WO2020082330A1 - 一种环氧复合涂料及其制备方法 - Google Patents

一种环氧复合涂料及其制备方法 Download PDF

Info

Publication number
WO2020082330A1
WO2020082330A1 PCT/CN2018/112095 CN2018112095W WO2020082330A1 WO 2020082330 A1 WO2020082330 A1 WO 2020082330A1 CN 2018112095 W CN2018112095 W CN 2018112095W WO 2020082330 A1 WO2020082330 A1 WO 2020082330A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite coating
epoxy
graphene oxide
epoxy composite
polyaniline
Prior art date
Application number
PCT/CN2018/112095
Other languages
English (en)
French (fr)
Inventor
李为立
徐泽孝
Original Assignee
苏州吉人高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州吉人高新材料股份有限公司 filed Critical 苏州吉人高新材料股份有限公司
Priority to PCT/CN2018/112095 priority Critical patent/WO2020082330A1/zh
Publication of WO2020082330A1 publication Critical patent/WO2020082330A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the invention relates to the field of coatings, in particular to an epoxy composite coating and a preparation method thereof.
  • Graphene has the characteristics of high specific surface area, excellent electrical conductivity and chemical stability, and outstanding mechanical properties. It has been widely studied in the field of coatings, but there are several problems in its production and use: First, artificial The prepared graphene is easy to re-agglomerate, which makes it impossible to fully exert the excellent characteristics of graphene sheets; secondly, there are still great problems in the large-scale production of graphene.
  • polyaniline As a new type of conductive polymer material, polyaniline has the advantages of simple synthesis, low cost, excellent acid doping, and unique redox characteristics compared with other inorganic fillers. It also has corrosion protection for metal materials. It has become one of the research hotspots in recent years.
  • the polyaniline-graphene composite material is prepared by chemical oxidation method, which can effectively inhibit the agglomeration of graphene by in-situ growth of polyaniline on the graphene sheet; adding it to the water-based epoxy resin can not only reduce the organic solvent Volatile, and greatly improved the corrosion resistance of the coating, which has important guiding significance for its practical application.
  • the object of the present invention is to provide an epoxy composite coating and a preparation method thereof, and the graphene oxide is subjected to coating modification of the surface polyaniline organic matter, which is beneficial to its application in epoxy coatings
  • the effective dispersion in can prevent the particles from agglomerating in the epoxy coating.
  • the barrier effect of graphene oxide and the passivation effect of polyaniline on the metal combine to effectively improve the corrosion resistance of the composite coating.
  • an epoxy composite coating is provided.
  • the raw materials for preparing the epoxy composite coating include:
  • the type of the epoxy resin may be: E-12 epoxy resin, E-240 epoxy resin, E-44 epoxy resin, or E-51 epoxy resin.
  • the defoaming agent, leveling agent, and wetting and dispersing agent are BYK 1798 defoaming agent, BYK-LPG23687 leveling agent, and Disper BYK2012 wetting and dispersing agent, respectively, manufactured by BYK Corporation.
  • the polyaniline-graphene oxide nanocomposite filler is prepared by the following steps:
  • the amount of graphene oxide added in step S2 is 50 to 200 wt% relative to aniline in terms of mass percentage.
  • the present case also provides a method for preparing the above epoxy composite coating, including the following steps:
  • the present invention has the following beneficial effects:
  • Graphene oxide is modified by coating polyaniline organics on the surface, which is beneficial to its effective dispersion in epoxy coatings and prevents particles from agglomerating in epoxy coatings;
  • FIG. 1 is the morphology of the polyaniline-graphene oxide nanocomposite filler prepared in Example 1 observed through a transmission electron microscope;
  • FIG. 2 is a cured coating of the epoxy composite coating prepared in Example 1 observed through a scanning electron microscope.
  • the raw materials for preparing the epoxy composite coating include:
  • the model of the epoxy resin is: E-12 epoxy resin.
  • the defoaming agent, leveling agent, and wetting and dispersing agent are BYK1798 defoaming agent, BYK-LPG23687 leveling agent, and DisperBYK2012 wetting and dispersing agent, respectively, manufactured by BYK Corporation.
  • polyaniline-graphene oxide nanocomposite filler is prepared by the following steps:
  • the added amount of graphene oxide in step S2 is 50 wt% relative to aniline.
  • the present case also provides a method for preparing the above epoxy composite coating, including the following steps:
  • Figure 1 is the morphology of the polyaniline-graphene oxide nanocomposite filler prepared in Example 1 observed by transmission electron microscopy.
  • the needle-shaped polyaniline grows effectively on the sheet graphene oxide, and the two effectively compound at the nanometer size , It is conducive to give full play to the effect of both, and is conducive to effective dispersion in epoxy resin.
  • Figure 2 is the cured coating of the epoxy composite coating prepared in Example 1 observed by scanning electron microscope. Due to the effective modification of graphene oxide by polyaniline, it is conducive to the effective uniform dispersion of the composite filler in the coating. Thereby improving the overall performance of the coating.
  • the raw materials for preparing the epoxy composite coating include:
  • the model of the epoxy resin is: E-240 epoxy resin.
  • the defoaming agent, leveling agent, and wetting and dispersing agent are BYK1798 defoaming agent, BYK-LPG23687 leveling agent, and DisperBYK2012 wetting and dispersing agent, respectively, manufactured by BYK Corporation.
  • polyaniline-graphene oxide nanocomposite filler is prepared by the following steps:
  • the added amount of graphene oxide in step S2 is 200 wt% relative to aniline.
  • the present case also provides a method for preparing the above epoxy composite coating, including the following steps:
  • the raw materials for preparing the epoxy composite coating include:
  • the model of the epoxy resin is: E-44 epoxy resin.
  • the defoaming agent, leveling agent, and wetting and dispersing agent are BYK1798 defoaming agent, BYK-LPG23687 leveling agent, and DisperBYK2012 wetting and dispersing agent, respectively, manufactured by BYK Corporation.
  • polyaniline-graphene oxide nanocomposite filler is prepared by the following steps:
  • the added amount of graphene oxide in step S2 is 100 wt% relative to aniline.
  • the present case also provides a method for preparing the above epoxy composite coating, including the following steps:
  • the raw materials for preparing the epoxy composite coating include:
  • the model of the epoxy resin is: E-51 epoxy resin.
  • the defoaming agent, leveling agent, and wetting and dispersing agent are BYK1798 defoaming agent, BYK-LPG23687 leveling agent, and DisperBYK2012 wetting and dispersing agent, respectively, manufactured by BYK Corporation.
  • polyaniline-graphene oxide nanocomposite filler is prepared by the following steps:
  • the added amount of graphene oxide in step S2 is 150 wt% relative to aniline.
  • the present case also provides a method for preparing the above epoxy composite coating, including the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Abstract

一种环氧复合涂料及其制备方法,制备该环氧复合涂料的原料包括:聚苯胺-氧化石墨烯纳米复合填料、环氧树脂、聚酰胺固化剂、消泡剂、润湿分散剂、流平剂、混合溶剂。其制备方法包括:首先将氧化石墨烯分散于去离子水中,加入苯胺单体后滴加盐酸,利用化学氧化法在氧化石墨烯表面生长聚苯胺,得到聚苯胺-氧化石墨烯纳米复合填料,经过离心分离干燥后,将该复合填料掺入含有消泡剂、润湿分散剂、流平剂的环氧树脂混合液中,混合体系经过高速分散搅拌,得到环氧复合涂料;聚酰胺固化剂在使用时加入。

Description

一种环氧复合涂料及其制备方法 技术领域
本发明涉及涂料领域,特别涉及一种环氧复合涂料及其制备方法。
背景技术
金属的腐蚀给国民经济造成了巨大的损失,而对金属设备的防护目前还是以最为经济有效的防腐蚀涂料为主。为了进一步提高涂层的耐蚀性能,人们往往会在涂层中添加含有重金属的缓蚀剂,且目前的重防腐涂料中会含有很多的有机溶剂,这些物质在储存和使用的过程中都会对环境造成很大的危害,为此需要发展更为绿色环保的新材料来改进目前的现状。
石墨烯具有高比表面积、优异的导电性和化学稳定性以及突出的力学性能等特性,在涂料领域中得到了广泛的研究,但在它的生产和使用中存在如下几个问题:首先,人工制备的石墨烯容易再团聚,导致无法充分发挥石墨烯片层的优异特性;其次,石墨烯的大规模生产仍存在很大问题。而聚苯胺作为一种新型的导电聚合物材料,与其他无机填料相比,具有合成简单、成本低、优异的酸掺杂性以及独特的氧化还原特性等优势,对金属材料的腐蚀防护也已经成为近年来研究的热点之一。通过化学氧化法制备聚苯胺-石墨烯复合材料,可通过聚苯胺在石墨烯片层上原位生长有效的抑制石墨烯的团聚;将其添加到水性环氧树脂中后,不仅能够减少有机溶剂的挥发,而且大幅度提高了涂层的耐蚀性能,对其实际应用具有重要的指导意义。
有鉴于此,实有必要开发一种环氧复合涂料及其制备方法,用以克服石墨烯的颗粒团聚,同时有效提高复合涂层的防腐能力。
发明内容
针对现有技术中存在的不足之处,本发明的目的是提供一种环氧复合涂料及其制备方法,将氧化石墨烯进行表面聚苯胺有机物的包覆改性,有利于其在环氧涂料中的有效分散,可防止其在环氧涂层中的颗粒团聚,同时,氧化石墨烯的阻隔作用与聚苯胺对金属的钝化作用结合,有效提高复合涂层的 防腐能力。
为了实现根据本发明的上述目的和其他优点,提供了一种环氧复合涂料,以质量百分比计,制备该环氧复合涂料的原料包括:
Figure PCTCN2018112095-appb-000001
优选的是,以环氧值计,所述环氧树脂的型号可以为:E-12环氧树脂、E-240环氧树脂、E-44环氧树脂、或者E-51环氧树脂。
优选的是,所述消泡剂、流平剂、及润湿分散剂分别为BYK公司出品的型号为BYK1798消泡剂、BYK-LPG23687流平剂、及DisperBYK2012润湿分散剂。
优选的是,混合溶剂的组成成分为二甲苯与乙酸丁酯,两者的相对体积比范围为二甲苯∶乙酸丁酯=1∶4~4∶1。
优选的是,所述聚苯胺-氧化石墨烯纳米复合填料通过以下步骤制得:
S1、将氧化石墨烯分散于去离子水中,经超声分散10~30分钟后,制成浓度范围在0.01~0.05g/ml的氧化石墨烯分散液;
S2、配制浓度范围在0.5mol/L~3mol/L的盐酸溶液,然后加入相对于盐酸摩尔量0.5~5倍的苯胺,剧烈搅拌直至完全分散后,加入相对于苯胺质量比为1wt%~5wt%的过硫酸铵,然后将氧化石墨烯分散液迅速加入到烧瓶中,将得到的混合物在室温下搅拌1小时~5小时,并静置反应12小时~24小时,得到墨绿色的盐酸掺杂的聚苯胺-石墨烯复合物;
S3、将得到的聚苯胺-石墨烯复合物进行抽滤:依次用去离子水、无水乙醇洗涤三次,然后在30℃~60℃下真空干燥12小时~36小时,即得到所述聚苯胺-氧化石墨烯纳米复合填料。
优选的是,以质量百分比计,步骤S2中的氧化石墨烯添加量为相对于苯 胺的50~200wt%。
进一步地,本案还提供一种制备上述环氧复合涂料的方法,包括以下步骤:
P1、将环氧树脂加入到60~80%体积的混合溶剂中,依次加入消泡剂、润湿分散剂、流平剂,在500~1500转/分的转速下,分散5~20分钟,充分混合搅拌均匀;
P2、加入聚苯胺-氧化石墨烯纳米复合填料,在2000~3500转/分的转速下高速搅拌1~6小时,得到环氧复合涂料A组分;
P3、在聚酰胺固化剂中加入剩余的混合溶剂,在500~1000转/分的转速下,分散5~10分钟,充分混合搅拌均匀,得到环氧复合涂料B组分;
P4、将环氧复合涂料B组分加入到环氧复合涂料A组分中,放置10~30分钟,即可涂装成膜。
本发明与现有技术相比,其有益效果是:
1.将氧化石墨烯进行表面聚苯胺有机物的包覆改性,有利于其在环氧涂料中的有效分散,可防止其在环氧涂层中的颗粒团聚;
2.氧化石墨烯的阻隔作用与聚苯胺对金属的钝化作用结合,有效提高复合涂层的防腐能力。
附图说明
图1为通过透射电镜观察的实施例一所制备的聚苯胺-氧化石墨烯纳米复合填料的形貌;
图2为通过扫描电镜所观察的实施例一所制备的环氧复合涂料的固化涂层。
具体实施方式
下面结合附图对本发明做进一步的详细说明,本发明的前述和其它目的、特征、方面和优点将变得更加明显,以令本领域技术人员参照说明书文字能够据以实施。
实施例一
一种环氧复合涂料,以质量百分比计,制备该环氧复合涂料的原料包括:
Figure PCTCN2018112095-appb-000002
进一步地,以环氧值计,所述环氧树脂的型号为:E-12环氧树脂。
进一步地,所述消泡剂、流平剂、及润湿分散剂分别为BYK公司出品的型号为BYK1798消泡剂、BYK-LPG23687流平剂、及DisperBYK2012润湿分散剂。
进一步地,混合溶剂的组成成分为二甲苯与乙酸丁酯,两者的相对体积比范围为二甲苯∶乙酸丁酯=1∶4。
进一步地,所述聚苯胺-氧化石墨烯纳米复合填料通过以下步骤制得:
S1、将氧化石墨烯分散于去离子水中,经超声分散10分钟后,制成浓度范围在0.01g/ml的氧化石墨烯分散液;
S2、配制浓度范围在0.5mol/L的盐酸溶液,然后加入相对于盐酸摩尔量0.5倍的苯胺,剧烈搅拌直至完全分散后,加入相对于苯胺质量比为1wt%的过硫酸铵,然后将氧化石墨烯分散液迅速加入到烧瓶中,将得到的混合物在室温下搅拌1小时,并静置反应12小时,得到墨绿色的盐酸掺杂的聚苯胺-石墨烯复合物;
S3、将得到的聚苯胺-石墨烯复合物进行抽滤:依次用去离子水、无水乙醇洗涤三次,然后在30℃下真空干燥36小时,即得到所述聚苯胺-氧化石墨烯纳米复合填料。
进一步地,以质量百分比计,步骤S2中的氧化石墨烯添加量为相对于苯胺的50wt%。
进一步地,本案还提供一种制备上述环氧复合涂料的方法,包括以下步骤:
P1、将环氧树脂加入到60%体积的混合溶剂中,依次加入消泡剂、润湿分散剂、流平剂,在500转/分的转速下,分散20分钟,充分混合搅拌均匀;
P2、加入聚苯胺-氧化石墨烯纳米复合填料,在2000转/分的转速下高速搅拌6小时,得到环氧复合涂料A组分;
P3、在聚酰胺固化剂中加入剩余的混合溶剂,在500转/分的转速下,分散10分钟,充分混合搅拌均匀,得到环氧复合涂料B组分;
P4、将环氧复合涂料B组分加入到环氧复合涂料A组分中,放置10分钟,即可涂装成膜。
附图1为通过透射电镜观察的实施例一所制备的聚苯胺-氧化石墨烯纳米复合填料的形貌,针状聚苯胺在片层氧化石墨烯上有效生长,两者在纳米尺寸的有效复合,有利于充分发挥两者的效果,并有利于在环氧树脂中的有效分散。
附图2为通过扫描电镜所观察的实施例一所制备的环氧复合涂料的固化涂层,由于聚苯胺对氧化石墨烯的有效改性,有利于复合填料在涂层中的有效均匀分散,从而提高涂层的综合性能。
实施例二
一种环氧复合涂料,以质量百分比计,制备该环氧复合涂料的原料包括:
Figure PCTCN2018112095-appb-000003
进一步地,以环氧值计,所述环氧树脂的型号为:E-240环氧树脂。
进一步地,所述消泡剂、流平剂、及润湿分散剂分别为BYK公司出品的型号为BYK1798消泡剂、BYK-LPG23687流平剂、及DisperBYK2012润湿分散剂。
进一步地,混合溶剂的组成成分为二甲苯与乙酸丁酯,两者的相对体积 比范围为二甲苯∶乙酸丁酯=2∶1。
进一步地,所述聚苯胺-氧化石墨烯纳米复合填料通过以下步骤制得:
S1、将氧化石墨烯分散于去离子水中,经超声分散30分钟后,制成浓度范围在0.05g/ml的氧化石墨烯分散液;
S2、配制浓度范围在3mol/L的盐酸溶液,然后加入相对于盐酸摩尔量5倍的苯胺,剧烈搅拌直至完全分散后,加入相对于苯胺质量比为5wt%的过硫酸铵,然后将氧化石墨烯分散液迅速加入到烧瓶中,将得到的混合物在室温下搅拌5小时,并静置反应24小时,得到墨绿色的盐酸掺杂的聚苯胺-石墨烯复合物;
S3、将得到的聚苯胺-石墨烯复合物进行抽滤:依次用去离子水、无水乙醇洗涤三次,然后在60℃下真空干燥12小时,即得到所述聚苯胺-氧化石墨烯纳米复合填料。
进一步地,以质量百分比计,步骤S2中的氧化石墨烯添加量为相对于苯胺的200wt%。
进一步地,本案还提供一种制备上述环氧复合涂料的方法,包括以下步骤:
P1、将环氧树脂加入到80%体积的混合溶剂中,依次加入消泡剂、润湿分散剂、流平剂,在1500转/分的转速下,分散5分钟,充分混合搅拌均匀;
P2、加入聚苯胺-氧化石墨烯纳米复合填料,在3500转/分的转速下高速搅拌1小时,得到环氧复合涂料A组分;
P3、在聚酰胺固化剂中加入剩余的混合溶剂,在1000转/分的转速下,分散5分钟,充分混合搅拌均匀,得到环氧复合涂料B组分;
P4、将环氧复合涂料B组分加入到环氧复合涂料A组分中,放置30分钟,即可涂装成膜。
实施例三
一种环氧复合涂料,以质量百分比计,制备该环氧复合涂料的原料包括:
Figure PCTCN2018112095-appb-000004
Figure PCTCN2018112095-appb-000005
进一步地,以环氧值计,所述环氧树脂的型号为:E-44环氧树脂。
进一步地,所述消泡剂、流平剂、及润湿分散剂分别为BYK公司出品的型号为BYK1798消泡剂、BYK-LPG23687流平剂、及DisperBYK2012润湿分散剂。
进一步地,混合溶剂的组成成分为二甲苯与乙酸丁酯,两者的相对体积比范围为二甲苯∶乙酸丁酯=3∶1。
进一步地,所述聚苯胺-氧化石墨烯纳米复合填料通过以下步骤制得:
S1、将氧化石墨烯分散于去离子水中,经超声分散15分钟后,制成浓度范围在0.03g/ml的氧化石墨烯分散液;
S2、配制浓度范围在1mol/L的盐酸溶液,然后加入相对于盐酸摩尔量2.5倍的苯胺,剧烈搅拌直至完全分散后,加入相对于苯胺质量比为3wt%的过硫酸铵,然后将氧化石墨烯分散液迅速加入到烧瓶中,将得到的混合物在室温下搅拌3小时,并静置反应18小时,得到墨绿色的盐酸掺杂的聚苯胺-石墨烯复合物;
S3、将得到的聚苯胺-石墨烯复合物进行抽滤:依次用去离子水、无水乙醇洗涤三次,然后在45℃下真空干燥20小时,即得到所述聚苯胺-氧化石墨烯纳米复合填料。
进一步地,以质量百分比计,步骤S2中的氧化石墨烯添加量为相对于苯胺的100wt%。
进一步地,本案还提供一种制备上述环氧复合涂料的方法,包括以下步骤:
P1、将环氧树脂加入到68%体积的混合溶剂中,依次加入消泡剂、润湿分散剂、流平剂,在1000转/分的转速下,分散10分钟,充分混合搅拌均匀;
P2、加入聚苯胺-氧化石墨烯纳米复合填料,在2500转/分的转速下高速搅拌3小时,得到环氧复合涂料A组分;
P3、在聚酰胺固化剂中加入剩余的混合溶剂,在700转/分的转速下,分散7分钟,充分混合搅拌均匀,得到环氧复合涂料B组分;
P4、将环氧复合涂料B组分加入到环氧复合涂料A组分中,放置20分钟,即可涂装成膜。
实施例四
一种环氧复合涂料,以质量百分比计,制备该环氧复合涂料的原料包括:
Figure PCTCN2018112095-appb-000006
进一步地,以环氧值计,所述环氧树脂的型号为:E-51环氧树脂。
进一步地,所述消泡剂、流平剂、及润湿分散剂分别为BYK公司出品的型号为BYK1798消泡剂、BYK-LPG23687流平剂、及DisperBYK2012润湿分散剂。
进一步地,混合溶剂的组成成分为二甲苯与乙酸丁酯,两者的相对体积比范围为二甲苯∶乙酸丁酯=4∶1。
进一步地,所述聚苯胺-氧化石墨烯纳米复合填料通过以下步骤制得:
S1、将氧化石墨烯分散于去离子水中,经超声分散20分钟后,制成浓度范围在0.04g/ml的氧化石墨烯分散液;
S2、配制浓度范围在2mol/L的盐酸溶液,然后加入相对于盐酸摩尔量4倍的苯胺,剧烈搅拌直至完全分散后,加入相对于苯胺质量比为4wt%的过硫酸铵,然后将氧化石墨烯分散液迅速加入到烧瓶中,将得到的混合物在室温下搅拌4小时,并静置反应22小时,得到墨绿色的盐酸掺杂的聚苯胺-石墨烯复合物;
S3、将得到的聚苯胺-石墨烯复合物进行抽滤:依次用去离子水、无水乙醇洗涤三次,然后在52℃下真空干燥14小时,即得到所述聚苯胺-氧化石墨 烯纳米复合填料。
进一步地,以质量百分比计,步骤S2中的氧化石墨烯添加量为相对于苯胺的150wt%。
进一步地,本案还提供一种制备上述环氧复合涂料的方法,包括以下步骤:
P1、将环氧树脂加入到75%体积的混合溶剂中,依次加入消泡剂、润湿分散剂、流平剂,在1300转/分的转速下,分散8分钟,充分混合搅拌均匀;
P2、加入聚苯胺-氧化石墨烯纳米复合填料,在3000转/分的转速下高速搅拌2小时,得到环氧复合涂料A组分;
P3、在聚酰胺固化剂中加入剩余的混合溶剂,在850转/分的转速下,分散6分钟,充分混合搅拌均匀,得到环氧复合涂料B组分;
P4、将环氧复合涂料B组分加入到环氧复合涂料A组分中,放置25分钟,即可涂装成膜。
这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明的应用、修改和变化对本领域的技术人员来说是显而易见的。
尽管本发明的实施方案已公开如上,但其并不仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (7)

  1. 一种环氧复合涂料,其特征在于,以质量百分比计,制备该环氧复合涂料的原料包括:
    Figure PCTCN2018112095-appb-100001
  2. 如权利要求1所述的环氧复合涂料,其特征在于,以环氧值计,所述环氧树脂的型号可以为:E-12环氧树脂、E-240环氧树脂、E-44环氧树脂、或者E-51环氧树脂。
  3. 如权利要求1所述的环氧复合涂料,其特征在于,所述消泡剂、流平剂、及润湿分散剂分别为BYK公司出品的型号为BYK1798消泡剂、BYK-LPG23687流平剂、及DisperBYK2012润湿分散剂。
  4. 如权利要求1所述的环氧复合涂料,其特征在于,混合溶剂的组成成分为二甲苯与乙酸丁酯,两者的相对体积比范围为二甲苯∶乙酸丁酯=1∶4~4∶1。
  5. 如权利要求1所述的环氧复合涂料,其特征在于,所述聚苯胺-氧化石墨烯纳米复合填料通过以下步骤制得:
    S1、将氧化石墨烯分散于去离子水中,经超声分散10~30分钟后,制成浓度范围在0.01~0.05g/ml的氧化石墨烯分散液;
    S2、配制浓度范围在0.5mol/L~3mol/L的盐酸溶液,然后加入相对于盐酸摩尔量0.5~5倍的苯胺,剧烈搅拌直至完全分散后,加入相对于苯胺质量比为1wt%~5wt%的过硫酸铵,然后将氧化石墨烯分散液迅速加入到烧瓶中,将得到的混合物在室温下搅拌1小时~5小时,并静置反应12小时~24小时,得到墨绿色的盐酸掺杂的聚苯胺-石墨烯复合物;
    S3、将得到的聚苯胺-石墨烯复合物进行抽滤:依次用去离子水、无水乙 醇洗涤三次,然后在30℃~60℃下真空干燥12小时~36小时,即得到所述聚苯胺-氧化石墨烯纳米复合填料。
  6. 如权利要求5所述的环氧复合涂料,其特征在于,以质量百分比计,步骤S2中的氧化石墨烯添加量为相对于苯胺的50~200wt%。
  7. 一种如权利要求1~6任一项所述的环氧复合涂料的制备方法,其特征在于,包括以下步骤:
    P1、将环氧树脂加入到60~80%体积的混合溶剂中,依次加入消泡剂、润湿分散剂、流平剂,在500~1500转/分的转速下,分散5~20分钟,充分混合搅拌均匀;
    P2、加入聚苯胺-氧化石墨烯纳米复合填料,在2000~3500转/分的转速下高速搅拌1~6小时,得到环氧复合涂料A组分;
    P3、在聚酰胺固化剂中加入剩余的混合溶剂,在500~1000转/分的转速下,分散5~10分钟,充分混合搅拌均匀,得到环氧复合涂料B组分;
    P4、将环氧复合涂料B组分加入到环氧复合涂料A组分中,放置10~30分钟,即可涂装成膜。
PCT/CN2018/112095 2018-10-26 2018-10-26 一种环氧复合涂料及其制备方法 WO2020082330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112095 WO2020082330A1 (zh) 2018-10-26 2018-10-26 一种环氧复合涂料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112095 WO2020082330A1 (zh) 2018-10-26 2018-10-26 一种环氧复合涂料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020082330A1 true WO2020082330A1 (zh) 2020-04-30

Family

ID=70330875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112095 WO2020082330A1 (zh) 2018-10-26 2018-10-26 一种环氧复合涂料及其制备方法

Country Status (1)

Country Link
WO (1) WO2020082330A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592652A (zh) * 2020-12-01 2021-04-02 北京联合大学 一种聚苯胺/硝酸铈/环氧聚合涂层的制备方法
CN113583544A (zh) * 2021-07-29 2021-11-02 安徽大学 氨基化go/磺化聚苯胺改性水性环氧树脂防腐涂料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604533A (zh) * 2012-03-14 2012-07-25 哈尔滨工程大学 一种基于聚苯胺与石墨烯复合材料的防腐涂料及制备方法
CN105368304A (zh) * 2015-09-23 2016-03-02 航天科工防御技术研究试验中心 防腐涂料及其制备方法
CN104910752B (zh) * 2015-06-10 2017-08-25 华南理工大学 一种聚苯胺石墨烯纳米复合防腐涂料及其制备方法
CN107556797A (zh) * 2017-10-13 2018-01-09 厦门大学 一种石墨烯/聚苯胺复合材料防腐涂料助剂的制备方法
CN108373746A (zh) * 2016-11-17 2018-08-07 中国科学院宁波材料技术与工程研究所 石墨烯环氧复合防腐涂料、其制备方法及应用
CN109266165A (zh) * 2018-08-02 2019-01-25 苏州吉人高新材料股份有限公司 一种环氧复合涂料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604533A (zh) * 2012-03-14 2012-07-25 哈尔滨工程大学 一种基于聚苯胺与石墨烯复合材料的防腐涂料及制备方法
CN104910752B (zh) * 2015-06-10 2017-08-25 华南理工大学 一种聚苯胺石墨烯纳米复合防腐涂料及其制备方法
CN105368304A (zh) * 2015-09-23 2016-03-02 航天科工防御技术研究试验中心 防腐涂料及其制备方法
CN108373746A (zh) * 2016-11-17 2018-08-07 中国科学院宁波材料技术与工程研究所 石墨烯环氧复合防腐涂料、其制备方法及应用
CN107556797A (zh) * 2017-10-13 2018-01-09 厦门大学 一种石墨烯/聚苯胺复合材料防腐涂料助剂的制备方法
CN109266165A (zh) * 2018-08-02 2019-01-25 苏州吉人高新材料股份有限公司 一种环氧复合涂料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592652A (zh) * 2020-12-01 2021-04-02 北京联合大学 一种聚苯胺/硝酸铈/环氧聚合涂层的制备方法
CN113583544A (zh) * 2021-07-29 2021-11-02 安徽大学 氨基化go/磺化聚苯胺改性水性环氧树脂防腐涂料
CN113583544B (zh) * 2021-07-29 2022-06-21 安徽大学 氨基化go/磺化聚苯胺改性水性环氧树脂防腐涂料

Similar Documents

Publication Publication Date Title
CN109266165A (zh) 一种环氧复合涂料及其制备方法
CN104910752B (zh) 一种聚苯胺石墨烯纳米复合防腐涂料及其制备方法
CN105001759B (zh) 钼酸盐掺杂聚吡咯/环氧树脂自修复涂料及其制备和应用
CN102618107B (zh) 导电石墨乳及其制备方法
CN105238207A (zh) 一种高性能的超双疏导电多功能防腐涂层及其制备方法
WO2020082330A1 (zh) 一种环氧复合涂料及其制备方法
CN104371537B (zh) 防腐涂料及其制备方法
CN107760205B (zh) 一种基于聚吡咯/石墨烯复合材料的水性碳钢表面处理剂
WO2019119487A1 (zh) 羟基石墨烯改性镀层封闭剂及其制备方法
KR20100078444A (ko) 수계 그라핀 용액 및 수계 전도성 고분자 용액의 제조방법
CN108997894A (zh) 一种导电涂料
CN103396548B (zh) 一种高介电聚酰亚胺/钛酸铜钙纳米线复合材料的制备方法
CN111073370A (zh) 一种水性防腐涂料的填料、制备方法及包含填料的防腐涂料
CN114806305A (zh) 一种水性金属防腐涂料及其制备方法
CN111253778A (zh) 一种改性氮化硼纳米片的制备方法及改性氮化硼纳米片的应用
CN105111434B (zh) 一种苯胺共聚物与石墨烯的复合材料、制备方法及其应用
CN114106693A (zh) 一种石墨烯-Zr-MOF-聚二甲基硅氧烷镁合金表面抗腐蚀复合涂层及其制备方法
CN102559011A (zh) 一种环氧防腐涂层的制备方法
CN107189650A (zh) 一种导电防腐漆及其制备方法
Shen et al. Chemical anchoring of aminobenzoate onto the surface of SnO2 nanoparticles for synthesis of polyaniline/SnO2 composite
CN107298923B (zh) 一种聚吡咯/α-Fe2O3改性防腐涂料的制备方法及应用
CN116426193A (zh) 一种水性环保防腐涂料
CN113072830A (zh) 聚苯胺碳纳米管核壳复合材料的制备方法及其应用
CN114574043B (zh) 一种纳米/聚乙烯蜡复合改性石墨烯涂料及其制备方法
CN102276832A (zh) 一种防腐涂料用易分散聚苯胺的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937735

Country of ref document: EP

Kind code of ref document: A1