WO2024073934A1 - 一种锂一次电池及其电解液 - Google Patents

一种锂一次电池及其电解液 Download PDF

Info

Publication number
WO2024073934A1
WO2024073934A1 PCT/CN2022/137462 CN2022137462W WO2024073934A1 WO 2024073934 A1 WO2024073934 A1 WO 2024073934A1 CN 2022137462 W CN2022137462 W CN 2022137462W WO 2024073934 A1 WO2024073934 A1 WO 2024073934A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
ether
primary battery
cyclic
Prior art date
Application number
PCT/CN2022/137462
Other languages
English (en)
French (fr)
Inventor
丁祥欢
武金珠
胡洋
Original Assignee
浙江省化工研究院有限公司
浙江中蓝新能源材料有限公司
中化蓝天集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江省化工研究院有限公司, 浙江中蓝新能源材料有限公司, 中化蓝天集团有限公司 filed Critical 浙江省化工研究院有限公司
Publication of WO2024073934A1 publication Critical patent/WO2024073934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Definitions

  • the present invention relates to a lithium primary battery, in particular to a lithium primary battery containing lithium tris(boron trifluoride) phosphate and an electrolyte thereof.
  • Lithium primary batteries use metallic lithium as the negative electrode, so they have the advantages of high energy density and low self-discharge rate, making them widely used in portable electronic products, medical equipment, military equipment and other fields.
  • the currently more mature lithium primary battery systems mainly include lithium/carbon fluoride batteries, lithium/manganese dioxide batteries, lithium/sulfur dioxide, lithium/ferrous sulfide batteries, etc.
  • lithium/manganese dioxide batteries are lithium primary batteries that are currently widely used in commercial applications.
  • the lithium salt in its electrolyte formula is mainly lithium perchlorate. Lithium perchlorate has high conductivity and good compatibility with electrode active materials, but the chlorine in lithium perchlorate is positive 7, which makes the anion extremely oxidizing. In some high temperature or over-discharge scenarios, once a large-capacity lithium primary battery has an accident, lithium perchlorate may undergo a strong redox reaction with organic solvents to cause explosions or fires, posing a safety hazard.
  • lithium trifluoromethanesulfonate instead of lithium perchlorate.
  • problems such as low electrical conductivity and certain corrosion to the lithium negative electrode, resulting in many shortcomings such as decreased battery discharge and storage performance and increased costs.
  • the present invention proposes a lithium primary battery, which uses a new type of fluorine-containing lithium phosphate salt in its electrolyte, supplemented by a suitable organic solvent, to achieve a significant improvement in the capacity and high-temperature storage performance of the lithium primary battery, while improving the safety performance of the battery.
  • a lithium primary battery comprises a positive electrode, a negative electrode, a separator arranged between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte comprises a lithium salt and an organic solvent, and the lithium salt comprises lithium tris(boron trifluoride) phosphate having a structure represented by the following formula (I):
  • the organic solvent includes a combination of cyclic carbonate and at least one of linear ether and cyclic ether with 1 oxygen atom, and the organic solvent does not include cyclic ether with 2 oxygen atoms or more.
  • the main lithium salt of the present invention lithium tri(boron trifluoride) phosphate
  • the lithium tri(boron trifluoride) phosphate of the present invention can be obtained by reacting lithium phosphate with boron trifluoride (gas or complex), and then evaporating and removing excess boron trifluoride to obtain a pure product.
  • the lithium salt has a high solubility, and can reach a concentration of more than 40% in carbonate esters, and is a very suitable new type of lithium battery electrolyte.
  • the inventors have found through research that when there is a cyclic ether with an oxygen atom number ⁇ 2 in the solvent, due to the presence of the BF3 group in lithium tri(boron trifluoride) phosphate, the cyclic ether with an oxygen atom number ⁇ 2 (such as 1,3-dioxolane, 1,4-dioxolane, etc.) will be induced to polymerize, resulting in increased viscosity and abnormal chromaticity, which will cause the electrolyte to be unable to be used normally.
  • the cyclic ether with an oxygen atom number of 1 has much higher stability and is not prone to polymerization induced by the lithium salt.
  • the organic solvent of the present invention does not include a cyclic ether with an oxygen atom number ⁇ 2, but may include a cyclic ether with an oxygen atom number of 1, such as tetrahydrofuran, 2-methyltetrahydrofuran, etc.
  • the lithium tri(boron trifluoride) phosphate accounts for 5% to 35% of the total mass of the electrolyte, preferably 8% to 20%.
  • the lithium salt may also include at least one of lithium trifluoromethanesulfonate (LiTFA), lithium perchlorate (LiClO 4 ), and lithium nitrate (LiNO 3 ), and the amount used accounts for 0.5% to 10.0% of the total mass of the electrolyte, preferably 0.5% to 5%.
  • LiTFA lithium trifluoromethanesulfonate
  • LiClO 4 lithium perchlorate
  • LiNO 3 lithium nitrate
  • the presence of a small amount of lithium perchlorate can enhance the conductivity of the electrolyte
  • the presence of a small amount of lithium nitrate can improve the discharge performance and storage performance of the battery
  • the presence of a small amount of lithium trifluoromethanesulfonate can improve the safety of the battery during overdischarge.
  • the preferred amount of these added lithium salts is 1% to 5% by mass.
  • the organic solvent of the present invention comprises 5% to 65% of cyclic carbonate, 20% to 70% of linear ether and 0 to 40% of cyclic ether with 1 oxygen atom, wherein the cyclic carbonate is selected from at least one of ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate and fluoroethylene carbonate;
  • the linear ether is a low-viscosity linear ether, selected from at least one of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, ethylene glycol diethyl ether and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether.
  • the organic solvent is composed of 10-60% cyclic carbonate, 25-70% linear ether and 0-40% cyclic ether with 1 oxygen atom; the cyclic ether with 1 oxygen atom is selected from tetrahydrofuran and/or 2-methyltetrahydrofuran.
  • the organic solvent is composed of 20-50% cyclic carbonate, 25-60% linear ether and 5-30% cyclic ether with 1 oxygen atom.
  • the organic solvent is composed of 30% to 50% cyclic carbonate and 50% to 70% linear ether; the cyclic carbonate is selected from at least one of propylene carbonate and ethylene carbonate; the linear ether is selected from at least one of ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; considering that ethylene carbonate is easy to solidify at room temperature (melting point 37°C), which is not good for the low-temperature performance of lithium primary batteries, more preferably, the organic solvent includes 30% to 45% propylene carbonate and 55% to 70% ethylene glycol dimethyl ether.
  • the lithium primary battery of the present invention is different from the lithium secondary battery and belongs to the type of non-rechargeable lithium battery.
  • Its positive electrode is prepared from at least one of manganese dioxide, graphite fluoride, carbon fluoride, V2O5 , CuO, CuS, and FeS2 ;
  • the negative electrode is prepared from metal lithium and/or lithium alloy, usually a lithium metal sheet;
  • the diaphragm is at least one of a glass fiber diaphragm, a polytetrafluoroethylene diaphragm, a polyethylene diaphragm, a polypropylene diaphragm, a polyethylene-polypropylene combination multilayer diaphragm, and a special paper diaphragm.
  • the present invention also provides an electrolyte for a lithium primary battery, the electrolyte comprising: lithium tri(boron trifluoride) phosphate, cyclic carbonate, linear ether and cyclic ether with an oxygen atom number of 1, and does not contain cyclic ether with an oxygen atom number ⁇ 2.
  • the lithium tri(boron trifluoride) phosphate accounts for 5% to 35% of the total mass of the electrolyte
  • the cyclic carbonate accounts for 20% to 50% of the total mass of the electrolyte
  • the linear ether accounts for 25% to 70% of the total mass of the electrolyte
  • the cyclic ether with an oxygen atom number of 1 accounts for 0% to 40% of the total mass of the electrolyte
  • the cyclic carbonate is selected from propylene carbonate and/or ethylene carbonate
  • the linear ether is selected from at least one of ethylene glycol dimethyl ether and/or diethylene glycol dimethyl ether
  • the cyclic ether with an oxygen atom number of 1 is tetrahydrofuran and/or 2-methyltetrahydrofuran.
  • the electrolyte is composed of lithium tris(boron trifluoride) phosphate, cyclic carbonate and linear ether, wherein the lithium tris(boron trifluoride) phosphate accounts for 8% to 20% of the total mass of the electrolyte, the cyclic carbonate accounts for 20% to 50% of the total mass of the electrolyte, and the linear ether accounts for 40% to 70% of the total mass of the electrolyte.
  • the electrolyte is composed of lithium tris(boron trifluoride) phosphate, a lithium-assisting salt, a cyclic carbonate and a linear ether, wherein the lithium tris(boron trifluoride) phosphate accounts for 5% to 25% of the total mass of the electrolyte, the lithium-assisting salt is selected from at least one of lithium trifluoromethanesulfonate, lithium perchlorate and lithium nitrate, and its usage accounts for 0.5% to 10% of the total mass of the electrolyte; the cyclic carbonate accounts for 20% to 50% of the total mass of the electrolyte, and the linear ether accounts for 25% to 70% of the total mass of the electrolyte.
  • the electrolyte described in the present invention is only applicable to lithium primary batteries and is not applicable to lithium secondary batteries.
  • the present invention has the following beneficial effects:
  • the present invention adopts lithium tri(boron trifluoride) phosphate as the main lithium salt of the lithium primary battery electrolyte.
  • a specific organic solvent it not only significantly increases the open circuit voltage and discharge capacity of the battery, improves the high temperature storage performance of the battery, but also improves the safety performance of the battery.
  • FIG1 is a comparison diagram of the constant resistance discharge voltage capacity curves of lithium primary batteries prepared by the electrolytes of Example 1 of the present invention and Comparative Example 1 at room temperature at 1 k ⁇ ;
  • Example 2 is a comparison chart of 1 k ⁇ discharge capacities of lithium primary batteries (two button cells each) prepared by the electrolytes of Example 1 of the present invention and Comparative Example 1 after being stored at a high temperature of 60° C. for 7 days and then placed at room temperature.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 30% of propylene carbonate (PC), 60% of ethylene glycol dimethyl ether (DME), and 10% of lithium tri(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • lithium tri(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 28.33% of propylene carbonate (PC), 56.67% of ethylene glycol dimethyl ether (DME), and 15% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly, thereby preparing a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly, thereby preparing a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 26.67% of propylene carbonate (PC), 53.33% of ethylene glycol dimethyl ether (DME), and 20% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly, thereby preparing a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly, thereby preparing a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 23.33% of propylene carbonate (PC), 46.67% of ethylene glycol dimethyl ether (DME), and 30% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly, thereby preparing a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly, thereby preparing a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 31.67% of propylene carbonate (PC), 63.33% of ethylene glycol dimethyl ether (DME), and 5% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 30% of propylene carbonate (PC), 60% of ethylene glycol dimethyl ether (DME), 8% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) and 2% of lithium trifluoromethanesulfonate (LiTFA) are mixed and stirred uniformly to prepare a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • LiTFA lithium trifluoromethanesulfonate
  • This embodiment provides an electrolyte for a lithium primary battery.
  • the electrolyte is prepared by the following steps: under the protection of an inert gas, 30% of propylene carbonate (PC), 60% of ethylene glycol dimethyl ether (DME), 6% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) and 4% of lithium perchlorate (LiClO 4 ) are stirred uniformly by mass percentage to prepare an electrolyte for a lithium primary battery.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • LiClO 4 lithium perchlorate
  • This embodiment provides an electrolyte for a lithium primary battery.
  • the electrolyte is prepared by the following steps: under the protection of an inert gas, 30% of propylene carbonate (PC), 60% of ethylene glycol dimethyl ether (DME), 4% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) and 6% of lithium perchlorate (LiClO 4 ) are stirred uniformly by mass percentage to prepare an electrolyte for a lithium primary battery.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • LiClO 4 lithium perchlorate
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 20% of propylene carbonate (PC), 80% of ethylene glycol dimethyl ether (DME), and 10% of lithium tri(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • lithium tri(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 45% of propylene carbonate (PC), 45% of ethylene glycol dimethyl ether (DME), and 10% of lithium tri(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • 10% of lithium tri(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 30% of ethylene carbonate (EC), 60% of ethylene glycol dimethyl ether (DME), and 10% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass to prepare a lithium primary battery electrolyte.
  • an inert gas 30% of ethylene carbonate (EC), 60% of ethylene glycol dimethyl ether (DME), and 10% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass to prepare a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 30% of propylene carbonate (PC), 60% of diethylene glycol dimethyl ether (DGDE), and 10% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DGDE diethylene glycol dimethyl ether
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 30% of fluoroethylene carbonate (FEC), 60% of ethylene glycol dimethyl ether (DME), and 10% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • FEC fluoroethylene carbonate
  • DME ethylene glycol dimethyl ether
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • the present embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 27% of propylene carbonate (PC), 18% of tetrahydrofuran (THF), 45% of ethylene glycol dimethyl ether (DME), and 10% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • PC propylene carbonate
  • THF tetrahydrofuran
  • DME ethylene glycol dimethyl ether
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 10% of ethylene carbonate (EC), 40% of tetrahydrofuran (THF), 40% of ethylene glycol dimethyl ether (DME), and 10% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • EC ethylene carbonate
  • THF tetrahydrofuran
  • DME ethylene glycol dimethyl ether
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • This comparative example is the same as that of Example 1, except that lithium bis(trifluorosulfonyl)imide (LiTFSI) is used instead of lithium tri(boron trifluoride) phosphate as the lithium salt, and other operations remain unchanged to obtain a lithium primary battery electrolyte.
  • LiTFSI lithium bis(trifluorosulfonyl)imide
  • This comparative example provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 30% of propylene carbonate (PC), 50% of ethylene glycol dimethyl ether (DME), 10% of 1,3-dioxolane (DOL), and 10% of lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • PC propylene carbonate
  • DME ethylene glycol dimethyl ether
  • DOL 1,3-dioxolane
  • lithium tris(boron trifluoride) phosphate (recorded as lithium salt of formula I) are mixed uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • This embodiment provides an electrolyte for a lithium primary battery, and the electrolyte is prepared by the following steps: under the protection of an inert gas, 90% of ethylene glycol dimethyl ether (DME) and 10% of lithium tri(boron trifluoride) phosphate are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • DME ethylene glycol dimethyl ether
  • lithium tri(boron trifluoride) phosphate are stirred uniformly by mass percentage to prepare a lithium primary battery electrolyte.
  • the electrolytes prepared in the above embodiments and comparative examples are respectively injected into lithium primary batteries, and battery performance tests are performed.
  • the lithium primary battery includes a positive electrode, a negative electrode, a diaphragm, an electrolyte, and battery auxiliary materials.
  • the steps for preparing lithium manganese dioxide CR2025 button batteries are as follows: manganese dioxide is used as the positive electrode material, and the positive electrode sheet is made by general technology; metallic lithium is used as the negative electrode material, and the negative electrode lithium sheet is made by general technology; a lithium battery-specific diaphragm is inserted between the positive and negative electrode sheets.
  • the negative electrode sheet, the diaphragm, and the positive electrode sheet are stacked in order according to a regular pattern, so that the diaphragm is placed between the positive and negative electrodes to play an isolating role, and placed in a CR2025 special button battery shell, and the electrolytes obtained in the above embodiments and comparative examples are respectively injected, and the button battery sealing machine is used to seal, and the corresponding CR2025 button lithium manganese batteries are obtained after cleaning the button battery surface.
  • the performance test method used is as follows:
  • the lithium salt of formula (I) has a higher open circuit voltage value than LiClO 4 and has a larger capacity. After being stored at a high temperature of 60°C, the battery voltage drop is small, and the 1 k ⁇ discharge capacity after storage is higher. Therefore, the primary electrolyte of the present invention has a higher energy density and good thermal stability.
  • a combination of a lithium salt of formula (I) with a cyclic carbonate, a linear ether and a cyclic ether solvent having an oxygen atom number of 1 can provide good battery capacity characteristics and storage stability.
  • the constant resistance discharge capacity of the battery is much lower than that of Example 1. This is because when only linear ethers are retained, the conductivity of the electrolyte is too low, affecting the various performances of the battery.
  • the electrolyte of the lithium primary battery which contains a combination of a lithium salt of formula (I) with a cyclic carbonate, a linear ether and a cyclic ether solvent with 1 oxygen atom, can significantly increase the capacity of the lithium primary battery, improve the energy density of the battery, and improve the high-temperature storage performance of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Primary Cells (AREA)

Abstract

本发明公开了锂一次电池及其电解液,所述锂一次电池包括正极、负极、间隔设置于正极和负极之间的隔膜和电解液,所述电解液包括锂盐和有机溶剂,所述锂盐包括三(三氟化硼)合磷酸锂,所述有机溶剂包括环状碳酸酯和线性醚、氧原子数为1的环状醚中至少一种的组合,且所述有机溶剂不包括氧原子数≥2的环状醚。本发明采用特定含氟磷酸锂盐作为电解液的主锂盐,可显著提升锂一次电池的开路电压和容量,同时提升电池的高温存储性能。

Description

一种锂一次电池及其电解液 技术领域
本发明涉及锂一次电池,特别涉及一种包含三(三氟化硼)合磷酸锂的锂一次电池及其电解液。
背景技术
随着电子信息技术及消费电子产品的迅速发展,对电池方面的性能要求也在快速提升,特别是民用携带式电子装置都在往轻型化、微型化方向发展,这就要求为其提供电源的电池具有更高的比能量密度和高功率特性。
锂一次电池使用金属锂作为负极,因而具有高能量密度和低自放电率等优点,使其广泛应用于便携式电子产品、医疗设备、军工设备等领域。当前发展较为成熟的锂一次电池体系主要有锂/氟化碳电池、锂/二氧化锰电池、锂/二氧化硫、锂/硫化亚铁电池等。其中,锂/二氧化锰电池为目前广泛商业应用的锂一次电池,其电解液配方中锂盐主要为高氯酸锂,高氯酸锂电导率高,且与电极活性物质具有良好的兼容性,但高氯酸锂的氯为正7价,使阴离子具有极强的氧化性。在一些高温或过放电场景下,一旦大容量锂一次电池发生意外,高氯酸锂可能与有机溶剂发生强烈氧化还原反应而引发爆炸或起火,存在安全隐患。
之后也有研究提出使用三氟甲磺酸锂替代高氯酸锂,虽然降低了高氯酸锂的易爆性风险,但又带来了电导率低、对锂负极有一定腐蚀等问题,导致电池放电性能和存储性能下降、成本上升等诸多不足。
发明内容
为了解决上述技术问题,本发明提出了一种锂一次电池,通过在其电解液中使用一种新型含氟磷酸锂盐,同时辅以合适的有机溶剂,实现锂一次电池的容量和高温存储性能的显著提升,同时提高电池的安全性能。
本发明的目的是通过以下技术方案实现的:
一种锂一次电池,包括正极、负极、间隔设置于正极和负极之间的隔膜和电解液,其中,所述电解液包括锂盐和有机溶剂,所述锂盐包括下式(I)所示结构的三(三氟化硼)合磷酸锂:
Figure PCTCN2022137462-appb-000001
所述有机溶剂包括环状碳酸酯和线性醚、氧原子数为1的环状醚中至少一种的组合,且所述有机溶剂不包括氧原子数≥2的环状醚。
本发明的主要锂盐三(三氟化硼)合磷酸锂是一种新型的锂电解质,具有成本低、无强氧化性、电导率较高等优点,适合用作锂一次电池的主要电解质。本发明的三(三氟化硼)合磷酸锂可以通过磷酸锂与三氟化硼(气体或络合物)反应获得,再经蒸发脱除多余的三氟化硼后获得纯品。该锂盐的溶解度较高,在碳酸酯中可以达到40%以上的浓度,是非常合适的新型锂电池电解质。
发明人经研究发现,当溶剂中存在氧原子数≥2的环状醚时,由于三(三氟化硼)合磷酸锂中BF 3基团的存在,会诱导氧原子数≥2的环状醚(如1,3-二氧环戊烷、1,4-二氧环己烷等)发生聚合,粘度升高、色度异常,导致电解液不能正常使用。但氧原子数为1的环醚,其稳定性要高得多,不易发生因该锂盐诱导而产生的聚合现象。因而,本发明的有机溶剂不包括氧原子数≥2的环状醚,但可以包含氧原子数为1的环状醚,如四氢呋喃、2-甲基四氢呋喃等。
进一步地,所述三(三氟化硼)合磷酸锂占电解液总质量的5%~35%,优选8%~20%。
本发明的电解液中,锂盐还可以包括三氟甲基磺酸锂(LiTFA)、高氯酸锂(LiClO 4)、硝酸锂(LiNO 3)中的至少一种,用量占电解液总质量的0.5%~10.0%,优选0.5%~5%。少量高氯酸锂的存在可以增强电解液的导电能力,少量硝酸锂的存在可以提高电池的放电性能和存储性能,少量三氟甲基磺酸锂的存在可以提高电池在过放电时的安全性。这些外加的锂盐,其优选的用量是质量百分比1~5%。
进一步地,本发明所述有机溶剂包括5%~65%环状碳酸酯、20%~70%线性醚和0~40%氧原子数为1的环状醚,所述环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯、碳酸1,2-丁烯酯、碳酸2,3-丁烯酯、氟代碳酸乙烯酯中的至少一种;所述线性醚为低粘度线性醚,选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、乙二醇二乙醚、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚中的至少一种。
在一种实施方式中,所述有机溶剂由10~60%环状碳酸酯、25~70%线性醚和0~40%氧原子数为1的环状醚组成;氧原子数为1的环状醚选自四氢呋喃和/或2-甲基四氢呋喃。优选地,所述有机溶剂由20~50%环状碳酸酯、25~60%线性醚和5~30%氧原子数为1的环状醚组成。
在另一种优选的实施方式中,所述有机溶剂由30%~50%环状碳酸酯和50%~70%线性醚组成;所述环状碳酸酯选自碳酸丙烯酯、碳酸乙烯酯中的至少一种;所述线性醚选自乙二醇二甲醚、二乙二醇二甲醚中的至少一种;考虑到碳酸乙烯酯在常温下容易凝固(熔点37℃),对锂一次电池低温性能不利,更为优选地,所述有机溶剂包括30%~45%碳酸丙烯酯和55%~70%乙二醇二甲醚。
本发明锂一次电池不同于锂二次电池,属于不可再充电的锂电池类型。其正极由二氧化锰、氟化石墨、氟化碳、V 2O 5、CuO、CuS、FeS 2中的至少一种制备获得;负极由金属锂和/或锂合金制备获得,通常为锂金属薄片;隔膜为玻纤隔膜、聚四氟乙烯隔膜、聚乙烯隔膜、聚丙烯隔膜以及聚乙烯-聚丙烯组合的多层隔膜、特种纸质隔膜中的至少一种。
本发明还提供一种锂一次电池的电解液,所述电解液包括:三(三氟化硼)合磷酸锂、环状碳酸酯、线性醚和氧原子数为1的环状醚,且不包含氧原子数≥2的环状醚。所述三(三氟化硼)合磷酸锂占电解液总质量的5%~35%,环状碳酸酯占电解液总质量的20%~50%,线性醚占电解液总质量的25%~70%,氧原子数为1的环状醚占电解液总质量的0%~40%;所述环状碳酸酯选自碳酸丙烯酯和/或碳酸乙烯酯,所述线性醚选自乙二醇二甲醚和/或二乙二醇二甲醚中的至少一种,所述氧原子数为1的环醚为四氢呋喃和/或2-甲基四氢呋喃。
在一种优选的实施方式中,所述电解液由三(三氟化硼)合磷酸锂、环状碳 酸酯和线性醚组成,所述三(三氟化硼)合磷酸锂占电解液总质量的8%~20%,环状碳酸酯占电解液总质量的20%~50%,线性醚占电解液总质量的40%~70%。
在另一种具体的实施方式中,所述电解液由三(三氟化硼)合磷酸锂、助锂盐、环状碳酸酯和线性醚组成,所述三(三氟化硼)合磷酸锂占电解液总质量的5%~25%,助锂盐选自三氟甲基磺酸锂、高氯酸锂、硝酸锂中的至少一种,用量占电解液总质量的05%~10%;环状碳酸酯占电解液总质量的20%~50%,线性醚占电解液总质量的25%~70%。
本发明所述电解液仅适用于锂一次电池,并不适用于锂二次电池。
与现有技术相比,本发明具有的有益效果为:
本发明采用三(三氟化硼)合磷酸锂作为锂一次电池电解液的主锂盐,在特定有机溶剂的存在下,不仅显著提电池的开路电压和放电容量,提升电池的高温存储性能,同时还提高了电池的安全性能。
附图说明
图1为本发明实施例1和对比例1的电解液制备获得的锂一次电池的常温1kΩ恒阻放电电压容量曲线对比图;
图2为本发明实施例1和对比例1的电解液制备获得的锂一次电池(各制备两颗扣电)在高温60℃存储7天后搁置在常温下的1kΩ放电容量对比图。
具体实施方式
下面结合具体实施例来对本发明进行进一步说明,但并不将本发明局限于这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
一、电解液配制
实施例1
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将30%的碳酸丙烯酯(PC)、60%乙二醇二 甲醚(DME)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例2
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将28.33%的碳酸丙烯酯(PC)、56.67%乙二醇二甲醚(DME)、15%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例3
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将26.67%的碳酸丙烯酯(PC)、53.33%乙二醇二甲醚(DME)、20%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例4
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将23.33%的碳酸丙烯酯(PC)、46.67%乙二醇二甲醚(DME)、30%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例5
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将31.67%的碳酸丙烯酯(PC)、63.33%乙二醇二甲醚(DME)、5%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例6
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将30%的碳酸丙烯酯(PC)、60%乙二醇二 甲醚(DME)、8%的三(三氟化硼)合磷酸锂(记为式I锂盐)和2%三氟甲基磺酸锂(LiTFA),搅拌均匀,即制成锂一次电池电解液。
实施例7
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将30%的碳酸丙烯酯(PC)、60%乙二醇二甲醚(DME)、6%的三(三氟化硼)合磷酸锂(记为式I锂盐)和4%高氯酸锂(LiClO 4),搅拌均匀,即制成锂一次电池电解液。
实施例8
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将30%的碳酸丙烯酯(PC)、60%乙二醇二甲醚(DME)、4%的三(三氟化硼)合磷酸锂(记为式I锂盐)和6%高氯酸锂(LiClO 4),搅拌均匀,即制成锂一次电池电解液。
实施例9
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将20%的碳酸丙烯酯(PC)、80%乙二醇二甲醚(DME)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例10
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将45%的碳酸丙烯酯(PC)、45%乙二醇二甲醚(DME)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例11
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将30%的碳酸乙烯酯(EC)、60%乙二醇二 甲醚(DME)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例12
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将30%的碳酸丙烯酯(PC)、60%二乙二醇二甲醚(DGDE)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例13
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将30%的氟代碳酸乙烯酯(FEC)、60%乙二醇二甲醚(DME)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例14
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将27%的碳酸丙烯酯(PC)、18%的四氢呋喃(THF)、45%乙二醇二甲醚(DME)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
实施例15
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将10%的碳酸乙烯酯(EC)、40%的四氢呋喃(THF)、40%乙二醇二甲醚(DME)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
对比例1
本对比例的操作同实施例1,区别仅在于:采用高氯酸锂(LiClO 4)代替三(三氟化硼)合磷酸锂作为锂盐使用,其他操作不变,获得锂一次电池电解液。
对比例2
本对比例的操作同实施例1,区别仅在于:采用双(三氟磺酰)亚胺锂(LiTFSI)代替三(三氟化硼)合磷酸锂作为锂盐使用,其他操作不变,获得锂一次电池电解液。
对比例3
本对比例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将30%的碳酸丙烯酯(PC)、50%乙二醇二甲醚(DME)、10%1,3-二氧戊烷(DOL)、10%的三(三氟化硼)合磷酸锂(记为式I锂盐),搅拌均匀,即制成锂一次电池电解液。
对比例4
本实施例提供锂一次电池的电解液,所述电解液通过以下步骤制备:在惰性气体的保护下,按质量百分数计,将90%乙二醇二甲醚(DME)、10%的三(三氟化硼)合磷酸锂,搅拌均匀,即制成锂一次电池电解液。
二、电池制作及性能测试
将上述实施例及对比例配制的电解液分别注入锂一次电池中,并进行电池性能测试。所述锂一次电池包括正极、负极、隔膜、电解液以及电池辅料。锂二氧化锰CR2025扣电制备步骤如下:采用二氧化锰为正极材料,以通用技术制作正极片;采用金属锂为负极材料,以通用技术制作负极锂片;正负极片之间插入锂电池专用隔膜。然后将负极片、隔膜、正极片按规律依次堆叠,使隔膜置于正负极间起隔离作用,放入CR2025专用扣式电池外壳内,分别注入上述各实施例和对比例所得电解液,使用扣电封口机封口,清洁扣电表面后即得到各相应的CR2025扣式锂锰电池。
采用的性能测试方法如下:
(1)开路电压:制作好的各CR2025扣式锂锰电池常温搁置24h小时,保证电解液完全浸润电极片和隔膜之后进行开路电压测试。
(2)常温恒阻放电测试:在25℃±2℃环境下中,电池设置1kΩ恒阻放电至下限电压2.0V,计为放电容量C1。
(3)60℃高温存储7天测试电池压降和存储后电池放电容量:在25℃环境中,测试电池初始开路电压,记录为V1,然后将电池搁置在60℃高温烘箱中搁置7后取出后搁置在常温下放置5h以上测试存储后电池的开路电压,记录为V2,ΔV=(V1-V2)数值为存储压降值。测试完电压后,将电池在25℃±2℃环境下中,电池设置1kΩ恒阻放电至下限电压2.0V,计为存储后放电容量C2。
性能测试结果如下表1所示:
表1 性能测试结果
Figure PCTCN2022137462-appb-000002
Figure PCTCN2022137462-appb-000003
根据上表1及附图1、2所示,比较实施例1和对比例1,使用式(I)锂盐相比LiClO 4具有更高的开路电压值,且具有更大的容量,经过高温60℃存储后,电池压降较小,且存储后1kΩ放电容量更高,由此,本发明一次电解液具有较高的能量密度和良好的热稳定性。
比较实施例1~5的测试结果可知,式(I)锂盐的添加量也会影响电池的放电容量和高温存储等性能;式(I)锂盐的添加量为10%~20%时,锂一次电池综合性能最佳。比较实施例6~8可知,式(I)锂盐分别与LiTFA、LiClO 4混合使用时,电池整体保持较好的容量和存储特性,但添加LiClO 4后高温存储压降较大。
根据本发明的研究,含有式(I)锂盐搭配环状碳酸酯、线性醚类和氧原子数为1的环状醚溶剂的组合,可以提供良好的电池容量特性和存储稳定性。另外,也需要调节锂盐和环状碳酸酯和线性醚类溶剂的添加量。在溶剂体系筛选中,不含环状碳酸酯溶剂,仅保留线性醚类溶剂时(对比例4),电池恒阻放电容量远低于实施例1,这是由于仅保留线性醚时,电解液的电导率太低,影响电池的各项性能。另外,使用式(I)锂盐时,若使用含氧原子数≥2的环状醚类溶剂,会引发溶剂聚合,电解液粘度增加,恶化锂一次电池性能(对比例3)。
综上所述,本申请提供的锂一次电池的电解液,含有式(I)锂盐搭配环状碳酸酯、线性醚类和氧原子数为1的环状醚溶剂的组合,可以显著增大锂一次电池的容量,提升电池的能量密度,并能改善电池的高温存储性能。

Claims (12)

  1. 一种锂一次电池,包括正极、负极、间隔设置于正极和负极之间的隔膜和电解液,其特征在于:所述电解液包括锂盐和有机溶剂,所述锂盐包括下式(I)所示结构的三(三氟化硼)合磷酸锂:
    Figure PCTCN2022137462-appb-100001
    所述有机溶剂包括环状碳酸酯和线性醚、氧原子数为1的环状醚中至少一种的组合,且所述有机溶剂不包括氧原子数≥2的环状醚。
  2. 根据权利要求1所述的锂一次电池,其特征在于:所述三(三氟化硼)合磷酸锂占电解液总质量的5%~35%。
  3. 根据权利要求2所述的锂一次电池,其特征在于:所述三(三氟化硼)合磷酸锂占电解液总质量的5%~20%。
  4. 根据权利要求1-3任一所述的锂一次电池,其特征在于:所述锂盐还包括三氟甲基磺酸锂(LiTFA)、高氯酸锂(LiClO 4)、硝酸锂(LiNO 3)中的至少一种,用量占电解液总质量的0.5%~10.0%。
  5. 根据权利要求1所述的锂一次电池,其特征在于:所述有机溶剂包括5%~65%环状碳酸酯、20%~70%线性醚、0~40%氧原子数为1的环状醚,所述环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯、碳酸1,2-丁烯酯、碳酸2,3-丁烯酯、氟代碳酸乙烯酯中的至少一种;所述线性醚选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、乙二醇甲乙醚、乙二醇二乙醚、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚中的至少一种;所述氧原子为1的环状醚选自四氢呋喃、2-甲基四氢呋喃中的至少一种。
  6. 根据权利要求5所述的锂一次电池,其特征在于:所述有机溶剂包括30%~50%环状碳酸酯和50%~70%线性醚;所述环状碳酸酯选自碳酸丙烯酯;所述线性醚选自乙二醇二甲醚、乙二醇甲乙醚或二乙二醇二甲醚中的至少一种。
  7. 根据权利要求1所述的锂一次电池,其特征在于:所述正极由二氧化锰、氟化石墨、氟化碳、V 2O 5、CuO、CuS、FeS 2中的至少一种制备获得。
  8. 根据权利要求1所述的锂一次电池,其特征在于:所述负极由金属锂和/或锂合金制备获得。
  9. 根据权利要求1所述的锂一次电池,其特征在于:所述隔膜为玻纤隔膜、聚四氟乙烯隔膜、聚乙烯隔膜、聚丙烯隔膜以及聚乙烯-聚丙烯组合的多层隔膜、特种纸质隔膜中的至少一种。
  10. 一种用于锂一次电池的电解液,其特征在于:所述电解液包括:三(三氟化硼)合磷酸锂、环状碳酸酯、线性醚和氧原子数为1的环状醚,且所述电解液不包括氧原子数≥2的环状醚;所述三(三氟化硼)合磷酸锂占电解液总质量的5%~35%,环状碳酸酯占电解液总质量的20%~50%,线性醚占电解液总质量的25%~70%,氧原子数为1的环状醚占电解液总质量的0%~40%;所述环状碳酸酯为碳酸丙烯酯,所述线性醚为乙二醇二甲醚和/或二乙二醇二甲醚,所述氧原子数为1的环醚为四氢呋喃和/或2-甲基四氢呋喃。
  11. 根据权利要求10所述的用于锂一次电池的电解液,其特征在于:所述电解液包括:三(三氟化硼)合磷酸锂、环状碳酸酯和线性醚,所述三(三氟化硼)合磷酸锂占电解液总质量的8%~20%,环状碳酸酯占电解液总质量的20%~50%,线性醚占电解液总质量的40%~70%。
  12. 根据权利要求10所述的用于锂一次电池的电解液,其特征在于:所述电解液包括:三(三氟化硼)合磷酸锂、助锂盐、环状碳酸酯和线性醚,所述三(三氟化硼)合磷酸锂占电解液总质量的5%~25%,助锂盐选自三氟甲基磺酸锂、高氯酸锂、硝酸锂中的至少一种,用量占电解液总质量的0.5%~10%;环状碳酸酯占电解液总质量的20%~50%,线性醚占电解液总质量的25%~70%。
PCT/CN2022/137462 2022-10-08 2022-12-08 一种锂一次电池及其电解液 WO2024073934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211220911.6A CN117895017A (zh) 2022-10-08 2022-10-08 一种锂一次电池及其电解液
CN202211220911.6 2022-10-08

Publications (1)

Publication Number Publication Date
WO2024073934A1 true WO2024073934A1 (zh) 2024-04-11

Family

ID=90607589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137462 WO2024073934A1 (zh) 2022-10-08 2022-12-08 一种锂一次电池及其电解液

Country Status (2)

Country Link
CN (1) CN117895017A (zh)
WO (1) WO2024073934A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211916A (ja) * 1999-01-20 2000-08-02 Morita Kagaku Kogyo Kk 六フッ化リン酸リチウムまたは四フッ化ホウ酸リチウムを含有する有機溶液の処理方法
JP2014165136A (ja) * 2013-02-27 2014-09-08 Sekisui Chem Co Ltd 電解質及びリチウムイオン二次電池
CN105103361A (zh) * 2013-04-25 2015-11-25 三井化学株式会社 电池用非水电解液、新的化合物、高分子电解质和锂二次电池
CN106785047A (zh) * 2016-12-27 2017-05-31 中国科学院上海有机化学研究所 电解液、电解质、聚合物电解质,其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211916A (ja) * 1999-01-20 2000-08-02 Morita Kagaku Kogyo Kk 六フッ化リン酸リチウムまたは四フッ化ホウ酸リチウムを含有する有機溶液の処理方法
JP2014165136A (ja) * 2013-02-27 2014-09-08 Sekisui Chem Co Ltd 電解質及びリチウムイオン二次電池
CN105103361A (zh) * 2013-04-25 2015-11-25 三井化学株式会社 电池用非水电解液、新的化合物、高分子电解质和锂二次电池
CN106785047A (zh) * 2016-12-27 2017-05-31 中国科学院上海有机化学研究所 电解液、电解质、聚合物电解质,其制备方法与应用

Also Published As

Publication number Publication date
CN117895017A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN102918701B (zh) 用于锂离子电池的聚醚官能化的氧化还原穿梭添加剂
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
JP5314885B2 (ja) 非水電解液及びそれを備えた非水電解液二次電源
US8586250B2 (en) Non-aqueous electrolyte solution for storage battery devices, and storage battery device
KR20110008172A (ko) 2 차 전지용 비수 전해액 및 2 차 전지
US8568931B2 (en) Non-aqueous electrolyte solution for secondary batteries
CN101803100A (zh) 电解液
CN106602129B (zh) 一种多离子电池及其制备方法
US20130130102A1 (en) Ether compound, electrolyte composition for non-aqueous battery, binder composition for non-aqueous battery electrode, slurry composition for non-aqueous battery electrode, electrode for non-aqueous battery and non-aqueous battery
JP2007200605A (ja) 非水電解液及びそれを備えた非水電解液電池
CN109585754B (zh) 用于锂电池的复合膜、用于锂电池的正极以及锂电池
WO2022213667A1 (zh) 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010050021A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
CN101202359B (zh) 一种添加剂组合物以及含该添加剂组合物的电解液和锂离子二次电池
US20170222277A1 (en) Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
EP3832773A1 (en) Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and apparatus
WO2005064734A1 (ja) 電池用非水電解液及びそれを備えた非水電解液電池、並びにポリマー電池用電解質及びそれを備えたポリマー電池
JPWO2005104289A1 (ja) 電池用非水電解液及びそれを備えた非水電解液電池
CN101599556A (zh) 一种电解液添加剂及含该添加剂的电解液及锂离子电池
JP2010015717A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
CN101740821B (zh) 一种电解液以及含有该电解液的锂离子二次电池
CN116565309A (zh) 一种锂电池电解液及锂离子电池
WO2024073934A1 (zh) 一种锂一次电池及其电解液
JP2010015720A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961291

Country of ref document: EP

Kind code of ref document: A1