WO2024076136A1 - 막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도 - Google Patents

막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도 Download PDF

Info

Publication number
WO2024076136A1
WO2024076136A1 PCT/KR2023/015228 KR2023015228W WO2024076136A1 WO 2024076136 A1 WO2024076136 A1 WO 2024076136A1 KR 2023015228 W KR2023015228 W KR 2023015228W WO 2024076136 A1 WO2024076136 A1 WO 2024076136A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
peptide
complex
capture
captured
Prior art date
Application number
PCT/KR2023/015228
Other languages
English (en)
French (fr)
Inventor
이소라
유영도
Original Assignee
주식회사 안단테에프엠
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 안단테에프엠, 고려대학교 산학협력단 filed Critical 주식회사 안단테에프엠
Priority claimed from KR1020230131830A external-priority patent/KR20240049173A/ko
Publication of WO2024076136A1 publication Critical patent/WO2024076136A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)

Definitions

  • the present invention relates to fusion peptide complexes comprising transmembrane domains and uses thereof.
  • the present invention relates to a membrane protein located in the cell membrane and intracellular organelle membrane, a peptide consisting of a transmembrane domain and basic or polar (uncharged) amino acids at both ends of the domain, and a peptide-epoxy conjugate containing the same. It is about this, and using this, rapid capture of bacteria is possible.
  • the peptide-epoxy conjugate can capture Gram-positive, Gram-negative, and multidrug-resistant bacteria in a short period of time without killing them, and can cultivate and multiply bacteria in a short period of time by adding bacterial culture medium, allowing identification of bacteria or investigation of antibiotic susceptibility. You can secure bacteria that can. Therefore, this peptide-epoxy conjugate is expected to be used in various fields, such as for medicinal purposes, external medicinal purposes, food and water quality testing, etc. for the purpose of diagnosing a wide range of bacterial infectious diseases.
  • ASSURED The World Health Organization (WHO) proposed ASSURED as an effective diagnostic technique in 2006.
  • ASSURED is affordable, sensitive, specific, user-friendly, rapid, equipment-free and deliverable, and recently researchers added real-time connectivity and ease of specimen collection 2 items to the above 7 items.
  • an effective and ideal diagnostic technique is low cost, easy to use by the examiner, allows diagnosis of a small number of bacteria in the sample (low number of detection), and is a short test. It must be rapid.
  • This problem can be overcome by rapidly amplifying the number of bacteria present in the blood within a few hours. Once the number of bacteria is amplified within a short period of time, it is possible to confirm the presence of bacteria, identify them, and investigate antibiotic susceptibility using various techniques to identify bacteria.
  • bacteria capture consideration should be given to capturing even the small number of bacteria present in the sample. Additionally, because there are a variety of bacteria in patient samples, techniques that capture only specific bacteria may have limitations in use. Another consideration is that the bacterial capture kit must be inexpensive to produce. Additionally, diagnostic testing procedures must be simple and performed in a short period of time, and large amounts of samples must be easily performed.
  • the most important factor in confirming and identifying bacterial infections in the blood and investigating antibiotic susceptibility is to simultaneously capture several unknown types of bacteria in the blood and isolate and amplify the bacteria from the blood. This process must be performed in a manner that is low cost and easy for the inspector to handle.
  • the latest techniques developed recently include PCR-based techniques, microfluidics microdroplets, mass spectrometry, cell sorting fluorescence, bacteriophage-based techniques, 3D optical scanning microscopy imaging, single molecule fluorescence hybridization, microarray, in situ hybridization, and nuclear magnetic resonance.
  • the latest technique obtains results using a small sample of blood containing one to several bacteria, but there are problems in applying it to patients because there may be several types of bacteria infected in the patient.
  • the disc diffusion or broth microdilution technique takes a long time to identify bacteria in the sample and investigate antibiotic susceptibility, and requires several tasks by the examiner.
  • the latest techniques have disadvantages such as high cost, the need to secure expensive equipment, the need for well-trained inspectors, the need for a complicated pre-processing process for specimens, and the high level of difficulty in pre-processing specimens. Therefore, a new technique that is convenient to use in a short period of time and at low cost is needed.
  • One aspect of the present invention is a polypeptide comprising a transmembrane domain (TMD) consisting of 15 to 30 amino acids, and at least one amino acid at the C-terminus or N-terminus of the polypeptide, with a sum of 1 at both ends.
  • TMD transmembrane domain
  • the object is to provide a fusion polypeptide complex comprising a fusion polypeptide in which to 12 terminal amino acids are linked and a conjugate to which the fusion polypeptide is linked.
  • Another aspect of the present invention aims to provide a bacterial-binding composition containing the above complex.
  • Another aspect of the present invention provides a screening composition and a bacterial binding kit including the composition.
  • One aspect of the present invention is a polypeptide comprising a transmembrane domain (TMD) consisting of 15 to 30 amino acids, and at least one amino acid at the C-terminus or N-terminus of the polypeptide, with a sum of 1 at both ends.
  • TMD transmembrane domain
  • fusion polypeptide complex comprising a fusion polypeptide and a conjugate in which to 12 terminal amino acids are linked.
  • the transmembrane domain may be of natural origin.
  • the terminal amino acid may be at least one of basic and polar.
  • the fusion polypeptide may be any one of the peptides of SEQ ID NOs: 1 to 31 and 34 to 40.
  • the fusion polypeptide may further include one or more mutations.
  • the fusion polypeptide may be the peptide of SEQ ID NO: 32 or 33.
  • the fusion polypeptide further contains one or more mutations among PEGylation, acetylation, carboxylation, lipidation, and amidation. It may include
  • the conjugate may include a functional group and a support.
  • the functional group may be any one of an epoxy group, an amine group (NH2-), a carboxyl group (COOH-), and a thiol group (SH-).
  • a bacterial-binding composition comprising the complex is provided.
  • the bacteria may be one or more bacteria selected from the group consisting of gram-positive bacteria, gram-negative bacteria, and multidrug-resistant bacteria.
  • Another aspect of the present invention provides a bacterial binding kit containing the complex or composition.
  • a screening composition comprising the complex or composition is provided.
  • the fusion peptide containing the transmembrane domain of the present invention can specifically capture various bacteria in samples from infected patients or samples with bacterial contamination. At this time, bacteria can be separated and concentrated directly from the sample using the conjugate, and can be multiplied in a short period of time by adding culture medium or separated and cultured on agar plates.
  • the existing technology performed secondary isolation and culture after primary cultivation of bacteria from a patient's sample, but the present invention uses a fusion peptide complex to isolate bacteria from the sample in a short period of time (bacterial capture) and then culture it immediately. , it is possible to capture and culture a wide range of bacteria, both Gram-negative and multi-drug resistant bacteria. Cultured bacteria can be used for bacterial identification or antibiotic susceptibility testing.
  • the present invention can be provided for the diagnosis of infectious diseases caused by multi-drug resistant bacteria. Therefore, this peptide-epoxy conjugate is expected to be used in various fields, such as for medicinal purposes, external medicinal purposes, food and water quality testing, etc. for the purpose of diagnosing a wide range of bacterial infectious diseases.
  • 1 is a diagram showing the concept of the present invention.
  • Figure 2 is one of the results of Example 2, a photograph showing the results of capturing/cultivating E. coli using the fusion peptide complex of the present invention.
  • Figure 3 is one of the results of Example 11, a photograph showing the results of confirming the ability to capture bacteria when the fusion peptide complex of the present invention is used with nitrocellulose paper, in the case of an epoxy-peptide conjugate (right) and This shows the case of epoxy without peptide bound (left).
  • One aspect of the present invention is a polypeptide comprising a transmembrane domain (TMD) consisting of 15 to 30 amino acids, and at least one amino acid at the C-terminus or N-terminus of the polypeptide, with a sum of 1 at both ends.
  • TMD transmembrane domain
  • a fusion polypeptide complex comprising a fusion polypeptide in which to 12 terminal amino acids are linked and a conjugate to which the fusion polypeptide is linked.
  • the transmembrane domain is a peptide sequence region with membrane penetrating ability, and a peptide with membrane penetrating ability is a peptide that penetrates the lipid bilayer membrane of an organelle existing within a cell.
  • the domain that penetrates the lipid membrane (transmembrane domain, TMD) consists of approximately 22 amino acids, including hydrophobic amino acids and some hydrophilic amino acids. There may be one or multiple transmembrane domains.
  • transmembrane protein sequence information was obtained from UniProt (www.uniprot.org).
  • the inventors of the present invention synthesized peptides of various lengths consisting of a transmembrane domain and one or more amino acids at both ends based on information obtained by searching on Uniprot, and completed the present invention by confirming their ability to capture bacteria ( (see Examples 1 and 2).
  • the present inventors synthesized peptides of various lengths that exist in nature, consisting of a transmembrane domain among human proteins and one or more amino acids at both ends, and calculated the bacterial capture rate to determine the capture possibility. Confirmed. As a result, it was confirmed that it had excellent bacterial capture ability compared to the peptide with only a transmembrane domain (see Example 2, Table 2). In addition, it was confirmed that the same bacterial capture ability was observed even when using a heterologous transmembrane domain (see Example 2, Table 3).
  • the inventor of the present invention confirmed the minimum number of amino acids bound to the ends of the transmembrane domain and found that even a peptide containing only one amino acid at both ends of the transmembrane domain had the ability to capture bacteria, and that the capture ability was not achieved even though some amino acids were substituted. (Example 3), and even when synthesized by artificially binding amino acids to one or both ends of the transmembrane domain, it was confirmed that it had the ability to capture bacteria (Example 4). In addition, according to the experimental conditions, it was confirmed that this peptide had a very low ability to kill bacteria and could be used for capturing bacteria (Example 5). In addition, since the pH range of urine, which is one of the samples actually used, is in the range of 4.5 to 8.0, it was confirmed that this peptide is capable of capturing bacteria in this pH range. (Example 9).
  • This bacterial trapping ability of the present invention was confirmed to be effective not only against a wide range of bacteria, both gram-positive and gram-negative, but also against multidrug-resistant gram-positive and multidrug-resistant gram-negative bacteria (Example 7).
  • the present inventors were able to confirm that the bacterial capture ability is maintained when the fusion peptide of the present invention is included even when the fusion peptide of the present invention is used at a low concentration or when a low concentration of bacteria, a small sample amount, a short reaction time, and various beads are used. (Example 8).
  • the bacteria captured by the structure of the present invention can be cultured under appropriate conditions and can be used for bacterial screening (Example 9).
  • the captured bacteria also do not change in their properties, so antibiotic susceptibility investigation can also be conducted. It was confirmed that this was possible (Example 10).
  • the fusion peptide of the present invention maintains its capture ability even when nitrocellulose paper is used, thereby providing convenience of use (Example 11).
  • peptide refers to a linear molecule formed by linking amino acid residues together through peptide bonds. It can be prepared according to chemical synthesis methods known in the art, especially solid-phase synthesis techniques or liquid-phase synthesis techniques.
  • the transmembrane domain may be of natural origin, and more specifically, may be any one of SEQ ID NOs: 41 to 65.
  • the terminal amino acid is bound to the C-terminus and N-terminus of the transmembrane domain and may consist of one or more amino acids at each end, a total of 1 to 12, and specifically, the C-terminus or N-terminus of the transmembrane domain. One or more may be bonded to the terminal. It is sufficient for the total number of terminal amino acids to be 1 to 12, each amino acid is independent from each other, and even if the peptides bound to the C-terminus and N-terminus have different amino acid compositions and different lengths, they are included in the present invention.
  • one terminal amino acid may be bound to only one end of the transmembrane domain, so that the total includes one terminal amino acid, 12 terminal amino acids may be bound to only one end, or one terminal may be bound to one terminal of the other end. 11 terminal amino acids may be bound to each other, or 6 terminal amino acids may be bound to each end, resulting in a total of 12 terminal amino acids.
  • the terminal amino acid is selected from basic amino acids and polar amino acids, and the terminal amino acid may be any one of lysine, arginine, histidine, serine, threonine cysteine, glutamine, arparagine, and tyrosine. .
  • the fusion polypeptide may be any one of the peptides of SEQ ID NOs: 1 to 31 and 34 to 40.
  • the fusion polypeptide may further include one or more mutations. More specifically, the fusion polypeptide may be the peptide of SEQ ID NO: 32 or 33.
  • the fusion polypeptide further contains one or more mutations among PEGylation, acetylation, carboxylation, lipidation, and amidation. It may include, and more specifically, the amino terminus may be bound to a protective group such as acetyl group, fluorenyl methoxy carbonyl group, formyl group, palmitoyl group, myristyl group, stearyl group, and polyethylene glycol (PEG). , the carboxy terminus of the peptide can be modified with a hydroxy group (-OH), amino group (-NH2), azide (-NHNH2), etc.
  • a protective group such as acetyl group, fluorenyl methoxy carbonyl group, formyl group, palmitoyl group, myristyl group, stearyl group, and polyethylene glycol (PEG).
  • the carboxy terminus of the peptide can be modified with a hydroxy group (-OH), amino group (-NH2), azide (-NH
  • fatty acids oligosaccharides chains, all nanoparticles (gold particles, liposomes, heparin, hydrogel, etc.), amino acids, carriers are added to the terminal of the peptide of the present invention or the R-group of the amino acid. It can bind proteins (carrier proteins), etc.
  • the amino acids constituting the peptide may each independently be an L-type or D-type amino acid, and may be radioactive or fluorescently labeled amino acid analogs.
  • the peptide may have binding ability to one or more bacteria selected from the group consisting of gram-positive bacteria, gram-negative bacteria, and multidrug-resistant bacteria.
  • the conjugate is configured to function with the fusion peptide of the present invention, and can increase convenience in the process of isolating bacteria captured by the fusion peptide.
  • the actions of fusion peptides and conjugates may be bonding or non-bonding, such as covalent bonds, electrostatic attraction, etc.
  • the conjugate may include a functional group and a support, and a known configuration may be used as long as the functional group is capable of functioning with the fusion peptide of the present invention.
  • the functional group may be any one of an epoxy group, an amine group (NH2-), a carboxyl group (COOH-), and a thiol group (SH-).
  • the support is configured to be mixed or combined with a functional group, and can be mixed or combined with a functional group that acts on the fusion peptide, making it more convenient to isolate/cultivate the bacteria captured in the fusion peptide.
  • a functional group that acts on the fusion peptide, making it more convenient to isolate/cultivate the bacteria captured in the fusion peptide.
  • any known material can be used as long as it can achieve the above-mentioned desired effect.
  • Specific examples of the support include magnetic beads, agar, etc.
  • the functional group and the support may be simply mixed, the functional group may be bonded to the outside of the support, or the support may be coated with the functional group.
  • the conjugate includes a functional group and a magnetic bead
  • the functional group can facilitate binding or non-binding action with the fusion peptide, and can be easily separated using a magnet, which can be advantageous in the separation of bacteria.
  • Another aspect of the present invention provides a bacterial-binding composition containing the complex.
  • the fusion polypeptide further contains a transmembrane domain and terminal amino acids at both ends, so it can have bacterial binding ability, and its use with the conjugate has improved operational convenience, so it can be used as a bacterial binding composition using it. there is.
  • the bacteria may be one or more bacteria selected from the group consisting of gram-positive bacteria, gram-negative bacteria, and multidrug-resistant bacteria.
  • the Gram-positive bacteria include Staphylococcus sp. , Bacillus sp. , Enterococcus sp. , Streptomyces sp. , and It may be a bacterium belonging to a genus selected from the group consisting of Streptococcus sp.
  • the gram-positive bacteria include Staphylococcus aureus , Bacillus subtilis , and Enterococcus faecalis. It may be one or more bacteria selected from the group consisting of Enterococcus faecium , Streptomyces Sindenensis , Enterococcus faecalis , and Streptococcus pneumoniae .
  • the gram-negative bacteria include Escherichia sp. , Klebsiella sp. , Acinetobacter sp. , Pseudomonas sp. , It may be a bacterium belonging to one genus selected from the group consisting of Enterobacter sp. , and preferably the gram-negative bacteria are Escherichia coli , Klebsiella pneumoniae. , Acinetobacter baumannii, Pseudomonas aeruginosa , and Enterobacter aerogenes .
  • the multi-drug resistant bacteria include penicillins, carbapenems, cephalosporins, quinolones, macrolides, and tetracyclines. (tetracyclins), or Gram-positive or Gram-negative bacteria resistant to one or more antibiotics belonging to the glycopeptides family, preferably the multi-drug resistant bacteria are methicillin-resistant Staphylococcus sp. , multidrug-resistant Pseudomonas sp. , vancomycin-resistant Enterococcus sp. , multidrug-resistant Klebsiella sp. , multidrug-resistant Acinetobacter genus. It may be a bacterium belonging to a genus selected from the group consisting of (multidrug-resistant Acinetobacter sp. ), and vancomycin-resistant Staphylococcus sp.
  • the multidrug-resistant bacteria include methicillin-resistant Staphylococcus aureus , multidrug-resistant P. aeruginosa , and multidrug-resistant Acinetobacter baumannii. resistant A. baumannii ), multidrug-resistant K. pneumoniae , vancomycin-resistant E. faecium , and vancomycin-resistant Staphylococcus aureus (vancomycin-resistant S. aureus ) may be one or more bacteria selected from the group consisting of
  • the multi-drug resistant Pseudomonas aeruginosa is treated with piperacillin, piperacillin-tazobactam, ceftazidime, imipenem, meropenem, It may have resistance to one or more antibiotics selected from the group consisting of gentamicin, amikacin, and ciprofloxacin, and the multidrug-resistant Acinetobacter baumannii may include piperacillin, It may have resistance to one or more antibiotics selected from the group consisting of piperacillin tazobactam, ceftazidime, imipenem, meropenem, gentamicin, amikacin, ciprofloxacin, and cefepime, and the above Multidrug-resistant Klebsiella pneumoniae may be resistant to one or more antibiotics selected from the group consisting of piperacillintazobactam, ceftazidime, cefepime, imipenem,
  • the vancomycin-resistant Enterococcus faecium is a group consisting of rifampin, tetracycline, gentamicin, erythromycin, streptomycin, and ampicillin in addition to vancomycin. It may additionally have resistance to one or more antibiotics selected from the group consisting of vancomycin-resistant Staphylococcus aureus, including oxacillin, benzylpenicillin, ampicillin, and cefazolin, in addition to vancomycin. It may additionally have resistance to one or more selected antibiotics.
  • Another aspect of the present invention provides a screening composition comprising the composition.
  • the fusion polypeptide has various bacterial binding/capturing abilities, so that bacteria can be separated through it, and the bound/captured bacteria can be cultured under appropriate conditions, so it can be used as a screening composition utilizing this. .
  • the screening composition may further include known substances necessary for examination compositions, culture compositions, etc., depending on the purpose.
  • the present invention provides a composition for bacterial proliferation, a composition for investigating bacterial antibiotic susceptibility, and a composition for diagnosing bacterial infectious diseases, including the fusion peptide.
  • the bacterial infectious disease is one or more diseases selected from the group consisting of skin infection, food poisoning, otitis media, cystitis, peritonitis, urinary tract infection, mastitis, pneumonia, endocarditis, conjunctivitis, arthritis, endometritis, adenocarcinoma, bacteremia, sepsis, osteomyelitis, and acne. It may be pneumonia or sepsis.
  • amino acid sequence is abbreviated as follows according to the IUPAC-IUB nomenclature.
  • Arginine (Arg, R), lysine (Lys, K), histidine (His, H), serine (Ser, S), threonine (Thr, T), glutamine (Gln, Q), asparagine (Asp, N), Methionine (Met, M), leucine (Leu, L), isoleucine (Ile, I), valine (Val, V), phenylalanine (Phe, F), tryptophan (Trp, W), tyrosine (Tyr, Y), Alanine (Ala, A), glycine (Gly, G), proline (Pro, P), cysteine (Cys, C), aspartic acid (Asp, D) glutamic acid (Glu, E), norleucine (Nle)
  • Example 1 Search for peptides consisting of a transmembrane domain and one or more basic amino acids and polar amino acids at both ends.
  • transmembrane protein sequence information was searched for in UniProt (www.uniprot.org), which contains information on protein sequences and functions. I accessed the UniProt website, accessed the proteins UniProt knowledges base, and accessed reviewed (Swiss-Prot). Next, when accessing proteins with transmembrane, 79,371 proteins were searched. In the case of human proteins, 20,398 proteins were searched, of which 5,203 proteins were transmembrane proteins. By accessing each transmembrane protein, information on each protein can be confirmed, and at the same time, the peptide sequence of the transmembrane peptide domain can be confirmed.
  • the present inventor first searched for the transmembrane domain and its surrounding sequences in 5,203 transmembrane proteins, and among them, the protein names were cytochrome c oxidase assembly protein COX20 (gene name: COX20, UniPort entry number: Q5RI15) and HIG1 domain family member 2A ( Gene name: HIG2A, UniPort entry number: Q9BW72) was selected to synthesize a peptide consisting of a transmembrane domain and at least one basic amino acid and a polar amino acid at both ends (Table 1, SEQ ID NOs. 2 and 3). At this time, a peptide containing only the transmembrane domain was also synthesized (SEQ ID NO: 1).
  • the present inventors conducted a bacterial capture experiment using the transmembrane peptide domain discovered in Example 1, a peptide consisting of basic or polar amino acids at both ends, and a peptide-epoxy conjugate.
  • a peptide consisting of basic or polar amino acids at both ends
  • a peptide-epoxy conjugate After mixing 0.5 g of epoxy-magnetic beads (size 400 nm) with 1 ml of distilled water, 5 ul was taken and placed in a 2 ml tube. When the tube is closely attached to the magnet, the epoxy-magnetic beads are attached to one side of the tube, and at this time, the distilled water in the tube is removed. After washing with 1 ml of PBS solution, 10 ug of peptide was added, and then PBS solution was added to make a total volume of 100 ul.
  • the mixture was shaken (tilting) using a rotary mixer for 30 minutes. Peptides not attached to the epoxy were removed by washing three times using 1 ml of PBS solution. 100 - 200 E. coli (ATCC 25922) cells were added to the peptide-epoxy-magnetic beads in a tube, the total volume was adjusted to 1 ml, and the mixture was rotated and mixed for 1 hour. After attaching the peptide-epoxy-magnetic beads to the magnet, transfer the supernatant to another tube, and then add 100 - 200 ul of PBS solution into the tube.
  • E. coli ATCC 25922
  • the peptide-epoxy-magnetic beads and the separately transferred supernatant were each spread on an agar plate and incubated overnight in a thermostat at 37°C.
  • the bacterial capture rate by peptide-epoxy-magnetic beads was calculated in three ways. The first calculation method is to divide the number of colonies created after plating on an agar plate by the number of initially introduced bacteria and then multiply by 100 (capture rate - 1). In the second calculation method, bacteria are placed in a tube containing peptide-epoxy-magnetic beads, and after 1 hour of reaction, when placed in close contact with a magnet, the peptide-epoxy-magnetic beads are attached to one side of the tube.
  • the side attached to the peptide-epoxy-magnetic bead and the remaining solution that is not attached are spread on an agar plate, and the number of colonies generated is calculated. Divide the number of captured bacteria by the total number of bacteria and multiply by 100 (capture rate - 2).
  • the bacterial capture rate according to the peptide was compared with other methods.
  • Table 1 since the peptide capture rate of HIG2A-2 (SEQ ID NO: 3) is excellent, the capture rate of other peptides was calculated by comparing the capture rate of the peptide of HIG2A-2 (capture rate-3).
  • coli capture rate - 2 (number of captured colonies/number of captured colonies + number of unattached colonies) x 100
  • Figure 2 shows E. coli colonies formed the next day after capturing E. coli with an epoxy-HIG2A-2 conjugate, spreading it on an agar plate, and culturing it overnight in a 37°C thermostat.
  • E. coli capture rate -3 (Number of captured colonies/Number of captured colonies of HIG2A-2) x 100 4 PLGRKT-1 Q9HBL7 Plasminogen receptor-Human PLGRKT 147/50-76 SRE FLKYFGTFFGLAAISLTAGAI KKK(53-73/27) cell membrane 4+2 65 5 HIG1A-2 Q9Y241 HIG1 domain family member 1A, mitochondrial-Human HIG1A 93/23-49 KAK EAPFVPVGIAGFAIAIVAYGLY KLK(26-46/27) mitochondrial membrane 4+0 66 6 5879 P60602 Reactive oxygen species modulator 1-Human ROMO1 79/58-79 KTMMQSGGTFGTFMAIGMGI RC(58-
  • the epoxy-magnetic bead consisting of a transmembrane peptide domain and basic or polar amino acids at both ends of the peptide (SEQ ID NO: 2 - 24) was found to have excellent bacteria capturing ability.
  • the peptide (SEQ ID NO: 1)-epoxy beads consisting of only the transmembrane peptide domain had a low bacteria capturing ability.
  • Tables 1 and 2 above are a group of peptides derived from membrane proteins present in human cells.
  • the present inventors investigated whether bacteria could be captured with peptides derived from membrane proteins from species other than human proteins (Table 3).
  • SEQ ID NO: 25 is a peptide derived from chicken membrane protein
  • SEQ ID NO: 26 is a peptide derived from rat membrane protein.
  • coli capture rate -3 (Number of captured colonies/Number of captured colonies of HIG2A-2) x 100 25 BCL2L1-chick Q07816 Bcl-2-like protein 1 BCL2L1 229(200-229) RKGQET FNKWLLTGATGATVAGVLLLG SLLSRK (206-223/30) mitochondrial membrane 4+6 100 100 26 HIGD2A-rat B2GV65 HIG1 hypoxia inducible domain family, member 2A Higd2a 106/81-105) TR IAAQGFTVVAILLGLAASTM KSR(25) unknown 3+2 85 93
  • epoxy-magnetic beads consisting of a transmembrane peptide domain and basic or polar amino acids at both ends (SEQ ID NOs. 25, 26) - epoxy-magnetic beads have excellent bacteria capturing ability. And it was found.
  • COX20-1 SEQ ID NO: 2
  • HIG2A-2 SEQ ID NO: 3
  • 5879 SEQ ID NO: 3
  • Peptide was selected as a representative and the ability to capture bacteria against E. coli was measured. This measurement method is the same as the method in Example 2 above.
  • an experiment was performed by synthesizing a type of peptide (SEQ ID NO: 27) containing a sequence lacking some amino acids at one end and adding some amino acids at the other end (peptide information is in Table 4 below) reference).
  • E. coli capture rate -3 (Number of captured colonies/Number of captured colonies of HIG2A-2) x 100 2 COX20-1 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/31-54 RHS ILYGSLGSVVAGFGHFLF TSR(34-51/24) mitochondrial membrane 2+4 83 27 COX20-2 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/33-57 S ILYGSLGSVVAGFGHFLF TSRIRR(34-51/25 ) mitochondrial membrane 3+3 75 3 HIG2A-2 Q9BW72 HIG1 domain family member 2A, mitochondrial-Human HIG2A
  • Example 4 Capture and separation culture experiment using a peptide-epoxy conjugate synthesized by artificially attaching basic amino acids to both ends of the transmembrane domain.
  • the peptide group consisting of a transmembrane peptide domain and basic or polar amino acids at both ends of Examples 1 to 3 is a peptide containing an amino acid sequence that exists in nature.
  • peptides with similar characteristics to these peptides and composed of amino acid sequences that do not exist in nature were synthesized and their bacterial capture abilities were compared and confirmed (see Table 5 below for information on each peptide). This measurement method is the same as the method in Example 2 above.
  • coli capture rate -3 (Number of captured colonies/Number of captured colonies of HIG2A-2) x 100
  • the present inventors used a transmembrane domain of SEQ ID NO. After producing the partial sequence (KAK---KLK) by fusion, the bacterial capture ability was compared and confirmed (see Table 6 below for information on each peptide, SEQ ID NOs. 39, 40). The measurement method was the same as that in Example 2 above.
  • E. coli capture rate-3 (number of captured colonies/number of captured colonies of HIG2A-2) x 100 39 HI2-m1 Q9BW72 HIG1 domain family member 2A, mitochondrial-Human KAK IAAQGFTVAAILLGLAVTAMK KLK (27) 4+0 29 40 NDn-1-m1 O95298 NADH dehydrogenase [ubiquinone] 1 subunit C2 KAK GLHRQLLYITAFFFAGYYLV KLK (26) 4+0 69
  • the present inventor confirmed whether the bacteria were killed using minimum bactericidal concentration (MBC).
  • MBC minimum bactericidal concentration
  • the ability of each peptide to kill bacteria was compared and confirmed through a method of measuring the minimum bacterial sterilization concentration of the four types of peptides.
  • Confirmation of the antibacterial activity of each of the above peptides using a method of measuring the minimum bacterial bactericidal concentration was performed specifically as follows.
  • E. coli (ATCC 25922) was cultured in LB (1% tryptone, 0.5% yeast extract, 1% sodium chloride) liquid medium overnight at 37°C and 200 rpm, and then cultured again for a second time under the same conditions for 2 hours. 10 mM sodium phosphate solution or PBS (phosphate-buffered saline - NaCl 8.0 g/L; KCl 0.2 g/L; Na2HPO4 1.42g/L; KH2PO4) so that the final concentration of each secondary cultured strain is 1 ⁇ 105 CFU/ml. A strain solution was prepared by diluting with 0.24 g/L) solution.
  • each peptide was dispensed at different concentrations (final concentration: 0 ⁇ g/ml - 200 ⁇ g/ml peptide) into each well of a 96-well microplate, and 100 ⁇ l of the prepared strain solution was added and mixed 37. The reaction was performed in a thermostat at °C for 1 hour.
  • the three peptides consisting of a transmembrane peptide domain and basic or polar amino acids at both ends discovered by UniProt have high bacterial killing activity in a 10 mM sodium phosphate solution. However, it was confirmed that the PBS solution had low bacterial killing activity (MBC value of 200 ug/ml or more).
  • the peptide used in the present invention showed antibacterial activity depending on the type of solution. It was found that in the PBS solution used in the present invention, the peptide remained bound to the bacteria rather than killing and removing the bacteria.
  • the peptide consisting of a transmembrane peptide domain and basic or polar amino acids at both ends was found to have the ability to capture a wide range of bacteria from both Gram-positive and Gram-negative bacteria.
  • HIG2A-2 peptide was selected as a representative among the synthetic peptides shown in Table 2, and bacterial capture and isolation culture experiments using a peptide-epoxy conjugate were performed in the same manner as in Example 2.
  • Example 7 Capture and isolation culture experiment in multidrug-resistant bacteria using peptides and peptide-epoxy conjugates discovered in UniProt
  • multidrug-resistant Pseudomonas aeruginosa is a bacteria isolated from a patient at Korea University Anam Hospital.
  • piperacillin, piperacillin-tazobactam, and ceftazidime are used.
  • the peptide consisting of a transmembrane peptide domain and basic or polar amino acids at both ends was found to have the ability to capture a wide range of bacteria from both multidrug-resistant Gram-positive and multidrug-resistant Gram-negative bacteria.
  • the ability to capture multidrug-resistant bacteria by peptide is not limited to multidrug-resistant Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus, and other types of multidrug-resistant bacteria can also be captured.
  • the peptide of SEQ ID NO: 4 was also capable of capturing multi-drug resistant Klebsiella pneumoniae .
  • Example 8 Bacterial capture and isolation culture experiment of peptide-epoxy under various conditions
  • bacteria capture experiments were performed under various conditions.
  • HIG2A-2 peptide was selected as a representative, and bacterial capture and isolation culture experiments according to the amount of peptide-epoxy conjugate were performed in E. coli in the same manner as in Example 2.
  • 10 ug of peptide was added to 5 ul of epoxy and reacted for 30 minutes.
  • E. coli was added to the peptide-epoxy-magnetic beads, the total volume was adjusted to 1 ml, and mixed while rotating for 1 hour. I did it.
  • Example 12 the number of E. coli used was adjusted and a capture experiment was performed in the same manner as in Example 2. As shown in Table 12, the capture of bacteria by this peptide was possible from 2 CFU to 3.7 x 10 5 CFU in a 1 ml sample.
  • the capture experiment was conducted in the same manner as in Example 2 by controlling the amount of sample used in the capture experiment. As shown in Table 13, it was possible to capture bacteria even with a sample volume of 10 ml.
  • E. coli capture rate (number of captured colonies/number of captured colonies + number of unattached colonies) x 100 3 HIG2A-2 5 10 100 3 HIG2A-2 1.25 2.5 49 3 HIG2A-2 0.3125 0.625 15
  • sequence number peptide name sample amount Number of bacteria used E. coli capture rate: (number of captured colonies/number of captured colonies + number of unattached colonies) x 100 3 HIG2A-2 10ml 55 100
  • E. coli capture rate - 2 (number of captured colonies/number of captured colonies + number of unattached colonies) x 100
  • Staphylococcus capture rate-2 (number of captured colonies/number of captured colonies + number of unattached colonies) x 100
  • sequence number peptide name Epoxy type E. coli capture rate (number of captured colonies/number of captured colonies + number of unattached colonies) x 100 3 HIG2A-2 NH 2 -Magnetic Beads (1-5 um) 86 3 HIG2A-2 COOH-Magnetic Beads (1-5 um) 75
  • bacteria captured using a peptide and epoxy conjugate consisting of a transmembrane peptide domain and basic or polar amino acids at both ends are separated from the sample by attaching them to one side of the tube using a magnetic material, enabling bacterial concentration. It is possible to secure a large amount of captured bacteria through bacterial proliferation for bacterial identification and antibiotic susceptibility investigation.
  • a capture experiment of E. coli was performed using the peptide HIG2A-2 peptide. This experiment is the same as the method of Example 2 above. After capture, the cells were washed with 1 ml of PBS solution, then 500 ul MH broth was added and incubated at 37°C for 3 hours in a Rotator Mixer (tilting conditions: --, 53). To measure the number of bacteria grown after culturing, the cells were diluted with a PBS solution and spread on LB agar plates.
  • the growth of bacteria captured in water was also conducted. 900 ul of water was added to 100 ul of E. coli diluted with water to make 1 ml. After adding 110 ul of the 10x PBS solution, a capture experiment was performed in the same manner as in Example 2. After reaction for 1 hour, the captured E. coli was spread on an LB agar plate and the number of captured E. coli was measured. In another sample, after capture, it was washed with 1 ml of PBS solution, then 500 ul MH broth was added and cultured for 3 hours at 37°C in a Rotator Mixer (tilting conditions: --, 53). To measure the number of E. coli cells grown after culturing, they were diluted with a PBS solution and spread on LB agar plates. As shown in Table 17, E. coli increased 796 times.
  • sequence number peptide name type of bacteria Colony count after capturing bacteria Number of colonies after capturing bacteria and culturing MH medium for 3 hours proliferation multiplier 3 HIG2A-2
  • sequence number peptide name type of bacteria Specimen type Colony count after capturing bacteria Number of colonies after capturing bacteria and culturing MH medium for 3 hours proliferation multiplier 3 HIG2A-2 Pseudomonas aeruginosa pee 30 1,300 43 16 PGAP6 Staphylococcus aureus Blood (50%) 22 4310 195 3 HIG2A-2 E. coli water 24 19,105 796
  • Example 10 Antibiotic susceptibility investigation using colonies formed after isolating and culturing bacteria captured using a peptide-epoxy conjugate
  • Pseudomonas aeruginosa and multidrug-resistant Pseudomonas aeruginosa were captured using an epoxy-peptide conjugate, spread on LB agar plates, and cultured overnight at 37°C. At this time, the formed colonies were scraped and dissolved in 50 ul of TS culture medium. After measuring the absorbance at 600 nm with a spectrophotometer, it was diluted with TS medium so that the OD value was 0.02. The bacterial solution was dispensed into a 96-well plate, treated with the antibiotic imipenem at different concentrations as shown in the table below, and incubated for 2 hours and 40 minutes.
  • Imipenem 0 2 4 8 16 32 64 128 Pseudomonas aeruginosa OD value 0.300 0.148 0.118 0.112 0.117 0.124 0.108 0.108 Multidrug-resistant Pseudomonas aeruginosa OD value 0.240 0.255 0.248 0.296 0.320 0.319 0.320 0.051
  • Example 11 Bacteria capture experiment using peptide-epoxy conjugate on nitrocellulose paper
  • An epoxy-HIG2A-2 peptide conjugate was prepared in the same manner as in Example 2.
  • the epoxy-peptide conjugate was spread on the center of nitrocellulose paper (3 mm A 3 MM paper was placed on top with absorbent paper. After bacterial loading, approximately 100 ul of PBS solution was loaded on the left side of the epoxy-peptide conjugate three times. At this time, the PBS solution moves to the 3M paper, an adsorbent paper on the right, and the bacteria also move at the same time.
  • the epoxy-peptide conjugate on nitrocellulose paper was cut with scissors, dissolved in PBS solution, and the captured bacteria were spread on LB agar plates and cultured overnight at 37°C.
  • the resulting colonies were 175 CFU in the case of the epoxy-peptide conjugate and 16 CFU in the case of the epoxy without the peptide conjugate ( Figure 3). This means that bacteria are captured in peptide-epoxy conjugates on nitrocellulose paper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도에 관한 것으로, 이를 통해 검체에서 그람 양성, 그람 음성 및 다제내성 박테리아를 동시에 포획할 수 있다. 구체적으로 본 발명은 세포에서 세포막과 세포 내 소기관 막에 위치하는 막 단백질에서, 막 관통 도메인(transmembrane domain)과 이 도메인 말단에 말단 아미노산을 더 포함하는 융합 펩타이드와 접합체를 더 포함하는 복합체에 관한 것으로서, 본 발명의 복합체는 그람 양성, 그람 음성 및 다제내성 박테리아를 살상하지 않고 짧은 시간에 포획(capture)이 가능하여 포획된 박테리아를 시료로부터 신속하게 분리할 수 있고, 또한 농축 및 박테리아 증식을 할 수 있어서 박테리아의 동정 또는 항생제 감수성 조사를 할 수 있는 박테리아를 확보하는 데 사용될 수 있다. 이렇게 포획된 박테리아는 바로 한천 플레이트에 도말하면, 각각의 박테리아를 서로 분리하여 배양도 가능하다. 이러한 본 발명은 다제내성 박테리아에 의한 감염성 질환의 진단, 의약용, 의약부외용, 식품 및 수질검사 등 다양한 방면으로 이용될 수 있다.

Description

막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도
본 발명은 막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도에 관한 것이다.
본 발명은 세포에서 세포막과 세포 내 소기관 막에 위치하는 막 단백질에서, 막을 관통 도메인(transmembrane domain)과 이 도메인 양 끝에 염기성 또는 극성(비전하) 아미노산으로 이루어진 펩타이드 및 이를 포함하는 펩타이드-에폭시 접합체에 관한 것이고, 이를 이용하여 박테리아의 신속한 포획(capture)이 가능하다. 펩타이드-에폭시 접합체는 그람 양성, 그람 음성 및 다제내성 박테리아를 살상하지 않고 짧은 시간에 포획할 수 있고 박테리아 배양 배지를 첨가하여 짧은 시간에 박테리아의 배양과 증식이 가능하여 박테리아의 동정 또는 항생제 감수성 조사를 할 수 있는 박테리아를 확보할 수 있다. 따라서 본 펩타이드-에폭시 접합체는 광범위한 세균성 감염질환의 진단을 목적으로 의약용, 의약부외용, 식품 및 수질검사 등 다양한 방면으로 이용될 것으로 기대된다.
박테리아 감염과 식품, 식수 등의 오염은 인체에 질병을 유발하고 생명까지 위협을 할 수 있다. 혈액, 오줌, 식품, 식수 등에서 박테리아의 존재를 확인하기 위한 진단과 박테리아를 제거하기 위한 적절한 항생제 처방은 필수이다.
박테리아 감염을 확인하면 항생제 처방을 하여 항생제 치료를 실시하는데 어느 항생제가 효과적으로 박테리아를 살상시키는지 항생제 감수성을 조사한다. 그렇지만 혈액과 같은 검체는 감염된 박테리아의 수가 적어서 우선적으로 검체에서 박테리아 증식을 필요로 한다. 항생제 감수성 조사를 하기 전에 확보된 박테리아기 많을수록 짧은 시간 내에 비교적 정확한 검사를 수행할 수 있다. 특히 박테리아에 감염된 혈액의 경우 그 수가 적고{1 - 10 CFU(colony forming unit)/ml) 초기에 박테리아를 제거하지 못하면 생명에 위협적이다. 그러므로 혈액에 감염된 박테리아의 동정과 항생제 감수성 조사를 위하여 충분한 박테리아의 확보가 필수적이다.
박테리아의 존재를 확인하기 위한 방법은 많이 개발되었다. 박테리아를 직접 배양하여 박테리아 동정 및 감수성 조사를 하는 방법(culture-based assays), ELISA, PCR, 생화학적인 기법, 기기를 이용하는 기법(instrumental-based assays) 등이 개발되었다. 박테리아 배양을 통한 박테리아 진단 방법은 검체에 존재하는 박테리아 수가 적어도 검사 수행이 가능하지만 검사 시간이 1일에서 길게는 7일까지 소요된다. 기기(instrumental-based assays: flow cytometry, gas chromatograpy, spectroscopy-based techniques)를 이용하는 기법은 검체에서 적은 수의 박테리아의 동정과 항생제 감수성 조사가 가능하다. 그렇지만 이 들 기법은 비용이 들고 잘 훈련된 인력이 필요하며 고가 장비가 필요하고 장치가 잘 갖추어진 실험실이 필요하다. 또한, 검체의 여러 단계의 사전 준비 작업이 필요하다는 등의 여러 단점이 존재하여 실제로 상업화에 문제가 있는 실정이다. 대부분의 검사기관에서는 아직까지도 검사 시간이 적어도 1 일 이상을 필요로 하는 혈액 배양을 기반으로 하는 전통적인 기법을 사용하고 있다.
세계보건기구(WHO)에서는 2006 년 효과적인 진단 기법으로 ASSURED를 제안하였다. ASSURED로 affordable, sensitive, specific, user-friendly, rapid, equipment-free and deliverable이며 최근 연구자들은 이상의 7가지에 real-time connectivity와 ease of specimen collection 2 항목을 추가였다. 이상의 내용을 정리하면 효과적이고 이상적인 진단 기법은 적은 비용(low cost)이 들고, 검사자가 사용하기 쉽고(ease to use), 검체 내에 소수의 박테리아(low number of detection)의 진단이 가능하며, 짧은 검사 시간(rapid)이어야 한다.
혈액 배양의 경우 박테리아 동정 및 항생제 감수성 검사에서 장기간의 시간이 필요로 하는데 이유는 환자의 혈액에는 혈구 세포, 단백질, DNA 등 다양한 성분이 존재하며 검체 내에 박테리아 수가 적다는 것이다. 패혈증 환자의 경우 혈액 1 ml 당 박테리아가 1 - 10 CFU 만이 존재한다. 그렇기 때문에 혈액 배양을 통하여 박테리아 증식이 필요로 하다.
이러한 문제는 혈액에 존재하는 박테리아를 수 시간 이내에 빠르게 그 수를 증폭하는 것으로 극복할 수 있다. 일단 짧은 시간 내에 박테리아의 수가 증폭되면 현재 박테리아를 확인하는 여러 기법을 이용하여 박테리아 유무 확인, 동정, 항생제 감수성 조사가 가능하다.
박테리아의 유무를 확인하는 실험 기법으로는 colorimetry, electrochemistry, fluorescence, chemiluminescence, 분광 분석법 등 효과적인 기법이 많이 개발되어 있다.
신속한 항생제 감수성 조사를 수행하기 위하여 환자 검체에서 빠른 시간에 박테리아의 증폭이 필수이다. 일반적으로 혈액이나 오줌 같은 시료는 박테리아가 증식하기 위한 좋은 환경이 아니기 때문에 박테리아 증폭을 위하여 검체에서 박테리아의 포획이 필요로 한다.
박테리아 포획을 위하여 고려사항은 검체에서 존재하는 소수의 박테리아까지 포획하여야 한다. 또한 환자의 검체에서는 다양한 박테리아가 있기 때문에 특정 박테리아만을 포획하는 기법은 사용에 제한이 있을 수 있다. 또 다른 고려 사항은 박테리아 포획 키트가 생산 비용이 저렴하여야 한다. 또한 진단 실험 절차가 간단하고 짧은 시간에 수행되어야 하며 다량의 검체를 손쉽게 수행하여야 한다.
지금까지 개발하였던 기법으로 항체, Fc-mannose-binding lectin, apoH, aptamer, bacteriophage (BCCP-T4), Vancomycin-modified nanoparticels 등을 이용하여 박테리아를 포획하는 기법이 보고되었다. 그렇지만 이 들 기법들은 박테리아 수가 적은 검체에 적용이 어렵고 특정 박테리아만 적용이 가능하는 등 진단 키트로 상업화에 많은 제약을 가지고 있다.
환자의 검체에서 항생제 감수성 조사로 전통적으로 많이 사용되고 있는 기법은 disc diffusion 또는 broth microdilution 기법이다. 이 두 가지 기법의 단점은 검체에서 박테리아 동정 및 항생제 감수성 조사 시간이 오래 걸리고 검사자의 여러 작업을 필요로 한다는 것이다. 최근에 여러 가지 최신 기법이 개발되었지만 아직까지 항생제 감수성 조사 기법으로 본 기법이 주로 이용되고 있다.
혈액에서 박테리아의 감염의 확인, 동정 및 항생제 감수성 조사를 위하여 가장 중요한 요소는 혈액에서 미상의 여러 종류의 박테리아를 동시에 포획하여 혈액으로 부터 박테리아를 분리하고 증폭하는 것이다. 이러한 과정은 저 비용과 검사자가 다루기 쉬한 방법으로 수행되어져야 한다.
최근에 개발된 최신 기법으로 PCR-based 기법 microfluidics microdroplets, mass spectrometry, cell sorting fluorescence, bacteriophage-based 기법, 3D optical scanning microscopy imaging, single molecule fluorescence hybridization, microarray, in situ hybridization, nuclear magnetic resonance 등이 있다.
그렇지만 이들 기법은 세계보건기구와 과학자들이 효과적인 진단기법으로 제시한 ASSSURED 조건들을 충분히 만족하고 있지 않다. 현재 개발되어지고 있는 기법들에서 일부 최신 기법은 혈액에서 박테리아 포획, 분리 및 증폭의 과정 없이 혈액 내에 존재하는 박테리아 1 개의 세포에서 박테리아 동정 및 항생제 감수성 조사를 할 수 있다. 그렇지만 이 들 기법은 고 비용, 고 비용의 장치 확보 필요, 잘 훈련된 검사자의 필요성, 검체 시료의 복잡한 전처리 과정의 필요 및 검체 시료의 전처리 과정의 높은 난이도 등으로 기존 검사 기법을 대체하기는 현실적으로 문제가 있는 실정이다.
또한 최신 기법은 혈액에서 1 개에서 수 개의 박테리아를 포함하는 소량의 검체를 이용하여 결과를 얻지만 환자에 감염된 박테리아는 여러 종류가 있을 수 있어서 환자에게 적용하는데 문제가 있다.
상술한 바와 같이 disc diffusion 또는 broth microdilution 기법은 검체에서 박테리아 동정 및 항생제 감수성 조사 시간이 오래 걸리고 검사자의 여러 작업을 필요로 한다. 또한 최신 기법들은 고 비용, 고 비용의 장치 확보 필요, 잘 훈련된 검사자의 필요성, 검체 시료의 복잡한 전처리 과정의 필요 및 검체 시료의 전처리 과정의 높은 난이도 등의 단점이 존재한다. 따라서 짧은 시간에 저 비용으로 사용하기 편리한 새로운 기법을 필요로 한다.
본 발명의 일 양상은 15 내지 30개의 아미노산으로 구성되는 막 관통 도메인(transmembrane domain, TMD)을 포함하는 폴리펩타이드 및 상기 폴리펩타이드의 C-말단 또는 N-말단에 하나 이상, 양 말단에 합이 1 내지 12개의 말단 아미노산이 결합된 융합 폴리펩타이드 및 상기 융합 폴리펩타이드 결합되는 접합체를 포함하는 융합 폴리펩타이드 복합체를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 상기 복합체를 포함하는 세균 결합성 조성물을 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 상기 조성물을 포함하는 스크리닝 조성물과 세균 결합성 키트를 제공한다.
본 발명의 일 양상은 15 내지 30개의 아미노산으로 구성되는 막 관통 도메인(transmembrane domain, TMD)을 포함하는 폴리펩타이드 및 상기 폴리펩타이드의 C-말단 또는 N-말단에 하나 이상, 양 말단에 합이 1 내지 12개의 말단 아미노산이 결합된 융합 폴리펩타이드 및 접합체를 포함하는 융합 폴리펩타이드 복합체를 제공한다.
본 발명의 일 구체예로 상기 막 관통 도메인은 자연 유래일 수 있다.
본 발명의 일 구체예로 상기 말단 아미노산은 염기성 및 극성 중 어느 하나 이상일 수 있다.
본 발명의 일 구체예로 상기 융합 폴리펩타이드는 서열번호 1 내지 31 및 34 내지 40의 펩타이드 중 어느 하나일 수 있다.
본 발명의 일 구체예로 상기 융합 폴리펩타이드는 하나 이상의 변이를 더 포함하는 것일 수 있다.
본 발명의 일 구체예로 상기 융합 폴리펩타이드는 서열번호 32 또는 33의 펩타이드일 수 있다.
본 발명의 일 구체예로 상기 융합 폴리펩타이드는 페길레이션(PEGylation), 아세틸레이션(acetylation), 카르복실레이션(carboxylation), 리피데이션(lipidation), 및 아미데이션(amidation) 중 어느 하나 이상의 변이를 더 포함하는 것일 수 있다.
본 발명의 일 구체예로 상기 접합체는 기능기 및 지지체를 포함하는 것일 수 있다.
본 발명의 일 구체예로 상기 기능기는 에폭시기, 아민기 (NH2-), 카르복시기 (COOH-) 및 싸이올기 (SH-)중 어느 하나일 수 있다.
본 발명의 다른 일 양상으로 상기 복합체를 포함하는 세균 결합성 조성물을 제공한다.
본 발명의 일 구체예로 상기 세균은 그람 양성균, 그람 음성균, 및 다제내성균으로 이루어진 군으로부터 선택되는 하나 이상의 세균일 수 있다.
본 발명의 다른 일 양상으로 상기 복합체 또는 조성물을 포함하는 세균 결합성 키트를 제공한다.
본 발명의 다른 일 양상으로 상기 복합체 또는 조성물을 포함하는 스크리닝 조성물을 제공한다.
본 발명의 막 관통 도메인을 포함하는 융합 펩타이드는 감염환자의 검체 또는 박테리아 오염이 있는 시료에서 여러 박테리아에 특이적으로 포획할 수 있다. 이 때 박테리아는 결합체 이용하여 시료로부터 바로 분리하여 농축을 할 수 있으며 배양 배지를 첨가하여 짧은 시간에 증식하거나 한천 플레이트에서의 분리배양이 가능하다. 기존 기술은 환자의 검체에서 박테리아를 일차 배양한 후 이차적으로 분리배양을 실시하였지만 본 발명은 융합 펩타이드 복합체를 이용하여 시료로부터 짧은 시간에 박테리아를 분리한 후(bacterial capture) 바로 배양이 가능하며 그람 양성, 그람 음성 및 다제내성 박테리아 모두에게서 광범위한 박테리아의 포획 및 배양이 가능하다. 배양한 박테리아는 박테리아 동정 또는 항생제 감수성 조사가 가능하다.
특히, 본 발명은 다제내성 박테리아에 의한 감염성 질환의 진단에 제공될 수 있다. 따라서 본 펩타이드-에폭시 접합체는 광범위한 세균성 감염질환의 진단을 목적으로 의약용, 의약부외용, 식품 및 수질검사 등 다양한 방면으로 이용될 것으로 기대된다.
도 1은 본 발명의 개념을 나타낸 도면이다.
도 2는 실시예 2의 결과 중 하나로서, 본 발명의 융합 펩타이드 복합체를 활용하여 대장균을 포획/배양한 결과를 나타내는 사진이다.
도 3은 실시예 11의 결과 중 하나로서, 본 발명의 융합 펩타이드 복합체를 나이트로셀룰로스 페이퍼와 함께 활용하였을 때 세균 포획능이 있는지를 확인한 결과를 나타내는 사진이고, 에폭시-펩타이드 접합체의 경우(우측)와펩타이드가 결합되지 않은 에폭시의 경우(좌측)을 나타낸 것이다.
본 발명의 일 양상은 15 내지 30개의 아미노산으로 구성되는 막 관통 도메인(transmembrane domain, TMD)을 포함하는 폴리펩타이드 및 상기 폴리펩타이드의 C-말단 또는 N-말단에 하나 이상, 양 말단에 합이 1 내지 12개의 말단 아미노산이 결합된 융합 폴리펩타이드 및 상기 융합 폴리펩타이드 결합되는 접합체를 포함하는 융합 폴리펩타이드 복합체를 제공한다.
상기 막 관통 도메인(transmembrane domain, TMD)은 막 관통능을 가진 펩타이드 서열 영역으로서, 막 관통능을 가진 펩타이드는 세포내에 존재하는 소기관의 지질 이중막을 관통하여 존재하는 펩타이드이다. 막 관통 펩타이드에서 지질막을 관통하는 도메인(transmembrane domain, TMD)은 약 22개 정도의 아미노산으로 이루어져 있는데 소수성 아미노산과 일부 친수성 아미노산으로 구성돼 있다. 막 관통 도메인은 하나일 수도 있고 여러 개일 수도 있다.
유전체의 상당 부분이 막 관통 단백질이며 컴퓨터 알고리즘으로 비교적 정확하게 막 관통 부분을 예측할 수 있다. 본 발명에서 막 관통 단백질 서열 정보는 유니프로트(UniProt, www.uniprot.org)에서 확보하였다.
본 발명의 발명자들은 유니프로트에서 검색하여 얻은 정보를 바탕으로 막 관통 도메인과 양 끝에 합이 1개 이상의 아미노산으로 이루어진 다양한 길이의 펩타이드를 합성하였고, 이의 박테리아 포획능을 확인하여 본 발명을 완성하였다 (실시예 1, 2 참조).
구체적으로, 본 발명자들은 상기 서술된 내용과 같이 사람 단백질 중 막 관통 도메인과 양 끝에 합이 1개 이상의 아미노산으로 이루어진 자연계에 존재하는 다양한 길이의 펩타이드를 합성하고, 세균 포획률을 계산하여 포획가능성을 확인하였다. 그 결과 막 관통 도메인만을 가진 펩타이드에 비하여 우수한 세균 포획능을 가지는 것을 확인할 수 있었다 (실시예 2, 표 2참조). 또한, 이종 유래 막 관통 도메인을 사용하는 경우에 있어서도 동일한 세균 포획능을 가지는 것을 확인할 수 있었다 (실시예 2, 표 3 참조)
나아가, 본 발명의 발명자는 막 관통 도메인의 말단에 결합되는 최소 아미노산 개수를 확인한 결과 막 관통 도메인의 양 말단에 1개만을 포함하는 펩타이드도 세균 포획 능력을 가지고 있고, 일부 아미노산을 치환하였음에도 포획 능력이 있음을 확인하였으며 (실시예 3), 막 관통 도메인의 일 말단 또는 양 말단에 아미노산을 인위적으로 결합하여 합성한 경우에도 세균 포획 능력이 있음을 확인하였다 (실시예 4). 또한, 실험 조건에 따라 본 펩타이드는 세균에 대한 살상능력은 매우 낮아서 세균 포획용도로 사용할 수 있음을 확인하였다(실시예 5). 또한, 실제 사용되는 시료 중 하나인 오줌의 pH 범위는 4.5 내지 8.0의 범위이기 때문에 본 펩타이드는 이 범위의 pH에서 세균 포획이 가능함을 확인하였다. (실시예 9).
이러한 본 발명의 세균 포획 능력은 그람 양성균 및 그람 음성균 박테리아 모두에게서 광범위한 박테리아뿐만 아니라, 다제내성 그람 양성균, 다제내성 그람 음성균 박테리아에 대해서도 유효함을 확인하였다 (실시예 7).
본 발명자들은 본 발명의 융합 펩타이드 등이 낮은 농도인 경우 또는 낮은 농도의 박테리아, 적은 검체량, 짧은 반응 시간, 다양한 비드를 활용한 경우에도 본 발명의 융합 펩타이드를 포함한다면 세균 포획능이 유지됨을 확인할 수 있었 다(실시예 8).
한편, 이렇게 본 발명의 구성에 의해 포획된 세균은 적정한 조건에서 배양도 가능하여, 세균의 스크리닝 등에 활용할 수 있음을 확인하였으며 (실시예 9), 포획된 세균 또한 그 성질이 변하지 않아 항생제 감수성 조사도 가능한 것을 확인하였다 (실시예 10).
또한, 본 발명의 융합 펩타이드 등은 나이트로 셀룰로스 페이퍼를 활용하는 경우에도 포획능이 유지되어 활용 편의성도 있음을 확인하였다 (실시예 11).
본 명세서에서 “펩타이드”는 펩타이드 결합에 의해 아미노산 잔기들이 서로 결합되어 형성된 선형의 분자를 의미한다. 당 업계에 공지된 화학적 합성 방법, 특히 고상 합성 기술 또는 액상 합성 기술에 따라 제조될 수 있다.
본 발명의 일 구체예로, 상기 막 관통 도메인은 자연 유래일 수 있고, 더욱 구체적으로는 서열번호 41 내지 65 중 어느 하나일 수 있다.
상기 말단 아미노산은 막 관통 도메인의 C-말단 및 N-말단에 결합되는 것으로 각각의 말단에 하나 이상, 합이 1 내지 12개로 이루어질 수 있으며, 구체적으로, 상기 막 관통 도메인의 C-말단 또는 N-말단에 1개 이상 결합될 수 있다. 말단 아미노산 개수의 합이 1 내지 12개이면 족하고, 각각의 아미노산은 서로 독립적이며, C-말단 및 N-말단에 결합되는 펩타이드가 서로 다른 아미노산 구성, 서로 다른 길이여도 본 발명에 포함된다. 일 예시로 막 관통 도메인의 일 말단에만 1개의 말단 아미노산이 결합되어 합이 1개의 말단 아미노산을 포함하는 구성이 될 수도 있고, 일 말단에만 12개의 말단 아미노산이 결합되거나, 일 말단에는 1개 타 말단에는 11개의 말단 아미노산이 결합될 수도 있고, 양 말단에 6개씩 말단 아미노산이 결합되어 합이 12개의 말단 아미노산으로 이루어진 구성이 될 수 있다.
본 발명의 일 구체예로 상기 말단 아미노산은 염기성 아미노산 및 극성 아미노산들에서 선택되는 것으로, 상기 말단 아미노산은 라이신, 아르기닌, 히스티딘, 세린, 트레오닌 시스테인, 글루타민, 아르파라긴 및 티로신 중 어느 하나일 수 있다.
본 발명의 일 구체예로 상기 융합 폴리펩타이드는 서열번호 1 내지 31 및 34 내지 40의 펩타이드 중 어느 하나일 수 있다.
본 발명의 일 구체예로 상기 융합 폴리펩타이드는 하나 이상의 변이를 더 포함하는 것일 수 있다. 더욱 구체적으로 상기 융합 폴리펩타이드는 서열번호 32 또는 33의 펩타이드일 수 있다.
본 발명의 일 구체예로 상기 융합 폴리펩타이드는 페길레이션(PEGylation), 아세틸레이션(acetylation), 카르복실레이션(carboxylation), 리피데이션(lipidation), 및 아미데이션(amidation) 중 어느 하나 이상의 변이를 더 포함하는 것일 수 있고, 더욱 구체적으로 아미노 말단은 아세틸기, 플루오레닐 메톡시 카르보닐기, 포르밀기, 팔미토일기, 미리스틸기, 스테아릴기 및 폴리에틸렌글리콜(PEG) 등의 보호기가 결합될 수 있으며, 펩타이드의 카르복시 말단은 히드록시기(-OH), 아미노기(-NH2), 아자이드(-NHNH2) 등으로 변형될 수 있다. 또한 본 발명의 펩타이드의 말단 또는 아미노산의 R-잔기(R-group)에 지방산(fatty acids), 당사슬(oligosaccharides chains), 모든 나노입자(골드입자, 리포솜, 헤파린, 하이드로젤 등), 아미노산, 담체 단백질(carrier proteins) 등을 결합할 수 있다.
본 발명의 또 다른 구현예로서, 상기 펩타이드를 구성하는 아미노산은 각각 독립적으로 L-형 또는 D-형의 아미노산일 수 있으며, 방사선 또는 형광 라벨된 아미노산 유사체일 수 있다.
본 발명의 또 다른 구현예로서, 상기 펩타이드는 그람 양성균, 그람 음성균, 및 다제내성균으로 이루어진 군으로부터 선택되는 하나 이상의 세균에 대해 결합능을 가질 수 있다.
상기 접합체는 본 발명의 융합 펩타이드와 작용되는 구성으로, 융합 펩타이드에 의해 포획된 세균을 분리하는 과정에서 편의성을 높일 수 있다. 융합 펩타이드와 접합체의 작용은 공유결합, 정전기적 인력 등과 같은 결합이거나 비 결합적인 작용일 수 있다.
본 발명의 일 구체예로, 상기 접합체는 기능기 및 지지체를 포함하는 것일 수 있으며, 상기 기능기는 본 발명의 융합 펩타이드와 작용할 수 있는 것이라면 공지의 구성을 사용하여도 무방하나, 본 발명의 일 구체예로 에폭시기, 아민기 (NH2-), 카르복시기 (COOH-) 및 싸이올기 (SH-) 중 어느 하나 일 수 있다.
상기 지지체는 기능기와 혼합 또는 결합되는 구성으로, 융합 펩타이드와 작용하는 기능기와 혼합 또는 결합되어 융합 펩타이드에 포획된 세균을 분리/배양에 편의성을 더 할 수 있다. 상기 지지체는 상기의 목적 효과를 나타낼 수 있다면 공지의 소재를 활용할 수 있고, 지지체의 구체적인 예시로, 마그네틱 비드, 아가 (Agar) 등을 사용할 수 있다. 상기 기능기와 지지체는 단순히 혼합되어 있을 수 있고, 지지체의 외부에 기능기가 결합되거나 지지체를 기능기가 코팅하는 형태일 수 있다.
상기 접합체가 기능기와 마그네틱 비드를 포함하는 구성이 되어 기능기가 융합 펩타이드와의 결합 또는 비결합적 작용을 원활히 할 수 있고, 자석을 통해 쉽게 분리할 수 있어 세균의 분리에 있어서 이점을 가질 수 있다.
본 발명의 다른 일 양상은 상기 복합체를 포함하는 세균 결합성 조성물을 제공한다.
전술한 바와 같이 상기 융합 폴리펩타이드는 막 관통 도메인과 양 말단에 말단 아미노산을 더 포함하여 세균 결합능을 가질 수 있고, 이를 접합체와 함께 사용하여 작업 편의성을 개선하였으므로, 이를 이용한 세균 결합성 조성물로서 활용할 수 있다.
본 발명의 일 구체예로 상기 세균은 그람 양성균, 그람 음성균, 및 다제내성균으로 이루어진 군으로부터 선택되는 하나 이상의 세균일 수 있다.
본 발명의 또 다른 구현예로서, 상기 그람 양성균은 포도상구균 속(Staphylococcus sp.), 간균 속(Bacillus sp.), 엔테로코커스 속(Enterococcus sp.), 스트렙토마이세스 속(Streptomyces sp.), 및 스트렙토코커스 속(Streptococcus sp.)으로 이루어진 군으로부터 선택되는 하나의 속(Genus)에 속하는 세균일 수 있으며, 바람직하게 상기 그람 양성균은 황색포도상구균(Staphylococcus aureus), 고초균(Bacillus subtilis), 엔테로코커스 패시움(Enterococcus faecium), 스트렙토마이세스 신데넨시스(Streptomyces sindenensis), 엔테로코커스 패칼리스(Enterococcus faecalis), 및 스트렙토코커스 뉴모니아(Streptococcus pneumoniae)로 이루어진 군으로부터 선택되는 하나 이상의 세균일 수 있다.
본 발명의 또 다른 구현예로서, 상기 그람 음성균은 대장균 속(Escherichia sp.), 클렙시엘라 속(Klebsiella sp.), 아시네토박터 속(Acinetobacter sp.), 수도모나스 속(Pseudomonas sp.), 및 엔테로박터 속(Enterobacter sp.)으로 이루어진 군으로부터 선택되는 하나의 속(Genus)에 속하는 세균일 수 있으며, 바람직하게 상기 그람 음성균은 대장균(Escherichia coli), 클렙시엘라 뉴모니아(Klebsiella pneumoniae), 아시네토박터 바우마니(Acinetobacter baumannii), 녹농균(Pseudomonas aeruginosa), 및 엔테로박터 에어로게네스(Enterobacter aerogenes)로 이루어진 군으로부터 선택되는 하나 이상의 세균일 수 있다.
본 발명의 또 다른 구현예로서, 상기 다제내성균은 페니실린계(penicillins), 카바페넴계(carbapenems), 세팔로스포린계(cephalosporins), 퀴놀론계(quinolones), 마크로라이드계(macrolides), 테트라사이클린계(tetracyclins), 또는 글리코펩티드계(glycopeptides)에 속하는 1종 이상의 항생물질에 대한 내성을 갖는 상기 그람 양성균 또는 그람 음성균으로서, 바람직하게 상기 다제내성균은 메티실린 내성 포도상구균(methicillin-resistant Staphylococcus sp.), 다제내성 수도모나스 속(multidrug-resistant Pseudomonas sp.), 반코마이신 내성 엔테로코커스 속(vancomycin-resistant Enterococcus sp.), 다제내성 클렙시엘라 속(multidrug-resistant Klebsiella sp.), 다제내성 아시네토박터 속(multidrug-resistant Acinetobacter sp.), 및 반코마이신 내성 포도상구균(vancomycin-resistant Staphylococcus sp.)으로 이루어진 군으로부터 선택되는 하나의 속(Genus)에 속하는 세균일 수 있다.
본 발명의 또 다른 구현예로서, 상기 다제내성균은 메티실린 내성 황색포도상구균(methicillin-resistant S. aureus), 다제내성 녹농균(multidrug-resistant P. aeruginosa), 다제내성 아시네토박터 바우마니(multidrug-resistant A. baumannii), 다제내성 클렙시엘라 뉴모니아(multidrug-resistant K. pneumoniae), 반코마이신 내성 엔테로코커스 패시움(vancomycin-resistant E. faecium), 및 반코마이신 내성 황색포도상구균(vancomycin-resistant S. aureus)로 이루어진 군으로부터 선택되는 하나 이상의 세균일 수 있다.
본 발명의 또 다른 구현예로서, 상기 다제내성 녹농균은 피페라실린(piperacilin), 피페라실린타조박탐(piperacilin-tazobactam), 세프타지딤(ceftazidime), 이미페넴(imipenem), 메로페넴(meropenem), 젠타마이신(gentamicin), 아미카신(amikacin), 및 시프로플록사신(ciprofloxacin)으로 이루어진 군으로부터 선택되는 1종 이상의 항생제에 대한 내성을 갖는 것일 수 있으며, 상기 다제내성 아시네토박터 바우마니는 피페라실린, 피페라실린타조박탐, 세프타지딤, 이미페넴, 메로페넴, 젠타마이신, 아미카신, 시프로플록사신, 및 세페핌(cefepime)으로 이루어진 군으로부터 선택되는 1종 이상의 항생제에 대한 내성을 갖는 것일 수 있고, 상기 다제내성 클렙시엘라 뉴모니아는 피페라실린타조박탐, 세프타지딤, 세페핌, 이미페넴, 젠타마이신, 및 시프로플록사신으로 이루어진 군으로부터 선택되는 1종 이상의 항생제에 대한 내성을 갖는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 반코마이신 내성 엔테로코커스 패시움은 반코마이신 외에도 리팜핀(rifampin), 테트라사이클린, 젠타마이신, 에리트로마이신(erythromycin), 스트렙토마이신(streptomycin), 및 암피실린(ampicillin)으로 이루어진 군으로부터 선택되는 1종 이상의 항생제에 대한 내성을 추가로 갖는 것일 수 있으며, 상기 반코마이신 내성 황색포도상구균은 반코마이신 외에도 옥사실린(oxacillin), 벤질페니실린(benzylpenicillin), 암피실린 및 세파졸린(cefazolin)으로 이루어진 군으로부터 선택되는 1종 이상의 항생제에 대한 내성을 추가로 갖는 것일 수 있다.
본 발명의 다른 일 양상은 상기 조성물을 포함하는 스크리닝 조성물을 제공한다.
전술한 바와 같이 본 발명은 상기 융합 폴리펩타이드가 다양한 세균 결합/포획능을 가지고 있어 이를 통해 세균을 분리하거나, 결합/포획된 세균은 적정한 조건에서 배양도 가능하여 이를 활용한 스크리닝 조성물로 활용할 수 있다.
상기 스크리닝 조성물은 목적에 따라 검진용 조성물, 배양용 조성물 등에 필요한 공지의 물질을 더 포함할 수 있다.
또한, 본 발명은 상기 융합 펩타이드를 포함하는 박테리아 증식용 조성물, 박테리아 항생제 감수성 조사용 조성물, 세균성 감염 질환 진단용 조성물을 제공한다.
상기 세균성 감염 질환은 피부감염, 식중독, 중이염, 방광염, 복막염, 요로감염, 유방염, 폐렴, 심내막염, 결막염, 관절염, 자궁내막염, 선역, 균혈증, 패혈증, 골수염 및 여드름으로 이루어진 군으로부터 선택되는 하나 이상의 질병일 수 있고, 바람직하게는 폐렴 또는 패혈증일 수 있다.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
이하에서는 아미노산 서열을 IUPAC-IUB 명명법에 따라 아래와 같이 약어로 기재하였다.
아르기닌(Arg, R), 라이신(Lys, K), 히스티딘(His, H), 세린(Ser, S), 트레오닌(Thr, T), 글루타민(Gln, Q), 아스파라진(Asp, N), 메티오닌(Met, M), 루신(Leu, L), 이소루신(Ile, I), 발린(Val, V), 페닐알라닌(Phe, F), 트립토판(Trp, W), 티로신(Tyr, Y), 알라닌(Ala, A), 글리신(Gly, G), 프롤린(Pro, P), 시스테인(Cys, C), 아스파르트산(Asp, D) 글루탐산(Glu, E), 노르루신(Nle)
실시예 1. 막 관통 도메인과 양 끝에 합이 1개 이상의 염기성 아미노산과 극성 아미노산으로 이루어진 펩타이드 탐색
본 발명에서 막 관통 단백질 서열 정보는 단백질의 서열 및 기능에 대한 정보가 들어 있는 유니프로트(UniProt, www.uniprot.org)에서 탐색하였다. 유니프로트 홈페이지에 접속하여 proteins UniProt knowledges base를 접속한 후 reviewed (Swiss-Prot)에 접속하였다. 이어서 proteins with transmembrane에 접속하면 79,371 단백질이 검색이 되었다. 인간 단백질의 경우 20,398 단백질이 검색이 되고 이 중 막 관통 단백질은 5,203 단백질이 검색이 되었다. 각각의 막 관통 단백질에 접속하면 각각의 단백질 정보를 확인이 가능하며 동시에 막 관통 펩타이드 도메인의 펩타이드 서열의 확인이 가능하다. 본 발명자는 우선 5,203의 막 관통 단백질에서 막 관통 도메인과 그 주변 서열을 탐색하였고 이 중에서 단백질 이름이 cytochrome c oxidase assembly protein COX20(유전자 이름: COX20, UniPort entry 번호: Q5RI15)와 HIG1 domain family member 2A(유전자 이름: HIG2A, UniPort entry 번호: Q9BW72)을 선정하여 막 관통 도메인과 양 끝에 합이 1개 이상의 염기성 아미노산과 극성 아미노산으로 이루어진 펩타이드를 합성하였다 (표 1, 서열번호 2, 3). 이 때 막 관통 도메인만을 포함하는 펩타이드도 합성하였다 (서열번호 1).
실시예 2. UniProt에서 탐색한 펩타이드와 펩타이드-에폭시 접합체를 이용한 박테리아 포획(capture) 및 분리배양 실험
본 발명자는 실시예 1에서 탐색한 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드와 펩타이드-에폭시 접합체를 이용하여 박테리아 포획 실험을 실시하였다. 에폭시-마그네틱 비드(magnetic bead, 크기 400 nm) 0.5 g을 증류수 1 ml에 섞어준 후 5 ul를 취하여 2 ml 튜브에 넣었다. 튜브를 자석에 밀착하면 에폭시-마그네틱 비드는 튜브 한 쪽 면에 붙는데, 이 때 튜브 내 증류수를 제거하였다. PBS 용액 1 ml을 이용하여 세척한 후 펩타이드 10 ug을 넣고 PBS 용액을 넣어 총 볼륨 100 ul를 맞추었다. 30 분 동안 rotary mixer를 이용하여 흔들어 주었다(tilting). PBS 용액 1 ml을 이용하여 3 번 세척하여 에폭시에 붙지 않은 펩타이드를 제거하였다. 펩타이드-에폭시-마그네틱 비드에 대장균(E.coli, ATCC 25922) 100 - 200 개를 튜브에 넣고 총 볼륨을 1 ml을 맞춘 후 1시간 동안 회전을 하면서 혼합해 주었다. 펩타이드-에폭시-마그네틱 비드를 자석에 부착한 후 상층액을 다른 튜브에 옮겨 놓은 뒤, 100 - 200 ul PBS 용액을 튜브에 넣는다. 펩타이드-에폭시-마그네틱 비드와 따로 옮겨놓은 상층액을 각각 한천 플레이트에 도말한 후 37℃항온기에서 overnight 배양하였다. 펩타이드-에폭시-마그네틱 비드에 의한 박테리아 포획률은 세 가지 방법으로 계산하였다. 첫 번째 계산 방법으로는 한천 플레이트에 도말 후 생성된 콜로니 수를 초기에 넣어준 박테리아 수로 나눈 뒤 100을 곱하여 준다(포획률-1). 두 번째 계산 방법으로는 펩타이드-에폭시-마그네틱 비드를 포함하는 튜브에 박테리아를 넣어 주고, 1 시간 반응 후 자석에 밀착하면 펩타이드-에폭시-마그네틱 비드는 튜브 한 쪽 면에 붙는다. 이 때 펩타이드-에폭시-마그네틱 비드에 부착된 쪽과, 부착되지 않은 나머지 용액을 각각 한천 플레이트에 도말한 후 생성된 콜로니 수를 계산한다. 포획된 박테리아 수를 전체 박테리아 수로 나눈 뒤 100을 곱하여 준다(포획률-2). 두 번째 방법의 경우 박테리아 포획률 실험 값이 100 %의 결과가 나와도 실제로 펩타이드에 포획된 박테리아 콜로니 수는 여러 가지 원인 때문에 펩타이드에 따라서 다른 결과를 얻는다. 그렇기 때문에 세 번째 방법으로 펩타이드에 따른 박테리아 포획률은 다른 방법으로 비교하였다. 표 1에서 HIG2A-2(서열번호 3)의 펩타이드 포획률이 우수하기 때문에 HIG2A-2의 펩타이드의 포획률을 상대적으로 비교하여 다른 펩타이드의 포획률을 계산하였다(포획률-3).
서열번호 펩타이드 이름 UniPort entry 단백질 이름 유전자이름 총 아미노산 수/ 펩타이드 위치 펩타이드 서열(막 관통 도메인/아미노산 수) 세포내 위치 염기성 + 극성 아미노산 수 대장균 포획률-1
: (포획 콜로니 수/사용한 대장균 수) x 100
대장균 포획률-2: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
1 COX20-0 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/34-51 ILYGSLGSVVAGFGHFLF(34-51/18) 미토콘드리아 막 0+0 8 19
2 COX20-1 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/31-54 RHSILYGSLGSVVAGFGHFLFTSR(34-51/24) 미토콘드리아 막 2+4 83 100
3 HIG2A-2 Q9BW72 HIG1 domain family member 2A, mitochondrial-Human HIG2A 106/80-105 RTRIAAQGFTVAAILLGLAVTAMKSR(83-103/26) 미토콘드리아 막 3+2 94 100
{밑줄: 막 관통 도메인 아미노산 서열; 염기성 + 극성 아미노산 수: 막관통 펩타이드 도메인 양 끝에 염기성(K, R) 아미노산 수와 극성(H, S, T, N, Q) 아미노산 수}
표 1에서와 같이 서열번호 2와 3의 박테리아 포획률은 우수한 것을 확인하였다. 도 2는 에폭시-HIG2A-2 접합체로 대장균을 포획한 후 한천 플레이트에 도말한 다음 37℃ 항온기에서 overnight 배양한 후 다음 날 형성된 대장균 콜로니를 보여준다.
따라서 본 발명자들은 이 두 가지 펩타이드 이외에 다른 종류의 펩타이드에서도 박테리아를 포획하는지 조사하였다.
추가적으로 21종을 합성하고(표 2, 서열번호 4-24), 상기 각 펩타이드를 이용한 박테리아 포획 및 분리배양 실험을 상기에서 서술한 방법과 동일하게 수행하었다. 포획률은 HIG2A-2의 펩타이드의 포획률을 상대적으로 비교한 세 번째 방법으로 계산하였다(포획률-3).
서열번호 펩타이드 이름 UniPort entry 단백질 이름 유전자이름 총 아미노산 수/ 펩타이드 위치 펩타이드 서열(막 관통 도메인/아미노산 수) 세포내 위치 염기성 + 극성 아미노산 수 대장균 포획률-3
: (포획 콜로니 수/HIG2A-2의 포획 콜로니 수) x 100
4 PLGRKT-1 Q9HBL7 Plasminogen receptor-Human PLGRKT 147/50-76 SREFLKYFGTFFGLAAISLTAGAIKKK(53-73/27) 세포 막 4+2 65
5 HIG1A-2 Q9Y241 HIG1 domain family member 1A, mitochondrial-Human HIG1A 93/23-49 KAKEAPFVPVGIAGFAAIVAYGLYKLK(26-46/27) 미토콘드리아 막 4+0 66
6 5879 P60602 Reactive oxygen species modulator 1-Human ROMO1 79/58-79 KTMMQSGGTFGTFMAIGMGIRC(58-77/22) 미토콘드리아 막 1+1 69
7 TMEM256 Q8N2U0 Transmembrane protein 256-Human TMEM256 113/62-86 RKPLWAGLLLASGTTLFCTSFYYQA(64-84/25) 엑소좀 막 2+1 68
8 VMA21 Q3ZAQ7 Vacuolar ATPase assembly integral membrane protein VMA21-Human VMA21 101/26-49 TLKTLLFFTALMITVPIGLYFTTK(26-46/24) endoplasmic reticulum 막 1+2 47
9 GHITM Q9H3K2 Growth hormone-inducible transmembrane protein-Human GHITM 345/123-148 RIHSTYMYLAGSIGLTALSAIAISRT(126-146/26) 미토콘드리아 막 2+2 100
10 KNCN A6PVL3 Kinocilin-Human KNCN 124/11-35 RGLQLACVALGLVAGSIIIGISVSK(13-33/25) 세포막 2+1 73
11 IER3IP1 Q9Y5U9 Immediate early response 3-interacting protein 1-Human IER3IP1 82/57-82 RSVRTVMRVPLIIVNSIAIVLLLLFG(62-82/26) endoplasmic reticulum 막 2+2 70
12 NDUFC2 O95298 NADH dehydrogenase [ubiquinone] 1 subunit C2-Human NDUFC2 119/54-77 TAGLHRQLLYITAFFFAGYYLVKR(56-75/24) 미토콘드리아 막 2+1 89
13 CNEP1R1 Q8N9A8 Nuclear envelope phosphatase-regulatory subunit 1-Human CNEP1R1 125/62-88 TSLWNHPFFTISCITLIGLFFAGIHKR(65-85/27) 핵 막 2+3 60
14 TOMM20 Q15388 Mitochondrial import receptor subunit TOM20 homolog-Human TOMM20 145/4-30) RNSAIAAGVCGALFIGYCIYFDRKRRS(7-24/27) 미토콘드리아막 5+4 58
15 TMEM141 Q96I45 Transmembrane protein 141 TMEM141 108/26-55 CQSHAFMKGVFTFVTGTGMAFGLQMFIQRK(32-52/30) 미정 2+5 55
16 PGAP6 Q9HCN3 Post-GPI attachment to proteins factor 6-Human PGAP6 771/543-568 QQRAATLLLTLSNLMFLAPIAVSVRR(546-566/26) 세포막, 리소좀막 3+2 86
17 GPAT2 Q6NUI2 Glycerol-3-phosphate acyltransferase 2, mitochondrial GPAT2 795(444-476) RRLSCHVLSASVGSSAVMSTAIMATLLLFKHQK(450-472/33) 미토콘드리아막 4+5 58
18 BCL2L1 Q07817 Bcl-2-like protein 1 BCL2L1 233(204-233) RKGQERFNRWFLTGMTVAGVVLLGSLFSRK(210-226/30) 미토콘드리아막 5+4 86
19 ATP5MK Q96IX5 ATP synthase membrane subunit K, mitochondrial ATP5MK 58(16-51) KKYFNSYTLTGRMNCVLATYGSIALIVLYFKLRSKK(23-45/36) 미토콘드리아막 6+3 58
20 RHOT1 Q8IXI2 Mitochondrial Rho GTPase 1 RHOT1 618(588-618) KSSTFWLRASFGATVFAVLGFAMYKALLKQR(593-615/31) 미토콘드리아막 3+4 65
21 MTX1 Q13505 Metaxin-1 MTX1 466(416-445) RRRNQILSVLAGLAAMVGYALLSGIVSIQR(421-441/30) 미토콘드리아막 4+4 48
22 IFI6 P09912 Interferon alpha-inducible protein 6 IFI6 130(2-27) RQKAVSLFLCYLLLFTCSGVEAGKKK(4-24/26) 미토콘드리아막 4+1 100
23 YIPF6 Q96EC8 Protein YIPF6 YIPF6 236/80-107 RKSNTLLRDWDLWGPLILCVTLALMLQR(85-105/28) 골지체 막 3+4 65
24 TM121 Q9BTD3 Transmembrane protein 121 TMEM121 319/68-98 RTAKRGYAMILWFLYIFVLEIKLYFIFQNYK(74-94/31) 미정 4+3 62
상기 표 2에서 확인할 수 있는 바와 같이, 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드 (서열번호 2 - 24)-에폭시-마그네틱 비드는 우수한 박테리아 포획 능력을 가지고 있음을 알 수 있었다. 반면에 막 관통 펩타이드 도메인만으로 이루어진 펩타이드 (서열번호 1)-에폭시 비드는 박테리아 포획 능력이 낮음을 알 수 있었다.
상기 표 1과 2는 사람 세포에서 존재하는 막 단백질에서 유래한 펩타이드 군이다. 본 발명자들은 사람 단백질 이외의 종에서의 막 단백질에서 유래한 펩타이드에서도 박테리아를 포획할 수 있는지 조사하였다 (표 3). 서열번호 25는 닭 막 단백질에서 유래한 펩타이드이고, 서열번호 26은 쥐 막 단백질에서 유래한 펩타이드이다.
서열번호 펩타이드 이름 UniPort entry 단백질 이름 유전자이름 총 아미노산 수/ 펩타이드 위치 펩타이드 서열(막 관통 도메인/아미노산 수) 세포내 위치 염기성 + 극성 아미노산 수 대장균 포획률-2: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100 대장균 포획률-3
: (포획 콜로니 수/HIG2A-2의 포획 콜로니 수) x 100
25 BCL2L1-chick Q07816 Bcl-2-like protein 1 BCL2L1 229(200-229) RKGQETFNKWLLTGATVAGVLLLGSLLSRK (206-223/30) 미토콘드리아막 4+6 100 100
26 HIGD2A-rat B2GV65 HIG1 hypoxia inducible domain family, member 2A Higd2a 106/81-105) TRIAAQGFTVVAILLGLAASTMKSR(25) 불명 3+2 85 93
상기 표 3에서 확인할 수 있는 바와 같이 사람 단백질 이외의 종에서도 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드(서열번호 25, 26)-에폭시-마그네틱 비드가 우수한 박테리아 포획 능력을 가지고 있음을 알 수 있었다.
실시예 3. UniProt에서 탐색한 펩타이드에서 양 끝 부분이 일부 결핍된 펩타이드-에폭시 접합체를 이용한 박테리아 포획 및 분리배양 실험
UniProt에서 탐색한 펩타이드에서 양 끝 부분이 일부 결핍된 펩타이드의 포획 능력을 확인하기 위하여 상기 표 1에 나타낸 합성 펩타이드 중 COX20-1(서열번호 2), HIG2A-2(서열번호 3) 및 5879(서열번호 6) 펩타이드를 대표로 선정하여 대장균에 대한 박테리아의 포획 능력을 측정하였다. 본 측정법은 상기 실시예 2의 방법과 동일하다. COX20-1 펩타이드의 경우 한 쪽 끝에 일부 아미노산이 결핍되었고 다른 쪽은 일부 아미노산이 추가된 서열을 포함하는 1 종의 펩타이드(서열번호 27)를 합성하여 실험을 수행하였다(펩타이드의 정보는 하기 표 4 참조). HIG2A-2 펩타이의 경우 양끝에서 일부 아미노산이 결핍된 아미노산 서열을 포함하는 3 종의 펩타이드(서열번호 28 - 30)를 합성하여 실험을 수행하였다(펩타이드의 정보는 하기 표 4 참조). 5879의 경우 한쪽 끝에 일부 아미노산이 결핍된 서열을 포함하는 1 종의 펩타이드(5878, 서열번호 31)와 5878 펩타이드 내부 서열을 치환한 펩타이드(서열번호 32 - 34)를 합성하여 실험을 수행하였다(펩타이드의 정보는 하기 표 4 참조).
서열번호 펩타이드 이름 UniPort entry 단백질 이름 유전자이름 총 아미노산 수/ 펩타이드 위치 펩타이드 서열(막 관통 도메인/아미노산 수) 세포내 위치 염기성 + 극성 아미노산 수 대장균 포획률-3
: (포획 콜로니 수/HIG2A-2의 포획 콜로니 수) x 100
2 COX20-1 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/31-54 RHSILYGSLGSVVAGFGHFLFTSR(34-51/24) 미토콘드리아 막 2+4 83
27 COX20-2 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/33-57 SILYGSLGSVVAGFGHFLFTSRIRR(34-51/25) 미토콘드리아 막 3+3 75
3 HIG2A-2 Q9BW72 HIG1 domain family member 2A, mitochondrial-Human HIG2A 106/80-105 RTRIAAQGFTVAAILLGLAVTAMKSR(83-103/26) 미토콘드리아 막 3+2 100
28 HIG2A-1 Q9BW72 HIG1 domain family member 2A, mitochondrial-Human HIG2A 106/81-105 TRIAAQGFTVAAILLGLAVTAMKSR(83-103/25) 미토콘드리아 막 2+2 93
29 HIG2A-3 Q9BW72 HIG1 domain family member 2A, mitochondrial-Human HIG2A 106/81-104 TRIAAQGFTVAAILLGLAVTAMKS (24) 미토콘드리아 막 1+2 83
30 HIG2A-4 Q9BW72 HIG1 domain family member 2A, mitochondrial-Human HIG2A 106/82-103 RIAAQGFTVAAILLGLAVTAMK(22) 미토콘드리아 막 1+0 31
6 5879 P60602 Reactive oxygen species modulator 1 ROMO1 79/(58-79) KTMMQSGGTFGTFMAIGMGIRC(58-77/22) 미토콘드리아 막 1+1 92
31 5878 P60602 Reactive oxygen species modulator 1 ROMO1 79/(58-78) KTMMQSGGTFGTFMAIGMGIR(58-77/21) 미토콘드리아 막 1+0 20
32 5878-S63H - - - - KTMMQ H GGTFGTFMAIGMGIR(58-77/21) - - 74
33 5878-S63HR78K - - - - KTMMQ H GGTFGTFMAIGMGI K(58-77/21) - - 74
34 5878-R78K - - - - KTMMQSGGTFGTFMAIGMGI K(58-77/21) - - 78
상기 표 4에서 확인할 수 있는 바와 같이 서열번호 30과 같은 막 관통 펩타이드 도메인 양 끝에 염기성 아미노산이 1 개만 포함하는 펩타이드도 박테리아 포획 능력을 가지고 있음을 알 수 있었다. 또한 막 관통 펩타이드 도메인 내부 극성 아미노산 서열을 염기성 아미노산으로 치환할 경우 박테리아 포획률이 증가하는 것을 알 수 있었다.
실시예 4. 막 관통 도메인 양 끝에 염기성 아미노산을 인위적으로 부착하여 합성한 펩타이드-에폭시 접합체를 이용한 포획 및 분리배양 실험
상기 실시예 1~3의 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드군은 자연계에서 존재하는 아미노산 서열을 포함하는 펩타이드이다. 본 실시예에서는 이들 펩타이드와 유사한 특징을 가지고 자연계에서 존재하지 않는 아미노산 서열로 이루어진 펩타이드를 합성하여 박테리아 포획 능력을 비교 확인하였다 (각 펩타이드의 정보는 하기 표 5 참조). 본 측정법은 상기 실시예 2의 방법과 동일하다.
표 5에서와 같이 COX20 단백질의 막 관통 도메인에 라이신 또는 아르기닌 각각 1개 또는 2개를 인위적으로 부착하여 합성한 펩타이드 (서열번호 35-38)의 포획 능력을 측정하였다.
서열번호 펩타이드 이름 UniPort entry 단백질 이름 유전자이름 총 아미노산 수/ 펩타이드 위치 펩타이드 서열(막 관통 도메인/아미노산 수) 세포내 위치 염기성 + 극성 아미노산 수 대장균 포획률-2: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100 대장균 포획률-3
: (포획 콜로니 수/HIG2A-2의 포획 콜로니 수) x 100
1 COX20-0 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/34-51 ILYGSLGSVVAGFGHFLF(34-51/18) 미토콘드리아 막 0 5 6
2 COX20-1 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/31-54 RHSILYGSLGSVVAGFGHFLFTSR(34-51/24) 미토콘드리아 막 2+4 100 83
35 COX20-0-0K1 - - - - ILYGSLGSVVAGFGHFLFK (19) - 1+0 83 66
36 COX20-0-1K1 - - - - KILYGSLGSVVAGFGHFLFK (20) - 2+0 100 44
37 COX20-0-0R1 - - - - ILYGSLGSVVAGFGHFLFR (19) - 1+0 52 70
38 COX20-0-1R1 - - - - RILYGSLGSVVAGFGHFLFR (20) - 2+0 100 48
상기 표 5에서 확인할 수 있는 바와 같이, 라이신 또는 아르기닌을 막 관통 도메인 한 쪽에 1개 또는 양 쪽에 1 개씩 합이 2개를 인위적으로 부착하여 합성한 펩타이드는 대장균 포획 능력이 있음을 확인하였다.
또 다른 예로 본 발명자들은 앞선 실시예의 펩타이드 중 서열번호 3번의 막 관통 도메인과, 서열번호 12의 막 관통 도메인만을 포함하는 서열 양 끝에 각각 서열번호 5의 아미노산 서열에서 막관통 도메인을 제외한 펩타이드에서 양 끝 부분 서열(KAK---KLK)을 융합하여 제작한 뒤, 박테리아 포획 능력을 비교 확인하였다 (각 펩타이드의 정보는 하기 표 6 참조, 서열번호 39, 40). 측정법은 상기 실시예 2의 방법과 동일하게 하였다.
서열번호 펩타이드 이름 막 관통 도메인의 UniPort entry 막 관통 도메인의 단백질 이름 펩타이드 서열(막 관통 도메인/아미노산 수) 염기성 + 극성 아미노산 수 대장균 포획률-3 : (포획 콜로니 수/HIG2A-2의 포획 콜로니 수) x 100
39 HI2-m1 Q9BW72 HIG1 domain family member 2A, mitochondrial-Human KAKIAAQGFTVAAILLGLAVTAMKKLK (27) 4+0 29
40 NDn-1-m1 O95298 NADH dehydrogenase [ubiquinone] 1 subunit C2 KAKGLHRQLLYITAFFFAGYYLVKLK (26) 4+0 69
상기 표 6에서 확인할 수 있는 바와 같이 앞선 실시예와 동일한 특성을 갖는 융합 펩타이드 역시 대장균 포획 능력이 있음을 확인하였다.
실시예 5. UniProt에서 탐색한 펩타이드의 박테리아 살상 여부 확인
본 발명자는 박테리아 살균 최소 농도 측정법(minimum bactericidal concentration: MBC)을 이용하여 그 박테리아 살상 여부를 확인하였다. 상기 합성한 펩타이드 군에서 4종의 펩타이드의 박테리아 살균 최소 농도 측정법을 통해 각 펩타이드의 박테리아 살상 여부를 비교 확인하였다. 상기 각 펩타이드의 박테리아 살균 최소 농도 측정법을 이용한 항균 활성 확인은 구체적으로 하기와 같이 수행되었다.
먼저, 대장균(ATCC 25922)을 LB(1% tryptone, 0.5% yeast extract, 1% sodium chloride) 액체 배지에 37℃ 200 rpm 조건으로 overnight 배양한 후, 다시 동일한 조건에서 2 시간 동안 2차 배양하였다. 상기 2차 배양한 각 균주의 최종 농도가 1Х105 CFU/㎖ 농도가 되도록 10 mM sodium phosphate 용액 또는 PBS(phosphate-buffered saline - NaCl 8.0 g/L; KCl 0.2 g/L; Na2HPO4 1.42g/L; KH2PO4 0.24 g/L) 용액으로 희석하여 균주 용액을 준비하였다.
이어서, 96-웰 마이크로 플레이트의 각 웰에 농도를 달리하여(최종 농도: 0 ㎍/㎖ - 200 ㎍/㎖ 펩타이드) 각 펩타이드를 100 ul씩 분주하고, 상기 준비된 균주 용액을 100 ㎕ 를 넣고 섞어 37℃항온기에서 1 시간 동안 반응시켰다.
그리고, LB 25 g/L 및 한천 15 g/L을 증류수에 녹이고 멸균한 다음 100 ㎜ 원형 플레이트에 20 ㎖을 붓고 하루 이상 실온에서 굳혀서 제조한 LB 한천 플레이트에 상기 펩타이드와 균주의 반응 용액을 10 ㎕씩 일정한 크기로 도말하고, 37℃항온기에서 18 시간 동안 배양한 뒤, 플레이트에서 콜로니 생성을 확인하였다. 박테리아 살균 최소농도는 콜로니가 단 하나도 생성되지 않은 펩타이드의 최소 농도로 정의하였고, 실험 결과는 하기 표 7과 같다.
서열번호 펩타이드 이름 UniPort entry 단백질 이름 유전자이름 총 아미노산 수/ 펩타이드 위치 펩타이드 서열(막 관통 도메인/아미노산 수) 대장균
MBC 값 in SPN
(μg/ml)
대장균
MBC 값 in PBS
(μg/ml)
1 COX20-0 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/34-51 ILYGSLGSVVAGFGHFLF(34-51/18) 200< 200<
2 COX20-1 Q5RI15 Cytochrome c oxidase assembly protein COX20, mitochondrial-Human COX20 118/31-54 RHSILYGSLGSVVAGFGHFLFTSR(34-51/24) 40 200<
3 HIG1A-2 Q9Y241 HIG1 domain family member 1A, mitochondrial-Human HIG1A 93/23-49 KAKEAPFVPVGIAGFAAIVAYGLYKLK(26-46/27) 25 200<
4 PLGRKT-1 Q9HBL7 Plasminogen receptor-Human PLGRKT 147/50-76 SREFLKYFGTFFGLAAISLTAGAIKKK(53-73/27) 18 200<
상기 표 7에 나타낸 바와 같이, UniProt에서 탐색한 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드 3 종(서열번호 2-4)은 10 mM sodium phosphate 용액에서 높은 박테리아 살상 활성을 가짐을 확인할 수 있었지만 PBS 용액에서는 박테리아 살상 활성이 낮음(MBC 값 200 ug/ml 이상)을 확인할 수 있었다.
즉 본 발명에서 사용한 펩타이드는 용액의 종류에 따라 항균 활성을 보여 주었다. 본 발명에서 사용한 PBS 용액에서는 펩타이드가 박테리아를 살상하여 제거하기보다는 박테리아에 결합한 상태로 있음을 알 수 있었다.
실시예 6. UniProt에서 탐색한 펩타이드와 펩타이드-에폭시 접합체를 이용한 여러 박테리아에서 포획 및 분리배양 실험
상기 실시예 2와 3에서 펩타이드-에폭시 접합체를 이용한 대장균에서 분리배양 실험을 확인한 펩타이드가 여러 박테리아에서 포획 능력 확인하기 위하여, 상기 표 2와 3에 나타낸 합성 펩타이드 중 12개 펩타이드를 대표로 선정하여 녹농균(ATCC 27853)과 황색포도상구균(NCCP 15872)에서 펩타이드-에폭시 접합체를 이용한 박테리아 포획 및 분리배양 실험을 상기 실시예 2의 방법과 동일하게 실시하였다.
서열번호 펩타이드 이름 펩타이드 서열(막 관통 도메인/아미노산 수) 녹농균 포획률: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
GHITM 기준
황색포도상구균 포획률: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
PL-2 기준
2 COX20-1 RHSILYGSLGSVVAGFGHFLFTSR(34-51/24) 36 37
3 HIG2A-2 RTRIAAQGFTVAAILLGLAVTAMKSR(83-103/26) 52 98
4 PLGRKT-1 SREFLKYFGTFFGLAAISLTAGAIKKK(53-73/27) 80 100
5 HIG1A-2 KAKEAPFVPVGIAGFAAIVAYGLYKLK(26-46/27) 64 37
6 5879 KTMMQSGGTFGTFMAIGMGIRC(22) 20 8
33 5878-63H78K KTMMQHGGTFGTFMAIGMGIK(58-77/21) 80 43
11 IER3IP1 RSVRTVMRVPLIIVNSIAIVLLLLFG(26) 81 83
9 GHITM RIHSTYMYLAGSIGLTALSAIAISRT(126-146/26) 100 85
12 NDUFC2(NDn-1) TAGLHRQLLYITAFFFAGYYLVKR(24) 55 37
16 PGAP6 QQRAATLLLTLSNLMFLAPIAVSVRR(546-566/26) 58 86
18 BCL2L1 RKGQERFNRWFLTGMTVAGVVLLGSLFSRK(210-226/30) 44 76
22 IFI6 RQKAVSLFLCYLLLFTCSGVEAGKKK(4-24/26) 46 83
상기 표 8에서 확인할 수 있는 바와 같이, 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드는 그람 양성균 및 그람 음성균 박테리아 모두에게서 광범위한 박테리아 포획 능력이 있음을 알 수 있었다.
또 다른 실험으로 상기 표 2에 나타낸 합성 펩타이드 중 HIG2A-2 펩타이드를 대표로 선정하여 여러 가지 박테리아에서 펩타이드-에폭시 접합체를 이용한 박테리아 포획 및 분리배양 실험을 상기 실시예 2의 방법과 동일하게 실시하였다.
서열번호 펩타이드 이름 박테리아 박테리아 포획률-2
3 HIG2A-2 Enterococcus faecium 100
3 HIG2A-2 Bacillus subtilis 100
3 HIG2A-2 Streptomyces sindenensis 100
3 HIG2A-2 Streptococcus pneumoniae 100
6 5879 Klebsiella pneumoniae 100
그 결과, 상기 표 9에서 확인할 수 있는 바와 같이, 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드는 Enterococcus faecium을 비롯한 다양한 박테리아의 포획 능력이 있음을 확인할 수 있었다.
실시예 7. UniProt에서 탐색한 펩타이드와 펩타이드-에폭시 접합체를 이용한 다제내성 박테리아에서 포획 및 분리배양 실험
상기 실시예 2와 3에서 펩타이드-에폭시 접합체를 이용하여 실험한 펩타이드가 다제내성 박테리아에서 포획 능력을 확인하기 위하여, 상기 표 1과 2에서 나타낸 합성 펩타이드 중 5 개의 펩타이드를 대표로 선정하여 다제내성 녹농균과 메티실린 내성 포도상구균(ATCC 33591)에 대한 펩타이드-에폭시 접합체를 이용한 박테리아 포획 및 분리배양 실험을 상기 실시예 2의 방법과 동일하게 실시하였다.
한편, 하기 표 10에서 다제내성 녹농균는 고려대학교 안암병원의 환자로부터 분리한 균으로서, 다제내성 녹농균의 경우 피페라실린(piperacilin), 피페라실린타조박탐(piperacilin-tazobactam), 세프타지딤(ceftazidime), 이미페넴(imipenem), 메로페넴(meropenem), 젠타마이신(gentamicin), 아미카신(amikacin), 및 시프로플록사신(ciprofloxacin) 항생제에 내성을 나타냄을 확인하고 실험에 이용하였다.
서열번호 펩타이드 이름 박테리아 포획률-2
다제내성 녹농균: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100 메티실린 내성 포도상구균: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
2 COX20-1 55 71
3 HIG2A-2 100 79
4 PLGRKT-1 51 97
6 5879 82 100
9 GHITM 69 70
서열번호 펩타이드 이름 박테리아 포획률-2
다제내성 Klebsiella pneumoniae: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
4 PLGRKT-1 95
상기 표 10에서 확인할 수 있는 바와 같이, 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드는 다제내성 그람 양성균, 다제내성 그람 음성균 박테리아 모두에게서 광범위한 박테리아 포획 능력이 있음을 알 수 있었다. 본 발명에서 펩타이드에 의한 다제내성 박테리아의 포획 능력은 다제내성 녹농균과 메티실린 내성 포도상구균에 국한되지 않고 다른 종류의 다제내성균도 포획이 가능하다. 표 10에서와 같이 서열번호 4의 펩타이드는 다제내성 Klebsiella pneumoniae도 포획이 가능하였다.
실시예 8. 여러 조건에서 펩타이드-에폭시의 박테리아 포획 및 분리배양 실험
또 다른 실험으로 여러 가지 조건에서 박테리아 포획실험을 수행하였다. 상기 표 1에 나타낸 합성 펩타이드 중 HIG2A-2 펩타이드를 대표로 선정하여 펩타이드-에폭시 접합체의 양에 따른 박테리아 포획 및 분리배양 실험을 대장균에서 상기 실시예 2의 방법과 동일하게 실시하였다. 상기 실시예 2의 방법에서와 같이 에폭시 5 ul에 펩타이드 10 ug을 첨가하여 30분 동안 반응시킨 후 펩타이드-에폭시-마그네틱 비드에 대장균을 넣고 총 볼륨을 1 ml을 맞춘 후 1시간 동안 회전을 하면서 혼합해 주었다. 이 때 한 튜브에는 펩타이드-에폭시-마그네틱 비드의 1/4을 첨가하여 포획 실험을 실시하였고 또 다른 튜브에는 펩타이드-에폭시-마그네틱 비드의 1/16을 첨가하여 포획 실험을 실시하였다. 표 11에서와 같이 에폭시와 펩타이드 양을 1/4 또는 1/16을 사용하여도 박테리아를 포획할 수 있었다.
또한 사용한 대장균 수를 조절하여 포획 실험을 상기 실시예 2의 방법과 동일하게 실시하였다. 표 12에서와 같이 본 펩타이드에 의한 박테리아 포획은 1 ml 검체에서 2 CFU에서부터 3.7 x 105 CFU까지 포획이 가능하였다.
또한 포획 실험에서 사용한 검체 양을 조절하여 포획 실험을 상기 실시예 2의 방법과 동일하게 실시하였다. 표 13에서와 같이 검체 양이 10 ml에서도 박테리아 포획이 가능하였다.
또한 포획 실험에서 반응 시간을 달리하여 포획 실험을 상기 실시예 2의 방법과 동일하게 실시하였다 (표 14).
또한 포획 실험에서 에폭시가 아닌 다른 종류 비드를 사용하여 포획 실험을 상기 실시예 2의 방법과 동일하게 수행하였다 (표 15). 사용한 NH2-비드{NH2-Magnetic Beads (1-5 um), AccuBead, 바이오니아}와 COOH-비드{COOH-Magnetic Beads (1-5 um), AccuBead, 바이오니아}를 사용하였다.
서열번호 펩타이드 이름 에폭시 양 (ul) 펩타이드 양 (ug) 대장균 포획률: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
3 HIG2A-2 5 10 100
3 HIG2A-2 1.25 2.5 49
3 HIG2A-2 0.3125 0.625 15
서열번호 펩타이드 이름 UniPort entry 포도상구균 포획 콜로니 수 부착되지 않은 콜로니 수 포도상구균균 포획률-2: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
3 HIG2A-2 Q9BW72 3.7 x 105 0 100
3 HIG2A-2 Q9BW72 104 0 100
3 HIG2A-2 Q9BW72 4 0 100
3 HIG2A-2 Q9BW72 2 0 100
서열번호 펩타이드 이름 검체 양 사용한 박테리아 수 대장균 포획률: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
3 HIG2A-2 10 ml 55 100
서열번호 펩타이드 이름 UniPort entry 에폭시-펩타이드에 의한 박테리아 포획 시간 (분) 대장균 포획률-2: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100 포도상구균 포획률-2: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
3 HIG2A-2 Q9BW72 2 71 72
3 HIG2A-2 Q9BW72 5 80 74
3 HIG2A-2 Q9BW72 15 100 100
서열번호 펩타이드 이름 에폭시 종류 대장균 포획률: (포획 콜로니 수/포획 콜로니 수 + 부착되지 않은 콜로니 수) x 100
3 HIG2A-2 NH2-Magnetic Beads (1-5 um) 86
3 HIG2A-2 COOH-Magnetic Beads (1-5 um) 75
표 11-15 결과에서 보는 바와 같이 펩타이드-에폭시 접합체의 양, 검체 내에 존재하는 대장균 수, 포획 시간, 사용한 접합체 종류에 관계없이 박테리아 포획 능력이 우수한 것을 확인하였다.
실시예 9. 펩타이드-에폭시를 이용하여 박테리아 포획 후 증식 실험
본 실시예에서는 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 펩타이드와 에폭시 접합체를 이용하여 포획된 박테리아는 자성체를 이용하여 튜브 한 쪽에 부착시키면 검체와 분리되어 박테리아 농축이 가능하다. 포획된 박테리아는 박테리아 동정과 항생제 감수성 조사를 위하여 박테리아 증식을 통한 다량의 박테리아 확보가 가능하다. 우선 펩타이드 HIG2A-2 펩타이드를 이용하여 대장균의 포획 실험을 수행하였다. 본 실험은 상기 실시 예 2의 방법과 동일하다. 포획 후 PBS 용액 1 ml을 이용하여 세척한 후 500 ul MH broth를 넣고 Rotator Mixer(tilting 조건: --, 53)에서 37℃온도에서 3시간 배양하였다. 배양 후 증식된 박테리아 수를 측정하기 위하여 PBS 용액으로 희석한 후 LB 한천 플레이트에 도말하였다.
본 실험은 여러 종류의 박테리아에서 실시하였다. 표 16에서와같이 대장균의 경우 포획 후 3시간 배양을 할 경우 그 수가 938배 증가하였다. 다제내성 박테리아도 똑같은 실험을 실시하였다. 표 16에서와같이 다제내성 포도상구균은 163배, 다제내성 녹농균의 경우 158배 증가하였다.
또 다른 실험으로 혈액, 오줌 및 물에서 포획한 박테리아의 증식도 실시하였다 (표 17). 오줌을 이용한 실험에서 개(코카스파니엘, 수컷, 9 살) 오줌을 사용하였다. 개 오줌 900 ul에 녹농균 이 포함된 PBS 용액 100 ul를 넣어 준 후 상기 실시 예 2의 방법과 동일한 방법으로 포획 실험을 실시하였다. 1 시간 반응 후 포획된 녹농균을 LB 한천 플레이트에 도말하여 포획된 녹농균을 측정하였다. 또 다른 시료에서는 포획 후 PBS 용액 1 ml을 이용하여 세척한 후 500 ul MH broth를 넣고 Rotator Mixer(tilting 조건: --, 53)에서 37℃온도에서 3시간 배양하였다. 배양 후 증식된 박테리아 수를 측정하기 위하여 PBS 용액으로 희석한 후 LB 한천 플레이트에 도말하였다. 표 17에서와 같이 녹농균은 43배 증가하였다.
또 다른 실험으로 혈액에서 포획한 박테리아의 증식도 실시하였다. 생쥐(ICR, 수컷)에서 채취한 혈액 500 ul에 포도상구균이 포함된 PBS 용액 500 ul를 첨가한 후 상기 실시예 2의 방법과 동일한 방법으로 포획 실험을 실시하였다. 1 시간 반응 후 포획된 포도상구균을 LB 한천 플레이트에 도말하여 포획된 포도상구균 수를 측정하였다. 또 다른 시료에서는 포획 후 PBS 용액 1 ml을 이용하여 세척한 후 500 ul MH broth를 넣고 Rotator Mixer(tilting 조건: --, 53)에서 37℃온도에서 3시간 배양하였다. 배양 후 증식된 대장균 수를 측정하기 위하여 PBS 용액으로 희석한 후 LB 한천 플레이트에 도말하였다. 표 17에서와 같이 포도상구균은 720배 증가하였다.
또 다른 실험으로 물에서 포획한 박테리아의 증식도 실시하였다. 물로 희석한 대장균 100 ul에 물 900 ul를 첨가하여 1 ml로 만들었다. 10x PBS 용액 110 ul를 첨가한 후 상기 실시 예 2의 방법과 동일한 방법으로 포획 실험을 실시하였다. 1 시간 반응 후 포획된 대장균을 LB 한천 플레이트에 도말하여 포획된 대장균을 측정하였다. 또 다른 시료에서는 포획 후 PBS 용액 1 ml을 이용하여 세척한 후 500 ul MH broth를 넣고 Rotator Mixer(tilting 조건: --, 53)에서 37℃온도에서 3시간 배양하였다. 배양 후 증식된 대장균 수를 측정하기 위하여 PBS 용액으로 희석한 후 LB 한천 플레이트에 도말하였다. 표 17에서와 같이 대장균은 796배 증가하였다.
서열번호 펩타이드 이름 박테리아 종류 박테리아 포획 후 콜로니 수 박테리아 포획과 MH 배지 3시간 배양 후 콜로니 수 증식 배율
3 HIG2A-2 대장균 16 15,000 938
3 HIG2A-2 포도상구균 16 1,850 116
9 GHITM 녹농균 60 2,430 40
3 HIG2A-2 다제내성 포도상구균 13 2,115 163
6 5879 다제내성 녹농균 132 20,910 158
서열번호 펩타이드 이름 박테리아 종류 검체 종류 박테리아 포획 후 콜로니 수 박테리아 포획과 MH 배지 3시간 배양 후 콜로니 수 증식 배율
3 HIG2A-2 녹농균 오줌 30 1,300 43
16 PGAP6 포도상구균 혈액(50%) 22 4310 195
3 HIG2A-2 대장균 24 19,105 796
표 16, 17 결과에서 보는 바와 같이 여러 종류의 검체에서 박테리아의 신속한 포획과 증식이 가능하였다.
실시예 10. 펩타이드-에폭시 접합체를 이용하여 포획한 박테리아를 분리배양 후 형성된 콜로니를 이용한 항생제 감수성 조사
상기 실시예 2의 방법과 동일하게 에폭시-펩타이드 접합체를 이용하여 녹농균과 다제내성 녹농균을 포획하여 LB 한천 플레이트에 도말한 후 37℃온도에서 overnight 배양하였다. 이 때 형성된 콜로니를 긁어서 취한 후 TS 배양액 50 ul에 풀어주었다. Spectrophotometer로 600 nm에서 흡광도를 측정한 후 OD 값이 0.02가 되도록 TS 배지로 희석하였다. 박테리아 용액을 96 웰 플레이트에 분주한 후 아래 표와 같이 항생제인 이미페넴을 농도 별로 처리한 후 2시간 40분 동안 배양하였다.
이미페넴( ug/ml) 0 2 4 8 16 32 64 128
녹농균 OD 값 0.300 0.148 0.118 0.112 0.117 0.124 0.108 0.108
다제내성 녹농균 OD 값 0.240 0.255 0.248 0.296 0.320 0.319 0.320 0.051
상기 표 18의 결과와 같이 이미페넴 농도가 높을수록 녹농균은 성장하지 못하였지만 다제내성 녹농균은 64 ug/ml 농도까지 성장을 보여 주었다. 이러한 방법으로 약 20 시간 내에 검체에서 박테리아의 포획, 분리배양 및 항생제 감수성 조사가 가능하다.
실시예 11. 나이트로 셀룰로스 페이퍼(nitrocellulose paper) 상에서 펩타이드-에폭시 접합체를 이용한 박테리아 포획 실험
상기 실시예 2의 방법과 동일하게 에폭시-HIG2A-2 펩타이드 접합체를 제작하였다. 에폭시-펩타이드 접합체를 나이트로 셀룰로스 페이퍼(3 mm x 30 mm) 중앙에 폭이 2 mm 길이가 3 mm 되게 깔아 주었다 약 2 분 정도 말린 후 페이퍼 상의 에폭시-펩타이드 왼쪽에 대장균 800 CFU를 loading 하고 페이퍼 오른쪽에는 흡착 종이로 3 MM 페이퍼를 올려 주었다. 박테리아 loading 후 에폭시-펩타이드 접합체 왼쪽에 PBS 용액 약 100 ul를 3 번 loading하였다. 이 때 PBS 용액은 오른쪽에는 있는 흡착 종이인 3M 페이퍼로 이동하면서 박테리아도 동시에 이동한다. 그 다음 박테리아가 에폭시-펩타이드 접합체에 포획되는지 조사하였다. 나이트로 셀룰로스 페이퍼 상의 에폭시-펩타이드 접합체를 가위로 절단한 후 PBS 용액에 풀어서 포획된 박테리아를 LB 한천 플레이트에 도말한 후 37℃온도에서 overnight 배양하였다. 그 결과, 형성된 콜로니로 에폭시-펩타이드 접합체의 경우 175 CFU의 결과가 나왔고 펩타이드가 결합되지 않은 에폭시의 경우 16 CFU의 결과가 나왔다 (도 3). 이는 박테리아가 나이트로 셀룰로스 페이퍼 상에서 펩타이드-에폭시 접합체에 포획된다는 것을 의미한다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (13)

15 내지 30개의 아미노산으로 구성되는 막 관통 도메인(transmembrane domain, TMD)을 포함하는 폴리펩타이드 및 상기 폴리펩타이드의 C-말단 또는 N-말단에 하나 이상, 양 말단에 합이 1 내지 12개의 말단 아미노산이 결합된 융합 폴리펩타이드 및
접합체를 포함하는 융합 폴리펩타이드 복합체.
제1항에 있어서,
상기 막 관통 도메인은 자연 유래인 복합체.
제1항에 있어서,
상기 말단 아미노산은 염기성 및 극성 중 어느 하나 이상인 복합체.
제1항에 있어서,
상기 융합 폴리펩타이드는 서열번호 1 내지 31 및 34 내지 40의 펩타이드 중 어느 하나인 복합체.
제1 항에 있어서,
상기 융합 폴리펩타이드는 하나 이상의 변이를 더 포함하는 것인 복합체.
제5항에 있어서,
상기 융합 폴리펩타이드는 서열번호 32 또는 33의 펩타이드인 복합체.
제1항에 있어서,
상기 융합 폴리펩타이드는 페길레이션(PEGylation), 아세틸레이션(acetylation), 카르복실레이션(carboxylation), 리피데이션(lipidation), 및 아미데이션(amidation) 중 어느 하나 이상의 변이를 더 포함하는 것인 복합체.
제1항에 있어서,
상기 접합체는 기능기 및 지지체를 포함하는 복합체.
제8항에 있어서,
상기 기능기는 에폭시기, 아민기 (NH2-), 카르복시기 (COOH-) 및 싸이올기 (SH-)중 어느 하나인 복합체.
제1항의 복합체를 포함하는 세균 결합성 조성물.
제10항에 있어서,
상기 세균은 그람 양성균, 그람 음성균, 및 다제내성균으로 이루어진 군으로부터 선택되는 하나 이상의 세균인 세균 결합성 조성물.
제1항 복합체 또는 제10항의 조성물을 포함하는 세균 결합성 키트.
제1항의 복합체 또는 제10항의 조성물을 포함하는 스크리닝 조성물.
PCT/KR2023/015228 2022-10-04 2023-10-04 막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도 WO2024076136A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220126058 2022-10-04
KR10-2022-0126058 2022-10-04
KR1020230131830A KR20240049173A (ko) 2022-10-04 2023-10-04 막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도
KR10-2023-0131830 2023-10-04

Publications (1)

Publication Number Publication Date
WO2024076136A1 true WO2024076136A1 (ko) 2024-04-11

Family

ID=90608389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015228 WO2024076136A1 (ko) 2022-10-04 2023-10-04 막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2024076136A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050646A (ko) * 2013-10-29 2015-05-11 삼성전자주식회사 융합 펩타이드 및 이의 세포막투과를 위한 용도
KR20200144065A (ko) * 2019-06-17 2020-12-28 고려대학교 산학협력단 Romo1 유래 항균 펩타이드 및 그 변이체
KR20210066752A (ko) * 2019-11-28 2021-06-07 고려대학교 산학협력단 신규한 세포막 투과성 단백질 및 이의 용도

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050646A (ko) * 2013-10-29 2015-05-11 삼성전자주식회사 융합 펩타이드 및 이의 세포막투과를 위한 용도
KR20200144065A (ko) * 2019-06-17 2020-12-28 고려대학교 산학협력단 Romo1 유래 항균 펩타이드 및 그 변이체
KR20210066752A (ko) * 2019-11-28 2021-06-07 고려대학교 산학협력단 신규한 세포막 투과성 단백질 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RADEK SZKLARCZYK: "A mutation in the FAM36A gene, the human ortholog of COX20, impairs cytochrome c oxidase assembly and is associated with ataxia and muscle hypotonia", HUMAN MOLECULAR GENETICS, OXFORD UNIVERSITY PRESS, GB, vol. 22, no. 4, 15 February 2013 (2013-02-15), GB , pages 656 - 667, XP093156860, ISSN: 0964-6906, DOI: 10.1093/hmg/dds473 *
STARK M, LIU L-P, DEBER C M: "CATIONIC HYDROPHOBIC PEPTIDES WITH ANTIMICROBIAL ACTIVITY", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 46, no. 11, 1 November 2002 (2002-11-01), US , pages 3585 - 3590, XP009004888, ISSN: 0066-4804, DOI: 10.1128/AAC.46.11.3585-3590.2002 *

Similar Documents

Publication Publication Date Title
Koteva et al. A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor
Merrifield et al. Design and synthesis of antimicrobial peptides
US8686113B2 (en) Antibiotic peptides
Wladyka et al. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors
US10421782B2 (en) Cyclic cationic peptides with antimicrobial activity
JP2007259856A (ja) SrcSH3結合性ペプチドとその分離法と利用法
WO2019039826A1 (ko) 그람 음성 박테리아에 대한 강한 항균 활성을 갖는 벌거숭이두더지쥐 유래의 항균성 폴리펩티드 및 이를 포함하는 약학 조성물
WO2017176041A1 (ko) 비단뱀으로부터 분리한 신규한 항균 펩타이드 및 이의 발굴 방법
Imran et al. Fluorescent labeling of nisin Z and assessment of anti-listerial action
WO2024076136A1 (ko) 막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도
TWI403330B (zh) 低血球溶解性之抗微生物胜肽、醫藥組成物及其用途
Katsuma et al. Development of des-fatty acyl-polymyxin B decapeptide analogs with Pseudomonas aeruginosa-specific antimicrobial activity
JPH06507545A (ja) 組み換えハイブリッドポーリンエピトープ
KR20240049173A (ko) 막 관통 도메인을 포함하는 융합 펩타이드 복합체 및 이의 용도
WO2022255708A1 (ko) 화물분자 수송 도메인 rmmr1, 이의 변이체, 이를 포함하는 재조합 화물분자 및 이를 이용한 화물분자 수송 방법
JP2001186887A (ja) サソリ毒由来の抗菌ペプチド
Glossop et al. Linear analogues of the lipopeptide battacin with potent in vitro activity against S. aureus
WO1999036081A1 (en) Peptide ligands that bind to surfaces of bacterial spores
WO2024049232A1 (ko) 막 관통 펩타이드 도메인과 그 양 끝에 염기성 또는 극성 아미노산으로 이루어진 항균 펩타이드 및 그 변이체
US9006393B1 (en) Molecular constructs and uses thereof in ribosomal translational events
WO2022240055A1 (ko) 화물분자 수송 도메인 rmad1, 이의 변이체, 재조합 화물분자 및 이를 이용한 화물분자 수송 방법
HRP20040216A2 (en) Method of identifying glycosyl transferase binding compounds
CA2026618A1 (en) Insect neuropeptides
WO2024037263A1 (zh) 一种体内低毒性的抑制金葡菌毒素产生的合成肽及其应用
WO2021075834A1 (ko) Snare 복합체를 억제하는 항-snap 25 항체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23875200

Country of ref document: EP

Kind code of ref document: A1