dispersed in the drilling fluid, which solves the problems of poor temperature resistance, high foaming rate and poor lubrication effect of the drilling fluid lubricant existing in the prior art.
  • the invention provides a preparation method of a lubricant for drilling fluid, comprising the following steps:
  • the mass ratio of the styrene, the nano inorganic intermediate, the crosslinking agent and the emulsifier is 1: (0.01-0.1): (0.04-0.06): (0.018-0.032);
  • the polystyrene nanocomposite emulsion is sequentially subjected to granulation treatment to obtain polystyrene nanocomposite particles;
  • the mass ratio of the industrial base oil, styrene nanocomposite particles and industrial oleic acid is 1: (0.005-0.025): (0.04-0.09).
  • the invention adopts the method of polymerizing styrene monomer and nano inorganic intermediate to prepare polystyrene nano composite particles, the polystyrene nanocomposite particles have a particle size distribution of 40-90 nm, small particle size, large specific surface area and surface energy. High, when present between the mechanical drill string and the borehole wall, is easily adsorbed to the drill metal and the rock wall surface of the wellbore. When the load is low, the nano-lubricated particles adsorbed on the contact surfaces of the drill and the rock produce a "ball effect", which hinders the direct contact between the two friction surfaces, and converts the static friction state between the two friction pairs into a rolling friction state.
  • the friction coefficient is reduced; as the load conditions increase, the friction pressure and the temperature increase, the nano-lubricated particles produce a “landfill effect” on the surface of the friction pair surface, repairing the friction damage surface of the friction pair surface, and the high temperature of the nanoparticles Melting, forming a strong lubricating protective film on the surface of the friction pair, resulting in a "film formation effect", thereby significantly reducing the direct contact area between the two friction pairs, reducing the rotational resistance of the drill, reducing the friction and wear of the drill, reducing the pressure The probability of a bad card drill.
  • the mixture may be stirred at 30 Hz for 30 minutes to form a uniformly mixed first mixture, and then the first mixture is transferred to the polymerization vessel to carry out the polymerization of the step 2). reaction.
  • an inert gas nitrogen or argon
  • nitrogen or argon may be introduced into the polymerization vessel for 20-30 minutes to remove oxygen therein, generally using nitrogen.
  • the purity of nitrogen is 99.999%
  • the pressure is 0.5-0.55 MPa
  • the flow rate is 40-50 m 3 /h.
  • the granulation treatment in the step 2) specifically means that the polystyrene nanocomposite emulsion is sequentially subjected to ethanol demulsification, filtration, drying, and granulation.
  • nano inorganic intermediate is prepared as follows:
  • the mass ratio of the layered silicate to water is 1: (15-25);
  • step a) the pH of the second mixture is adjusted to 1-2 using one or more of hydrochloric acid, sulfuric acid and nitric acid.
  • the nano inorganic intermediate of the invention is obtained by pretreating the layered silicate with a mineral acid solution, and then adding an anionic surfactant to intercalate the reaction.
  • pre-treatment of the layered silicate with a mineral acid solution can improve the chemical microenvironment between the silicate sheets, increase the reactive sites on the silicate surface, and create a good anionic surfactant.
  • the intercalation modification conditions enhance the intercalation effect of the anionic surfactant, thereby improving the peeling and dispersing ability of the nano inorganic phase.
  • the layered silicate intercalation layer obtained by the method of the invention can reach a pitch of 1.5-3.0 nm, and the in-situ emulsion polymerization of the nano inorganic intermediate and the styrene monomer can effectively prevent styrene on the one hand.
  • the intercalating agent is selected from the group consisting of sodium dodecyl sulfate, sodium lauryl sulfate, sodium dodecylbenzenesulfonate, sodium hexadecylsulfonate, sodium stearylsulfonate, One or more of sodium octadecanoate, sodium hexadecanate and sodium dodecanoate.
  • the intercalating agent selected for use in the present invention is an anionic surfactant as described above, so that the layered silicate can be converted into a lipophilic organic layered silicate, and the lipophilic organic layered silicate is a surface active agent.
  • the agent can thus further control the particle size of the polystyrene nanocomposite particles.
  • the method further comprises a pretreatment of the styrene, the purification pretreatment comprising: adjusting the styrene after rinsing the styrene with a mass fraction of 8% aqueous sodium hydroxide solution The pH was 7, distilled under reduced pressure, and the distillate was purified pretreated styrene.
  • a polymerization inhibitor such as hydroquinone is generally added to styrene in order to prevent the self-polymerization reaction from occurring. Therefore, prior to the preparation of the polystyrene nanocomposite particles of the present invention, it is necessary to subject the styrene to a purification pretreatment to remove the polymerization inhibitor therein.
  • the purification pretreatment operation is specifically: mixing a 8% aqueous solution of sodium hydroxide with styrene, layering, separating the liquid, and retaining the organic phase; then washing the organic layer with neutral water to neutrality, separating the liquid, and removing the aqueous phase.
  • the organic phase is retained; the organic phase is distilled under reduced pressure, and the distillate is purified styrene. It should be added that if the vacuum distillation is not carried out in time after washing to neutral, the neutral organic phase can be stored in a low temperature anhydrous sodium sulfate.
  • the industrial base oil is selected from one or more of industrial silicone oil, industrial white oil, industrial poly-alpha olefin synthetic oil, and industrial paraffin oil.
  • the layered silicate is selected from one or more of montmorillonite, hydrotalcite, kaolin, attapulgite, sepiolite, wollastonite, chlorite and layered silica.
  • crosslinking agent is selected from one or more of divinylbenzene, N,N-methylenebisacrylamide, diisocyanate, and benzoyl peroxide.
  • the emulsifier is selected from one or more of sodium dodecyl sulfate, sodium lauryl sulfate, and sodium dodecylbenzenesulfonate.
  • the initiator is selected from one or more of ammonium persulfate, potassium persulfate, sodium hydrogen sulfite, sodium sulfite, azobisisobutyronitrile, and benzoyl peroxide.
  • the present invention also provides a lubricant for a drilling fluid obtained by the preparation method according to any of the above.
  • the present invention also provides a drilling fluid comprising the lubricant for drilling fluid described above, wherein the lubricant for the drilling fluid has a mass fraction of 0.2-5% in the drilling fluid.
  • the rest in addition to the lubricant for the drilling fluid, the rest may be a common drilling fluid base slurry. In the preparation of the drilling fluid, it is only necessary to add the drilling fluid with the lubricant to the drilling fluid base slurry in a required amount and stir it evenly.
  • the drilling fluid containing the lubricant for drilling fluid of the invention has the high temperature aging stability at 200 ° C, has good compatibility with the drilling fluid, and has low foaming rate, and can meet the lubrication and drag reduction and high efficiency drilling of the drilling tool during the drilling process.
  • the invention also provides an application of the drilling fluid described above in a deep ultra-deep layer high temperature drilling and completion project.
  • deep layer refers to a stratum with a buried depth of 4,500 to 6000 m
  • ultra-deep layer refers to a stratum with a depth of more than 6000 m
  • the lubricant for drilling fluid of the invention has simple preparation method and low production cost, can effectively reduce the resistance during the drilling process, has excellent lubricating effect, and the lubricating fluid for drilling fluid is easy to be dispersed in the drilling fluid, and the foaming rate is low. It has good temperature resistance and good compatibility with drilling fluids, so it can be widely used in deep ultra-deep high temperature drilling and completion projects.
  • Example 1 is an X-ray diffraction chart of a nano inorganic intermediate prepared in Example 1 of the present invention
  • Example 2 is an X-ray diffraction chart of a nano inorganic intermediate prepared in Example 2 of the present invention
  • Example 3 is an X-ray diffraction chart of a nano inorganic intermediate prepared in Example 3 of the present invention.
  • Figure 4 is an X-ray diffraction pattern of an activated silicate intermediate in Examples 1-3 of the present invention.
  • Example 5 is a scanning electron micrograph of the polystyrene nanocomposite particles prepared in Example 5 of the present invention.
  • Figure 6 is a graph showing the particle size distribution of the polystyrene nanocomposite particles prepared in Example 5 of the present invention.
  • the mass ratio of the activated silicate intermediate to the sodium hexadecyl sulfonate intercalant is 1:0.1;
  • Example 1 is an X-ray diffraction chart of a nano inorganic intermediate of Example 1 of the present invention.
  • the mass ratio of the activated silicate intermediate to the sodium hexadecyl sulfonate intercalant is 1:0.19;
  • Example 2 is an X-ray diffraction chart of a nano inorganic intermediate of Example 2 of the present invention.
  • the mass ratio of the activated silicate intermediate to the sodium hexadecyl sulfonate intercalant is 1:0.27;
  • Example 3 is an X-ray diffraction diagram of a nano inorganic intermediate prepared in Example 3 of the present invention.
  • Figure 4 is an X-ray diffraction pattern of an activated silicate intermediate in Examples 1-3 of the present invention.
  • the interlayer spacing of the nano inorganic intermediate prepared by the present invention is significantly improved compared to the 1.21 nm interlayer spacing of the activated silicate, corresponding to the nano inorganic intermediate in Examples 1-3.
  • the bulk spacing was increased to 1.68 nm, 2.36 nm and 2.45 nm, respectively, indicating successful intercalation modification.
  • the mass ratio of styrene to water is 1:5; the mass ratio of styrene, nano inorganic intermediate, crosslinking agent and emulsifier is 1:0.01:0.05:0.025;
  • the polystyrene nanocomposite emulsion is sequentially subjected to ethanol demulsification, filtration, drying at 60 ° C for 24 hours, granulation, and passing through a 200 mesh sieve to obtain polystyrene nanocomposite particles;
  • the mass ratio of the industrial polyalphaolefin synthetic oil, the styrene nanocomposite particles, and the industrial oleic acid is 1:0.001:0.05.
  • the mass ratio of styrene to water is 1:5; the mass ratio of styrene, nano inorganic intermediate, crosslinking agent and emulsifier is 1:0.03:0.05:0.025;
  • the polystyrene nanocomposite emulsion is sequentially subjected to ethanol demulsification, filtration, drying at 60 ° C for 24 hours, granulation, and passing through a 200 mesh sieve to obtain polystyrene nanocomposite particles;
  • the mass ratio of the industrial polyalphaolefin synthetic oil, the styrene nanocomposite particles, and the industrial oleic acid is 1:0.001:0.05.
  • Example 5 is a scanning electron micrograph of the polystyrene nanocomposite particles prepared in Example 5 of the present invention.
  • Figure 6 is a graph showing the particle size distribution of the polystyrene nanocomposite particles prepared in Example 5 of the present invention.
  • the particle size distribution of the polystyrene nanocomposite particles prepared by the present invention is mainly in the range of 40-90 nm, and the average particle diameter is 64.5 nm.
  • the test results of FIG. 5 and FIG. 6 are similar, and the particles have balls.
  • the structure is good, the sphericity is good, and the surface is smooth.
  • the mass ratio of styrene to water is 1:5; the mass ratio of styrene, nano inorganic intermediate, crosslinking agent and emulsifier is 1:0.05:0.05:0.025;
  • the polystyrene nanocomposite emulsion is sequentially subjected to ethanol demulsification, filtration, drying at 60 ° C for 24 hours, granulation, and passing through a 200 mesh sieve to obtain polystyrene nanocomposite particles;
  • the mass ratio of the industrial polyalphaolefin synthetic oil, the styrene nanocomposite particles, and the industrial oleic acid is 1:0.001:0.05.
  • the mass ratio of styrene to water is 1:5; the mass ratio of styrene, nano inorganic intermediate, crosslinking agent and emulsifier is 1:0.07:0.05:0.025;
  • the polystyrene nanocomposite emulsion is sequentially subjected to ethanol demulsification, filtration, drying at 60 ° C for 24 hours, granulation, and passing through a 200 mesh sieve to obtain polystyrene nanocomposite particles;
  • the mass ratio of the industrial polyalphaolefin synthetic oil, the styrene nanocomposite particles, and the industrial oleic acid is 1:0.001:0.05.
  • the drilling fluid was prepared using the lubricant for drilling fluids of Examples 4-7.
  • the preparation of the drilling fluid base slurry is completed by the following method:
  • the montmorillonite and anhydrous sodium carbonate were added to deionized water, and stirred at a high speed mixer for 5,000 rpm for 30 min, and then allowed to stand at room temperature for 24 h to obtain a drilling fluid base slurry having a soil content of 6%.
  • the mass to volume ratio of montmorillonite to deionized water is 1:16.7
  • the mass ratio of anhydrous sodium carbonate to montmorillonite is 1:20 (for example, adding 30.0 g of montmorillonite and 1.5 g per 500 ml of deionized water)
  • Anhydrous sodium carbonate Anhydrous sodium carbonate
  • the drilling fluid lubricant prepared in Example 4 was added to the drilling fluid base slurry at room temperature, and stirred at 5000 rpm for 5 minutes on a high speed mixer to obtain the drilling fluid of the present example.
  • the lubricating fluid lubricant has a mass fraction of 0.2% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 8. The difference is that the drilling fluid lubricant has a mass fraction of 0.5% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 8. The difference is that the drilling fluid lubricant has a mass fraction of 0.8% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 8. The difference is that the drilling fluid lubricant has a mass fraction of 1.0% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 8. The difference is that the drilling fluid lubricant has a mass fraction of 1.2% in the drilling fluid.
  • the drilling fluid lubricant prepared in Example 5 was added to the drilling fluid base slurry at room temperature, and stirred at 5000 rpm for 5 minutes on a high speed mixer to obtain the drilling fluid of the present example.
  • the lubricating fluid lubricant has a mass fraction of 0.2% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 13. The difference is that the drilling fluid lubricant has a mass fraction of 0.5% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 13. The difference is that the drilling fluid lubricant has a mass fraction of 0.8% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 13. The difference is that the drilling fluid lubricant has a mass fraction of 1.0% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 13. The difference is that the drilling fluid lubricant has a mass fraction of 1.2% in the drilling fluid.
  • the drilling fluid lubricant prepared in Example 6 was added to the drilling fluid base slurry at room temperature, and stirred at 5000 rpm for 5 minutes on a high speed mixer to obtain the drilling fluid of this example. Among them, the lubricating fluid lubricant has a mass fraction of 0.2% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 18. The difference is that the drilling fluid lubricant has a mass fraction of 0.5% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 18. The difference is that the drilling fluid lubricant has a mass fraction of 0.8% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 18. The difference is that the drilling fluid lubricant has a mass fraction of 1.0% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 18. The difference is that the drilling fluid lubricant has a mass fraction of 1.2% in the drilling fluid.
  • the drilling fluid lubricant prepared in Example 7 was added to the drilling fluid base slurry at room temperature, and stirred at 5000 rpm for 5 minutes on a high speed mixer to obtain the drilling fluid of this example. Among them, the drilling fluid lubricant has a mass fraction of 0.2% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 23. The difference is that the drilling fluid lubricant has a mass fraction of 0.5% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 23. The difference is that the drilling fluid lubricant has a mass fraction of 0.8% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 23. The difference is that the drilling fluid lubricant has a mass fraction of 1.0% in the drilling fluid.
  • the drilling fluid of this example was prepared in the same manner as in Example 23. The difference is that the drilling fluid lubricant has a mass fraction of 1.2% in the drilling fluid.
  • the drilling fluids of Examples 8 to 27 were respectively taken and tested for their lubricating coefficients on an extreme pressure lubricator.
  • the lubrication factor reduction rate is calculated as follows:
  • R represents the lubrication factor reduction rate
  • K 0 represents the lubrication coefficient of the base slurry
  • K 1 represents the lubrication coefficient of the base slurry after the addition of the lubricant.
  • the drilling fluids of Examples 8 to 27 were respectively taken and poured into a measuring cup of a six-speed viscometer so that the liquid level was level with the same scale line as the viscometer.
  • the vibrometers were set at 600 , 300 , 200 , 100 , 6 and 3 rpm and quickly measured from high speed to low speed. After the dial was stabilized, ⁇ 600 , ⁇ 300 , ⁇ 200 , ⁇ 100 , ⁇ 6 , ⁇ were recorded respectively. 3 readings.
  • the drilling fluid in the measuring cup is stirred at 600 r/min for 10 seconds, and after standing for 10 seconds, measurement with 3 rpm is started, and the maximum value of the dial ⁇ 3-1 is read. After re-stirring, it was allowed to stand for 10 minutes, and also measured at 3 rpm, and the maximum value of the dial ⁇ 3-2 was read.
  • variable parameters are basically unchanged, indicating that the lubricant has good compatibility with the drilling fluid and does not adversely affect the rheological properties of the drilling fluid.
  • the drilling fluids of Examples 8 to 27 were respectively taken and added to the water loss cup of the fluid loss meter, so that the liquid level was level with the scale in the water loss cup, and the measuring cylinder was placed directly under the water loss cup, and the pressure was manually pressurized. Observe the pressure gauge reading to stabilize it at 0.69 MPa, adjust the pressure reducing valve, stop when the pressure drops slightly, start recording time when the first drop of water is seen, and measure the filtrate volume after 30 min of water loss. .
  • Example Fluid loss (mL) Example Fluid loss (mL) 8 6.4 18 5.9 9 6.0 19 5.6 10 5.8 20 5.2
  • the drilling fluids in Examples 11, 16, 21, and 26 were tested for performance changes in the drilling fluid after hot rolling in a roller heating furnace at 120 ° C, 160 ° C, and 200 ° C for 16 h.
  • the commercially available drilling fluid lubricant RH8501 lubricant, DG5A lubricant, DG5B lubricant, RT9501 lubricant and RH525 lubricant were respectively added according to the mass fraction of the drilling fluid base slurry of 1.0%, respectively, and Comparative Example 1 was obtained. -5 drilling fluid.
  • the lubricant for drilling fluid prepared by the present invention has a higher lubrication coefficient reduction rate and a lower filtration loss than the commercially available drilling fluid lubricant, indicating that the comparison with other
  • the lubricant for the drilling fluid of the type, the lubricant for the drilling fluid prepared by the invention has more excellent lubrication and drag reduction characteristics and reduces the fluid loss performance of the drilling fluid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明提供一种钻井液用润滑剂及其制备方法和应用,制备方法包括如下步骤:1)混合苯乙烯与水后,加入纳米无机中间体、交联剂以及乳化剂并搅拌,得到第一混合物;2)在惰性气氛下,对所述第一混合物进行搅拌,得到中间乳化物;随后加热所述中间乳化物至70-85℃,再加入引发剂,保温并搅拌7-10h,得到粒径为40-90nm的聚苯乙烯纳米复合乳液;对所述聚苯乙烯纳米复合乳液依次进行颗粒化处理,得到聚苯乙烯纳米复合粒子;3)混合工业基础油、聚苯乙烯纳米复合粒子以及工业油酸,室温下搅拌均匀,得到所述钻井液用润滑剂。该润滑剂易于在钻井液中分散、润滑效果好、起泡率低、耐温性好并且与钻井液配伍性佳。

Description

一种钻井液用润滑剂及其制备方法和应用 技术领域
本发明涉及一种钻井液助剂,尤其涉及一种钻井液用润滑剂及其制备方法和应用,属于油田钻完井工程技术领域。
背景技术
随着石油勘探开发工作的发展,钻井的深度逐渐增加,钻井阻力不断加大,这就要求所使用的钻井液应当具有良好的润滑减阻特性以减少钻进过程中的阻力。特别是在定向钻进时,井身弯曲度较大,起下钻具时,钻具与井壁的接触压力、摩擦与摩阻都大幅增加,井壁容易形成键槽,导致钻具断裂、卡钻等事故发生,严重时甚至引发井眼报废和工程事故,造成巨大安全隐患和经济损失。因此,提高钻井液的润滑性能,减少钻进过程中的摩擦阻力,已经成为当前石油钻探的迫切需求。
钻井液是在油气钻井过程中,钻孔内循环冲洗的工作流体,具有冲洗井底、携带岩屑、平衡地层压力、冷却和润滑钻头、稳定井壁、传递功率以及获取地层信息等作用;完井液是指在完井作业过程中所使用的工作液,具有抑制油气储层岩石分散、平衡地层压力、保护储层渗透性以及减少储层伤害等作用。通过向钻井液或完井液中添加一定的润滑剂是目前提高钻井或完井工程经济技术效益的主要途径之一。
润滑剂是指能降低钻具与井壁之间摩擦阻力的化学处理剂,主要为多种基础材料与表面活性剂的复配物。常用的钻井液润滑剂主要包括液体润滑剂和固体润滑剂。液体润滑剂主要包括聚合醇润滑剂、聚合醚润滑剂、矿物油润滑剂或植物油润滑剂。固体润滑剂主要有玻璃小球、塑料小球、石墨粉以及二硫化钼等。其中,固体润滑剂由于具有负荷稳定高、耐腐蚀、化学稳定性好等优点而日益受到人们的重视。在固体润滑剂中,玻璃小球由于承压性差,破碎率较高,圆球率比较低,因此限制了其应用;石墨粉跟二硫化钼由于呈粉末状,容易漂浮于液面上,因此使用效率低。相较而言,塑料小球无毒、无荧光、承压性较高,且能够显著改善钻井液的润滑性等优良特点受到人们的广泛关注,但其软化点较低,高温下易软化,使用温度不能超过其软化点等缺点限制了其广泛应用。因此,为了克服此种缺点,研究出一种既无毒、无荧光、承压性高,又具有良好耐热性,高软化点的钻井液用塑料小球润滑剂,将会对石油的钻探开发起到重要的推动作用。
现有技术(王西江、于培志、刘四海.固体乳化润滑剂的研制,钻井液与完井液,2010,27(2):16-19)采用钠基膨润土和阳-阴离子表面活性剂发生反应,利用凝胶法合成了一种粉末状固体乳化润滑剂,当其添加量为0.5%,柴油加量达到8%后,润滑系数降低率为66.9%,耐温性为120℃。
现有技术(赵矩肃、冯桂双、王万杰、李长生.高性能复合型固体润滑剂的制备 及研究,钻井液与完井液,2009,26(4):11-13)采用原位悬浮聚合方法制备了聚苯乙烯-石墨复合粒子,其中,99%的小球粒径分布在125μm以上,玻璃化转变温度120℃,耐温只有150℃,且添加量为2%时,黏附系数降低率仅为50%。
此外,针对钻进过程中的摩擦因素,如钻柱与钻井液流体之间的摩擦、钻头与井壁间的摩擦、钻井液与套管之间的摩擦等,现有技术的润滑减阻机理主要是在金属-金属或金属-岩石之间通过吸附形成润滑膜层以降低摩擦阻力。但是,润滑膜层吸附不牢靠,容易脱附以及易被刮擦除去等缺点,甚至导致磨损加快以及腐蚀加剧,严重影响油气钻井完井工程效率。
发明内容
针对上述缺陷,本发明提供一种钻井液用润滑剂及其制备方法和应用,该钻井液润滑剂能够有效提高钻井液的润滑性能,减少钻进过程中的摩擦阻力,并且与钻井液的配伍性好、易于在钻井液中均匀分散,解决了现有技术存在的钻井液润滑剂耐温性差、起泡率高、润滑效果差等难题。
本发明提供一种钻井液用润滑剂的制备方法,包括如下步骤:
1)混合苯乙烯与水后,加入纳米无机中间体、交联剂以及乳化剂并搅拌,得到第一混合物;
其中,所述苯乙烯与水的质量比为1:(4.5-6.5);
所述苯乙烯、纳米无机中间体、交联剂以及乳化剂的质量比为1:(0.01-0.1):(0.04-0.06):(0.018-0.032);
2)在惰性气氛下,对所述第一混合物进行搅拌,得到中间乳化物;随后加热所述中间乳化物至70-85℃,再加入引发剂,保温并搅拌7-10h,得到粒径为40-90nm的聚苯乙烯纳米复合乳液;所述苯乙烯与引发剂的质量比为1:(0.002-0.008);
对所述聚苯乙烯纳米复合乳液依次进行颗粒化处理,得到聚苯乙烯纳米复合粒子;
3)混合工业基础油、聚苯乙烯纳米复合粒子以及工业油酸,室温下搅拌均匀,得到所述钻井液用润滑剂;
其中,所述工业基础油、苯乙烯纳米复合粒子以及工业油酸的质量比为1:(0.005-0.025):(0.04-0.09)。
本发明采用苯乙烯单体与纳米无机中间体聚合的方法制备得到了聚苯乙烯纳米复合粒子,该聚苯乙烯纳米复合粒子粒径分布为40-90nm,粒子尺寸小,比表面积大,表面能高,当存在于机械钻柱与井壁之间时,容易吸附于钻具金属以及井壁岩石表面。当载荷较低条件下,在钻具与岩石两接触表面吸附的纳米润滑粒子产生“滚珠效应”,阻碍两摩擦表面的直接接触,将两摩擦副之间的静摩擦状态转变为滚动摩擦状态,大幅降低了摩擦系数;随着载荷条件的升高,摩擦压力以及温度不断升高,纳米润滑粒子在摩擦副表面凹陷处产生“填埋效应”,修复摩擦副表面的摩擦损伤部位,同时纳米粒子高温熔融,在摩擦副表面形成一层牢固的润滑保护膜,产生“成膜效应”,从而显著降低两摩擦副之间的直接接触面积,降低钻具回转阻力,减少钻具的摩擦磨损,减少压差卡钻的发生几率。
具体地,为了保证步骤1)中各个反应物间混合均匀,可以在30Hz下将混合物搅拌 30min,从而生成均匀混合的第一混合物,然后将第一混合物转入聚合釜中进行步骤2)的聚合反应。
由于步骤2)的聚合需要在惰性气氛保护下实施,因此可以先向聚合釜中通入惰性气体(氮气或氩气)20-30min以除去其中的氧气,一般使用氮气。具体在操作时,氮气的纯度为99.999%,压力为0.5-0.55MPa,流量为40-50m 3/h。
另外,步骤2)中的颗粒化处理具体是指对聚苯乙烯纳米复合乳液依次进行乙醇破乳、过滤、干燥以及制粒。
进一步地,所述纳米无机中间体按照如下步骤制备:
a)混合层状硅酸盐和水得第二混合物,调节所述第二混合物的pH至1-2后,加热至70-80℃并搅拌30-40min,得到活化硅酸盐中间物;
所述层状硅酸盐与水的质量比为1:(15-25);
b)向所述活化硅酸盐中间物加入插层剂,30-35Hz下搅拌反应10-12h,得到插层反应体系;所述活化硅酸盐中间物与插层剂的质量比为1:(0.025-0.5);
c)对所述插层反应体系依次进行过滤、洗涤、干燥、研磨后,得到所述纳米无机中间体。
其中,步骤a)中,利用盐酸、硫酸和硝酸中的一种或多种调节所述第二混合物的pH为1-2。
本发明的纳米无机中间体是采用无机酸溶液对层状硅酸盐预处理后,再加入阴离子型表面活性剂对其插层反应而得。本发明的具体实施方案中,采用无机酸溶液预先处理层状硅酸盐,可以改善硅酸盐片层之间的化学微环境,增加硅酸盐表面反应活性位点,创造良好阴离子表面活性剂插层改性条件,增强阴离子型表面活性剂的插层作用效果,从而提升纳米无机相的剥离分散能力。研究发现,按照本发明方法得到的层状硅酸盐插层片层间距可达到1.5-3.0nm,采用该纳米无机中间体与苯乙烯单体原位乳液聚合反应,一方面能够有效阻止苯乙烯聚合从而得到粒径分布较小(40-90nm)的聚苯乙烯纳米复合粒子,从而增强润滑效果;另一方面,纳米无机中间体在聚合物基体中可实现均匀剥离分散,解决了现有技术纳米无机中间体在聚合物基体中易团聚的难题。
进一步地,所述插层剂选自十二烷基磺酸钠、十二烷基硫酸钠、十二烷基苯磺酸钠、十六烷基磺酸钠、十八烷基磺酸钠、十八酸钠、十六酸钠和十二酸钠中的一种或多种。
本发明所选用的插层剂为上述的阴离子表面活性剂,因此能够将层状硅酸盐转为亲油的有机层状硅酸盐,亲油的有机层状硅酸盐为一种表面活性剂,因此能够进一步控制聚苯乙烯纳米复合粒子的粒径。
进一步地,步骤1)之前,还包括对所述苯乙烯进行纯化预处理,所述纯化预处理包括:用质量分数8%的氢氧化钠水溶液淋洗所述苯乙烯后,调节所述苯乙烯的pH为7,减压蒸馏,馏出液为经过纯化预处理的苯乙烯。
由于苯乙烯容易发生自聚合反应,因此为了阻止其自聚合反应的发生,一般都会在苯乙烯中添加对苯二酚等阻聚剂。故而在制备本发明的聚苯乙烯纳米复合粒子之前,需要对苯乙烯进行纯化预处理以除去其中的阻聚剂。
纯化预处理操作具体为:将质量分数8%的氢氧化钠水溶液淋与苯乙烯混合后分层,分液,保留有机相;再用蒸馏水洗涤有机层至中性,分液,除去水相,保留有机相;再对 有机相进行减压蒸馏,馏出液即为纯化后的苯乙烯。需要补充的是,如果在洗至中性后不及时进行减压蒸馏,可以将洗至中性的有机相置于低温的无水硫酸钠中进行保存。
进一步地,所述工业基础油选自工业硅油、工业白油、工业聚阿尔法烯烃合成油和工业石蜡油中的一种或多种。
进一步地,所述层状硅酸盐选自蒙脱土、水滑石、高岭土、凹凸棒石、海泡石、硅灰石、绿泥石和层状二氧化硅中的一种或多种。
进一步地,所述交联剂选自二乙烯苯、N,N-亚甲基双丙烯酰胺、二异氰酸酯和过氧化苯甲酰中的一种或多种。
进一步地,所述乳化剂选自十二烷基磺酸钠、十二烷基硫酸钠、十二烷基苯磺酸钠中的一种或多种。
进一步地,所述引发剂选自过硫酸铵、过硫酸钾、亚硫酸氢钠、亚硫酸钠、偶氮二异丁腈和过氧化苯甲酰中的一种或多种。
本发明还提供一种钻井液用润滑剂,按照上述任一所述的制备方法得到。
本发明还提供一种钻井液,所述钻井液中包含上述所述的钻井液用润滑剂,其中,所述钻井液用润滑剂在所述钻井液中的质量分数为0.2-5%。
在本发明的钻井液中,除了所述的钻井液用润滑剂外,其余的可以为常见的钻井液基浆。在制备钻井液中,只需要将钻井液用润滑剂按照要求量加入至钻井液基浆中搅拌均匀即可。
含有本发明的钻井液用润滑剂的钻井液具有200℃高温老化稳定性,与钻井液配伍性好,起泡率低,可满足钻井过程中钻具的润滑减阻、高效钻进。
本发明还提供一种上述所述的钻井液在深层超深层高温钻完井工程中的应用。
具体地,钻井工程中“深层”指埋深为4500~6000m的地层,“超深层”指埋深大于6000m的地层
本发明的钻井液用润滑剂制备方法简单、生产成本低,能够有效减小钻进过程中的阻力,润滑效果极佳,并且该钻井液用润滑剂易于在钻井液中分散,起泡率低、耐温性好与钻井液配伍性佳,因此能够广泛应用于深层超深层的高温钻完井工程中。
附图说明
图1为本发明实施例1制备的纳米无机中间体的X射线衍射图;
图2为本发明实施例2制备的纳米无机中间体的X射线衍射图;
图3为本发明实施例3制备的纳米无机中间体的X射线衍射图;
图4为本发明实施例1-3中活化硅酸盐中间体的X射线衍射图;
图5为本发明实施例5制备的聚苯乙烯纳米复合粒子的扫描电子显微镜图;
图6为本发明实施例5制备的聚苯乙烯纳米复合粒子的粒径分布图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本 发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例的纳米无机中间体的制备方法如下:
a)混合层状硅酸盐和水得第二混合物,用1mol/L的盐酸溶液调节第二混合物的pH=1后,加热搅拌第二混合物至75℃,保温并持续搅拌30-40min,得到活化硅酸盐中间物;
其中,硅酸盐与水的质量比为1:20;
b)向活化硅酸盐中间物加入十六烷基磺酸钠插层剂,维持75℃在30Hz下搅拌反应11h,得到插层反应体系;
其中,活化硅酸盐中间物与十六烷基磺酸钠插层剂的质量比为1:0.1;
c)对插层反应体系进行过滤、去离子水洗涤多次、60℃干燥24h、研磨并过200目筛后,得到纳米无机中间体。
图1为本发明实施例1的纳米无机中间体的X射线衍射图。
实施例2
本实施例的纳米无机中间体的制备方法如下:
a)混合层状硅酸盐和水得第二混合物,用1mol/L的盐酸溶液调节第二混合物的pH=1后,加热搅拌第二混合物至75℃,保温并持续搅拌30-40min,得到活化硅酸盐中间物;
其中,硅酸盐与水的质量比为1:20;
b)向活化硅酸盐中间物加入十六烷基磺酸钠插层剂,维持75℃在30Hz下搅拌反应11h,得到插层反应体系;
其中,活化硅酸盐中间物与十六烷基磺酸钠插层剂的质量比为1:0.19;
c)对插层反应体系进行过滤、去离子水洗涤多次、60℃干燥24h、研磨并过200目筛后,得到纳米无机中间体。
图2为本发明实施例2的纳米无机中间体的X射线衍射图。
实施例3
本实施例的纳米无机中间体的制备方法如下:
a)混合层状硅酸盐和水得第二混合物,用1mol/L的盐酸溶液调节第二混合物的pH=1后,加热搅拌第二混合物至75℃,保温并持续搅拌30-40min,得到活化硅酸盐中间物;
其中,硅酸盐与水的质量比为1:20;
b)向活化硅酸盐中间物加入十六烷基磺酸钠插层剂,维持75℃在30Hz下搅拌反应11h,得到插层反应体系;
其中,活化硅酸盐中间物与十六烷基磺酸钠插层剂的质量比为1:0.27;
c)对插层反应体系进行过滤、去离子水洗涤多次、60℃干燥24h、研磨并过200目筛后,得到纳米无机中间体。
图3为本发明实施例3制备的纳米无机中间体的X射线衍射图。
图4为本发明实施例1-3中活化硅酸盐中间体的X射线衍射图。
由图1-图4可知,本发明制备得到的纳米无机中间体的层间距相比于活化硅酸盐的1.21nm片层间距有了明显提高,对应于实施例1-3中的纳米无机中间体层间距分别提高到1.68nm、2.36nm和2.45nm,说明插层改性成功。
实施例4
在制备钻井液用润滑剂之前,对苯乙烯原料进行如下操作的纯化预处理以除去苯乙烯原料中的阻聚剂:采用8%NaOH溶液淋洗苯乙烯原料以除去其中添加的阻聚剂,然后用蒸馏水淋洗至pH试纸显示为中性后(pH=7),对苯乙烯进行减压蒸馏,馏出液即为纯化后的具有适合聚合纯度的苯乙烯。
利用上述纯化后的苯乙烯进行以下所有实施例的钻井液用润滑剂的制备。
本实施例钻井液用润滑剂的制备方法如下:
1)混合苯乙烯(纯化预处理后)与水后,再加入纳米无机中间体、交联剂以及乳化剂,得到第一混合物;
其中,苯乙烯与水的质量比为1:5;苯乙烯、纳米无机中间体、交联剂以及乳化剂的质量比为1:0.01:0.05:0.025;
2)在惰性气氛下(通入纯度为99.999%的氮气30min,压力位0.5-0.55MPa,流量为40-50m 3/h),对第一混合物进行搅拌,得到中间乳化物;随后加热中间乳化物至75℃,再加入引发剂,保温并搅拌8h,得到粒径为40-90nm的聚苯乙烯纳米复合乳液;苯乙烯与引发剂的质量比为1:0.005;
对聚苯乙烯纳米复合乳液依次进行乙醇破乳、过滤、60℃干燥24h后造粒、过200目筛后,得到聚苯乙烯纳米复合粒子;
3)混合工业聚阿尔法烯烃合成油、聚苯乙烯纳米复合粒子以及工业油酸,室温下搅拌均匀,得到钻井液用润滑剂;
其中,工业聚阿尔法烯烃合成油、苯乙烯纳米复合粒子以及工业油酸的质量比为1:0.001:0.05。
实施例5
本实施例钻井液用润滑剂的制备方法如下:
1)混合苯乙烯(纯化预处理后)与水后,再加入纳米无机中间体、交联剂以及乳化剂,得到第一混合物;
其中,苯乙烯与水的质量比为1:5;苯乙烯、纳米无机中间体、交联剂以及乳化剂的质量比为1:0.03:0.05:0.025;
2)在惰性气氛下(通入纯度为99.999%的氮气30min,压力位0.5-0.55MPa,流量为40-50m 3/h),对第一混合物进行搅拌,得到中间乳化物;随后加热中间乳化物至75℃,再加入引发剂,保温并搅拌8h,得到粒径为40-90nm的聚苯乙烯纳米复合乳液;苯乙烯与引发剂的质量比为1:0.005;
对聚苯乙烯纳米复合乳液依次进行乙醇破乳、过滤、60℃干燥24h后造粒、过200目筛后,得到聚苯乙烯纳米复合粒子;
3)混合工业聚阿尔法烯烃合成油、聚苯乙烯纳米复合粒子以及工业油酸,室温下搅拌均匀,得到钻井液用润滑剂;
其中,工业聚阿尔法烯烃合成油、苯乙烯纳米复合粒子以及工业油酸的质量比为1:0.001:0.05。
图5为本发明实施例5制备的聚苯乙烯纳米复合粒子的扫描电子显微镜图;
图6为本发明实施例5制备的聚苯乙烯纳米复合粒子的粒径分布图。
由图5-6可知,本发明制备的聚苯乙烯纳米复合粒子的粒径分布主要在40-90nm范围内,平均粒径为64.5nm,图5与图6的测试结果相近,且粒子具有球型结构,球形度较好,表面光滑。
实施例6
本实施例钻井液用润滑剂的制备方法如下:
1)混合苯乙烯(纯化预处理后)与水后,再加入纳米无机中间体、交联剂以及乳化剂,得到第一混合物;
其中,苯乙烯与水的质量比为1:5;苯乙烯、纳米无机中间体、交联剂以及乳化剂的质量比为1:0.05:0.05:0.025;
2)在惰性气氛下(通入纯度为99.999%的氮气30min,压力位0.5-0.55MPa,流量为40-50m 3/h),对第一混合物进行搅拌,得到中间乳化物;随后加热中间乳化物至75℃,再加入引发剂,保温并搅拌8h,得到粒径为40-90nm的聚苯乙烯纳米复合乳液;苯乙烯与引发剂的质量比为1:0.005;
对聚苯乙烯纳米复合乳液依次进行乙醇破乳、过滤、60℃干燥24h后造粒、过200目筛后,得到聚苯乙烯纳米复合粒子;
3)混合工业聚阿尔法烯烃合成油、聚苯乙烯纳米复合粒子以及工业油酸,室温下搅拌均匀,得到钻井液用润滑剂;
其中,工业聚阿尔法烯烃合成油、苯乙烯纳米复合粒子以及工业油酸的质量比为1:0.001:0.05。
实施例7
本实施例钻井液用润滑剂的制备方法如下:
1)混合苯乙烯(纯化预处理后)与水后,再加入纳米无机中间体、交联剂以及乳化剂,得到第一混合物;
其中,苯乙烯与水的质量比为1:5;苯乙烯、纳米无机中间体、交联剂以及乳化剂的质量比为1:0.07:0.05:0.025;
2)在惰性气氛下(通入纯度为99.999%的氮气30min,压力位0.5-0.55MPa,流量为40-50m 3/h),对第一混合物进行搅拌,得到中间乳化物;随后加热中间乳化物至75℃,再加入引发剂,保温并搅拌8h,得到粒径为40-90nm的聚苯乙烯纳米复合乳液;苯乙烯与引发剂的质量比为1:0.005;
对聚苯乙烯纳米复合乳液依次进行乙醇破乳、过滤、60℃干燥24h后造粒、过200目筛后,得到聚苯乙烯纳米复合粒子;
3)混合工业聚阿尔法烯烃合成油、聚苯乙烯纳米复合粒子以及工业油酸,室温下搅拌均匀,得到钻井液用润滑剂;
其中,工业聚阿尔法烯烃合成油、苯乙烯纳米复合粒子以及工业油酸的质量比为1:0.001:0.05。
以下,利用实施例4-7中的钻井液用润滑剂制备钻井液。在制备钻井液之前,通过如下方法完成钻井液基浆的制备:
在去离子水中加入蒙脱土和无水碳酸钠,在高速搅拌机上5000rpm高速搅拌30min,然后室温密闭条件静置养护24h,得土含量6%的钻井液基浆。其中,蒙脱土与去离子水的质量体积比为1:16.7,无水碳酸钠与蒙脱土的质量比为1:20(例如,每500ml去离子水中加入30.0g蒙脱土和1.5g无水碳酸钠)
实施例8
室温下,向钻井液基浆中加入实施例4制备得到的钻井液用润滑剂,在高速搅拌机上以5000rpm搅拌5min,得到本实施例的钻井液。其中,钻井液用润滑剂在钻井液中的质量分数为0.2%。
实施例9
按照与实施例8相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为0.5%。
实施例10
按照与实施例8相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为0.8%。
实施例11
按照与实施例8相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为1.0%。
实施例12
按照与实施例8相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为1.2%。
实施例13
室温下,向钻井液基浆中加入实施例5制备得到的钻井液用润滑剂,在高速搅拌机上以5000rpm搅拌5min,得到本实施例的钻井液。其中,钻井液用润滑剂在钻井液中的质量分数为0.2%。
实施例14
按照与实施例13相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为0.5%。
实施例15
按照与实施例13相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为0.8%。
实施例16
按照与实施例13相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为1.0%。
实施例17
按照与实施例13相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为1.2%。
实施例18
室温下,向钻井液基浆中加入实施例6制备得到的钻井液用润滑剂,在高速搅拌机上以5000rpm搅拌5min,得到本实施例的钻井液。其中,钻井液用润滑剂在钻井液中的质量分数为0.2%。
实施例19
按照与实施例18相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为0.5%。
实施例20
按照与实施例18相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为0.8%。
实施例21
按照与实施例18相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为1.0%。
实施例22
按照与实施例18相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为1.2%。
实施例23
室温下,向钻井液基浆中加入实施例7制备得到的钻井液用润滑剂,在高速搅拌机上以5000rpm搅拌5min,得到本实施例的钻井液。其中,钻井液用润滑剂在钻井 液中的质量分数为0.2%。
实施例24
按照与实施例23相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为0.5%。
实施例25
按照与实施例23相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为0.8%。
实施例26
按照与实施例23相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为1.0%。
实施例27
按照与实施例23相同的方法制备得到本实施例的钻井液。不同的是,钻井液用润滑剂在钻井液中的质量分数为1.2%。
以下,对实施例8-27的钻井液进行性能测试,具体测试方法具体参照Q/SY1088-2012。
1、润滑性能测试
分别取实施例8~27的钻井液,在极压润滑仪上测试其润滑系数。润滑系数降低率按下式进行计算:
R=(K 0-K 1)/K 0*100%       (1)
式中:R代表润滑系数降低率;K 0代表基浆的润滑系数;K 1代表加入润滑剂后基浆的润滑系数。
测试结果见表1。
表1
Figure PCTCN2018088001-appb-000001
Figure PCTCN2018088001-appb-000002
由表1可知,随着钻井液用润滑剂用量增加,钻井液润滑性能有明显改善,润滑系数降低率逐渐增大,说明本发明的钻井液用润滑剂的加入能够明显改善钻井液的润滑性能,起到良好的减少摩擦系数,提高润滑减阻效果。
2、流变性能测试
分别取实施例8~27的钻井液,倒入六速粘度计的量杯中,使液面与粘度计外同的刻度线相平。粘度计的转速分别设置在600、300、200、100、6和3rpm并迅速从高速到低速进行测量,待刻度盘稳定后分别记录θ 600、θ 300、θ 200、θ 100、θ 6、θ 3的读数。
上述测试完成后,将量杯中的钻井液在600r/min的转速下搅拌10秒,静置10秒后,开始用3rpm测量,读取刻度盘的最大值θ 3-1。重新搅拌后,静置10分钟,同样以3rpm测量,读取刻度盘的最大值θ 3-2
各流变参数的值通过以下公式计算:
表观粘度:
AV=0.5*θ 600         (2)
塑性粘度:
PV=θ 600300      (3)
动切力:
YP=0.511*(θ 300-PV)    (4)
静切力:
G10″=0.511*θ 3-1(静置10s)    (5)
G10′=0.511*θ 3-2(静置10min)    (6)
测试结果见表2。
表2
Figure PCTCN2018088001-appb-000003
Figure PCTCN2018088001-appb-000004
由表2可知,随着钻井液中该润滑剂的加入,钻井液表观粘度(AV)、塑性粘度(PV)、动切力(YP)、静切力(G10″/G10′)等流变参数基本不变,说明该润滑剂与钻井液配伍性能良好,对钻井液的流变性能不会产生不良影响。
3、滤失性能测试
分别取实施例8~27的钻井液,将其加入滤失仪的失水杯中,使液面与失水杯中刻度相平,将量筒置于失水杯的正下方,手动加压并观察压力表读数,使之稳定在0.69MPa,调节减压阀,当压力稍有下降时即停止,当见到第一滴水流出时开始记录时间,失水30min后测量滤液体积即为滤失量。
测试结果见表3。
表3
实施例 滤失量(mL) 实施例 滤失量(mL)
8 6.4 18 5.9
9 6.0 19 5.6
10 5.8 20 5.2
11 5.5 21 4.6
12 4.9 22 4.4
13 6.3 23 6.1
14 5.8 24 5.7
15 5.6 25 5.3
16 5.3 26 4.8
17 4.9 27 4.7
由表3可知,该润滑剂的加入对钻井液的滤失量具有一定的降低效果,且随着钻井液润滑剂量的增加,滤失量变化较小。
4、耐热性能测试
取实施例11、16、21、26中的钻井液,别在120℃、160℃和200℃下于滚子加热炉中热滚16h后测试钻井液的性能变化。
测试结果见表4。
表4
Figure PCTCN2018088001-appb-000005
由表4可以看出,随着热滚温度提高,钻井液表观粘度、塑性粘度和动切力略有增加,润滑系数降低率略有下降,但影响不大,仍维持在较高的润滑水平上,并且200℃热滚16h后该润滑性钻井液仍然有较高的润滑性能,说明该润滑性钻井液耐温 能力可达200℃。
5、发泡性能测试
量取20份体积300mL的钻井液基浆,再向20份钻井液基浆中分别加入实施例8~27制备的钻井液润滑剂,在高速搅拌机上5000rpm高速搅拌30min,然后分别将搅拌后的混合物迅速倒入量筒中并读数,记录高搅前后钻井液的体积变化。
测试结果见表5。
表5
Figure PCTCN2018088001-appb-000006
由表5可以看出,不同质量分数的钻井液用润滑剂加入前后钻井液基浆体积略有增加,但起泡率很小,说明该钻井液用润滑剂的加入对钻井液基浆发泡性能几乎没有影响。
对照例1-5
在钻井液基浆中,分别按照钻井液基浆的质量分数1.0%加入市售钻井液润滑剂RH8501润滑剂、DG5A润滑剂、DG5B润滑剂、RT9501润滑剂和RH525润滑剂,分别得到对照例1-5的钻井液。
按照上述相同的测试方法,测试对照例1-5的润滑系数降低率以及滤失量,结果见表6。
表6
比较例 润滑系数降低率(R,%) 滤失量(mL)
1 45.3 7.3
2 66.4 6.9
3 59.6 4.8
4 70.8 6.7
5 68.5 5.4
对比表6与表1、表3可知,相比于市售的钻井液润滑剂,本发明制备的钻井液用润滑剂具有较高的润滑系数降低率和较低的滤失量,说明对比其他类型钻井液用润滑剂,本发明制备的钻井液用润滑剂具有更加优良的润滑减阻特性以及降低钻井液滤失性能。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种钻井液用润滑剂的制备方法,其特征在于,包括如下步骤:
    1)混合苯乙烯与水后,加入纳米无机中间体、交联剂以及乳化剂并搅拌,得到第一混合物;
    其中,所述苯乙烯与水的质量比为1:(4.5-6.5);
    所述苯乙烯、纳米无机中间体、交联剂以及乳化剂的质量比为1:(0.01-0.1):(0.04-0.06):(0.018-0.032);
    2)在惰性气氛下,对所述第一混合物进行搅拌,得到中间乳化物;随后加热所述中间乳化物至70-85℃,再加入引发剂,保温并搅拌7-10h,得到粒径为40-90nm的聚苯乙烯纳米复合乳液;所述苯乙烯与引发剂的质量比为1:(0.002-0.008);
    对所述聚苯乙烯纳米复合乳液依次进行颗粒化处理,得到聚苯乙烯纳米复合粒子;
    3)混合工业基础油、聚苯乙烯纳米复合粒子以及工业油酸,室温下搅拌均匀,得到所述钻井液用润滑剂;
    其中,所述工业基础油、苯乙烯纳米复合粒子以及工业油酸的质量比为1:(0.005-0.025):(0.04-0.09)。
  2. 根据权利要求1所述的制备方法,其特征在于,所述纳米无机中间体按照如下步骤制备:
    a)混合层状硅酸盐和水得第二混合物,调节所述第二混合物的pH至1-2后,加热至70-80℃并搅拌30-40min,得到活化硅酸盐中间物;
    所述层状硅酸盐与水的质量比为1:(15-25);
    b)向所述活化硅酸盐中间物加入插层剂,30-35Hz下搅拌反应10-12h,得到插层反应体系;所述活化硅酸盐中间物与插层剂的质量比为1:(0.025-0.5);
    c)对所述插层反应体系依次进行过滤、洗涤、干燥、研磨后,得到所述纳米无机中间体。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤a)中,利用盐酸、硫酸和硝酸中的一种或多种调节所述第二混合物的pH为1-2。
  4. 根据权利要求3所述的制备方法,其特征在于,所述插层剂选自十二烷基磺酸钠、十二烷基硫酸钠、十二烷基苯磺酸钠、十六烷基磺酸钠、十八烷基磺酸钠、十八酸钠、十六酸钠和十二酸钠中的一种或多种。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤1)之前,还包括对所述苯乙烯进行纯化预处理,所述纯化预处理包括:用质量分数8%的氢氧化钠水溶液淋洗所述苯乙烯后,调节所述苯乙烯的pH为7,减压蒸馏,馏出液为经过纯化预处理的苯乙烯。
  6. 根据权利要求1所述的制备方法,其特征在于,所述工业基础油选自工业硅油、工业白油、工业聚阿尔法烯烃合成油和工业石蜡油中的一种或多种。
  7. 根据权利要求4所述的制备方法,其特征在于,所述层状硅酸盐选自蒙脱土、水滑石、高岭土、凹凸棒石、海泡石、硅灰石、绿泥石和层状二氧化硅中的一种或多种。
  8. 一种钻井液用润滑剂,其特征在于,按照权利要求1-7任一所述的制备方法得到。
  9. 一种钻井液,其特征在于,所述钻井液中包含权利要求8所述的钻井液用润滑剂, 其中,所述钻井液用润滑剂在所述钻井液中的质量分数为0.2-5-5.0%。
  10. 权利要求9所述的钻井液在深层超深层高温钻完井工程中的应用。
PCT/CN2018/088001 2018-04-27 2018-05-23 一种钻井液用润滑剂及其制备方法和应用 WO2019205210A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/080,173 US11566156B2 (en) 2018-04-27 2020-10-26 Drilling fluid lubricant and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810390855.8 2018-04-27
CN201810390855.8A CN108728052A (zh) 2018-04-27 2018-04-27 一种钻井液用润滑剂及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/080,173 Continuation US11566156B2 (en) 2018-04-27 2020-10-26 Drilling fluid lubricant and preparation method and use thereof

Publications (1)

Publication Number Publication Date
WO2019205210A1 true WO2019205210A1 (zh) 2019-10-31

Family

ID=63940049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088001 WO2019205210A1 (zh) 2018-04-27 2018-05-23 一种钻井液用润滑剂及其制备方法和应用

Country Status (3)

Country Link
US (1) US11566156B2 (zh)
CN (1) CN108728052A (zh)
WO (1) WO2019205210A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115197678A (zh) * 2022-08-18 2022-10-18 北京远东联创科技有限责任公司 钻井液乳化剂
CN116082562A (zh) * 2021-11-05 2023-05-09 中国石油天然气集团有限公司 一种三元嵌段共聚物、复合抗泥包润滑处理剂及其制备方法
CN116478674A (zh) * 2022-01-14 2023-07-25 中国石油化工股份有限公司 一种四相泡沫体系、其制备方法及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028553A (zh) * 2020-08-26 2020-12-04 濮阳市诚信钻采助剂有限公司 一种工程隧道和地铁掘进用材料及其制备方法
CN112852532B (zh) * 2021-01-06 2022-04-19 中国石油大学(北京) 一种抗高温纳米复合润滑剂及其乳液制备方法与应用
CN113308286B (zh) * 2021-06-07 2022-08-02 深圳市永万丰实业有限公司 一种润滑油改性剂以及改性润滑油
CN113801641A (zh) * 2021-09-18 2021-12-17 清华大学 一种水基乳液润滑剂的制备方法与应用
CN114231260B (zh) * 2022-01-13 2022-06-03 东北石油大学 一种基于水化填充机理的水基钻井液泥饼固体润滑剂
CN115595197A (zh) * 2022-09-22 2023-01-13 洛斯石油(浙江)有限公司(Cn) 一种新能源电池外壳拉伸油及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092453A (zh) * 1993-03-13 1994-09-21 潘宏纯 固体润滑剂
CN101705079A (zh) * 2009-10-28 2010-05-12 无锡润鹏复合新材料有限公司 一种新型钻井液用固体润滑微球的制备方法
US8324136B1 (en) * 2010-01-06 2012-12-04 Grinding & Sizing Company LLC Synergistic bead lubricant and methods for providing improved lubrication to drilling fluids for horizontal drilling
CN102863946A (zh) * 2011-07-08 2013-01-09 长江大学 一种抗高温钻井液润滑剂
CN103013462A (zh) * 2012-12-27 2013-04-03 河北华运鸿业化工有限公司 一种钻井液用塑料球固体润滑剂及其制备方法
CN104109509A (zh) * 2013-04-17 2014-10-22 中国石油大学(北京) 一种水基钻井液润滑剂的组合物及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1838522A4 (en) * 2004-12-30 2011-03-09 Sun Drilling Products Corp NANOCOMPOSITE THERMOSHELL PARTICLES, PROCESS FOR PRODUCING THE SAME, AND USE IN OIL AND NATURAL GAS DRILLING APPLICATIONS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092453A (zh) * 1993-03-13 1994-09-21 潘宏纯 固体润滑剂
CN101705079A (zh) * 2009-10-28 2010-05-12 无锡润鹏复合新材料有限公司 一种新型钻井液用固体润滑微球的制备方法
US8324136B1 (en) * 2010-01-06 2012-12-04 Grinding & Sizing Company LLC Synergistic bead lubricant and methods for providing improved lubrication to drilling fluids for horizontal drilling
CN102863946A (zh) * 2011-07-08 2013-01-09 长江大学 一种抗高温钻井液润滑剂
CN103013462A (zh) * 2012-12-27 2013-04-03 河北华运鸿业化工有限公司 一种钻井液用塑料球固体润滑剂及其制备方法
CN104109509A (zh) * 2013-04-17 2014-10-22 中国石油大学(北京) 一种水基钻井液润滑剂的组合物及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082562A (zh) * 2021-11-05 2023-05-09 中国石油天然气集团有限公司 一种三元嵌段共聚物、复合抗泥包润滑处理剂及其制备方法
CN116082562B (zh) * 2021-11-05 2024-05-31 中国石油天然气集团有限公司 一种三元嵌段共聚物、复合抗泥包润滑处理剂及其制备方法
CN116478674A (zh) * 2022-01-14 2023-07-25 中国石油化工股份有限公司 一种四相泡沫体系、其制备方法及其应用
CN115197678A (zh) * 2022-08-18 2022-10-18 北京远东联创科技有限责任公司 钻井液乳化剂
CN115197678B (zh) * 2022-08-18 2024-01-26 北京远东联创科技有限责任公司 钻井液乳化剂

Also Published As

Publication number Publication date
US20210054254A1 (en) 2021-02-25
US11566156B2 (en) 2023-01-31
CN108728052A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2019205210A1 (zh) 一种钻井液用润滑剂及其制备方法和应用
Katende et al. Improving the performance of oil based mud and water based mud in a high temperature hole using nanosilica nanoparticles
Xu et al. Preparation and performance properties of polymer latex SDNL in water-based drilling fluids for drilling troublesome shale formations
Saboori et al. Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core–shell nanocomposite
Rezaei et al. Using surface modified clay nanoparticles to improve rheological behavior of Hydrolized Polyacrylamid (HPAM) solution for enhanced oil recovery with polymer flooding
Gudarzifar et al. Experimental investigation of rheological & filtration properties and thermal conductivity of water-based drilling fluid enhanced
Xu et al. Hydrophobic modified polymer based silica nanocomposite for improving shale stability in water-based drilling fluids
Sajjadian et al. Experimental evaluation of nanomaterials to improve drilling fluid properties of water-based muds HP/HT applications
Medhi et al. Analysis of high performing graphene oxide nanosheets based non-damaging drilling fluids through rheological measurements and CFD studies
Yang et al. Laponite-polymer composite as a rheology modifier and filtration loss reducer for water-based drilling fluids at high temperature
US11286411B2 (en) Synergist for water-based drilling fluid and preparation method therefor, water-based drilling fluid and application thereof
Ikram et al. Towards recent tendencies in drilling fluids: Application of carbon-based nanomaterials
CN110776885A (zh) 高密度抗高温油基钻完井液
Shen et al. Application of carboxylated cellulose nanocrystals as eco-friendly shale inhibitors in water-based drilling fluids
Xiong et al. Experimental investigation on laponite as ultra-high-temperature viscosifier of water-based drilling fluids
CN104342269A (zh) 一种层状双金属氢氧化物润滑脂及其制备方法
CN111205396B (zh) 接枝改性黄原胶及其制备方法和应用
Esmaeilnezhad et al. Polyindole nanoparticle-based electrorheological fluid and its green and clean future potential conformance control technique to oil fields
Dong et al. A novel low molecular quaternary polymer as shale hydration inhibitor
CN112852532B (zh) 一种抗高温纳米复合润滑剂及其乳液制备方法与应用
Yang et al. Nanolaponite/comb polymer composite as a rheological modifier for water-based drilling fluids
Dong et al. Development of temperature-and salt-resistant viscosifier with dual skeleton structure of microcrosslinking and hydrophobic association structures and its application in water-based drilling fluids
Li et al. Controlling filtration loss of water-based drilling fluids by anionic copolymers with cyclic side groups: High temperature and salt contamination conditions
Sajjadian et al. Experimental analysis of improving water-based drilling fluid properties by using nanoparticles and poly (AN-co-VP)/zeolite composite
CN116082562B (zh) 一种三元嵌段共聚物、复合抗泥包润滑处理剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916631

Country of ref document: EP

Kind code of ref document: A1