WO2024071285A1 - 半導体デバイスの製造方法、処理液、キット - Google Patents

半導体デバイスの製造方法、処理液、キット Download PDF

Info

Publication number
WO2024071285A1
WO2024071285A1 PCT/JP2023/035359 JP2023035359W WO2024071285A1 WO 2024071285 A1 WO2024071285 A1 WO 2024071285A1 JP 2023035359 W JP2023035359 W JP 2023035359W WO 2024071285 A1 WO2024071285 A1 WO 2024071285A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
group
semiconductor device
mass
treatment liquid
Prior art date
Application number
PCT/JP2023/035359
Other languages
English (en)
French (fr)
Inventor
哲也 上村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024071285A1 publication Critical patent/WO2024071285A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, a processing solution, and a kit.
  • CMP chemical mechanical polishing
  • Patent Document 1 discloses a polishing liquid for use in CMP processing that has excellent polishing properties for silicon oxide and silicon nitride, the polishing liquid containing surface-modified colloidal silica and a buffer other than phosphoric acid, in which the buffer is a compound having a pKa within the range of X ⁇ 1 when the pH value of the polishing liquid is X, the polishing liquid having an electrical conductivity of 200 ⁇ S/cm, and a pH of 2 to 6.
  • Patent Document 1 The inventors found that when they applied the polishing liquid described in Patent Document 1 to a workpiece containing tungsten, many defects were generated on the tungsten depending on the processing method used after the CMP process, and that when applying this to the manufacture of semiconductor devices, it was necessary to consider the CMP process and the processing method thereafter.
  • a method for manufacturing a semiconductor device comprising: after the step 1, a step 2 of subjecting the workpiece to a cleaning treatment using a treatment liquid containing a specific compound selected from the group consisting of a compound represented by formula (1) described below and a polymer having an anionic group, and an organic acid different from the specific compound.
  • the surface-modified colloidal silica has at least one functional group selected from the group consisting of -SO 3 - M + , -OSO 3 - M + , -PO 3 2- M + , -OPO 3 2- M + , and -NH 2 on the surface, wherein the M + represents a cation; the weight average molecular weight of the polymer having an anionic group is 1,000 to 50,000;
  • [3] The method for producing a semiconductor device according to [2], wherein the surface-modified colloidal silica has at least one functional group selected from the group consisting of -SO 3 - M + , -OSO 3 - M + , and -NH 2 on the surface.
  • [4] The method for producing a semiconductor device according to any one of [1] to [3], wherein a mass ratio of a content of the organic acid to a content of the specific compound is 1 to 150.
  • [5] The method for producing a semiconductor device according to any one of [1] to [4], wherein the treatment liquid has a pH of 3.0 to 8.0.
  • [6] The method for producing a semiconductor device according to any one of [1] to [5], wherein the content of the organic acid is 11.0 to 55.0 mass % based on the total mass of the components excluding the solvent in the treatment liquid.
  • the compound represented by formula (1) comprises at least one selected from the group consisting of trimellitic acid, 4-hydroxyphthalic acid, 4-aminophthalic acid, 4-sulfophthalic acid, 5-sulfosalicylic acid, 2,5-dihydroxybenzoic acid, 5-aminosalicylic acid, 4-hydroxyisophthalic acid, 5-hydroxyanthranilic acid, 2,5-diaminobenzoic acid, 5-sulfoanthranilic acid, amidol, 1,3-phenylenediamine-4-sulfonic acid, 3-amino-4-hydroxybenzoic acid, and 3-amino-4-hydroxybenzenesulfonic acid.
  • the polymer having an anionic group contains a repeating unit derived from acrylic acid or a repeating unit derived from maleic acid, The method for producing a semiconductor device according to any one of [1] to [7], wherein the polymer having an anionic group has a weight average molecular weight of 1,000 to 10,000.
  • [16] The method for producing a semiconductor device according to [15], wherein a mass ratio of a content of the organic acid other than the amino acid and its derivative to a content of the amino acid and its derivative is 0.5 to 20.
  • the treatment liquid contains an amino alcohol and an antibacterial agent, The method for manufacturing a semiconductor device according to any one of [1] to [16], wherein a mass ratio of the content of the amino alcohol to the content of the antibacterial agent is 5 to 100.
  • a treatment liquid used after a step of subjecting a workpiece containing tungsten to a chemical mechanical polishing treatment using a polishing liquid containing a transition metal ion, a chelating agent, and surface-modified colloidal silica comprising: A treatment liquid comprising a specific compound selected from the group consisting of a compound represented by formula (1) described below and a polymer having an anionic group, and an organic acid different from the specific compound.
  • a polishing liquid containing a transition metal ion, a chelating agent, and a surface-modified colloidal silica comprising a treatment liquid containing a specific compound selected from the group consisting of a compound represented by formula (1) described below and a polymer having an anionic group, and an organic acid different from the specific compound.
  • the present invention it is possible to provide a method for manufacturing a semiconductor device which, when applied to a workpiece containing tungsten, is excellent in terms of defect removal properties on tungsten. Also provided are a processing solution and a kit for use in the above-mentioned method for manufacturing a semiconductor device.
  • a numerical range expressed using “to” means a range that includes the numerical values before and after “to” as the lower and upper limits.
  • the “content” of the component means the total content of those two or more components.
  • the total mass of the components in the polishing liquid excluding the solvent means the total mass of all the components contained in the polishing liquid other than the solvent such as water and organic solvent
  • the total mass of the components in the treatment liquid excluding the solvent means the total mass of all the components contained in the treatment liquid other than the solvent such as water and organic solvent.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as "substituents, etc.") represented by specific symbols, or when a plurality of substituents, etc. are simultaneously specified, it means that the respective substituents, etc. may be the same or different from each other. This also applies to the specification of the number of substituents, etc.
  • the bonding direction of the divalent group described in this specification is not limited unless otherwise specified.
  • Y when Y is -COO- in a compound represented by the formula "X-Y-Z", Y may be -CO-O- or -O-CO-.
  • the compound may be "X-CO-O-Z" or "X-O-CO-Z".
  • ppm means “parts-per-million (10 -6 )
  • ppb means “parts-per-billion (10 -9 )
  • ppt means “arts-per-trillion (10 -12 ).
  • Mw weight average molecular weight
  • PDI polydispersity index
  • the method for manufacturing a semiconductor device of the present invention includes step 1 of performing a chemical mechanical polishing treatment on a workpiece containing tungsten, using a polishing liquid containing a transition metal ion, a chelating agent, and surface-modified colloidal silica, and step 2 of performing, after step 1, a cleaning treatment on the workpiece, using a treatment liquid containing a specific compound selected from the group consisting of a compound represented by formula (1) described below and a polymer having an anionic group, and an organic acid different from the specific compound.
  • the polishing liquid used in the CMP treatment of the workpiece containing tungsten has excellent polishing efficiency and is easy to reduce defects after the CMP treatment, by containing transition metal ions, a chelating agent, and surface-modified colloidal silica that suppresses aggregation and adhesion of abrasive grains.
  • the treatment liquid used for cleaning after the CMP treatment has an organic acid and a specific compound, so that the solubility of the residue is improved and the electrical properties of the residue surface and the workpiece surface are appropriately adjusted.
  • electrostatic repulsion occurs between the residue containing surface-modified colloidal silica and the workpiece containing tungsten, and the adsorption of the residue to the workpiece surface is suppressed, and as a result, it is considered that the manufacturing method has excellent defect removal properties.
  • defect removability on tungsten after all steps of the present manufacturing method are performed will be simply referred to as "defect removability.” Furthermore, excellent defect removability will also be referred to as “the effect of the present invention is superior.” Each step will be described in detail below.
  • Step 1 This manufacturing method includes a step 1 of performing a chemical mechanical polishing process on a workpiece containing tungsten, using a polishing liquid containing transition metal ions, a chelating agent, and surface-modified colloidal silica.
  • a polishing liquid containing transition metal ions, a chelating agent, and surface-modified colloidal silica.
  • the workpiece is not particularly limited as long as it contains tungsten.
  • the workpiece may be a substrate having a layer containing tungsten (tungsten layer).
  • the location where the tungsten layer is present may be, for example, any of the front and back surfaces, side surfaces, and inside grooves of the substrate.
  • the substrate has a tungsten layer, this includes not only the case where the tungsten layer is directly on the surface of the substrate, but also the case where the tungsten layer is on the substrate via another layer.
  • the tungsten layer may be disposed on only one main surface of the substrate, or on both main surfaces of the substrate.
  • the tungsten layer may be disposed over the entire main surface of the substrate, or over a portion of the main surface of the substrate.
  • the tungsten layer includes tungsten. More specifically, the components of the tungsten layer include, for example, tungsten alone, an alloy of tungsten and other metals, tungsten nitride, tungsten oxide, tungsten oxynitride, and tungsten silicide, and preferably tungsten alone or an alloy of tungsten and other metals.
  • Examples of the other metals include molybdenum (Mo), copper (Cu), cobalt (Co), ruthenium (Ru), aluminum (Al), titanium (Ti), tantalum (Ta), Rh (rhodium), Cr (chromium), Hf (hafnium), Os (osmium), Pt (platinum), Ni (nickel), Mn (manganese), Zr (zirconium), La (lanthanum), and Ir (iridium), with Co or Ti being preferred.
  • the tungsten layer may also include tungsten as an oxide, nitride, oxynitride, or silicide of an alloy of the above tungsten with another metal.
  • the tungsten layer preferably contains tungsten as a main component. Containing tungsten as a main component means that the content of tungsten atoms is the highest relative to the total mass of the tungsten layer.
  • the content of tungsten contained in the tungsten layer is preferably 50 mass% or more, more preferably 80 mass% or more, and even more preferably 95 mass% or more, relative to the total mass of the tungsten layer.
  • the upper limit is 100 mass%, since it may be tungsten alone.
  • the form of the tungsten layer in the workpiece is not particularly limited, and examples thereof include a form in which the tungsten layer is arranged in the form of a film (tungsten-containing film) and a form in which the tungsten layer is arranged in the form of a wiring (tungsten-containing wiring).
  • the thickness is not particularly limited and may be appropriately selected depending on the application, but is preferably 500 nm or less, more preferably 20 nm or less, and even more preferably 50 nm or less. There is no particular lower limit, but a thickness of 1 nm or more is preferable.
  • a tungsten layer is often used as a barrier metal or in a connection between a via and an interconnect.
  • the type of substrate in the workpiece is not particularly limited, and examples thereof include various substrates such as semiconductor wafers, glass substrates for photomasks, glass substrates for liquid crystal displays, glass substrates for plasma displays, substrates for FEDs (Field Emission Displays), substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks.
  • substrates such as semiconductor wafers, glass substrates for photomasks, glass substrates for liquid crystal displays, glass substrates for plasma displays, substrates for FEDs (Field Emission Displays), substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks.
  • Examples of materials that may be used for the semiconductor substrate include silicon, silicon germanium, and III-V compounds such as GaAs, or any combination thereof.
  • the size, thickness, shape and layer structure of the substrate are not particularly limited and can be appropriately selected as desired.
  • the semiconductor substrate may have an insulating film.
  • the insulating film in the workpiece is not particularly limited, and may be, for example, an insulating film containing one or more materials selected from the group consisting of silicon nitride (SiN), silicon oxide, silicon carbide (SiC), silicon carbonitride, silicon oxide carbide (SiOC), silicon oxynitride, and TEOS (tetraethoxysilane).
  • the material is preferably SiN, TEOS, SiC, or SiOC.
  • the insulating film may be composed of a plurality of films.
  • the workpiece may have various layers and/or structures other than those described above, as desired.
  • the workpiece when the workpiece is a substrate, the workpiece may have components such as a barrier layer (e.g., a layer containing titanium, titanium nitride, tantalum, tantalum nitride, etc.), metal wiring, an oxide film, a gate electrode, a source electrode, a drain electrode, an insulating layer, a ferromagnetic layer, an integrated circuit structure, and/or a non-magnetic layer.
  • a barrier layer e.g., a layer containing titanium, titanium nitride, tantalum, tantalum nitride, etc.
  • metal wiring an oxide film
  • a gate electrode e.g., a source electrode, a drain electrode, an insulating layer, a ferromagnetic layer, an integrated circuit structure, and/or a non-magnetic layer.
  • the method for producing the object to be treated is not particularly limited.
  • the method for forming the insulating film and tungsten layer on the substrate is not particularly limited as long as it is a method commonly used in this field.
  • a method for forming an insulating film for example, a method can be given in which a silicon oxide film is formed by performing a heat treatment on a wafer constituting a semiconductor substrate in the presence of oxygen gas, and then a silicon nitride film is formed by a chemical vapor deposition (CVD) method by flowing in silane and ammonia gases.
  • CVD chemical vapor deposition
  • Methods for forming a tungsten layer on an insulating film include, for example, a sputtering method, a physical vapor deposition (PVD) method, an atomic layer deposition (ALD) method, a chemical vapor deposition method, and a molecular beam epitaxy (MBE) method.
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • MBE molecular beam epitaxy
  • the above method may also be carried out through a predetermined mask to form a patterned tungsten layer on a substrate.
  • polishing liquid used in this manufacturing process (hereinafter also simply referred to as "polishing liquid”) contains transition metal ions, a chelating agent, and surface-modified colloidal silica. Each component contained in the polishing liquid and a method for producing the polishing liquid will be described in detail below.
  • the polishing liquid contains transition metal ions.
  • the transition metal ions are ions of a transition metal.
  • the transition metal is preferably a first transition metal, such as iron (Fe), copper (Cu), cobalt (Co), nickel (Ni), manganese (Mn), chromium (Cr), vanadium (V), titanium (Ti), scandium (Sc), and zinc (Zn), preferably Fe, Cu, Ni, or Co, more preferably Fe or Cu, and even more preferably Fe.
  • the transition metal ion is preferably a polyvalent transition metal ion.
  • the polyvalent transition metal ion refers to a transition metal ion having an ionic valence of 2 or more among transition metal ions having different oxidation states.
  • the valence of the transition metal ion is not particularly limited, but is preferably 2 or more, more preferably 2 or 3, and even more preferably 3.
  • the transition metal ion is preferably a polyvalent iron ion, a polyvalent copper ion, a polyvalent nickel ion, or a polyvalent cobalt ion, and more preferably a polyvalent iron ion.
  • the transition metal ions can be added to the polishing liquid by adding a compound containing the transition metal ions (a transition metal ion source).
  • a transition metal ion source is not particularly limited as long as it is a compound capable of releasing transition metal ions in the polishing liquid, and examples thereof include salts of transition metal ions and anions, transition metal ion complexes, and hydrates thereof.
  • the salts of the transition metal ions and anions include inorganic salts and organic salts. Examples of inorganic salts include nitrates, sulfates, borates, phosphates, chlorides, bromides, iodides, and fluorides.
  • organic salts include formates, acetates, propionates, oxalates, malonates, succinates, malates, glutarates, tartrates, lactates, and citrates. These salts may have water and a ligand such as ammonium.
  • the ligand contained in the transition metal ion complex is not particularly limited, but is preferably a monodentate to tetradentate ligand, more preferably a bidentate ligand, and specific examples thereof include ethylenediamine, acetylacetonate (acac), glycinate, diethylenetriamine, iminodiacetic acid (IDA), and nitrilotriacetic acid (NTA).
  • transition metal ion source examples include iron(III) nitrate, iron(III) sulfate, iron(III) chloride, iron(III) bromide, iron(III) citrate, iron(III) ammonium citrate, iron(III) tartrate, iron(II) acetate, iron(II) oxalate, iron(II) lactate, iron(III) acetylacetonate, copper(II) nitrate, copper(II) chloride, copper(II) citrate, and hydrates thereof. In terms of availability, iron(III) nitrate or its hydrates are preferred.
  • the transition metal ions may be used alone or in combination of two or more kinds.
  • the content of the transition metal ions is preferably 1 to 1,000 ppm by mass, more preferably 10 to 500 ppm by mass, and even more preferably 30 to 200 ppm by mass, based on the total mass of the polishing liquid.
  • the content of the transition metal ions is preferably 0.001 to 5 mass %, more preferably 0.01 to 1 mass %, and even more preferably 0.05 to 0.5 mass %, based on the total mass of the components of the polishing liquid excluding the solvent.
  • the content of the transition metal ion may be adjusted by the amount of the transition metal ion source added.
  • the transition metal ion source may be used alone or in combination of two or more kinds.
  • the polishing liquid contains a chelating agent.
  • the chelating agent is a compound having a functional group (coordinating group) that can function as a ligand.
  • Examples of the coordinating group possessed by the chelating agent include a carboxy group, a phosphonic acid group, and a sulfo group, with a carboxy group or a phosphonic acid group being preferred.
  • Chelating agents include organic and inorganic chelating agents.
  • the organic chelating agent is a chelating agent composed of an organic compound, and examples thereof include a carboxylic acid-based chelating agent having a carboxyl group as a coordinating group, a phosphonic acid-based chelating agent having a phosphonic acid group as a coordinating group, and a sulfonic acid-based chelating agent having a sulfo group as a coordinating group.
  • Inorganic chelating agents include condensed phosphoric acid and its salts.
  • the chelating agent is preferably an organic chelating agent.
  • the chelating agent preferably has a low molecular weight. Specifically, the molecular weight of the chelating agent is preferably 600 or less, more preferably 450 or less, and even more preferably 300 or less. The lower limit is preferably 50 or more, and more preferably 100 or more.
  • the chelating agent preferably has 1 to 15 carbon atoms, and more preferably has 2 to 15 carbon atoms.
  • Carboxylic acid-based chelating agents include, for example, polycarboxylic acids, aminocarboxylic acids, and hydroxycarboxylic acids.
  • polycarboxylic acids include malonic acid, oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, maleic acid, and adipic acid, with malonic acid, oxalic acid, or succinic acid being preferred.
  • aminocarboxylic acids examples include glycine or a derivative thereof, histidine or a derivative thereof, alanine (2-aminopropionic acid or 3-aminopropionic acid), arginine, asparagine, aspartic acid, cystine, cysteine, glutamine, glutamic acid, isoleucine, leucine, lysine, methionine, phenylalanine, serine, ethionine, threonine, tyrosine, valine, tryptophan, 2-amino-3-aminopropanoic acid, and proline, with glycine or a derivative thereof being preferred.
  • aminocarboxylic acid examples include the compounds described in paragraphs [0021] to [0023] of JP2016-086094A.
  • An example of the glycine derivative is N,N-di(2-hydroxyethyl)glycine.
  • hydroxycarboxylic acids include formic acid, citric acid, malic acid, glycolic acid, gluconic acid, heptonic acid, tartaric acid, lactic acid, phenyllactic acid, hydroxyphenyllactic acid, and phenylsuccinic acid, with formic acid, citric acid, tartaric acid, and lactic acid being preferred.
  • Examples of the phosphonic acid chelating agent include phosphonic acids, and specific examples thereof include etidronic acid (HEDP), 1-hydroxyethylidene-1,1'-diphosphonic acid (HEDPO), 1-hydroxypropylidene-1,1'-diphosphonic acid, 1-hydroxybutylidene-1,1'-diphosphonic acid, ethylaminobis(methylenephosphonic acid), dodecylaminobis(methylenephosphonic acid), nitrilotris(methylenephosphonic acid) (NTPO), ethylenediaminebis(methylenephosphonic acid) (EDDPO), 1,3-propylenediaminebis(methylenephosphonic acid), ethylene
  • Examples of such phosphonic acids include diamine tetra(methylene phosphonic acid) (EDTPO), ethylene diamine tetra(ethylene phosphonic acid), 1,3-propylene diamine tetra(methylene phosphonic acid) (PDTMP), 1,2-diaminoprop
  • Examples of phosphonic acid chelating agents include the compounds described in paragraphs [0026] to [0036] of WO 2018/020878 and the compounds ((co)polymers) described in paragraphs [0031] to [0046] of WO 2018/030006, the contents of which are incorporated herein by reference.
  • the chelating agent preferably contains at least one selected from the group consisting of polycarboxylic acids, aminocarboxylic acids, and phosphonic acids, and more preferably contains at least two selected from the group consisting of polycarboxylic acids, aminocarboxylic acids, and phosphonic acids.
  • the chelating agent preferably contains at least one selected from the group consisting of malonic acid, formic acid, oxalic acid, citric acid, tartaric acid, succinic acid, glycine, HEDP, HEDPO, and EDTPO, and more preferably contains at least one selected from the group consisting of malonic acid, glycine, and HEDP.
  • the chelating agents may be used alone or in combination of two or more.
  • the polishing liquid preferably contains two or more types of chelating agents, and more preferably contains three or more types.
  • the content of the chelating agent is preferably 0.01 to 5.0 mass %, more preferably 0.05 to 3.0 mass %, and even more preferably 0.2 to 1.0 mass %, based on the total mass of the polishing liquid.
  • the content of the chelating agent is preferably 0.1 to 20.0 mass %, more preferably 1.0 to 10.0 mass %, and even more preferably 2.0 to 5.0 mass %, based on the total mass of the components excluding the solvent in the polishing liquid.
  • the polishing liquid contains surface-modified colloidal silica, which functions as an abrasive for polishing the workpiece.
  • Colloidal silica is silica (silicon oxide) particles that are dispersed in a colloidal state in a dispersion medium.
  • the above-mentioned surface-modified colloidal silica refers to colloidal silica in which some of the silanol groups on the surface of the silica particles have been modified, and silica particles having functional groups different from the silanol groups (hereinafter also referred to as "surface-modifying groups") are dispersed in a colloidal state.
  • the surface modifying group may be directly bonded to the silanol group on the surface of the silica particle by a covalent bond or may be bonded via a linking group.
  • the surface modifying group is preferably an ionic group, and examples of the ionic group include an anionic group and a cationic group.
  • examples of the anionic group include groups represented by -SO 3 - M + , -OSO 3 - M + , -PO 3 2- M + , or -OPO 3 2- M + .
  • M + represents a cation.
  • the cation is not particularly limited, and examples thereof include one monovalent cation, one divalent cation, and two monovalent cations.
  • Specific examples of M + include a proton, a quaternary ammonium cation, and a monovalent metal cation.
  • the anionic group When M + is one monovalent cation, the anionic group is -SO 3 - Na + and -OSO 3 - NH 4 + . When M + is one divalent cation, the anionic group is -PO 3 2- Ca 2+ and -OPO 3 2- Mg 2+ . When M + is two monovalent cations, the anionic group is -PO 3 2- K + 2 and -OPO 3 2- K + 2 .
  • the groups represented by -SO 3 - M + , -OSO 3 - M + , -PO 3 2- M + and -OPO 3 2- M + respectively represent a sulfo group, a sulfate group, a phosphonic acid group and a phosphate group.
  • M + is a cation other than a proton (for example, a quaternary ammonium cation, a monovalent metal cation, or a divalent metal cation)
  • the groups represented by -SO3 - M + , -OSO3 - M + , -PO32 - M + , and -OPO32 - M + represent a salt of a sulfo group, a salt of a sulfate ester group, a salt of a phosphonic acid group, and a salt of a phosphate group, respectively.
  • the anionic group may be ionized in the polishing liquid, i.e., may be a group represented by -SO 3 - , -OSO 3 - , -PO 3 2- , or -OPO 3 2- . Also, it may be a group represented by -PO 3 H - or -OPO 3 H- .
  • An example of the cationic group is a group represented by -NH2 .
  • the group represented by -NH2 may form a group represented by -NH3 + , and may further form a salt with an anion.
  • the anion is not particularly limited, but examples thereof include hydroxide ion, halide ion, nitrate ion, sulfate ion, and phosphate ion.
  • a group represented by -SO 3 - M + , -OSO 3 - M + , -PO 3 2- M + , -OPO 3 2- M + or -NH 2 is preferred, and a group represented by -SO 3 - M + , -OSO 3 - M + or -NH 2 is more preferred.
  • the silica particles may have only one type of surface modifying group, or may have two or more types of surface modifying groups.
  • the method for obtaining surface-modified colloidal silica is not particularly limited, and examples thereof include the methods described in JP-A-2005-162533 and JP-A-2010-269985.
  • a method of reacting a silane coupling agent having a surface-modifying group or a group that can be converted into a surface-modifying group with a silanol group on the surface of silica particles can be used.
  • the zeta potential of the surface-modified colloidal silica in a polishing liquid is preferably ⁇ 80 to ⁇ 10 mV, more preferably ⁇ 70 to ⁇ 20 mV, and even more preferably ⁇ 60 to ⁇ 25 mV, when the surface modifying group is an anionic group.
  • the zeta potential of the surface-modified colloidal silica in a polishing liquid is preferably +10 to +60 mV, more preferably +15 to +40 mV, and even more preferably +15 to +35 mV, when the surface modifying group is a cationic group.
  • the zeta potential in the polishing liquid can be measured using a known zeta potential measuring device (for example, "ELSZ-2000ZS" manufactured by Otsuka Electronics Co., Ltd.)
  • the measurement temperature is 25°C.
  • the particle size of the surface-modified colloidal silica may be appropriately selected depending on the intended use.
  • the average primary particle size of the surface-modified colloidal silica is preferably 1 to 1,000 nm, more preferably 5 to 150 nm, and even more preferably 10 to 110 nm.
  • the average primary particle size of colloidal silica refers to the particle size (median size) at which the cumulative distribution value of the cumulative particle size distribution curve on a volume basis is 50%.
  • the cumulative particle size distribution curve is obtained by measuring the circle-equivalent diameter of colloidal silica using a transmission electron microscope or the like and converting it to a volume basis.
  • the circle-equivalent diameter is the diameter of a perfect circle having the same projected area as the projected area of the colloidal silica at the time of observation.
  • the average secondary particle size of the surface-modified colloidal silica is preferably from 5 to 2,000 nm, more preferably from 10 to 300 nm, and even more preferably from 20 to 220 nm.
  • the average secondary particle size of colloidal silica refers to the average particle size of secondary particles formed by partial aggregation of colloidal silica.
  • the average secondary particle size represents the average particle size determined from the particle size distribution obtained by dynamic light scattering.
  • the degree of association of the surface-modified colloidal silica is preferably 1 to 3.
  • the average secondary particle size corresponds to the average particle size (equivalent circle diameter) of secondary particles in an aggregated state, and can be determined by the same method as the average primary particle size described above.
  • the average aspect ratio of the colloidal silica is preferably from 1.2 to 2.0, more preferably from 1.3 to 1.8, and even more preferably from 1.35 to 1.75.
  • the average aspect ratio of colloidal silica is determined by measuring the major axis and minor axis for any 100 particles observed under the above-mentioned transmission electron microscope, calculating the aspect ratio (major axis/minor axis) for each particle, and arithmetically averaging the 100 aspect ratios.
  • the major axis of a particle means the length of the particle in the major axis direction
  • the minor axis of a particle means the length of the particle perpendicular to the major axis direction.
  • colloidal silica commercially available products may be used, and examples thereof include PL5D, PL3D, PL2D, PL1D, and PL07D (colloidal silica surface-modified with anionic groups, all of which are product names manufactured by Fuso Chemical Co., Ltd.), and PL5C, PL3C, and PL1C (colloidal silica surface-modified with cationic groups, all of which are product names manufactured by Fuso Chemical Co., Ltd.).
  • the average primary particle size, average secondary particle size, degree of association, and aspect ratio of the colloidal silica are given priority from the values given in the catalog.
  • surface-modified colloidal silica and non-surface-modified colloidal silica may be used in combination, but from the viewpoints of defect suppression and stability over time, it is preferable to use only surface-modified colloidal silica.
  • the content of the surface-modified colloidal silica is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, based on the total content of all colloidal silica in the polishing liquid, with the upper limit being 100% by mass.
  • the polishing liquid of the present invention may contain abrasive grains other than colloidal silica, which may be surface-modified.
  • abrasive grains other than colloidal silica that may be surface-modified include fumed silica, ceria, alumina, titania, etc.
  • the average primary particle size of abrasive grains other than colloidal silica is preferably 1 to 2 times the average primary particle size of colloidal silica.
  • the content of surface-modified colloidal silica relative to the total content of abrasive grains contained in the polishing liquid is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 99% by mass or more.
  • the upper limit is 100% by mass.
  • the content of the surface-modified colloidal silica is preferably 0.01 to 10 mass %, more preferably 0.1 to 7 mass %, and even more preferably 1 to 5 mass %, based on the total mass of the polishing liquid.
  • the content of the surface-modified colloidal silica is preferably 1 to 80 mass %, more preferably 10 to 60 mass %, and even more preferably 30 to 50 mass %, based on the total mass of the components excluding the solvent in the polishing liquid.
  • the polishing liquid may contain components other than transition metal ions, chelating agents, and surface-modified colloidal silica.
  • the polishing liquid may contain water.
  • the water contained in the polishing liquid is not particularly limited, but distilled water, deionized (DI) water, and pure water (ultrapure water) can be used.
  • the content of water may be the balance of the components that can be contained in the polishing liquid, but is preferably 55 to 99 mass %, more preferably 75 to 97 mass %, and even more preferably 80 to 95 mass %, based on the total mass of the polishing liquid.
  • the polishing liquid may contain an oxidizing agent.
  • the polishing liquid preferably contains an oxidizing agent.
  • the oxidizing agent is not particularly limited as long as it is a compound capable of oxidizing tungsten, but examples include hydrogen peroxide, ozone water, rare earth metal oxides, percarbonates, permanganates, cerium compounds, ferricyanides, as well as periodic acid, persulfuric acid, chloric acid, hypochlorous acid, bromic acid, iodic acid, chromic acid, perboric acid, peracetic acid, perbenzoic acid, potassium dichromate, and salts thereof, with hydrogen peroxide being preferred.
  • the oxidizing agent may be used alone or in combination of two or more kinds.
  • the content of the oxidizing agent is preferably 0.1 to 20 mass %, more preferably 1 to 10 mass %, and even more preferably 3 to 8 mass %, based on the total mass of the polishing liquid. From the viewpoint of polishing efficiency and storage stability, the content is preferably 1 to 90 mass %, more preferably 40 to 80 mass %, and even more preferably 50 to 70 mass %, based on the total mass of the components excluding the solvent in the polishing liquid.
  • the polishing liquid may contain other components in addition to those mentioned above.
  • the other components include a pH adjuster, a surfactant, a water-soluble polymer, an anticorrosive agent, and an organic solvent.
  • the polishing fluid may contain a pH adjuster to adjust and maintain the pH of the polishing fluid.
  • the pH adjuster is a basic compound or an acidic compound different from the above-mentioned compounds that may be contained in the polishing liquid, however, it is permissible to adjust the pH of the polishing liquid by adjusting the amount of each of the above-mentioned components added.
  • a basic compound is a compound that exhibits alkaline properties (pH greater than 7.0) in an aqueous solution.
  • the basic compound includes basic inorganic compounds, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides, and ammonia.
  • An acidic compound is a compound that exhibits acidity (pH less than 7.0) in an aqueous solution.
  • Acidic compounds include inorganic acids, such as hydrochloric acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, and boric acid.
  • the pH adjusters may be used alone or in combination of two or more.
  • the content of the pH adjuster can be selected depending on the type and amount of other components and the target pH of the polishing liquid.
  • the content of the pH adjuster is preferably 0.01 to 10 mass % relative to the total mass of the polishing liquid, and more preferably 0.1 to 8 mass %.
  • the content of the pH adjuster is preferably 0.01 to 80 mass %, and more preferably 0.1 to 60 mass %, based on the total mass of the components in the polishing liquid excluding the solvent.
  • the polishing liquid may contain a surfactant.
  • the surfactant is not particularly limited as long as it is a compound having a hydrophilic group and a hydrophobic group (lipophilic group) in one molecule, and examples thereof include cationic surfactants, amphoteric surfactants, and anionic surfactants.
  • Examples of cationic surfactants include alkylpyridinium surfactants and alkylamine acetate surfactants.
  • Examples of amphoteric surfactants include carboxybetaine type amphoteric surfactants, sulfobetaine type amphoteric surfactants, aminocarboxylates, imidazolinium betaines, lecithin, alkylamine oxides, and mixtures thereof.
  • Examples of the anionic surfactant include phosphate surfactants having a phosphate group as a hydrophilic group (acid group), and sulfate surfactants having a sulfate group.
  • the surfactant for example, the compounds described in paragraphs [0116] to [0123] of WO 2022/044893 can be used, the contents of which are incorporated herein by reference.
  • the polishing liquid may contain a water-soluble polymer.
  • the water-soluble polymer include polymers and salts thereof, and copolymers containing them, each of which has a monomer having a carboxy group as a constituent unit.
  • water-soluble polymer examples include polyacrylic acid and salts thereof, and copolymers containing them; polymethacrylic acid and salts thereof, and copolymers containing them; polyamic acid and salts thereof, and copolymers containing them; polymaleic acid, polyitaconic acid, polyfumaric acid, poly(p-styrene carboxylic acid), polyglyoxylic acid, and other polycarboxylic acids and salts thereof, and copolymers containing them.
  • Other water-soluble polymers that can be used include polyvinyl alcohol, polyvinylpyrrolidone, and polyacrolein.
  • the polishing liquid may contain an anticorrosive agent, which is a compound that prevents corrosion of the metal present on the surface of the workpiece.
  • the anticorrosive agent is preferably a heteroaromatic ring compound having three or more nitrogen atoms in the molecule and having a polycyclic structure. It is also preferable that the three or more nitrogen atoms are elements that constitute a heteroaromatic ring.
  • a preferred anticorrosive agent is benzotriazole which may have a substituent.
  • the corrosion inhibitor the compounds described in paragraphs [0046] to [0050] of WO 2021/166571 can also be used, the contents of which are incorporated herein by reference.
  • the polishing liquid may contain an organic solvent.
  • the organic solvent include known organic solvents, such as alcohol-based solvents, glycol-based solvents, glycol ether-based solvents, and ketone-based solvents.
  • the organic solvent is preferably miscible with water in any ratio.
  • organic solvent for example, the compounds exemplified in paragraphs [0135] to [140] of WO 2022/044893 can be used, the contents of which are incorporated herein by reference.
  • the polishing liquid may be either alkaline or acidic.
  • the pH of the polishing liquid is preferably from 1.0 to 7.0, more preferably from 1.5 to 5.0, and even more preferably from 2.0 to 4.5.
  • the pH of the polishing liquid can be adjusted using the above-mentioned pH adjuster.
  • the pH of the polishing liquid can be measured by a method conforming to JIS Z8802-1984 using a known pH meter. The measurement temperature is 25°C.
  • the method for producing the polishing liquid is not particularly limited, and a known method can be used.
  • the polishing liquid may be produced by mixing the above-mentioned components to a predetermined concentration, or a concentrated liquid may be prepared and then diluted to produce the polishing liquid.
  • the components may be mixed all at once, or may be mixed in portions in several batches.
  • Each component to be mixed may be in the form of a solid or an aqueous solution.
  • the stirring device and the stirring method used for mixing are not particularly limited, and known devices and methods may be used. Examples of the stirrer include an industrial mixer, a portable stirrer, a mechanical stirrer, and a magnetic stirrer.
  • Step 1 is a step of carrying out CMP processing on a processing object using the above-mentioned polishing liquid.
  • the CMP process can be performed by supplying the above-mentioned polishing liquid to a polishing pad attached to a polishing platen, contacting the polished surface of the workpiece with the polishing pad, and moving the workpiece and the polishing pad relative to each other.
  • the CMP process can be carried out using a known chemical mechanical polishing apparatus (hereinafter also referred to as a "CMP apparatus").
  • the CMP apparatus may be, for example, a general CMP apparatus having a holder for holding a workpiece having a surface to be polished, and a polishing platen to which a polishing pad is attached (attached with a motor or the like capable of changing the rotation speed).
  • the polishing pad is not particularly limited, and general nonwoven fabric, polyurethane foam, porous fluororesin, etc. can be used.
  • the polishing pressure in CMP processing is often selected from 10 to 980 hPa, with 30 to 250 hPa being preferred, and 65 to 140 hPa being more preferred, in that it can suppress the occurrence of scratch-like defects and unevenness on the polished surface.
  • the polishing pressure refers to the pressure generated at the contact surface between the polished surface and the polishing pad.
  • the rotation speed of the polishing platen in the CMP treatment is usually selected from the range of 10 to 400 rpm, preferably 50 to 200 rpm, and more preferably 60 to 160 rpm.
  • the holder may be rotated and/or swung, the polishing platen may be rotated in planetary rotation, or the belt-shaped polishing pad may be moved linearly in one direction in the longitudinal direction.
  • the holder may be fixed, rotated, or swung.
  • the polishing liquid In the CMP process, while the surface to be polished is being polished, it is preferable to continuously supply the polishing liquid to the polishing pad on the polishing platen by a pump, etc. There is no limit to the amount of the polishing liquid supplied, but it is preferable that the surface of the polishing pad is always covered with the polishing liquid.
  • the supply rate of the polishing liquid is preferably 10 to 1000 mL/min, and more preferably 170 to 500 mL/min, in terms of being able to suppress the occurrence of scratch-like defects and unevenness on the polished surface.
  • the CMP process may be performed once or twice or more.
  • the polishing conditions such as the polishing pressure, polishing speed, and supply speed of the polishing liquid, as well as the polishing liquid used, may be the same or different.
  • Step 2 This manufacturing method includes, after step 1, step 2 of performing a cleaning treatment on the object to be treated using a treatment liquid.
  • the materials (subject to be treated and treatment liquid) and procedures used in step 2 will be described in detail below.
  • the workpiece in step 2 is the workpiece that has been subjected to the CMP treatment in step 1 described above.
  • the object to be treated may be an object that has been subjected to these steps.
  • the specific compounds contained in the treatment liquid adsorb to the surface of the workpiece and the CMP residue surface, changing their zeta potential. This suppresses adsorption due to electrostatic repulsion between the CMP residue and the workpiece surface.
  • the CMP residue referred to here includes abrasive grains such as surface-modified colloidal silica contained in the polishing liquid, and residues derived from the workpiece generated by the CMP treatment in step 1.
  • the treatment liquid used in this production process contains a specific compound selected from the group consisting of a compound represented by formula (1) described below and a polymer having an anionic group, and an organic acid different from the specific compound.
  • a specific compound selected from the group consisting of a compound represented by formula (1) described below and a polymer having an anionic group, and an organic acid different from the specific compound.
  • the treatment liquid contains a specific compound selected from the group consisting of a compound represented by formula (1) and a polymer having an anionic group.
  • X1 and X2 each independently represent a hydrophilic group.
  • the hydrophilic group include a carboxy group, a hydroxy group, an amino group, a sulfo group, and a phosphonic acid group.
  • a carboxy group, a hydroxy group, or a sulfo group is preferable, and a carboxy group is more preferable.
  • X3 to X6 each independently represent a hydrogen atom or a substituent, and at least one of X3 to X6 represents a hydrophilic group. Two adjacent groups of X3 to X6 may be bonded to each other to form a ring.
  • the substituent include a halogen atom, an alkyl group, an alkoxy group, an alkylcarbonyloxy group, a thiol group, and a hydrophilic group.
  • the alkyl group, and the alkyl group contained in the alkoxy group and the alkylcarbonyloxy group may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkyl group, and the alkyl group contained in the alkoxy group and the alkylcarbonyloxy group is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 to 3.
  • Examples of the ring formed by bonding two adjacent rings among X 3 to X 6 to each other include an aromatic ring (which may be a monocyclic or polycyclic ring; preferably, a benzene ring or a pyridine ring).
  • the ring may have a substituent.
  • Examples of the substituent that the ring has include the substituents described above as the substituents represented by X 3 to X 6 , and hydrophilic groups are preferred. In particular, it is more preferable that in formula (1), X4 or X5 is a hydrophilic group.
  • a compound having at least one group selected from the group consisting of a carboxy group, a hydroxy group, and a sulfo group as a hydrophilic group is preferred, and a compound having a carboxy group and a sulfo group as a hydrophilic group, or a compound having three or more carboxy groups as a hydrophilic group is preferred.
  • Examples of the compound represented by formula (1) include phthalic acid derivatives in which X1 and X2 both represent a carboxy group; salicylic acid derivatives in which X1 represents a hydroxy group and X2 represents a carboxy group; anthranilic acid derivatives in which X1 represents an amino group and X2 represents a carboxy group; o-aminophenol derivatives in which X1 represents a hydroxy group and X2 represents an amino group; catechol derivatives in which X1 and X2 both represent a hydroxy group; and orthanilic acid derivatives in which X1 represents an amino group and X2 represents a sulfo group.
  • Specific examples of the compound represented by formula (1) include trimellitic acid, 4-hydroxyphthalic acid, 4-aminophthalic acid, 4-sulfophthalic acid, pyromellitic acid, 5-sulfosalicylic acid, 2,5-dihydroxybenzoic acid, 5-aminosalicylic acid, 4-hydroxyisophthalic acid, 5-hydroxyanthranilic acid, 2,5-diaminobenzoic acid, 5-sulfoanthranilic acid, amide, 3-amino-4-hydroxybenzoic acid, 3-amino-4-hydroxybenzenesulfonic acid, gallic acid, and 1,3-phenylenediamine-4-sulfonic acid.
  • the polymer having an anionic group is not particularly limited as long as it has an anionic group, and examples of the polymer include a polymer having a repeating unit having an anionic group.
  • examples of the anionic group include a carboxy group, a sulfo group, and a phosphonic acid group, and salts thereof.
  • repeating units having an anionic group include repeating units derived from a compound selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, 4-styrenesulfonic acid, vinylsulfonic acid, vinylphosphonic acid, 4-vinylbenzoic acid, 4-styrenephosphonic acid, itaconic acid, fumaric acid, and glyoxylic acid, and salts thereof.
  • Repeating units derived from a compound selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, 4-styrenesulfonic acid, vinylsulfonic acid, and vinylphosphonic acid are preferred, and repeating units derived from a compound selected from the group consisting of acrylic acid and maleic acid are more preferred.
  • the polymer having an anionic group may be a homopolymer consisting of one type of repeating unit, or may be a copolymer having two or more types of repeating units.
  • the polymer having an anionic group may contain two or more types of repeating units having an anionic group, or may have a repeating unit having an anionic group and a repeating unit different from the repeating unit having an anionic group.
  • the content of the repeating unit having an anionic group in the polymer having an anionic group is preferably 30 mol % or more, more preferably 50 mol % or more, and even more preferably 80 mol % or more, based on the total repeating units of the polymer having an anionic group.
  • the upper limit is not particularly limited, and may be 100 mol %.
  • the polymer having an anionic group contains two or more kinds of repeating units having an anionic group, the total content of all the repeating units having an anionic group is preferably within the above range.
  • polymer having an anionic group examples include polyacrylic acid, polymaleic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl phosphonic acid, and salts thereof, as well as copolymers containing these.
  • copolymer examples include an acrylic acid-maleic acid copolymer, an acrylic acid-styrene sulfonic acid copolymer, and an acrylic acid-methyl acrylate copolymer.
  • the polymer having an anionic group is preferably polyacrylic acid, polymaleic acid, an acrylic acid-maleic acid copolymer, an acrylic acid-styrenesulfonic acid copolymer, or an acrylic acid-methyl acrylate copolymer, and more preferably polyacrylic acid or polymaleic acid.
  • the polymer having an anionic group can be synthesized according to a known method (for example, radical polymerization).
  • the weight average molecular weight (Mw) of the polymer having an anionic group is preferably 1000 or more, more preferably 2000 or more, and even more preferably 3000 or more.
  • the upper limit is preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 10,000 or less.
  • the polydispersity index (PDI) of the polymer having an anionic group is not particularly limited, but is preferably 2.5 or less, more preferably 2.0 or less.
  • the lower limit is not particularly limited, but is 1.0 or more.
  • Specific compounds include trimellitic acid, 4-hydroxyphthalic acid, 4-aminophthalic acid, 4-sulfophthalic acid, 5-sulfosalicylic acid, 2,5-dihydroxybenzoic acid, 5-aminosalicylic acid, 4-hydroxyisophthalic acid, 5-hydroxyanthranilic acid, 2,5-diaminobenzoic acid, 5-sulfoanthranilic acid, amide, 1,3-phenylenediamine-4-sulfonic acid, 3-amino-4-hydroxybenzoic acid, and 3-amino-4-hydroxybenzene.
  • Sulfonic acid or a polymer having an anionic group is preferred, trimellitic acid, 4-sulfophthalic acid, 5-sulfosalicylic acid, 5-sulfoanthranilic acid, 1,3-phenylenediamine-4-sulfonic acid, or a polymer having an anionic group is more preferred, and trimellitic acid, 4-sulfophthalic acid, 5-sulfosalicylic acid, 5-sulfoanthranilic acid, 1,3-phenylenediamine-4-sulfonic acid, or a polymer having an anionic group is even more preferred.
  • the treatment liquid may contain one specific compound alone or two or more specific compounds in combination.
  • the content of the specific compound is preferably 0.1 ppm by mass or more, and more preferably 20.0 ppm by mass or more, based on the total mass of the treatment liquid.
  • the upper limit is preferably 5.0% by mass or less, more preferably 1.5% by mass or less, and even more preferably 1.0% by mass or less.
  • the content of the specific compound is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and even more preferably 0.2% by mass or more, based on the total mass of the components of the treatment liquid excluding the solvent.
  • the upper limit is preferably 30.0% by mass or less, more preferably 17.0% by mass or less, and even more preferably 15.0% by mass or less.
  • the treatment liquid contains an organic acid different from the specific compound.
  • An organic acid is a compound that contains an acid group. Examples of the acid group include a carboxy group, a sulfo group, and a phosphonic acid group, with the carboxy group being preferred.
  • Examples of the organic acid different from the specific compound include organic acid Y, which is an amino acid or a derivative thereof, and organic acid X, which is different from the specific compound and organic acid Y.
  • the treatment liquid preferably contains an organic acid X, and more preferably contains an organic acid X and an organic acid Y.
  • the organic acid X is an organic acid different from the specific compound and the organic acid Y described below.
  • Examples of the organic acid X include carboxylic acids having a carboxy group, sulfonic acids having a sulfo group, and phosphonic acids having a phosphonic acid group, with carboxylic acids being preferred.
  • the number of acid groups in the organic acid X is preferably 2 or more. There is no particular upper limit, but it is preferably, for example, 10 or less.
  • the organic acid X may have a substituent other than an acid group and an amino group, for example, a hydroxy group and an aldehyde group, and a hydroxy group is particularly preferred.
  • the number of substituents other than the acid group and the amino group that the organic acid X has is preferably 1 or more, more preferably 2 or more. There is no particular upper limit, but it is preferably, for example, 6 or less.
  • the carboxylic acid is preferably a polycarboxylic acid having two or more carboxy groups.
  • the carboxylic acid is also preferably a hydroxycarboxylic acid having a hydroxy group.
  • polycarboxylic acids include hydroxypolycarboxylic acids such as citric acid, malic acid, tartaric acid, and tartaric acid, as well as polycarboxylic acids that do not have a hydroxy group, such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, cyclohexanedicarboxylic acid, phthalic acid, isophthalic acid, and phenylsuccinic acid.
  • monocarboxylic acids examples include hydroxymonocarboxylic acids such as glycolic acid, lactic acid, phenyllactic acid, hydroxyphenyllactic acid, glucuronic acid, gluconic acid, dehydroacetic acid, glyceric acid, hydroxybutyric acid, heptonic acid, and salicylic acid, as well as monocarboxylic acids having no hydroxy group, such as acetic acid, propionic acid, sorbic acid, benzoic acid, butyric acid, isobutyric acid, valeric acid, and cyclohexanecarboxylic acid.
  • hydroxymonocarboxylic acids such as glycolic acid, lactic acid, phenyllactic acid, hydroxyphenyllactic acid, glucuronic acid, gluconic acid, dehydroacetic acid, glyceric acid, hydroxybutyric acid, heptonic acid, and salicylic acid
  • monocarboxylic acids having no hydroxy group such as acetic acid
  • sulfonic acids include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and camphorsulfonic acid.
  • phosphonic acids examples include etidronic acid (HEDP), 1-hydroxyethylidene-1,1'-diphosphonic acid (HEDPO), 1-hydroxypropylidene-1,1'-diphosphonic acid, 1-hydroxybutylidene-1,1'-diphosphonic acid, ethylaminobis(methylenephosphonic acid), dodecylaminobis(methylenephosphonic acid), nitrilotris(methylenephosphonic acid) (NTPO), ethylenediaminebis(methylenephosphonic acid) (EDDPO), 1,3-propylenediaminebis(methylenephosphonic acid), ethylenediaminetetra(methylene tetra(ethylene phosphonic acid) (EDTPO), ethylenediaminetetra(ethylene phosphonic acid), 1,3-propylenediaminetetra(methylene phosphonic acid) (PDTMP), 1,2-diaminopropanetetra(methylene phosphonic acid), 1,6-hexamethylened
  • the organic acid X is preferably a polycarboxylic acid or a hydroxymonocarboxylic acid, more preferably a polycarboxylic acid, and even more preferably a hydroxypolycarboxylic acid.
  • the organic acid X is preferably citric acid, acetic acid, propionic acid, oxalic acid, glucuronic acid, malonic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, gluconic acid, sorbic acid, dehydroacetic acid, or benzoic acid, more preferably citric acid, oxalic acid, glucuronic acid, malonic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, or gluconic acid, and even more preferably citric acid, oxalic acid, glucuronic acid, malonic acid, succinic acid, malic acid, or tartaric acid.
  • the organic acid X may be used alone or in combination of two or more kinds.
  • the content of organic acid X is preferably 1.0 mass ppm or more, more preferably 0.01 mass % or more, based on the total mass of the treatment liquid.
  • the upper limit is preferably 10 mass % or less, more preferably 5.0 mass % or less, and even more preferably 3.0 mass % or less.
  • the content of the organic acid X is preferably 1.0 mass% or more, more preferably 2.0 mass% or more, and even more preferably 5.0 mass% or more, based on the total mass of the components of the treatment liquid excluding the solvent.
  • the upper limit is preferably 80.0 mass% or less, and more preferably 70.0 mass% or less.
  • the organic acid Y is different from the specific compound and the organic acid X, and is an amino acid or a derivative thereof.
  • An amino acid is a compound that has an amino group and a carboxy group in the molecule.
  • the amino group may be any of a primary amino group (-NH 2 ), a secondary amino group (>NH), and a tertiary amino group (>N-).
  • the amino acid may have a substituent different from the amino group and the carboxy group.
  • the substituent different from the amino group and the carboxy group is not particularly limited, and examples thereof include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, a heterocyclic group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, a sulfamoyl group, an acyl group, an acyloxy group, a carbamoyl group, an alkylthio group, an arylthio group, an alkylsulfonyl group, an arylsulfonyl group, an alkylsilyl group, an arylsilyl group, an alkoxysilyl group, an aryloxysilyl group, a phosphoryl group, a phosphonyl group, a phosphinyl group, a hydroxy group, a thiol group, a phosphoric
  • Examples of the organic acid Y include L-arginine, L-lysine, L-histidine, L-ornithine, 2,4-diaminobutyric acid, glycine, alanine (2-aminopropionic acid or 3-aminopropionic acid), L-asparagine, L-aspartic acid, L-cystine, L-cysteine, L-glutamine, L-glutamic acid, L-isoleucine, L-leucine, L-methionine, DL-phenylalanine, L-serine, L-ethionine, L-threonine, L-tyrosine, L-valine, L-tryptophan, 2-amino-3-aminopropanoic acid, and proline, as well as derivatives thereof.
  • Examples of the organic acid Y include the compounds described in paragraphs [0021] to [0023] of JP2016-086094A.
  • an amino acid is preferable, and among them, L-arginine, L-lysine, L-histidine, L-ornithine, or 2,4-diaminobutyric acid is more preferable.
  • the organic acid Y may be used alone or in combination of two or more kinds.
  • the content of the organic acid Y is preferably 5.0 ppm by mass or more, and more preferably 20.0 ppm by mass or more, based on the total mass of the treatment liquid.
  • the upper limit is preferably 5.0% by mass or less, and more preferably 3.0% by mass or less.
  • the content of organic acid Y is preferably 0.5 to 20.0 mass %, more preferably 2.0 to 15.0 mass %, and even more preferably 3.0 to 15.0 mass %, based on the total mass of the components excluding the solvent of the treatment liquid.
  • the mass ratio of the content of organic acid X to the content of organic acid Y is preferably 0.1 to 50, more preferably 0.3 to 30, and even more preferably 0.5 to 20.
  • the mass ratio is particularly preferably 0.5 to 15.
  • the treatment liquid may contain one organic acid alone or two or more organic acids in combination.
  • the combination is not particularly limited, and for example, the treatment liquid may contain two or more organic acids X, or may contain one or more organic acids X and Y.
  • the treatment liquid preferably contains two or more organic acids, more preferably contains one or more organic acids X and Y, and further preferably contains two or more organic acids X and one or more organic acids Y.
  • the content of the organic acid is preferably 0.001% by mass or more, and more preferably 0.01% by mass or more, based on the total mass of the treatment liquid.
  • the upper limit is preferably 10.0% by mass or less, more preferably 6.0% by mass or less, and even more preferably 5.5% by mass or less.
  • the content of the organic acid is preferably 5.0 mass% or more, more preferably 11.0 mass% or more, and even more preferably 15.0 mass% or more, based on the total mass of the components of the treatment liquid excluding the solvent.
  • the upper limit is preferably 90.0 mass% or less, more preferably 83.0 mass% or less, and even more preferably 55.0 mass% or less.
  • the mass ratio of the content of the organic acid to the content of the specific compound is preferably not more than 500, more preferably not more than 200, even more preferably not more than 150, and particularly preferably not more than 50.
  • the lower limit is preferably not less than 1, more preferably not less than 2, and even more preferably not less than 2.5.
  • the "content of organic acid” refers to the total content of all organic acids X and Y contained in the treatment liquid.
  • the treatment liquid may contain components other than the specific compound and organic acid.
  • the treatment liquid may contain an amino alcohol.
  • the treatment liquid preferably contains an amino alcohol.
  • An aminoalcohol is a compound having an amino group and a hydroxy group in the molecule.
  • the amino group may be any of a primary amino group, a secondary amino group, and a tertiary amino group.
  • the number of amino groups in the amino alcohol is not particularly limited, but is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1.
  • the number of hydroxy groups in the amino alcohol is preferably 2 or more, and more preferably 3 or more. There is no particular upper limit, but for example, the number is preferably 10 or less, and more preferably 8 or less.
  • amino alcohols include trishydroxymethylaminomethane (Tris), bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane (Bis-Tris), 1,3-bis[tris(hydroxymethyl)methylamino]propane (Bis-TrisP), monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP), triethanolamine (TEA), diethylene glycolamine (DEGA), 2-(methylamino)-2-methyl-1-propanol (N-MAMP), and 2-(2-aminoethylamino)ethanol.
  • Tris trishydroxymethylaminomethane
  • Bis-Tris bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane
  • MEA monoethanolamine
  • DEA diethanolamine
  • MDEA N-methyldiethanolamine
  • Tris, Bis-Tris, Bis-TrisP, MEA, DEA, or MDEA is preferable, Tris, Bis-Tris, Bis-TrisP, DEA, or MDEA is more preferable, Tris, Bis-Tris, Bis-TrisP, or MDEA is even more preferable, and Tris, Bis-Tris, or Bis-TrisP is particularly preferable.
  • the treatment liquid may contain one type of amino alcohol alone or two or more types in combination.
  • the content of the amino alcohol is preferably 1.0 ppm by mass or more, and more preferably 0.015% by mass or more, based on the total mass of the treatment liquid.
  • the upper limit is preferably 10.0% by mass or less, more preferably 6.0% by mass or less, and even more preferably 5.0% by mass or less.
  • the content of the amino alcohol is preferably 0.5% by mass or more, more preferably 3.0% by mass or more, based on the total mass of the components of the treatment liquid excluding the solvent.
  • the upper limit is preferably 80.0% by mass or less, more preferably 77.0% by mass or less, even more preferably 70.0% by mass or less, and particularly preferably 57.0% by mass or less.
  • the mass ratio of the content of the amino alcohol to the content of the specific compound is preferably 0.1 to 500, and more preferably 0.2 to 250.
  • the mass ratio of the amino alcohol content to the organic acid content is preferably 0.01-20, more preferably 0.05-7, and even more preferably 0.8-6.
  • the treatment liquid may contain an antibacterial agent, and from the viewpoint of storage stability, the treatment liquid preferably contains an antibacterial agent.
  • the antibacterial agent is a compound having an antibacterial effect against bacteria and/or an antifungal effect against mold, and is a compound different from each of the above-mentioned components (specific compounds and organic acids). However, each of the above-mentioned components may also function as an antibacterial agent.
  • the antibacterial agent may be in the form of a salt.
  • antibacterial agents examples include isothiazolinone-based antibacterial agents, phenol-based antibacterial agents, biguanide-based antibacterial agents, cationic antibacterial agents, sulfamide-based antibacterial agents, peroxide-based antibacterial agents, imidazole-based antibacterial agents, ester-based antibacterial agents, alcohol-based antibacterial agents, carbamate-based antibacterial agents, iodine-based antibacterial agents, and antibiotics.
  • isothiazolinone antibacterial agents examples include 2-methyl-4-isothiazolin-3-one (MIT), 2-octyl-4-isothiazolin-3-one (OIT), 1,2-benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-4-isothiazolin-3-one (CIT).
  • MIT 2-methyl-4-isothiazolin-3-one
  • OIT 2-octyl-4-isothiazolin-3-one
  • BIT 1,2-benzisothiazol-3(2H)-one
  • CIT 5-chloro-2-methyl-4-isothiazolin-3-one
  • MIT, OIT, or BIT are preferred, and MIT or OIT are more preferred.
  • phenol-based antibacterial agents examples include cresol, catechol, 3-methyl-4-chlorophenol (PCMC), 3-methyl-4-isopropylphenol (Biosol), 4-chloro-3,5-dimethylphenol (PCMX), chlorothymol, dichloroxylenol, and hexachlorophene, with cresol or catechol being preferred.
  • biguanide antibacterial agents include polyhexamethylene biguanide (PHMB), chlorhexidine (CHG), bis(p-chlorophenyl diguanide) hexane digluconate (chlorhexidine gluconate), and poly(hexamethylene biguanide) hydrochloride (hexamethylene biguanide hydrochloride), with PHMB or CHG being preferred.
  • PHMB polyhexamethylene biguanide
  • CHG chlorhexidine
  • CHG bis(p-chlorophenyl diguanide) hexane digluconate
  • poly(hexamethylene biguanide) hydrochloride hexamethylene biguanide hydrochloride
  • Cationic antibacterial agents include benzalkonium chloride, didecyldimethylammonium chloride (DDAC), hexadecylpyridinium chloride (CPC), 3,3'-(2,7-dioxaoctane)bis(1-dodecylpyridinium bromide) (Hygeria), benzethonium chloride, and domiphen bromide.
  • DDAC didecyldimethylammonium chloride
  • CPC hexadecylpyridinium chloride
  • Hygeria 3,3'-(2,7-dioxaoctane)bis(1-dodecylpyridinium bromide)
  • benzethonium chloride domiphen bromide.
  • antibacterial agents include sulfamide-based antibacterial agents such as N-dichlorofluoromethylthio-N',N'-dimethyl-N-phenylsulfamide (dichloolanid) and N-dichlorofluoromethylthio-N',N'-dimethyl-N-p-tolylsulfamide (tolylfluanid), peroxide-based antibacterial agents such as hydrogen peroxide, peracetic acid, and chlorine dioxide, imidazole-based antibacterial agents such as 2-(4-thiazolyl)-benzimidazole (TBZ) and 2-benzimidazole methylcarbamate (Preventol BCM), glycerol laurate, and the like.
  • sulfamide-based antibacterial agents such as N-dichlorofluoromethylthio-N',N'-dimethyl-N-phenylsulfamide (dichloolanid) and N-dichlorofluoro
  • antibacterial agents examples include ester-based antibacterial agents such as ethyl paraben (monoglyceride) and ethyl parahydroxybenzoate (ethylparaben); alcohol-based antibacterial agents such as ethyl alcohol (ethanol), 2-propanol (IPA), phenoxyethanol, 1,2-pentanediol, and 1,2-hexanediol; carbamate-based antibacterial agents such as 3-iodo-2-propynyl butylcarbamate (glycical); and iodine-based antibacterial agents such as [(4-chlorophenoxy)methyl]-3-iodo-2-propynyl ether (IF1000).
  • ester-based antibacterial agents such as ethyl paraben (monoglyceride) and ethyl parahydroxybenzoate (ethylparaben)
  • alcohol-based antibacterial agents such as ethyl alcohol (ethanol), 2-propanol (IPA
  • the antibacterial agent preferably contains at least one compound selected from the group consisting of isothiazolinone antibacterial agents, phenolic antibacterial agents, biguanide antibacterial agents, and cationic antibacterial agents, and more preferably contains at least one compound selected from the group consisting of isothiazolinone antibacterial agents and phenolic antibacterial agents.
  • the antibacterial agent is preferably MIT, OIT, BIT, cresol, catechol, PHMB, or CHG, and more preferably MIT, OIT, cresol, or catechol.
  • the antibacterial agent may be used alone or in combination of two or more kinds.
  • the content of the antibacterial agent is preferably 1.0 mass % or less, more preferably 0.2 mass % or less, and even more preferably 0.1 mass % or less, based on the total mass of the treatment liquid.
  • the lower limit is preferably 0.1 mass ppm or more, and more preferably 2.0 mass ppm or more.
  • the content of the antibacterial agent is preferably 10.0 mass% or less, more preferably 3.0 mass% or less, and even more preferably 2.0 mass% or less, based on the total mass of the components excluding the solvent of the treatment liquid.
  • the lower limit is preferably 0.01 mass% or more, and more preferably 0.1 mass% or more.
  • the mass ratio of the content of the organic acid to the content of the antibacterial agent is preferably at least 1, more preferably at least 3.5, and even more preferably at least 5.
  • the upper limit is preferably at most 300, more preferably at most 250, and even more preferably at most 200.
  • the mass ratio of the content of the amino alcohol to the content of the antibacterial agent is preferably not more than 500, more preferably not more than 150, and even more preferably not more than 100.
  • the lower limit is preferably not less than 0.1, more preferably not less than 2, and even more preferably not less than 5.
  • the treatment liquid may contain water.
  • the water is not particularly limited as long as it does not affect the semiconductor substrate, and distilled water, ion-exchanged water, and pure water (ultrapure water) can be used. Pure water or ion-exchanged water is preferred because they have less effect on the semiconductor substrate in the manufacturing process of the semiconductor device.
  • the water content is preferably 50.0% by mass or more, more preferably 70.0% by mass or more, and even more preferably 85.0% by mass or more, based on the total mass of the treatment liquid.
  • the upper limit is preferably 99.99% by mass or less, and more preferably 99.97% by mass or less.
  • the treatment liquid may contain other components in addition to those described above, such as a pH adjuster, an anticorrosive agent, a surfactant, and an organic solvent.
  • a pH adjuster an anticorrosive agent
  • a surfactant an organic solvent
  • organic solvent an organic solvent that may be contained in the treatment liquid.
  • the treatment liquid may be either alkaline or acidic.
  • the pH of the treatment liquid is preferably from 1.0 to 12.0, more preferably from 2.0 to 9.0, even more preferably from 3.0 to 8.0, and particularly preferably from 3.5 to 7.0.
  • the pH of the treatment liquid can be adjusted using the above-mentioned pH adjusters.
  • the pH of the treatment solution can be measured by a method conforming to JIS Z8802-1984 using a known pH meter. The measurement temperature is 25°C.
  • the content (measured as ion concentration) of metals (e.g., Fe, Co, Na, Cu, Mg, Mn, Li, Al, Cr, Ni, Zn, Sn, and Ag metal elements) contained as impurities in the treatment liquid is preferably 5 mass ppm or less, more preferably 1 mass ppm or less. Since it is expected that a treatment liquid with even higher purity will be required in the manufacture of cutting-edge semiconductor devices, it is more preferable that the content of the above metals is lower than 1 mass ppm, that is, on the order of ppb or less, particularly preferably 100 mass ppb or less, and most preferably less than 10 mass ppb. The lower limit is preferably 0.
  • Methods for reducing the metal content include, for example, performing purification processes such as distillation and filtration using an ion exchange resin or a filter at the stage of the raw materials used in producing the treatment liquid, or at the stage after the treatment liquid is produced.
  • Other methods for reducing the metal content include using a container that is less likely to elute impurities as a container for containing the raw materials or the produced treatment liquid, as described below, and lining the inner walls of pipes with a fluororesin to prevent metal components from eluting from the pipes during the production of the treatment liquid.
  • the treatment liquid be substantially free of insoluble particles.
  • insoluble particles refer to particles of inorganic solids and organic solids, etc., which do not dissolve and ultimately exist as particles in the treatment liquid.
  • substantially free of insoluble particles means that the treatment liquid is diluted 10,000 times with a solvent contained in the treatment liquid to prepare a composition for measurement, and the number of particles having a particle size of 50 nm or more contained in 1 mL of the composition for measurement is 40,000 or less.
  • the number of particles contained in the composition for measurement can be measured in the liquid phase using a commercially available particle counter. Commercially available particle counter devices include those manufactured by Rion and PMS.
  • a representative device of the former is the KS-19F, and a representative device of the latter is the Chem20.
  • Devices such as the KS-42 series and LiQuilaz II S series can be used to measure larger coarse particles.
  • insoluble particles include particles of inorganic solids such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; and particles of organic solids such as polystyrene, polyacrylic resin, and polyvinyl chloride.
  • Methods for removing insoluble particles from the treatment liquid include, for example, purification treatments such as filtering.
  • the treatment liquid may contain coarse particles, but it is preferable that the content of coarse particles is low.
  • coarse particles refers to particles whose diameter (particle size) when considered as a sphere is 1 ⁇ m or more.
  • the coarse particles contained in the treatment liquid include particles such as dust, dirt, organic solids, and inorganic solids that are contained as impurities in the raw materials, as well as particles such as dust, dirt, organic solids, and inorganic solids that are brought in as contaminants during the preparation of the treatment liquid, and that ultimately exist as particles in the treatment liquid without dissolving.
  • the content of particles having a particle diameter of 1 ⁇ m or more per 1 mL of the treatment liquid is preferably 100 or less, more preferably 50 or less.
  • the lower limit is preferably 0 or more, more preferably 0.01 or more per 1 mL of the treatment liquid.
  • the content of coarse particles present in the treatment liquid can be measured in the liquid phase using a commercially available measuring device that employs a light scattering liquid particle measuring method using a laser as a light source. Examples of a method for removing coarse particles include a purification process such as filtering, which will be described later.
  • the treatment liquid can be produced by a known method.
  • the treatment liquid may be produced by mixing the above-mentioned components to a predetermined concentration, or a concentrated liquid may be prepared and then diluted to produce the treatment liquid.
  • the components may be mixed all at once, or may be mixed in portions in several batches.
  • Each component to be mixed may be in the form of a solid or an aqueous solution.
  • the methods given as the manufacturing method (preparation method and purification method) of the polishing liquid in the above-mentioned step 1 can be used. The same applies to the container for storing the treatment liquid and the handling environment of the treatment liquid.
  • the above-mentioned treatment liquid may be diluted with a diluent such as water, and then used as the diluted treatment liquid for cleaning the object to be treated.
  • a diluent such as water
  • the dilution ratio is not particularly limited, but is often 2 to 500 times, for example, and preferably 5 to 300 times.
  • the specific method for diluting the treatment liquid may be performed in accordance with the above-mentioned method for diluting the polishing liquid.
  • the stirring device and stirring method used in the dilution step may also be performed using the known stirring device mentioned in the above-mentioned preparation step of the polishing liquid. It is preferable to purify the diluted treatment liquid after dilution, and the purification method can be the same as that for the polishing liquid described above.
  • Step 2 is a step of performing a cleaning process on the object to be treated using a treatment liquid.
  • the washing treatment can be carried out by a known method, for example, a method in which the object to be treated is brought into contact with a treatment liquid.
  • the method for contacting the object to be treated with the treatment liquid is not particularly limited, and examples thereof include a method of immersing the object to be treated in the treatment liquid contained in a tank, a method of spraying the treatment liquid on the object to be treated, a method of flowing the treatment liquid on the object to be treated, and combinations thereof.
  • the above-mentioned method may be appropriately selected depending on the purpose.
  • the above method may be appropriately adopted from the methods usually used in this field.
  • it may be a scrub cleaning method in which a cleaning member such as a brush is brought into physical contact with the surface of the workpiece while supplying the treatment liquid to remove residues, or a spin (drop) method in which the treatment liquid is dropped onto the workpiece while rotating it.
  • a scrub cleaning method in which a cleaning member such as a brush is brought into physical contact with the surface of the workpiece while supplying the treatment liquid to remove residues
  • a spin (drop) method in which the treatment liquid is dropped onto the workpiece while rotating it.
  • the immersion method it is preferable to perform ultrasonic treatment on the workpiece immersed in the treatment liquid, since impurities remaining on the surface of the workpiece can be further reduced.
  • the object to be treated may be contacted with the treatment liquid only once, or it may be contacted two or more times.
  • the same method may be repeated, or different methods may be combined.
  • the cleaning process may be carried out by either a single wafer method or a batch method.
  • the single-wafer method generally refers to a method in which workpieces are processed one by one
  • the batch method generally refers to a method in which a plurality of workpieces are processed simultaneously.
  • the temperature of the processing liquid there are no particular limitations on the temperature of the processing liquid, so long as it is a temperature that is normally used in this field. Generally, cleaning is performed at room temperature (approximately 25°C), but the temperature can be selected as desired from the standpoint of improving defect removal and preventing damage to components.
  • the temperature of the processing liquid is preferably 10 to 60°C, and more preferably 15 to 50°C.
  • the contact time between the object to be treated and the treatment liquid can be changed as appropriate depending on the type and content of each component contained in the treatment liquid, as well as the object and purpose of use of the treatment liquid. For practical purposes, 10 to 120 seconds is preferable, 20 to 90 seconds is more preferable, and 30 to 60 seconds is even more preferable.
  • the supply amount (supply rate) of the treatment liquid is preferably 50 to 5,000 mL/min, and more preferably 500 to 2,000 mL/min.
  • a mechanical stirring method may be used to further increase the treatment capacity of the treatment liquid.
  • the mechanical agitation method include a method of circulating the treatment liquid above the workpiece, a method of passing or spraying the treatment liquid above the workpiece, and a method of agitating the treatment liquid by ultrasonic or megasonic means.
  • Step 3 This manufacturing process may include, between step 1 and step 2, step 3 of polishing the workpiece using a chemical solution that does not contain abrasive grains (hereinafter, also simply referred to as "chemical solution").
  • chemical solution a chemical solution that does not contain abrasive grains
  • the workpiece in step 3 is a workpiece that has been subjected to the CMP treatment in step 1. If other treatments are included between steps 1 and 3, the workpiece may be a workpiece that has been subjected to the CMP treatment in step 1 and other treatments.
  • the chemical solution does not contain abrasive particles.
  • abrasive grains not containing the chemical solution include insoluble particles such as silica (for example, colloidal silica and fumed silica which may be surface-modified), ceria, alumina, and titania.
  • a known composition can be appropriately used depending on the type of the object to be treated and the type and amount of impurities to be removed, for example, a known buffing composition can be used.
  • components contained in the chemical solution include water-soluble polymers such as polyvinyl alcohol, water as a dispersion medium, and acids such as nitric acid. It is also preferable to use, as the chemical liquid, a liquid obtained by removing the abrasive grains from the above-mentioned polishing liquid, or the above-mentioned treatment liquid.
  • Step 3 is a step of polishing the workpiece using a chemical solution.
  • the polishing treatment may be, for example, buff polishing treatment.
  • the buff polishing process is a process for reducing impurities on the surface of the workpiece using a polishing pad. Specifically, the polished surface of the workpiece that has been subjected to the CMP process in step 1 is brought into contact with the polishing pad, and the workpiece and the polishing pad are caused to slide relative to each other while a chemical solution is supplied to the contact portion. As a result, impurities on the surface of the workpiece are removed by the frictional force of the polishing pad and the chemical action of the chemical solution.
  • the polishing device and polishing conditions used in the buff polishing process can be appropriately selected from known devices and conditions depending on the type of workpiece and the object to be removed.
  • Examples of the buff polishing process include the processes described in paragraphs [0085] to [0088] of WO 2017/169539, the contents of which are incorporated herein by reference.
  • the present manufacturing process may include other steps in addition to those described above, such as a rinsing step and a drying step.
  • the rinsing step is a step of bringing the workpiece into contact with a rinsing liquid. By carrying out the rinsing step, the workpiece is washed with the rinsing liquid, and defects on the workpiece surface can be efficiently removed.
  • the rinsing step is preferably carried out continuously after a step selected from the group consisting of the above-mentioned steps 1, 2 and 3, and more preferably carried out continuously after step 2.
  • the rinsing step is preferably a step of rinsing the workpiece with a rinsing liquid.
  • the rinsing step may be performed using the mechanical stirring method described above.
  • Rinsing solutions include, for example, water (preferably DI water), methanol, ethanol, isopropyl alcohol (IPA), N-methylpyrrolidinone, gamma-butyrolactone, dimethyl sulfoxide, ethyl lactate, and propylene glycol monomethyl ether acetate.
  • IPA isopropyl alcohol
  • N-methylpyrrolidinone N-methylpyrrolidinone
  • gamma-butyrolactone N-methylpyrrolidinone
  • dimethyl sulfoxide ethyl lactate
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether acetate
  • an aqueous rinsing solution having a pH greater than 8.0 such as diluted aqueous ammonium hydroxide
  • the above-mentioned method for contacting the object to be treated with the treatment liquid can be used.
  • the contact time between the object to be treated and the rinse liquid can be appropriately changed depending on the type and content of each component contained in the treatment liquid, and the object and purpose of use of the treatment liquid. In practice, the contact time is preferably 10 to 120 seconds, more preferably 20 to 90 seconds, and even more preferably 30 to 60 seconds.
  • the drying step is a step of drying the object to be treated. By carrying out the drying step, liquid components on the surface of the object to be treated can be removed, and defects in the subsequent steps can be suppressed.
  • the drying step is preferably carried out after the above step 2 or the rinsing step, and when the present production process includes a rinsing step, it is more preferably carried out after the rinsing step.
  • drying methods include spin drying, flowing a dry gas over the workpiece, heating the substrate with a heating means such as a hot plate or an infrared lamp, Marangoni drying, Rotagoni drying, IPA (isopropyl alcohol) drying, and any combination of these.
  • the manufacturing method may be performed in combination with, before or after, other processes performed on the substrate in the manufacture of an electronic device.
  • Other manufacturing processes include, for example, processes for forming structures such as metal wiring, gate structures, source structures, drain structures, insulating films, ferromagnetic layers, and non-magnetic layers (e.g., layer formation, etching, chemical mechanical polishing, and modification), resist formation processes, exposure processes and removal processes, heat treatment processes, cleaning processes, and inspection processes.
  • This manufacturing method may be performed at any stage of the back-end process (BEOL: Back end of the line), middle process (MOL: Middle of the line), or front-end process (FEOL: Front end of the line), and is preferably performed during the front-end process or middle process.
  • BEOL Back end of the line
  • MOL Middle of the line
  • FEOL Front end of the line
  • the polishing liquid and the processing liquid may be used as a kit including the polishing liquid and the processing liquid.
  • the above kit is preferably used for treating a workpiece containing tungsten, and more preferably for planarizing the workpiece containing tungsten.
  • the method for producing the kit is not particularly limited, and for example, the kit can be produced by producing the polishing liquid and the processing liquid separately, and then storing each in a different container.
  • the container for example, the container for the polishing liquid described above can be used.
  • the pH of the polishing liquid and the processing liquid was measured at 25° C. using a pH meter (manufactured by Horiba, Ltd., model "F-74") in accordance with JIS Z8802-1984.
  • the polishing liquid and the processing liquid in the examples and comparative examples handling of the containers, preparation, filling, storage and analysis of the polishing liquid and the processing liquid were all carried out in a clean room of ISO class 2 or lower at 23°C.
  • the zeta potential of colloidal silica was measured in a polishing liquid at 25° C. using a zeta potential measurement system (manufactured by Otsuka Electronics Co., Ltd., “ELSZ-2000ZS”).
  • [Preparation of members] [Preparation of polishing liquid] The following raw materials were mixed to give the following compositions, and the pH was adjusted using a pH adjuster as necessary to prepare polishing solutions 1 to 3 having the following compositions.
  • the "transition metal ion source” described below is a compound containing a transition metal that dissociates in the polishing solution to supply transition metal ions.
  • Polishing solution 1 (pH 3.5) PL5D (colloidal silica surface-modified with sulfo groups, manufactured by Fuso Chemical Co., Ltd., average primary particle size 100 nm, degree of association 2, average aspect ratio 1.5, zeta potential in polishing solution -35 mV) 3.0% by mass Malonic acid (chelating agent) 0.05% by mass HEDP (1-hydroxyethane-1,1-diphosphonic acid, chelating agent) 0.1% by mass Glycine (chelating agent) 0.1% by mass Iron (III) nitrate (transition metal ion source) 350 ppm by mass Hydrogen peroxide (oxidizing agent) 5.0% by mass ⁇ pH adjuster (ammonia and nitric acid) Water Remainder
  • Polishing solution 2 pH 2.5
  • PL3C colloidal silica surface-modified with amino groups, manufactured by Fuso Chemical Co., Ltd., average primary particle size 70 nm, degree of association 2, average aspect ratio 1.5, zeta potential in polishing liquid 25 mV
  • Malonic acid chelating agent
  • Glycine chelating agent
  • Iron III
  • nitrate transition metal ion source
  • Hydrogen peroxide oxidizing agent
  • Polishing solution 3 (pH 3.5) PL5D (colloidal silica surface-modified with sulfo groups, manufactured by Fuso Chemical Co., Ltd., average primary particle size 100 nm, degree of association 2, average aspect ratio 1.5, zeta potential in polishing solution -32 mV) 3.0% by mass Malonic acid (chelating agent) 0.05% by mass HEDP (chelating agent) 0.1% by mass Glycine (chelating agent) 0.1% by mass Copper (II) nitrate (transition metal ion source) 500 ppm by mass Hydrogen peroxide (oxidizing agent) 5.0% by mass ⁇ pH adjuster (ammonia and nitric acid) Water Remainder
  • Concentrates were prepared by mixing the following raw materials (specific compound, organic acid, amino alcohol, and antibacterial agent) and water to obtain the compositions shown in Tables 1 to 10. The remainder of each concentrate (components other than the specific compound, organic acid, amino alcohol, and antibacterial agent) was water. The pH of the concentrates shown in Tables 1 to 10 was adjusted by adding nitric acid and/or potassium hydroxide as a pH adjuster as necessary. Furthermore, the above concentrated liquid was diluted with ultrapure water as a diluent at the dilution ratios shown in Tables 1 to 10 to prepare treatment liquids for each of the Examples and Comparative Examples.
  • TMA Trimellitic acid
  • Tris trishydroxymethylaminomethane, has three hydroxy groups
  • MEA monoethanolamine, has one hydroxyl group
  • DEA diethanolamine, has two hydroxyl groups
  • MDEA N-methyldiethanolamine, has two hydroxyl groups
  • Bis-Tris bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane, has five hydroxy groups
  • Bis-TrisP (1,3-bis[tris(hydroxymethyl)methylamino]propane, has six hydroxy groups
  • ⁇ Antibacterial Agent> ⁇ MIT (methylisothiazolinone) OIT (2-n-octyl-4-isothiazolin-3-one) ⁇ Cresol ⁇ Catechol ⁇ PHMB (Polyhexamethylene biguanide) ⁇ CHG (Chlorhexidine)
  • the workpiece used was a 12-inch silicon wafer having a tungsten film formed to a thickness of about 100 nm.
  • the polishing liquid produced by the above method was used to carry out a CMP process, and then the processing liquid produced by the above method was used to carry out a cleaning process, after which the defect removability on the processed object was evaluated.
  • the evaluation method will be described below.
  • the polished surface of the workpiece after polishing was scrubbed with a brush in cleaning unit 1 of the polishing apparatus using the treatment liquid of each Example and Comparative Example for 30 seconds, and then scrubbed with a brush in cleaning unit 2 for another 30 seconds.
  • the wafer was spin-dried at 1000 rpm in the drying unit while nitrogen gas was sprayed onto the wafer surface.
  • defect removability 1 which is the defect removability when polishing liquid 1 is used, was evaluated according to the following evaluation criteria. Note that the term "defects/Wf" below means the number of defects per wafer.
  • A The number of defects of 0.1 ⁇ m or larger, including abrasive grains, is less than 50/Wf.
  • B The number of defects of 0.1 ⁇ m or larger, including abrasive grains, is 50/Wf or more and less than 100/Wf.
  • C The number of defects of 0.1 ⁇ m or larger, including abrasive grains, is 100/Wf or more and less than 200/Wf.
  • D The number of defects of 0.1 ⁇ m or larger, including abrasive grains, is 200/Wf or more and less than 300/Wf.
  • E The number of defects of 0.1 ⁇ m or larger, including abrasive grains, is 300/Wf or more.
  • Evaluation of defect removability 2 was carried out in the same manner as in the evaluation of defect removability using polishing liquid 1, except that polishing liquid 2 was used as the polishing liquid. Except for using polishing liquid 3 as the polishing liquid, evaluation of defect removability 3 was carried out in accordance with the above evaluation of defect removability using polishing liquid 1.
  • the treatment liquid produced by the above method was used to evaluate its corrosion inhibitory effect on tungsten.
  • the wafer was immersed in the treatment solution of each of the Examples and Comparative Examples for 30 minutes at room temperature with agitation speed of 250 rpm. Thereafter, the film thickness of the obtained wafer was measured using VR250 (manufactured by Kokusai Electric Semiconductor Services Co., Ltd.), and the corrosion rate per unit time ( ⁇ /min) was calculated from the difference in film thickness before and after the immersion treatment.
  • VR250 manufactured by Kokusai Electric Semiconductor Services Co., Ltd.
  • the corrosion inhibitory properties of the treatment liquid were evaluated according to the following evaluation criteria: The lower the corrosion rate ( ⁇ /min), the better the corrosion inhibitory properties of the treatment liquid.
  • Tables 1 to 10 show the compositions of the concentrated solutions, dilution ratios, and evaluation results of the treatment solutions of the examples and comparative examples.
  • the "Content” column indicates the content (unit: mass %) of each component relative to the total mass of the concentrated treatment liquid.
  • the “mass ratio” column indicates the content (unit: mass %) of each component relative to the total mass of the components excluding the solvent in the treatment liquid. Note that the "mass ratio" in the (A) organic acid column is the mass ratio of the content of all organic acids contained in the treatment liquid relative to the total mass of the components excluding the solvent in the treatment liquid.
  • the "pH” column indicates the pH at 25°C of the concentrated treatment solutions of the Examples and Comparative Examples, measured with the above-mentioned pH meter.
  • the column “A/B” indicates the mass ratio of the organic acid content to the specific compound content.
  • the column “A/D” indicates the mass ratio of the organic acid content to the antibacterial agent content.
  • the column “X/Y” indicates the mass ratio of the content of organic acid X to the content of organic acid Y.
  • the column “C/D” indicates the mass ratio of the amino alcohol content to the antibacterial agent content.
  • the content of the organic acid used as "A” above is the total content of the organic acid X and the organic acid Y.
  • the column “Dilution ratio (times)” indicates the dilution ratio (volume ratio) when a concentrated solution having the composition shown in Tables 1 to 10 is used in a test.
  • the column “Dilution ratio (times)" is 200, it means that a concentrated solution having the composition shown in the table was diluted with pure water to a volume ratio of 200 times and used in the above-mentioned evaluation.
  • the column “Defect removability 1” shows the evaluation results of defect removability when polishing liquid 1 was used as the polishing liquid
  • the column “Defect removability 2” shows the evaluation results of defect removability when polishing liquid 2 was used as the polishing liquid
  • the column “Defect removability 3” shows the evaluation results of defect removability when polishing liquid 3 was used as the polishing liquid.
  • Table 2 is a continuation of Table 1
  • Table 4 is a continuation of Table 3
  • Table 6 is a continuation of Table 5
  • Table 8 is a continuation of Table 7
  • Table 10 is a continuation of Table 9.
  • the concentrated solution of the treatment solution of Example 19 contains citric acid as listed in Table 3 and MIT as listed in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

タングステンを含む被処理物に適用した際に、タングステン上の欠陥除去性に優れる、半導体デバイスの製造方法、並びに、上記製造方法に用いられる、処理液及びキットを提供することを課題とする。本発明の半導体デバイスの製造方法は、遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液を用いて、タングステンを含む被処理物に対して、化学的機械的研磨処理を施す工程1と、上記工程1の後に、式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、上記特定化合物とは異なる有機酸とを含む処理液を用いて、上記被処理物に対して、洗浄処理を施す工程2と、を含む。

Description

半導体デバイスの製造方法、処理液、キット
 本発明は、半導体デバイスの製造方法、処理液、及び、キットに関する。
 半導体集積回路(LSI:large-scale integrated circuit)に代表される半導体デバイスの開発においては、小型化・高速化のため、配線の微細化と積層化による高密度化及び高集積化が求められている。このような要望の下、半導体デバイスの製造においては、ベアウェハの平坦化、層間絶縁膜の平坦化、金属プラグの形成及び埋め込み配線形成等に化学的機械的研磨(CMP:chemical mechanical polishing)処理が用いられる。
 CMP処理では、CMP処理で使用する砥粒、研磨された配線金属膜及び/又はバリアメタル等に由来する金属成分などの残渣が研磨後の半導体基板表面に残存することがある。このため、CMP処理後、処理液を用いてこれらの残渣物を除去する工程が一般的に実施される。
 このような半導体デバイスの製造工程において、被処理物の成分や用途に応じて、上記各工程で用いられる部材の特性及び組成には多様な要求がある。
 例えば、特許文献1には、酸化ケイ素及び窒化ケイ素の研磨特性に優れる、CMP処理に用いられる研磨液として、表面修飾されたコロイダルシリカと、リン酸を除く緩衝剤とを含み、上記研磨液のpHの値をXとしたときに上記緩衝剤がX±1の範囲内のpKaをもつ化合物であり、電気伝導度が200μS/cmであり、pHが2~6である研磨液が開示されている。
特開2022-091814号公報
 本発明者が、タングステンを含む被処理物に特許文献1に記載の研磨液を適用したところ、CMP処理後の処理方法によってはタングステン上の欠陥が多く、半導体デバイスの製造に適用するに際し、CMP処理及びその後の処理方法に検討が必要であることを知見した。
 そこで、本発明は、タングステンを含む被処理物に適用した際に、タングステン上の欠陥除去性に優れる、半導体デバイスの製造方法を提供することを課題とする。
 また、上記半導体デバイスの製造方法に用いられる処理液及びキットを提供することも課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により課題を解決できることを見出した。
 〔1〕 遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液を用いて、タングステンを含む被処理物に対して、化学的機械的研磨処理を施す工程1と、
 上記工程1の後に、後述する式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、上記特定化合物とは異なる有機酸とを含む処理液を用いて、上記被処理物に対して、洗浄処理を施す工程2と、を含む、半導体デバイスの製造方法。
 〔2〕 上記表面修飾されたコロイダルシリカが、表面に-SO 、-OSO 、-PO 2-、-OPO 2-、及び、-NHからなる群から選択される少なくとも1種の官能基を有し、上記Mはカチオンを表し、
 上記アニオン性基を有するポリマーの重量平均分子量が、1000~50000であり、
 上記有機酸が、ポリカルボン酸である、〔1〕に記載の半導体デバイスの製造方法。
 〔3〕 上記表面修飾されたコロイダルシリカが、表面に-SO 、-OSO 、及び、-NHからなる群から選択される少なくとも1種の官能基を有する、〔2〕に記載の半導体デバイスの製造方法。
 〔4〕 上記特定化合物の含有量に対する、上記有機酸の含有量の質量比が、1~150である、〔1〕~〔3〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔5〕 上記処理液のpHが3.0~8.0である、〔1〕~〔4〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔6〕 上記有機酸の含有量が、上記処理液中の溶媒を除いた成分の合計質量に対して、11.0~55.0質量%である、〔1〕~〔5〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔7〕 上記式(1)で表される化合物が、トリメリット酸、4-ヒドロキシフタル酸、4-アミノフタル酸、4-スルホフタル酸、5-スルホサリチル酸、2,5-ジヒドロキシ安息香酸、5-アミノサリチル酸、4-ヒドロキシイソフタル酸、5-ヒドロキシアントラニル酸、2,5-ジアミノ安息香酸、5-スルホアントラニル酸、アミドール、1,3-フェニレンジアミン-4-スルホン酸、3-アミノ-4-ヒドロキシ安息香酸、及び、3-アミノ-4-ヒドロキシベンゼンスルホン酸からなる群から選択される少なくとも1種を含む、〔1〕~〔6〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔8〕 上記アニオン性基を有するポリマーが、アクリル酸由来の繰り返し単位、又は、マレイン酸由来の繰り返し単位を含み、
 上記アニオン性基を有するポリマーの重量平均分子量が、1000~10000である、〔1〕~〔7〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔9〕 上記特定化合物の含有量が、上記処理液中の溶媒を除いた成分の合計質量に対して、0.2~15.0質量%である、〔1〕~〔8〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔10〕 上記処理液が、更にアミノアルコールを含む、〔1〕~〔9〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔11〕 上記アミノアルコールが、ヒドロキシ基を2つ以上有する、〔10〕に記載の半導体デバイスの製造方法。
 〔12〕 上記処理液が、更に抗菌剤を含む、〔1〕~〔11〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔13〕 上記抗菌剤の含有量に対する、上記有機酸の含有量の質量比が、3.5~300である、〔12〕に記載の半導体デバイスの製造方法。
 〔14〕 上記処理液が、有機酸を2種以上を含む、〔1〕~〔13〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔15〕 上記有機酸の少なくとも1種が、アミノ酸又はその誘導体である、〔14〕に記載の半導体デバイスの製造方法。
 〔16〕 上記アミノ酸及びその誘導体の含有量に対する、上記アミノ酸及びその誘導体とは異なる有機酸の含有量の質量比が、0.5~20である、〔15〕に記載の半導体デバイスの製造方法。
 〔17〕 上記処理液が、アミノアルコール及び抗菌剤を含み、
 上記抗菌剤の含有量に対する、上記アミノアルコールの含有量の質量比が、5~100である、〔1〕~〔16〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔18〕 上記工程1と、上記工程2との間に、砥粒を含まない薬液を用いて、上記被処理物を研磨する工程3を含む、〔1〕~〔17〕のいずれか1つに記載の半導体デバイスの製造方法。
 〔19〕 遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液を用いて、タングステンを含む被処理物に対して、化学的機械的研磨処理を施す工程の後に用いられる処理液であって、
 後述する式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、上記特定化合物とは異なる有機酸とを含む、処理液。
 〔20〕 遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液、及び、
 後述する式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、上記特定化合物とは異なる有機酸とを含む処理液を備える、キット。
 本発明によれば、タングステンを含む被処理物に適用した際に、タングステン上の欠陥除去性に優れる、半導体デバイスの製造方法を提供できる。
 また、上記半導体デバイスの製造方法に用いられる処理液及びキットも提供できる。
 以下、本発明について詳述する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
 本明細書において、「研磨液中の溶媒を除いた成分の合計質量」とは、水及び有機溶媒等の溶媒以外の研磨液に含まれる全ての成分の合計質量を意味し、「処理液中の溶媒を除いた成分の合計質量」とは、水及び有機溶媒等の溶媒以外の処理液に含まれる全ての成分の合計質量を意味する。
 本明細書において、特定の符号で表示された置換基及び連結基等(以下、置換基等という)が複数あるとき、又は、複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
 本明細書において表記される2価の基の結合方向は、特に断らない限り制限されない。例えば、「X-Y-Z」なる式で表される化合物中の、Yが-COO-である場合、Yは、-CO-O-であってもよく、-O-CO-であってもよい。また、上記化合物は「X-CO-O-Z」であってもよく「X-O-CO-Z」であってもよい。
 本明細書において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「arts-per-trillion(10-12)」を意味する。
 本明細書において、「重量平均分子量(Mw)」、及び「多分散度(PDI)」は、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の値を意味する。
 以下、本発明の半導体デバイスの製造方法について詳述する。
 本発明の半導体デバイスの製造方法(以下、「本製造方法」ともいう。)は、遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液を用いて、タングステンを含む被処理物に対して、化学的機械的研磨処理を施す工程1と、上記工程1の後に、後述する式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、上記特定化合物とは異なる有機酸とを含む処理液を用いて、上記被処理物に対して、洗浄処理を施す工程2と、を含む。
 上記構成を有する本製造方法が本発明の課題を解決できる理由は必ずしも明らかではないが、本発明者らは以下のとおり推測する。
 なお、下記推測により、効果が得られる機序が制限されるものではない。換言すれば、下記以外の機序により効果が得られる場合でも、本発明の範囲に含まれる。
 タングステンを含む被処理物のCMP処理に用いられる研磨液は、遷移金属イオンと、キレート剤と、砥粒の凝集や付着が抑制される表面修飾されたコロイダルシリカとを有することで、研磨効率に優れ、かつ、CMP処理後の欠陥を低減しやすい。ここで、CMP処理後の洗浄に用いられる処理液が、有機酸と、特定化合物とを有することで、残渣物の溶解性が向上するとともに、残渣物表面と被処理物表面の電気的特性が適切に調整される。これにより、表面修飾されたコロイダルシリカを含む残渣物と、タングステンを含む被処理物との間に静電反発が生じ、上記残渣物の被処理物表面への吸着が抑制され、結果として本製造方法が欠陥除去性に優れると考えられる。
 以下、本製造方法の全工程を実施した後のタングステン上の欠陥除去性を単に「欠陥除去性」ともいう。また、欠陥除去性に優れることを、「本発明の効果がより優れる」ともいう。
 以下、各工程について詳述する。
[工程1]
 本製造方法は、遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液を用いて、タングステンを含む被処理物に対して、化学的機械的研磨処理を施す工程1を含む。
 以下、工程1で使用する材料(被処理物及び研磨液)及び手順について詳述する。
〔被処理物〕
 被処理物は、タングステンを含むものであれば、特に制限されない。被処理物としては、例えば、タングステンを含む層(タングステン層)を有する基板が挙げられる。
 なお、基板が上記タングステン層を有する場合、タングステン層の存在する箇所は、例えば、基板の表裏、側面、及び、溝内等のいずれであってもよい。また、基板がタングステン層を有する場合、基板の表面上に直接タングステン層がある場合のみならず、基板上に他の層を介してタングステン層がある場合も含む。
 タングステン層は、基板の片側の主面のみに配置されていてもよく、基板の両側の主面に配置されていてもよい。タングステン層は、基板の主面の全面に配置されていてもよいし、基板の主面の一部に配置されていてもよい。
 タングステン層は、上述したように、タングステンを含む。タングステン層の成分としては、より具体的には、例えば、タングステンの単体、タングステンと他の金属との合金、窒化タングステン、酸化タングステン、酸窒化タングステン、及び、タングステンシリサイドが挙げられ、タングステンの単体又はタングステンと他の金属との合金が好ましい。
 上記他の金属としては、例えば、モリブデン(Mo)、銅(Cu)、コバルト(Co)、ルテニウム(Ru)、アルミニウム(Al)、チタン(Ti)、タンタル(Ta)、Rh(ロジウム)、Cr(クロム)、Hf(ハフニウム)、Os(オスミウム)、Pt(白金)、Ni(ニッケル)、Mn(マンガン)、Zr(ジルコニウム)、La(ランタン)、及び、Ir(イリジウム)が挙げられ、Co又はTiが好ましい。
 また、タングステン層は、上記タングステンと他の金属との合金の酸化物、窒化物、酸窒化物、又は、ケイ化物としてタングステンを含んでいてもよい。
 タングステン層は、タングステンを主成分として含むことが好ましい。タングステンを主成分として含むとは、タングステン原子の含有量がタングステン層の全質量に対して最も多いことを意味する。タングステン層に含まれるタングステンの含有量は、タングステン層の全質量に対して、50質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上が更に好ましい。上限としては、タングステン単体であってもよいことから、100質量%である。
 被処理物におけるタングステン層の形態は特に制限されず、例えば、膜状に配置された形態(タングステン含有膜)、及び、配線状に配置された形態(タングステン含有配線)が挙げられる。
 タングステン層が膜状又は配線状である場合、その厚みは特に制限されず、用途に応じて適宜選択すればよいが、500nm以下が好ましく、20nm以下がより好ましく、50nm以下が更に好ましい。下限は特に制限されないが、1nm以上が好ましい。
 タングステン層は、例えば、バリアメタル又はビアと配線の接続部に使用されることが多い。
 被処理物における基板の種類は特に制限されず、例えば、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、及び、光磁気ディスク用基板等の各種基板が挙げられる。
 半導体基板を構成する材料としては、例えば、ケイ素、ケイ素ゲルマニウム、及び、GaAs等の第III-V族化合物、又は、それらの任意の組合せが挙げられる。
 基板の大きさ、厚さ、形状、及び、層構造は特に制限されず、所望に応じ適宜選択できる。
 被処理物が半導体基板である場合、半導体基板は、絶縁膜を有していてもよい。
 被処理物における絶縁膜は特に制限されず、例えば、窒化珪素(SiN)、酸化珪素、炭化珪素(SiC)、炭窒化珪素、酸化炭化珪素(SiOC)、酸窒化珪素、及び、TEOS(テトラエトキシシラン)からなる群から選択される1以上の材料を含む絶縁膜が挙げられる。なかでも、上記材料としては、SiN、TEOS、SiC、又は、SiOCが好ましい。また、絶縁膜は複数の膜で構成されていてもよい。
 被処理物は、上記以外に、所望に応じた種々の層、及び/又は、構造を有していてもよい。例えば、被処理物が基板である場合、被処理物は、バリア層(例えば、チタン、窒化チタン、タンタル、及び、窒化タンタル等を含む層)、金属配線、酸化膜、ゲート電極、ソース電極、ドレイン電極、絶縁層、強磁性層、集積回路構造、及び/又は、非磁性層等の部材を有していてもよい。
 被処理物の製造方法は、特に制限されない。
 基板上に、上記の絶縁膜及びタングステン層を形成する方法としては、通常この分野で行われる方法であれば特に制限されない。
 絶縁膜を形成する方法としては、例えば、半導体基板を構成するウエハに対して、酸素ガス存在下で熱処理を行うことによりシリコン酸化膜を形成し、次いで、シラン及びアンモニアのガスを流入して、化学気相成長(CVD:Chemical Vapor Deposition)法によりシリコン窒化膜を形成する方法が挙げられる。
 絶縁膜上にタングステン層を形成する方法としては、例えば、スパッタリング法、物理気相成長(PVD:Physical vapor deposition)法、原子層堆積(ALD:Atomic layer deposition)法、化学気相成長法、及び、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法が挙げられる。
 また、所定のマスクを介して上記方法を実施して、基板上にパターン状のタングステン層を形成してもよい。
〔研磨液〕
 本製造工程で用いられる研磨液(以下、単に「研磨液」ともいう。)は、遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む。
 以下、研磨液に含まれる各成分及び研磨液の製造方法について詳述する。
<遷移金属イオン>
 研磨液は、遷移金属イオンを含む。遷移金属イオンとは、遷移金属のイオンである。
 上記遷移金属としては、第一遷移金属が好ましい。上記第一遷移金属としては、鉄(Fe)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)、バナジウム(V)、チタン(Ti)、スカンジウム(Sc)、及び、亜鉛(Zn)が挙げられ、Fe、Cu、Ni、又は、Coが好ましく、Fe又はCuがより好ましく、Feが更に好ましい。
 上記遷移金属イオンは、多価の遷移金属イオンであることが好ましい。多価の遷移金属イオンとは、酸化状態の異なる遷移金属イオンのうち、イオン価数が2以上の遷移金属イオンをいう。遷移金属イオンの価数は、特に制限されないが、2以上が好ましく、2又は3がより好ましく、3が更に好ましい。
 なかでも、遷移金属イオンとしては、多価の鉄イオン、多価の銅イオン、多価のニッケルイオン、又は、多価のコバルトイオンが好ましく、多価の鉄イオンがより好ましい。
 遷移金属イオンは、遷移金属イオンを含む化合物(遷移金属イオン源)を添加することにより研磨液に添加できる。
 上記遷移金属イオン源は、研磨液中で遷移金属イオンを放出可能な化合物であれば特に制限されないが、例えば、遷移金属イオンとアニオンの塩、遷移金属イオン錯体及びそれらの水和物が挙げられる。
 上記遷移金属イオンとアニオンの塩としては、無機塩及び有機塩が挙げられる。無機塩としては、例えば、硝酸塩、硫酸塩、ホウ酸塩、リン酸塩、塩化物、臭化物、ヨウ化物、及び、フッ化物が挙げられる。有機塩としては、例えば、ギ酸塩、酢酸塩、プロピオン酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、リンゴ酸塩、グルタル酸塩、酒石酸塩、乳酸塩、及び、クエン酸塩が挙げられる。これらの塩は、水及びアンモニウム等の配位子を有していてもよい。
 上記遷移金属イオン錯体に含まれる配位子としては、特に制限されないが、1~4座配位子が好ましく、2座配位子がより好ましい。具体的には、例えば、エチレンジアミン、アセチルアセトナート(acac)、グリシナート、ジエチレントリアミン、イミノ二酢酸(IDA)、及び、ニトリロ三酢酸(NTA)が挙げられる。
 遷移金属イオン源としては、具体的には、例えば、硝酸鉄(III)、硫酸鉄(III)、塩化鉄(III)、臭化鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、酒石酸鉄(III)、酢酸鉄(II)、シュウ酸鉄(II)、乳酸鉄(II)、鉄(III)アセチルアセトナート、硝酸銅(II)、塩化銅(II)、クエン酸銅(II)、及び、これらの水和物が挙げられ、入手性の点で、硝酸鉄(III)又はその水和物が好ましい。
 遷移金属イオンは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 研磨効率がより優れる点で、遷移金属イオンの含有量は、研磨液の全質量に対して、1~1000質量ppmが好ましく、10~500質量ppmがより好ましく、30~200質量ppmが更に好ましい。
 研磨効率がより優れる点で、遷移金属イオンの含有量は、研磨液の溶媒を除いた成分の合計質量に対して、0.001~5質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%が更に好ましい。
 遷移金属イオンの含有量は、上記遷移金属イオン源の添加量により調整すればよい。遷移金属イオン源は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<キレート剤>
 研磨液は、キレート剤を含む。キレート剤は、配位子として機能し得る官能基(配位基)を有する化合物である。
 キレート剤が有する配位基としては、例えば、カルボキシ基、ホスホン酸基、及び、スルホ基が挙げられ、カルボキシ基又はホスホン酸基が好ましい。
 キレート剤としては、有機キレート剤及び無機キレート剤が挙げられる。
 有機キレート剤は、有機化合物からなるキレート剤であり、例えば、配位基としてカルボキシ基を有するカルボン酸系キレート剤、配位基としてホスホン酸基を有するホスホン酸系キレート剤、及び、配位基としてスルホ基を有するスルホン酸系キレート剤が挙げられる。
 無機キレート剤としては、縮合リン酸及びその塩が挙げられる。
 キレート剤としては、有機キレート剤が好ましい。
 キレート剤は、低分子量であることが好ましい。具体的には、キレート剤の分子量は、600以下が好ましく、450以下がより好ましく、300以下が更に好ましい。下限は、50以上が好ましく、100以上がより好ましい。
 キレート剤の炭素数は、1~15が好ましく、2~15がより好ましい。
 カルボン酸系キレート剤としては、例えば、ポリカルボン酸、アミノカルボン酸、及び、ヒドロキシカルボン酸が挙げられる。
 ポリカルボン酸としては、例えば、マロン酸、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、セバシン酸、マレイン酸、及び、アジピン酸が挙げられ、マロン酸、シュウ酸、又は、コハク酸が好ましい。
 アミノカルボン酸としては、例えば、グリシン又はその誘導体、ヒスチジン又はその誘導体、アラニン(2-アミノプロピオン酸又は3-アミノプロピオン酸)、アルギニン、アスパラギン、アスパラギン酸、シスチン、システイン、グルタミン、グルタミン酸、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、セリン、エチオニン、トレオニン、チロシン、バリン、トリプトファン、2-アミノ-3-アミノプロパン酸、及び、プロリンが挙げられ、グリシン又はその誘導体が好ましい。
 アミノカルボン酸としては、特開2016-086094号公報の段落[0021]~[0023]に記載の化合物も挙げられる。
 グリシン誘導体としては、N,N-ジ(2-ヒドロキシエチル)グリシンが挙げられる。
 ヒドロキシカルボン酸としては、例えば、ギ酸、クエン酸、リンゴ酸、グリコール酸、グルコン酸、ヘプトン酸、酒石酸、乳酸、フェニル乳酸、ヒドロキシフェニル乳酸、及び、フェニルコハク酸が挙げられ、ギ酸、クエン酸、酒石酸、又は、乳酸が好ましい。
 ホスホン酸系キレート剤としては、ホスホン酸が挙げられ、具体的には、例えば、エチドロン酸(HEDP)、1-ヒドロキシエチリデン-1,1’-ジホスホン酸(HEDPO)、1-ヒドロキシプロピリデン-1,1’-ジホスホン酸、1-ヒドロキシブチリデン-1,1’-ジホスホン酸、エチルアミノビス(メチレンホスホン酸)、ドデシルアミノビス(メチレンホスホン酸)、ニトリロトリス(メチレンホスホン酸)(NTPO)、エチレンジアミンビス(メチレンホスホン酸)(EDDPO)、1,3-プロピレンジアミンビス(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)(EDTPO)、エチレンジアミンテトラ(エチレンホスホン酸)、1,3-プロピレンジアミンテトラ(メチレンホスホン酸)(PDTMP)、1,2-ジアミノプロパンテトラ(メチレンホスホン酸)、1,6-ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)(DEPPO)、ジエチレントリアミンペンタ(エチレンホスホン酸)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)、及び、トリエチレンテトラミンヘキサ(エチレンホスホン酸)が挙げられる。
 なかでも、ホスホン酸系キレート剤としては、HEDP、HEDPO、又は、EDTPOが好ましい。
 ホスホン酸系キレート剤としては、例えば、国際公開第2018/020878号の段落[0026]~[0036]に記載の化合物、及び、国際公開第2018/030006号の段落[0031]~[0046]に記載の化合物((共)重合体)も挙げられ、これらの内容は本明細書に組み込まれる。
 キレート剤は、ポリカルボン酸、アミノカルボン酸、及び、ホスホン酸からなる群から選択される少なくとも1種を含むことが好ましく、ポリカルボン酸、アミノカルボン酸、及び、ホスホン酸からなる群から選択される少なくとも2種を含むことがより好ましい。
 なかでも、キレート剤は、マロン酸、ギ酸、シュウ酸、クエン酸、酒石酸、コハク酸、グリシン、HEDP、HEDPO、及び、EDTPOからなる群から選択される少なくとも1種を含むことが好ましく、マロン酸、グリシン、及び、HEDPからなる群から選択される少なくとも1種を含むことがより好ましい。
 キレート剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 研磨液は、キレート剤を2種以上含むことが好ましく、3種以上含むことがより好ましい。
 研磨効率がより優れる点で、キレート剤の含有量は、研磨液の全質量に対して、0.01~5.0質量%が好ましく、0.05~3.0質量%がより好ましく、0.2~1.0質量%が更に好ましい。
 研磨効率がより優れる点で、キレート剤の含有量は、研磨液の溶媒を除いた成分の合計質量に対して、0.1~20.0質量%が好ましく、1.0~10.0質量%がより好ましく、2.0~5.0質量%が更に好ましい。
<表面修飾されたコロイダルシリカ>
 研磨液は、表面修飾されたコロイダルシリカを含む。表面修飾されたコロイダルシリカは、被処理物を研磨する砥粒として機能する。
 コロイダルシリカとは、分散媒においてコロイド状に分散しているシリカ(酸化ケイ素)粒子である。
 上記表面修飾されたコロイダルシリカとは、シリカ粒子表面のシラノール基の一部が修飾され、シラノール基とは異なる官能基(以下、「表面修飾基」ともいう。)を有しているシリカ粒子が、コロイド状に分散しているコロイダルシリカをいう。
 表面修飾基は、シリカ粒子の表面のシラノール基に直接共有結合で結合していてもよく、連結基を介して結合していてもよい。
 上記表面修飾基としては、イオン性基が好ましい。イオン性基としては、アニオン性基及びカチオン性基が挙げられる。
 上記アニオン性基としては、例えば、-SO 、-OSO 、-PO 2-、又は、-OPO 2-で表される基が挙げられる。
 Mは、カチオンを表す。カチオンとしては特に制限されず、例えば、1個の1価のカチオン、1個の2価のカチオン、及び、2個の1価のカチオンの態様が挙げられる。Mとしては、具体的には、例えば、プロトン、第四級アンモニウムカチオン、又は、1価の金属カチオンが挙げられる。Mが1個の1価のカチオンである場合、アニオン性基は、-SO Na及び-OSO NH 等の態様となる。Mが1個の2価のカチオンである場合、アニオン性基は、-PO 2-Ca2+及び-OPO 2-Mg2+等の態様となる。Mが2個の1価のカチオンである場合、アニオン性基は、-PO 2- 及び-OPO 2- 等の態様となる。
 Mがプロトンである場合、上記、-SO 、-OSO 、-PO 2-、及び、-OPO 2-で表される基は、それぞれ、スルホ基、硫酸エステル基、ホスホン酸基、及び、リン酸基を表す。
 また、Mがプロトン以外のカチオン(例えば、第四級アンモニウムカチオン、1価の金属カチオン、及び、2価の金属カチオン)である場合、-SO 、-OSO 、-PO 2-、及び、-OPO 2-で表される基は、それぞれ、スルホ基の塩、硫酸エステル基の塩、ホスホン酸基の塩、及び、リン酸基の塩を表す。
 上記アニオン性基は、研磨液中で電離していてもよく、すなわち、-SO 、-OSO 、-PO 2-、又は、-OPO 2-で表される基であってもよい。また、-PO、又は、-OPOで表される基であってもよい。
 上記カチオン性基としては、例えば、-NHで表される基が挙げられる。
 -NHで表される基は、-NH で表される基を形成していてもよく、更にアニオンと塩を形成していてもよい。上記アニオンとしては、特に制限されないが、例えば、水酸化物イオン、ハロゲン化物イオン、硝酸イオン、硫酸イオン、及び、リン酸イオンが挙げられる。
 なかでも、表面修飾基としては、-SO 、-OSO 、-PO 2-、-OPO 2-、又は、-NHで表される基が好ましく、-SO 、-OSO 、又は、-NHで表される基がより好ましい。
 シリカ粒子は、表面修飾基を1種のみ有していてもよく、2種以上有していてもよい。
 表面修飾されたコロイダルシリカを得る方法としては特に限定されないが、例えば、特開2005-162533号公報、及び、特開2010-269985号公報に記載の方法が挙げられる。例えば、表面修飾基又は表面修飾基に変換可能な基を有するシランカップリング剤と、シリカ粒子表面のシラノール基とを反応させる方法等が使用できる。
 本発明の効果がより優れる点で、表面修飾されたコロイダルシリカの、研磨液中におけるゼータ電位は、表面修飾基がアニオン性基である場合、-80~-10mVが好ましく、-70~-20mVがより好ましく、-60~-25mVが更に好ましい。
 本発明の効果がより優れる点で、表面修飾されたコロイダルシリカの、研磨液中におけるゼータ電位は、表面修飾基がカチオン性基である場合、+10~+60mVが好ましく、+15~+40mVがより好ましく、+15~+35mVが更に好ましい。
 上記研磨液中におけるゼータ電位は、公知のゼータ電位測定装置(例えば、大塚電子社製「ELSZ-2000ZS」)を用いて測定できる。なお、測定温度は25℃である。
 一般に、シリカ粒子表面の表面修飾基が多い程ゼータ電位の絶対値が大きい。
 表面修飾されたコロイダルシリカの粒子径は、使用用途により適宜選択すればよい。
 本発明の効果がより優れる点で、表面修飾されたコロイダルシリカの平均一次粒子径は、1~1000nmが好ましく、5~150nmがより好ましく、10~110nmが更に好ましい。
 コロイダルシリカの平均一次粒子径とは、体積基準での積算粒子径分布曲線を得て、この曲線の積算分布の値が50%になる粒子径(メジアン径)をいう。上記積算粒子径分布曲線は、透過型電子顕微鏡等によってコロイダルシリカの円相当径を測定し、体積基準に変換して得られる。なお、円相当径とは、観察時のコロイダルシリカの投影面積と同じ投影面積をもつ真円を想定したときの当該円の直径である。
 本発明の効果がより優れる点で、表面修飾されたコロイダルシリカの平均二次粒子径は、5~2000nmが好ましく、10~300nmがより好ましく、20~220nmが更に好ましい。
 コロイダルシリカの平均二次粒子径とは、コロイダルシリカの一部が会合して形成される二次粒子の平均粒子径をいう。上記平均二次粒子径は、動的光散乱法で得られた粒度分布において求められる平均粒子径を表す。
 研磨効率がより向上する点で、表面修飾されたコロイダルシリカの会合度は、1~3が好ましい。
 本明細書において、会合度とは、会合度=平均二次粒子径/平均一次粒子径で求められる。平均二次粒子径は、凝集した状態である二次粒子の平均粒子径(円相当径)に相当し、上述した平均一次粒子径と同様の方法により求めることができる。
 研磨効率がより向上する点で、コロイダルシリカの平均アスペクト比は、1.2~2.0が好ましく、1.3~1.8がより好ましく、1.35~1.75が更に好ましい。
 コロイダルシリカの平均アスペクト比は、上述の透過型電子顕微鏡にて観察された任意の100個の粒子毎に長径と短径を測定して、粒子毎のアスペクト比(長径/短径)を計算し、100個のアスペクト比を算術平均して求められる。なお、粒子の長径とは、粒子の長軸方向の長さを意味し、粒子の短径とは、粒子の長軸方向に直交する粒子の長さを意味する。
 コロイダルシリカは市販品を使用してもよく、例えば、PL5D、PL3D、PL2D、PL1D、及び、PL07D(アニオン性基で表面修飾されたコロイダルシリカ、いずれも製品名、扶桑化学工業社製)、並びに、PL5C、PL3C、及び、PL1C(カチオン性基で表面修飾されたコロイダルシリカ、いずれも製品名、扶桑化学工業社製)等が挙げられる。
 コロイダルシリカとして市販品を用いる場合には、コロイダルシリカの平均一次粒子径、平均二次粒子径、会合度、及び、アスペクト比としてはカタログ値を優先的に採用する。
 研磨液においては、表面修飾されたコロイダルシリカと、表面修飾されていないコロイダルシリカとを併用してもよいが、欠陥抑制性及び経時安定性の点で、表面修飾されたコロイダルシリカのみを使用することが好ましい。
 なお、表面修飾されたコロイダルシリカと、表面修飾されていないコロイダルシリカとを併用する場合、表面修飾されたコロイダルシリカの含有量は、研磨液中の全てのコロイダルシリカの合計含有量に対して、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。上限としては、100質量%である。
 本発明の研磨液は、表面修飾されていてもよいコロイダルシリカ以外の砥粒を含んでいてもよい。
 表面修飾されていてもよいコロイダルシリカ以外の砥粒としては、ヒュームドシリカ、セリア、アルミナ、及び、チタニア等が挙げられる。コロイダルシリカ以外の砥粒の平均一次粒子径は、コロイダルシリカの平均一次粒子径に対して1~2倍が好ましい。
 研磨液に含まれる砥粒の合計含有量に対する表面修飾されたコロイダルシリカの含有量は、50質量%以上が好ましく、80質量%以上がより好ましく、99質量%以上が更に好ましい。上限としては、100質量%である。
 研磨効率及び経時安定性の点で、表面修飾されたコロイダルシリカの含有量は、研磨液の全質量に対して、0.01~10質量%が好ましく、0.1~7質量%がより好ましく、1~5質量%が更に好ましい。
 研磨効率及び経時安定性の点で、表面修飾されたコロイダルシリカの含有量は、研磨液の溶媒を除いた成分の合計質量に対して、1~80質量%が好ましく、10~60質量%がより好ましく、30~50質量%が更に好ましい。
 研磨液は、遷移金属イオン、キレート剤、及び、表面修飾されたコロイダルシリカ以外の成分を含んでいてもよい。
<水>
 研磨液は、水を含んでいてもよい。
 研磨液に含まれる水としては、特に制限されないが、蒸留水、脱イオン(DI:De Ionized)水、及び、純水(超純水)が使用できる。
 水の含有量は、研磨液に含まれ得る成分の残部であればよいが、研磨液の全質量に対して、55~99質量%が好ましく、75~97質量%がより好ましく、80~95質量%が更に好ましい。
<酸化剤>
 研磨液は、酸化剤を含んでいてもよい。研磨効率の点で、研磨液は酸化剤を含むことが好ましい。
 酸化剤は、タングステンを酸化可能な化合物であれば特に制限されないが、例えば、過酸化水素、オゾン水、希土類金属酸化物、過炭酸塩、過マンガン酸塩、セリウム化合物、フェリシアン化物、並びに、過ヨウ素酸、過硫酸、塩素酸、次亜塩素酸、臭素酸、ヨウ素酸、クロム酸、過ホウ酸、過酢酸、過安息香酸、重クロム酸カリウム、及び、これらの塩が挙げられ、過酸化水素が好ましい。
 酸化剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 研磨効率及び貯蔵安定性の点で、酸化剤の含有量は、研磨液の全質量に対して、0.1~20質量%が好ましく、1~10質量%がより好ましく、3~8質量%が更に好ましい。
 研磨効率及び貯蔵安定性の点で、研磨液の溶媒を除いた成分の合計質量に対して、1~90質量%が好ましく、40~80質量%がより好ましく、50~70質量%が更に好ましい。
<その他の成分>
 研磨液は、上記以外のその他の成分を含んでいてもよい。
 その他の成分としては、例えば、pH調整剤、界面活性剤、水溶性ポリマー、防食剤、及び、有機溶媒が挙げられる。
-pH調整剤-
 研磨液は、研磨液のpHを調整及び維持するためにpH調整剤を含んでいてもよい。
 pH調整剤は、研磨液に含まれ得る上記化合物とは異なる、塩基性化合物及び酸性化合物である。ただし、上記各成分の添加量を調整することで、研磨液のpHを調整することは許容される。
 塩基性化合物とは、水溶液中でアルカリ性(pHが7.0超)を示す化合物である。
 塩基性化合物としては、塩基性無機化合物が挙げられ、例えば、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、アルカリ土類金属水酸化物、並びに、アンモニアが挙げられる。
 酸性化合物とは、水溶液中で酸性(pHが7.0未満)を示す化合物である。
 酸性化合物としては、無機酸が挙げられ、例えば、塩酸、硫酸、亜硫酸、硝酸、亜硝酸、及び、ホウ酸が挙げられる。
 pH調整剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 pH調整剤の含有量は、その他成分の種類及び量、並びに、目的とする研磨液のpHに応じて選択できる。例えば、pH調整剤の含有量は、研磨液の全質量に対して、研磨液の全質量に対して、0.01~10質量%が好ましく、0.1~8質量%がより好ましい。
 pH調整剤の含有量は、研磨液中の溶媒を除いた成分の合計質量に対して、0.01~80質量%が好ましく、0.1~60質量%がより好ましい。
-界面活性剤-
 研磨液は、界面活性剤を含んでいてもよい。界面活性剤としては、1分子中に親水性基と疎水性基(親油基)とを有する化合物であれば特に制限されず、例えば、カチオン界面活性剤、両性界面活性剤及びアニオン界面活性剤が挙げられる。
 カチオン性界面活性剤としては、例えば、アルキルピリジウム系界面活性剤、及び、アルキルアミン酢酸系界面活性剤が挙げられる。
 両性界面活性剤としては、例えば、カルボキシベタイン型両性界面活性剤、スルホベタイン型両性界面活性剤、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキシド及びそれらの混合物が挙げられる。
 アニオン性界面活性剤としては、例えば、親水性基(酸基)として、リン酸エステル基を有するリン酸エステル系界面活性剤、及び、硫酸エステル基を有する硫酸エステル系界面活性剤が挙げられる。
 界面活性剤としては、例えば、国際公開第2022/044893号の段落[0116]~[0123]に記載の化合物が援用でき、これらの内容は本明細書に組み込まれる。
-水溶性ポリマー-
 研磨液は、水溶性ポリマーを含んでいてもよい。水溶性ポリマーとしては、カルボキシ基を有するモノマーを構成単位とするポリマー及びその塩、並びにそれらを含む共重合体が挙げられる。具体的には、ポリアクリル酸及びその塩並びにそれらを含む共重合体;ポリメタクリル酸及びその塩並びにそれらを含む共重合体;ポリアミド酸及びその塩並びにそれらを含む共重合体;ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p-スチレンカルボン酸)、及び、ポリグリオキシル酸等のポリカルボン酸及びその塩並びにそれらを含む共重合体が挙げられる。
 上記以外の水溶性ポリマーとして、ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等も使用できる。
-防食剤-
 研磨液は、防食剤を含んでいてもよい。防食剤は、被処理物の表面に存在する金属の腐食を防止する化合物である。
 防食剤としては、分子中に3以上の窒素原子を有し、かつ、複環構造を有する複素芳香環化合物が好ましい。なお、上記3つ以上の窒素原子は、複素芳香環を構成する元素であることも好ましい。好ましい防食剤としては、置換基を有していてもよいベンゾトリアゾールが挙げられる。
 防食剤としては、国際公開第2021/166571号の段落[0046]~[0050]に記載の化合物も援用でき、これらの内容は本明細書に組み込まれる。
-有機溶媒-
 研磨液は、有機溶媒を含んでもよい。有機溶媒としては、公知の有機溶媒が挙げられ、例えば、アルコール系溶媒、グリコール系溶媒、グリコールエーテル系溶媒、及び、ケトン系溶媒が挙げられる。
 有機溶媒は、水と任意の比率で混和することが好ましい。
 有機溶媒としては、例えば、国際公開第2022/044893号の段落[0135]~[140]に例示される化合物が援用でき、これらの内容は本明細書に組み込まれる。
<研磨液の物性>
 研磨液は、アルカリ性及び酸性のいずれであってもよい。
 研磨効率及び本発明の効果がより優れる点で、研磨液のpHは、1.0~7.0が好ましく、1.5~5.0がより好ましく、2.0~4.5が更に好ましい。
 研磨液のpHは、上述のpH調整剤を用いて調整できる。
 研磨液のpHは、公知のpHメーターを用いて、JIS Z8802-1984に準拠した方法により測定できる。測定温度は25℃とする。
<研磨液の製造方法>
 研磨液の製造方法は特に制限されず、公知の方法を使用できる。例えば、上述の各成分を所定の濃度になるように混合して製造してもよく、濃縮液を調製後希釈して研磨液を製造してもよい。
 各成分を混合する際、各成分はそれぞれ一括して混合してもよく、複数回に分割して混合してもよい。なお、混合する各成分は、固体状のものを用いてもよく、水溶液を用いてもよい。
 混合に使用する撹拌装置及び撹拌方法は、特に制限されず、公知の装置及び方法を使用すればよい。撹拌機としては、例えば、工業用ミキサー、可搬型撹拌器、メカニカルスターラー、及び、マグネチックスターラーが挙げられる。
〔工程1の手順〕
 工程1は、上述の研磨液を用いて、被処理物にCMP処理を施す工程である。
 CMP処理は、上述した研磨液を研磨定盤に取り付けられた研磨パッドに供給しながら、被処理物の被研磨面を上記研磨パッドに接触させつつ、上記被処理物及び上記研磨パッドを相対運動させる方法により行うことができる。
 CMP処理は、公知の化学的機械的研磨装置(以下、「CMP装置」ともいう。)を用いて実施できる。
 CMP装置としては、例えば、被研磨面を有する被処理物を保持するホルダーと、研磨パッドを貼り付けた(回転数が変更可能なモータ等を取り付けてある)研磨定盤と、を有する一般的なCMP装置が挙げられる。研磨パッドは、特に制限されず、一般的な不織布、発泡ポリウレタン、及び、多孔質フッ素樹脂等が使用できる。
 CMP処理における研磨圧力は、10~980hPaから選択されることが多く、被研磨面の傷状の欠陥及び凹凸の発生を抑制できる点で、30~250hPaが好ましく、65~140hPaがより好ましい。なお、研磨圧力とは、被研磨面と研磨パッドとの接触面に生ずる圧力を意味する。
 CMP処理における研磨定盤の回転数は、10~400rpmから選択されることが多く、50~200rpmが好ましく、60~160rpmがより好ましい。
 なお、被処理物及び研磨パッドを相対的に動かすために、ホルダーを回転及び/又は揺動させてもよいし、研磨定盤を遊星回転させてもよいし、ベルト状の研磨パッドを長尺方向の一方向に直線状に動かしてもよい。なお、ホルダーは、固定、回転又は揺動のいずれの状態であってもよい。これらの研磨方法は、被研磨面及び/又は研磨装置により適宜選択できる。
 CMP処理において、被研磨面を研磨する間、研磨定盤上の研磨パッドに研磨液をポンプ等で連続的に供給することが好ましい。本研磨液の供給量に制限はないが、研磨パッドの表面が常に本研磨液で覆われていることが好ましい。
 研磨液の供給速度は、被研磨面の傷状の欠陥及び凹凸の発生を抑制できる点で、10~1000mL/分が好ましく、170~500mL/分がより好ましい。
 CMP処理は、1回のみ行ってもよく、2回以上行ってもよい。また、CMP処理を2回以上行う場合、研磨圧力、研磨速度、研磨液の供給速度等の研磨条件、並びに、使用する研磨液はそれぞれ同じであってもよく、異なっていてもよい。
[工程2]
 本製造方法は、工程1の後に、処理液を用いて、被処理物に対して洗浄処理を施す工程2を含む。
 以下、工程2で使用する材料(被処理物及び処理液)及び手順について詳述する。
〔被処理物〕
 工程2の被処理物は、上述した工程1のCMP処理が施された被処理物である。
 なお、工程1と工程2との間にその他工程(例えば、後述する工程3)を含む場合には、それらの工程を経た被処理物であってもよい。
 被処理物に、処理液を用いて洗浄処理を施す際、処理液に含まれる特定化合物は被処理物表面及びCMP残渣物表面に吸着してそのゼータ電位を変化させる。これにより、CMP残渣物と、被処理物表面との静電反発により、吸着が抑制される。なお、ここでいうCMP残渣物は、研磨液に含まれる表面修飾されたコロイダルシリカ等の砥粒、及び、工程1のCMP処理により生じた被処理物由来の残渣物を含む。
〔処理液〕
 本製造工程で用いられる処理液(以下、単に「処理液」ともいう。)は、後述する式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、特定化合物とは異なる有機酸とを含む。
 以下、処理液に含まれる各成分及び製造方法について詳述する。
<特定化合物>
 処理液は、式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物を含む。
-式(1)で表される化合物-
Figure JPOXMLDOC01-appb-C000004
 式(1)中、X及びXは、それぞれ独立に親水性基を表す。
 上記親水性基としては、例えば、カルボキシ基、ヒドロキシ基、アミノ基、スルホ基、及び、ホスホン酸基が挙げられ、カルボキシ基、ヒドロキシ基、又は、スルホ基が好ましく、カルボキシ基がより好ましい。
 式(1)中、X~Xは、それぞれ独立に水素原子又は置換基を表し、X~Xのうち少なくとも1つが親水性基を表す。X~Xのうち隣接する2つが互いに結合して環を形成していてもよい。
 上記置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルキルカルボニルオキシ基、チオール基、及び、親水性基が挙げられる。
 上記アルキル基、並びに、アルコキシ基及びアルキルカルボニルオキシ基が有するアルキル基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。上記アルキル基、並びに、アルコキシ基及びアルキルカルボニルオキシ基が有するアルキル基の炭素数は、1~12が好ましく、1~6がより好ましく、1~3が更に好ましい。
 X~Xのうち隣り合う2つが互いに結合して形成される環としては、例えば、芳香環(単環でも多環でもよい。好ましくは、ベンゼン環又はピリジン環)が挙げられる。
 上記環は置換基を有していてもよい。上記環が有する置換基としては、X~Xで表される置換基として上述した置換基が挙げられ、親水性基が好ましい。
 なかでも、式(1)中、X又はXが親水性基であることがより好ましい。
 式(1)で表される化合物としては、親水性基としてカルボキシ基、ヒドロキシ基及びスルホ基からなる群から選択される基を少なくとも1以上有する化合物が好ましく、親水性基としてカルボキシ基及びスルホ基を有する化合物、又は、親水性基としてカルボキシ基を3つ以上有する化合物が好ましい。
 式(1)で表される化合物としては、例えば、X及びXがいずれもカルボキシ基を表すフタル酸誘導体;Xがヒドロキシ基を表し、かつ、Xがカルボキシ基を表すサリチル酸誘導体;Xがアミノ基を表し、かつ、Xがカルボキシ基を表すアントラニル酸誘導体;Xがヒドロキシ基を表し、かつ、Xがアミノ基を表すo-アミノフェノール誘導体;X及びXがいずれもヒドロキシ基を表すカテコール誘導体;Xがアミノ基を表し、かつ、Xがスルホ基を表すオルタニル酸誘導体等が挙げられる。
 式(1)で表される化合物としては、具体的には、例えば、トリメリット酸、4-ヒドロキシフタル酸、4-アミノフタル酸、4-スルホフタル酸、ピロメリット酸、5-スルホサリチル酸、2,5-ジヒドロキシ安息香酸、5-アミノサリチル酸、4-ヒドロキシイソフタル酸、5-ヒドロキシアントラニル酸、2,5-ジアミノ安息香酸、5-スルホアントラニル酸、アミドール、3-アミノ-4-ヒドロキシ安息香酸、3-アミノ-4-ヒドロキシベンゼンスルホン酸、没食子酸、及び、1,3-フェニレンジアミン-4-スルホン酸が挙げられる。
-アニオン性基を有するポリマー-
 アニオン性基を有するポリマーとしては、アニオン性基を有していれば特に制限されないが、アニオン性基を有する繰り返し単位を有するポリマーが挙げられる。アニオン性基としては、カルボキシ基、スルホ基、及び、ホスホン酸基並びにこれらの塩が挙げられる。
 アニオン性基を有する繰り返し単位としては、例えば、アクリル酸、メタクリル酸、マレイン酸、4-スチレンスルホン酸、ビニルスルホン酸、ビニルホスホン酸、4-ビニル安息香酸、4-スチレンホスホン酸、イタコン酸、フマル酸、及び、グリオキシル酸、並びに、それらの塩からなる群から選択される化合物に由来する繰り返し単位が挙げられ、アクリル酸、メタクリル酸、マレイン酸、4-スチレンスルホン酸、ビニルスルホン酸、及び、ビニルホスホン酸からなる群から選択される化合物に由来する繰り返し単位が好ましく、アクリル酸及びマレイン酸からなる群から選択される化合物に由来する繰り返し単位がより好ましい。
 アニオン性基を有するポリマーは、1種の繰り返し単位からなるホモポリマーであってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。アニオン性基を有するポリマーが2種以上の繰り返し単位を有する場合、アニオン性基を有する繰り返し単位を2種以上含んでいてもよく、アニオン性基を有する繰り返し単位と、アニオン性基を有する繰り返し単位とは異なる繰り返し単位とを有していてもよい。
 アニオン性基を有するポリマーにおける、アニオン性基を有する繰り返し単位の含有量は、アニオン性基を有するポリマーの全繰り返し単位中、30モル%以上が好ましく、50モル%以上がより好ましく、80モル%以上が更に好ましい。上限は特に制限されず、100モル%であってもよい。
 アニオン性基を有するポリマーが、アニオン性基を有する繰り返し単位を2種以上含む場合は、全てのアニオン性基を有する繰り返し単位の合計含有量が上記範囲内であることが好ましい。
 アニオン性基を有するポリマーとしては、具体的には、例えば、ポリアクリル酸、ポリマレイン酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリビニルホスホン酸、及びこれらの塩、並びにこれらを含む共重合体が挙げられる。
 上記共重合体としては、例えば、アクリル酸-マレイン酸共重合体、アクリル酸-スチレンスルホン酸共重合体、及び、アクリル酸-アクリル酸メチル共重合体が挙げられる。
 なかでも、アニオン性基を有するポリマーとしては、ポリアクリル酸、ポリマレイン酸、アクリル酸-マレイン酸共重合体、アクリル酸-スチレンスルホン酸共重合体、又は、アクリル酸-アクリル酸メチル共重合体が好ましく、ポリアクリル酸又はポリマレイン酸がより好ましい。
 アニオン性基を有するポリマーは、公知の方法(例えば、ラジカル重合)に従って合成できる。
 本発明の効果がより優れる点で、アニオン性基を有するポリマーの重量平均分子量(Mw)は、1000以上が好ましく、2000以上がより好ましく、3000以上が更に好ましい。上限としては、100000以下が好ましく、50000以下がより好ましく、10000以下が更に好ましい。
 アニオン性基を有するポリマーの多分散度(PDI)は、特に制限されないが、2.5以下が好ましく、2.0以下がより好ましい。下限は特に制限されないが、1.0以上である。
 特定化合物としては、トリメリット酸、4-ヒドロキシフタル酸、4-アミノフタル酸、4-スルホフタル酸、5-スルホサリチル酸、2,5-ジヒドロキシ安息香酸、5-アミノサリチル酸、4-ヒドロキシイソフタル酸、5-ヒドロキシアントラニル酸、2,5-ジアミノ安息香酸、5-スルホアントラニル酸、アミドール、1,3-フェニレンジアミン-4-スルホン酸、3-アミノ-4-ヒドロキシ安息香酸、3-アミノ-4-ヒドロキシベンゼンスルホン酸、又は、アニオン性基を有するポリマーが好ましく、トリメリット酸、4-スルホフタル酸、5-スルホサリチル酸、5-スルホアントラニル酸、1,3-フェニレンジアミン-4-スルホン酸、又は、アニオン性基を有するポリマーがより好ましく、トリメリット酸、4-スルホフタル酸、5-スルホサリチル酸、5-スルホアントラニル酸、1,3-フェニレンジアミン-4-スルホン酸、又は、アニオン性基を有するポリマーが更に好ましい。
 処理液は、特定化合物を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の効果がより優れる点で、特定化合物の含有量は、処理液の全質量に対して、0.1質量ppm以上が好ましく、20.0質量ppm以上がより好ましい。上限は、腐食抑制性の点で、5.0質量%以下が好ましく、1.5質量%以下がより好ましく、1.0質量%以下が更に好ましい。
 本発明の効果がより優れる点で、特定化合物の含有量は、処理液の溶媒を除いた成分の合計質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましい。上限は、腐食抑制性の点で、30.0質量%以下が好ましく、17.0質量%以下がより好ましく、15.0質量%以下が更に好ましい。
<有機酸>
 処理液は、特定化合物とは異なる有機酸を含む。
 有機酸は、酸基を有する化合物である。
 酸基としては、カルボキシ基、スルホ基、及び、ホスホン酸基が挙げられ、カルボキシ基が好ましい。
 上記特定化合物とは異なる有機酸としては、例えば、アミノ酸又はその誘導体である有機酸Y、並びに、特定化合物及び有機酸Yとは異なる有機酸Xが挙げられる。
 処理液は、有機酸Xを含むことが好ましく、有機酸X及び有機酸Yを含むことがより好ましい。
-有機酸X-
 有機酸Xは、特定化合物並びに後述する有機酸Yとは異なる有機酸である。
 有機酸Xとしては、カルボキシ基を有するカルボン酸、スルホ基を有するスルホン酸、及び、ホスホン酸基を有するホスホン酸が挙げられ、カルボン酸が好ましい。
 本発明の効果がより優れる点で、有機酸Xが有する酸基の数は、2以上が好ましい。上限は特に制限されないが、例えば、10以下が好ましい。
 有機酸Xは、酸基及びアミノ基以外の置換基を有していても良い。上記置換基としては、例えば、ヒドロキシ基及びアルデヒド基が挙げられ、ヒドロキシ基が特に好ましい。
 有機酸Xが有する酸基及びアミノ基以外の置換基の数は、1以上が好ましく、2以上がより好ましい。上限は特に制限されないが、例えば、6以下が好ましい。
 カルボン酸は、カルボキシ基を2つ以上有するポリカルボン酸であることが好ましい。
 また、カルボン酸は、ヒドロキシ基を有するヒドロキシカルボン酸であることも好ましい。
 ポリカルボン酸としては、例えば、クエン酸、リンゴ酸、酒石酸、及び、タルタロン酸等のヒドロキシポリカルボン酸、並びに、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、セバシン酸、及び、シクロヘキサンジカルボン酸、フタル酸、イソフタル酸、フェニルコハク酸等のヒドロキシ基を有しないポリカルボン酸が挙げられる。
 モノカルボン酸としては、例えば、グリコール酸、乳酸、フェニル乳酸、ヒドロキシフェニル乳酸、グルクロン酸、グルコン酸、デヒドロ酢酸、グリセリン酸、及び、ヒドロキシ酪酸、ヘプトン酸、サリチル酸等のヒドロキシモノカルボン酸、並びに、酢酸、プロピオン酸、ソルビン酸、安息香酸、酪酸、イソ酪酸、吉草酸、及び、シクロヘキサンカルボン酸等のヒドロキシ基を有しないモノカルボン酸が挙げられる。
 スルホン酸としては、例えば、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、及び、カンファースルホン酸が挙げられる。
 ホスホン酸としては、例えば、エチドロン酸(HEDP)、1-ヒドロキシエチリデン-1,1’-ジホスホン酸(HEDPO)、1-ヒドロキシプロピリデン-1,1’-ジホスホン酸、1-ヒドロキシブチリデン-1,1’-ジホスホン酸、エチルアミノビス(メチレンホスホン酸)、ドデシルアミノビス(メチレンホスホン酸)、ニトリロトリス(メチレンホスホン酸)(NTPO)、エチレンジアミンビス(メチレンホスホン酸)(EDDPO)、1,3-プロピレンジアミンビス(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)(EDTPO)、エチレンジアミンテトラ(エチレンホスホン酸)、1,3-プロピレンジアミンテトラ(メチレンホスホン酸)(PDTMP)、1,2-ジアミノプロパンテトラ(メチレンホスホン酸)、1,6-ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)(DEPPO)、ジエチレントリアミンペンタ(エチレンホスホン酸)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)、及び、トリエチレンテトラミンヘキサ(エチレンホスホン酸)が挙げられる。
 有機酸Xとしては、ポリカルボン酸又はヒドロキシモノカルボン酸が好ましく、ポリカルボン酸がより好ましく、ヒドロキシポリカルボン酸が更に好ましい。
 なかでも、有機酸Xとしては、クエン酸、酢酸、プロピオン酸、シュウ酸、グルクロン酸、マロン酸、コハク酸、グリコール酸、乳酸、リンゴ酸、酒石酸、グルコン酸、ソルビン酸、デヒドロ酢酸、又は、安息香酸が好ましく、クエン酸、シュウ酸、グルクロン酸、マロン酸、コハク酸、グリコール酸、乳酸、リンゴ酸、酒石酸、又は、グルコン酸がより好ましく、クエン酸、シュウ酸、グルクロン酸、マロン酸、コハク酸、リンゴ酸、又は、酒石酸が更に好ましい。
 有機酸Xは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の効果がより優れる点で、有機酸Xの含有量は、処理液の全質量に対して、1.0質量ppm以上が好ましく、0.01質量%以上がより好ましい。上限は、本発明の効果及び腐食抑制性がより優れる点で、10質量%以下が好ましく、5.0質量%以下がより好ましく、3.0質量%以下が更に好ましい。
 本発明の効果がより優れる点で、有機酸Xの含有量は、処理液の溶媒を除いた成分の合計質量に対して、1.0質量%以上が好ましく、2.0質量%がより好ましく、5.0質量%以上が更に好ましい。上限は、腐食抑制性の点で、80.0質量%以下が好ましく、70.0質量%以下がより好ましい。
-有機酸Y-
 有機酸Yは、特定化合物及び有機酸Xとは異なる、アミノ酸又はその誘導体である。
 アミノ酸は、分子内にアミノ基及びカルボキシ基を有する化合物である。
 上記アミノ基は、第1級アミノ基(-NH)、第2級アミノ基(>NH)、及び、第3級アミノ基(>N-)のいずれであってもよい。
 アミノ酸は、アミノ基及びカルボキシ基とは異なる置換基を有していてもよい。アミノ基及びカルボキシ基とは異なる置換基としては、特に制限されず、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、カルバモイル基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アリールスルホニル基、アルキルシリル基、アリールシリル基、アルコキシシリル基、アリールオキシシリル基、ホスホリル基、ホスホニル基、ホスフィニル基、ヒドロキシ基、チオール基、リン酸基、ホスホン酸基、スルホ基、シアノ基、ニトロ基、及びハロゲン原子が挙げられる。
 有機酸Yとしては、例えば、L-アルギニン、L-リシン、L-ヒスチジン、L-オルニチン、2,4-ジアミノ酪酸、グリシン、アラニン(2-アミノプロピオン酸又は3-アミノプロピオン酸)、L-アスパラギン、L-アスパラギン酸、L-シスチン、L-システイン、L-グルタミン、L-グルタミン酸、L-イソロイシン、L-ロイシン、L-メチオニン、DL-フェニルアラニン、L-セリン、L-エチオニン、L-トレオニン、L-チロシン、L-バリン、L-トリプトファン、2-アミノ-3-アミノプロパン酸、及び、プロリン、並びにそれらの誘導体が挙げられる。
 有機酸Yとしては、特開2016-086094号公報の段落[0021]~[0023]に記載の化合物も挙げられる。
 有機酸Yとしては、アミノ酸が好ましく、なかでも、L-アルギニン、L-リシン、L-ヒスチジン、L-オルニチン、又は、2,4-ジアミノ酪酸がより好ましい。
 有機酸Yは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の効果及び腐食抑制性がより優れる点で、有機酸Yの含有量は、処理液の全質量に対して、5.0質量ppm以上が好ましく、20.0質量ppm以上がより好ましい。上限は、腐食抑制性がより優れる点で、5.0質量%以下が好ましく、3.0質量%以下がより好ましい。
 本発明の効果及び腐食抑制性がより優れる点で、有機酸Yの含有量は、処理液の溶媒を除いた成分の合計質量に対して、0.5~20.0質量%が好ましく、2.0~15.0質量%がより好ましく、3.0~15.0質量%が更に好ましい。
 本発明の効果がより優れる点で、有機酸Xの含有量の、有機酸Yの含有量に対する質量比は、0.1~50が好ましく、0.3~30がより好ましく、0.5~20が更に好ましく、腐食抑制性がより優れる点で、0.5~15が特に好ましい。
 処理液は、有機酸を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。処理液が有機酸を2種以上有する場合、その組み合わせは特に限定されず、例えば、有機酸Xを2種以上有していてもよく、有機酸X及び有機酸Yをそれぞれ1種以上有していてもよい。
 なかでも、処理液は、有機酸を2種以上含むことが好ましく、有機酸X及び有機酸Yをそれぞれ1種以上含むことがより好ましく、有機酸Xを2種以上含み、かつ、有機酸Yを1種以上含むことが更に好ましい。
 本発明の効果がより優れる点で、有機酸の含有量は、処理液の全質量に対して、0.001質量%以上が好ましく、0.01質量%以上がより好ましい。上限は、本発明の効果がより優れる点で、10.0質量%以下が好ましく、6.0質量%以下がより好ましく、5.5質量%以下が更に好ましい。
 本発明の効果がより優れる点で、有機酸の含有量は、処理液の溶媒を除いた成分の合計質量に対して、5.0質量%以上が好ましく、11.0質量%以上がより好ましく、15.0質量%以上が更に好ましい。上限は、腐食抑制性の点で、90.0質量%以下が好ましく、83.0質量%以下がより好ましく、55.0質量%以下が更に好ましい。
 本発明の効果がより優れる点で、特定化合物の含有量に対する、有機酸の含有量の質量比は、500以下が好ましく、200以下がより好ましく、150以下が更に好ましく、50以下が特に好ましい。下限は、本発明の効果及び腐食抑制性がより優れる点で、1以上が好ましく、2以上がより好ましく、2.5以上が更に好ましい。
 なお、「有機酸の含有量」とは、上記処理液に含まれる全ての有機酸X及び有機酸Yの合計の含有量である。
 処理液は、特定化合物及び有機酸以外の成分を含んでいてもよい。
<アミノアルコール>
 処理液は、アミノアルコールを含んでいてもよい。欠陥除去性に優れる点で、処理液は、アミノアルコールを含むことが好ましい。
 アミノアルコールは、分子内にアミノ基及びヒドロキシ基を有する化合物である。
 上記アミノ基は、第1級アミノ基、第2級アミノ基、及び、第3級アミノ基のいずれであってもよい。
 アミノアルコールが有するアミノ基の数は特に制限されないが、例えば、1~4が好ましく、1~2がより好ましく、1が更に好ましい。
 本発明の効果がより優れる点で、アミノアルコールが有するヒドロキシ基の数は、2以上が好ましく、3以上がより好ましい。上限は特に制限されないが、例えば、10以下が好ましく、8以下がより好ましい。
 アミノアルコールとしては、例えば、トリスヒドロキシメチルアミノメタン(Tris)、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis-Tris)、1,3-ビス[トリス(ヒドロキシメチル)メチルアミノ]プロパン(Bis-TrisP)、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、N-メチルジエタノールアミン(MDEA)、2-アミノ-2-メチル-1-プロパノール(AMP)、トリエタノールアミン(TEA)、ジエチレングリコールアミン(DEGA)、2-(メチルアミノ)-2-メチル-1-プロパノール(N-MAMP)、及び、2-(2-アミノエチルアミノ)エタノールが挙げられる。
 なかでも、アミノアルコールとしては、Tris、Bis-Tris、Bis-TrisP、MEA、DEA、又は、MDEAが好ましく、Tris、Bis-Tris、Bis-TrisP、DEA、又は、MDEAがより好ましく、Tris、Bis-Tris、Bis-TrisP、又は、MDEAが更に好ましく、Tris、Bis-Tris、又は、Bis-TrisPが特に好ましい。
 処理液は、アミノアルコールを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の効果がより優れる点で、アミノアルコールの含有量は、処理液の全質量に対して、1.0質量ppm以上が好ましく、0.015質量%以上がより好ましい。上限は、本発明の効果がより優れる点で、10.0質量%以下が好ましく、6.0質量%以下がより好ましく、5.0質量%以下が更に好ましい。
 本発明の効果及び腐食抑制性がより優れる点で、アミノアルコールの含有量は、処理液の溶媒を除いた成分の合計質量に対して、0.5質量%以上が好ましく、3.0質量%以上がより好ましい。上限は、本発明の効果がより優れる点で、80.0質量%以下が好ましく、77.0質量%以下がより好ましく、70.0質量%以下が更に好ましく、57.0質量%以下が特に好ましい。
 本発明の効果がより優れる点で、特定化合物の含有量に対する、アミノアルコールの含有量の質量比は、0.1~500が好ましく、0.2~250がより好ましい。
 本発明の効果がより優れる点で、有機酸の含有量に対する、アミノアルコールの含有量の質量比は、0.01~20が好ましく、0.05~7がより好ましく、0.8~6が更に好ましい。
<抗菌剤>
 処理液は、抗菌剤を含んでいてもよい。貯蔵安定性の点で、処理液は抗菌剤を含むことが好ましい。
 抗菌剤は、最近に対する抗菌作用及び/又はカビに対する防カビ作用を有する化合物であり、上述の各成分(特定化合物及び有機酸)とは異なる化合物である。ただし、上述の各成分が抗菌剤としての機能を有していてもよい。
 抗菌剤は、塩の形態であってもよい。
 抗菌剤としては、例えば、イソチアゾリノン系抗菌剤、フェノール系抗菌剤、ビグアナイド系抗菌剤、カチオン系抗菌剤、スルファミド系抗菌剤、過酸化物系抗菌剤、イミダゾール系抗菌剤、エステル系抗菌剤、アルコール系抗菌剤、カーバメート系抗菌剤、ヨウ素系抗菌剤、及び、抗生物質が挙げられる。
 イソチアゾリノン系抗菌剤としては、例えば、2-メチル-4-イソチアゾリン-3-オン(MIT)、2-オクチル-4-イソチアゾリン-3-オン(OIT)、1,2-ベンゾイソチアゾール-3(2H)-オン(BIT)、及び、5-クロロ-2-メチル-4-イソチアゾリン-3-オン(CIT)が挙げられる。中でも、MIT、OIT、又は、BITが好ましく、MIT又はOITがより好ましい。
 フェノール系抗菌剤としては、例えば、クレゾール、カテコール、3-メチル-4-クロロフェノール(PCMC)、3-メチル-4-イソプロピルフェノール(ビオゾール)、4-クロロ-3,5-ジメチルフェノール(PCMX)、クロロチモール、ジクロロキシレノール、及び、ヘキサクロロフェンが挙げられ、クレゾール又はカテコールが好ましい。
 ビグアナイド系抗菌剤としては、例えば、ポリヘキサメチレンビグアナイド(PHMB)、クロルヘキシジン(CHG)、ビス(p-クロロフェニルジグアナイド)ヘキサンジグルコネート(グルコン酸クロルヘキシジン)、及び、ポリ(ヘキサメチレンビグアナイド)ハイドロクロライド(塩酸ヘキサメチレンビグアニジン)が挙げられ、PHMB又はCHGが好ましい。
 カチオン系抗菌剤としては、塩化ベンザルコニウム、ジデシルジメチルアンモニウムクロライド(DDAC)、ヘキサデシルピリジニウムクロライド(CPC)、3,3’-(2,7-ジオキサオクタン)ビス(1-ドデシルピリジニウムブロマイド)(ハイジェリア)、塩化ベンゼトニウム、及び、臭化ドミフェンが挙げられる。
 その他抗菌剤としては、N-ジクロロフルオロメチルチオ-N’,N’-ジメチル-N-フェニルスルファミド(ジクロフルアニド)及びN-ジクロロフルオロメチルチオ-N’,N’-ジメチル-N-p-トリルスルファミド(トリルフルアニド)等のスルファミド系抗菌剤、過酸化水素及び過酢酸、二酸化塩素等の過酸化物系抗菌剤、2-(4-チアゾリル)-ベンツイミダゾール(TBZ)及び2-ベンツイミダゾールカルバミン酸メチル(プリベントールBCM)等のイミダゾール系抗菌剤、グリセロールラウレート(モノグリセリド)、パラヒドロキシ安息香酸エチルエステル(エチルパラベン)等のエステル系抗菌剤、エチルアルコール(エタノール)、2-プロパノール(IPA)、フェノキシエタノール、1,2-ペンタンジオール、及び、1,2-ヘキサンジオール等のアルコール系抗菌剤、3-ヨード-2-プロピニルブチルカーバメート(グライシカル)等のカーバメート系抗菌剤、並びに、[(4-クロロフェノキシ)メチル]-3-ヨード-2-プロピニルエーテル(IF1000)等のヨウ素系抗菌剤が挙げられる。
 抗菌剤は、イソチアゾリノン系抗菌剤、フェノール系抗菌剤、ビグアナイド系抗菌剤、及び、カチオン系抗菌剤からなる群から選択される少なくとも1種の化合物を含むことが好ましく、イソチアゾリノン系抗菌剤及びフェノール系抗菌剤からなる群から選択される少なくとも1種の化合物を含むことが好ましい。
 なかでも、抗菌剤としては、MIT、OIT、BIT、クレゾール、カテコール、PHMB、又は、CHGが好ましく、MIT、OIT、クレゾール、又は、カテコールがより好ましい。
 抗菌剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の効果がより優れる点で、抗菌剤の含有量は、処理液の全質量に対して、1.0質量%以下が好ましく、0.2質量%以下がより好ましく、0.1質量%以下が更に好ましい。下限は、抗菌性の点で、0.1質量ppm以上が好ましく、2.0質量ppm以上がより好ましい。
 本発明の効果がより優れる点で、抗菌剤の含有量は、処理液の溶媒を除いた成分の合計質量に対して、10.0質量%以下が好ましく、3.0質量%以下がより好ましく、2.0質量%以下が更に好ましい。下限は、抗菌性の点で、0.01質量%以上が好ましく、0.1質量%以上がより好ましい。
 本発明の効果がより優れる点で、抗菌剤の含有量に対する、有機酸の含有量の質量比は、1以上が好ましく、3.5以上がより好ましく、5以上が更に好ましい。上限は、抗菌性の点で、300以下が好ましく、250以下がより好ましく、200以下が更に好ましい。
 本発明の効果がより優れる点で、抗菌剤の含有量に対する、アミノアルコールの含有量の質量比は、500以下が好ましく、150以下がより好ましく、100以下が更に好ましい。下限は、腐食抑制性の点で、0.1以上が好ましく、2以上がより好ましく、5以上が更に好ましい。
<水>
 処理液は、水を含んでいてもよい。
 水としては、半導体基板に影響を及ぼさないものであれば特に制限されず、蒸留水、イオン交換水、及び純水(超純水)が使用でき、半導体デバイスの製造工程における半導体基板への影響がより少ない点で、純水又はイオン交換水が好ましい。
 本発明の効果がより優れる点で、水の含有量は、処理液の全質量に対して、50.0質量%以上が好ましく、70.0質量%以上がより好ましく、85.0質量%以上が更に好ましい。上限は、本発明の効果がより優れる点で、99.99質量%以下が好ましく、99.97質量%以下がより好ましい。
<その他の成分>
 処理液は、上記以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、pH調整剤、防食剤、界面活性剤、及び、有機溶媒が挙げられる。
 処理液が含んでいてもよいpH調整剤、防食剤、界面活性剤、及び、有機溶媒としては、研磨液が含んでいてもよい上記成分と同様であり、好適態様も同じである。
<処理液の物性>
-pH-
 処理液は、アルカリ性及び酸性のいずれであってもよい。
 本発明の効果がより優れる点で、処理液のpHは、1.0~12.0が好ましく、2.0~9.0がより好ましく、3.0~8.0が更に好ましく、3.5~7.0が特に好ましい。
 処理液のpHは、上述のpH調整剤を用いて調整できる。
 処理液のpHは、公知のpHメーターを用いて、JIS Z8802-1984に準拠した方法により測定できる。測定温度は25℃とする。
-金属含有量-
 処理液中に不純物として含まれる金属(例えば、Fe、Co、Na、Cu、Mg、Mn、Li、Al、Cr、Ni、Zn、Sn、及び、Agの金属元素)の含有量(イオン濃度として測定される)は、いずれも5質量ppm以下であることが好ましく、1質量ppm以下であることがより好ましい。最先端の半導体素子の製造においては、更に高純度の処理液が求められることが想定されることから、上記金属の含有量が1質量ppmよりも低い値、つまり、質量ppbオーダー以下であることが更に好ましく、100質量ppb以下であることが特に好ましく、10質量ppb未満であることが最も好ましい。下限としては、0が好ましい。
 金属含有量の低減方法としては、例えば、処理液を製造する際に使用する原材料の段階、又は、処理液の製造後の段階において、蒸留及びイオン交換樹脂又はフィルタを用いたろ過等の精製処理を行うことが挙げられる。
 他の金属含有量の低減方法としては、原材料又は製造された処理液を収容する容器として、後述する不純物の溶出が少ない容器を用いることが挙げられる。また、処理液の製造時に配管等から金属成分が溶出しないように、配管内壁にフッ素樹脂のライニングを施すことも挙げられる。
-不溶性粒子-
 処理液は、不溶性粒子を実質的に含まないことが好ましい。
 上記「不溶性粒子」とは、無機固形物及び有機固形物等の粒子であって、最終的に処理液中で溶解せずに粒子として存在するものが該当する。
 上記「不溶性粒子を実質的に含まない」とは、処理液が含む溶媒で処理液を10000倍に希釈して測定用組成物とし、測定用組成物の1mL中に含まれる粒径50nm以上の粒子の個数が、40000個以下であることを意味する。なお、測定用組成物に含まれる粒子の個数は、市販のパーティクルカウンターを利用して液相で測定できる。
 市販のパーティクルカウンター装置としてはリオン社製、PMS社製の装置が使用できる。前者の代表装置としてはKS-19F、後者の代表装置としてはChem20などが挙げられる。より大きな粗大粒子を測定する為には、KS-42シリーズ、LiQuilaz II Sシリーズ等の装置が使用できる。
 不溶性粒子としては、例えば、シリカ(コロイダルシリカ及びヒュームドシリカを含む)、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、酸化マンガン、及び、炭化珪素等の無機固形物;ポリスチレン、ポリアクリル樹脂、及び、ポリ塩化ビニル等の有機固形物等の粒子が挙げられる。
 処理液から不溶性粒子を除去する方法としては、例えば、フィルタリング等の精製処理が挙げられる。
-粗大粒子-
 処理液は、粗大粒子を含んでいてもよいが、その含有量が低いことが好ましい。
 粗大粒子とは、粒子の形状を球体とみなした場合における直径(粒径)が1μm以上である粒子を意味する。
 処理液に含まれる粗大粒子は、原料に不純物として含まれる塵、埃、有機固形物、及び、無機固形物等の粒子、並びに、処理液の調製中に汚染物として持ち込まれる塵、埃、有機固形物、及び、無機固形物等の粒子であって、最終的に処理液中で溶解せずに粒子として存在するものが該当する。
 処理液における粗大粒子の含有量としては、粒径1μm以上の粒子の含有量が、処理液1mLあたり100個以下であることが好ましく、50個以下であることがより好ましい。下限は、処理液1mLあたり0個以上が好ましく、0.01個以上がより好ましい。
 処理液中に存在する粗大粒子の含有量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して液相で測定できる。
 粗大粒子の除去方法としては、例えば、後述するフィルタリング等の精製処理が挙げられる。
<処理液の製造方法>
 処理液は、公知の方法で製造でき、例えば、上述の各成分を所定の濃度になるように混合して製造してもよく、濃縮液を調製後希釈して処理液を製造してもよい。
 各成分を混合する際、各成分はそれぞれ一括して混合してもよく、複数回に分割して混合してもよい。なお、混合する各成分は、固体状のものを用いてもよく、水溶液を用いてもよい。
 具体的な製造方法としては、例えば、上述した工程1における研磨液の製造方法(調製方法及び精製方法)として挙げた方法が使用できる。処理液を収容する容器及び処理液の取り扱い環境についても同様である。
 上記処理液は、水等の希釈剤を用いて希釈した後、希釈された処理液として被処理物の洗浄処理に供されてもよい。希釈処理液も、本発明の要件を満たす限り、本発明の処理液の一形態である。希釈倍率は特に限定されないが、例えば2~500倍の場合が多く、5~300倍が好ましい。
 処理液を希釈する具体的方法は、上述した研磨液の希釈方法に準じて行えばよい。希釈工程で使用する撹拌装置及び撹拌方法もまた、上述した研磨液の調製工程において挙げた公知の撹拌装置を用いて行えばよい。
 希釈後の希釈処理液についても精製することが好ましい。精製方法は、上述の研磨液の精製方法が使用できる。
〔工程2の手順〕
 工程2は、処理液を用いて、被処理物に対して洗浄処理を施す工程である。
 洗浄処理は、公知の方法で実施でき、例えば、被処理物と処理液とを接触させる方法が挙げられる。
 被処理物と処理液とを接触させる方法としては、特に制限されず、例えば、タンクに入れた処理液中に被処理物を浸漬する方法、被処理物上に処理液を噴霧する方法、被処理物上に処理液を流す方法、及び、これらの組み合わせが挙げられる。上記方法は、目的に応じて適宜選択すればよい。
 また、上記方法は、通常この分野で行われる様式を適宜採用してもよい。例えば、処理液を供給しながらブラシ等の洗浄部材を被処理物の表面に物理的に接触させて残渣等を除去するスクラブ洗浄、及び、被処理物を回転させながら処理液を滴下するスピン(滴下)式等であってもよい。浸漬式では、被処理物の表面に残存する不純物をより低減できる点で、処理液に浸漬された被処理物に対して超音波処理を施すことが好ましい。
 被処理物と処理液との接触は、1回のみ実施してもよく、2回以上実施してもよい。2回以上接触させる場合は、同じ方法を繰り返してもよいし、異なる方法を組み合わせてもよい。
 洗浄処理の方式としては、枚葉方式及びバッチ方式のいずれであってもよい。
 枚葉方式とは、一般的に被処理物を1枚ずつ処理する方式であり、バッチ方式とは、一般的に複数枚の被処理物を同時に処理する方式である。
 処理液の温度は、通常この分野で行われる温度であれば特に制限はない。一般的には室温(約25℃)で洗浄が行われるが、欠陥除去性の向上及び部材へのダメージ性防止の観点から、温度は任意に選択できる。例えば、処理液の温度としては、10~60℃が好ましく、15~50℃がより好ましい。
 被処理物と処理液との接触時間は、処理液に含まれる各成分の種類及び含有量、並びに、処理液の使用対象及び目的に応じて適宜変更できる。実用的には、10~120秒が好ましく、20~90秒がより好ましく、30~60秒が更に好ましい。
 処理液の供給量(供給速度)としては、50~5000mL/分が好ましく、500~2000mL/分がより好ましい。
 被処理物と処理液との接触時に、処理液の処理能力をより増進するために、機械的撹拌方法を用いてもよい。
 機械的撹拌方法としては、例えば、被処理物上で処理液を循環させる方法、被処理物上で処理液を流過又は噴霧させる方法及び超音波又はメガソニックにて処理液を撹拌する方法が挙げられる。
[工程3]
 本製造工程は、工程1と工程2の間に、砥粒を含まない薬液(以下、単に「薬液」ともいう。)を用いて、被処理物を研磨する工程3を含んでいてもよい。
 本発明の効果がより優れる点で、本製造工程は、工程3を含むことが好ましい。
 工程3における被処理物は、工程1のCMP処理が施された被処理物である。工程1と工程3との間にその他の処理を含む場合は、工程1のCMP処理及びその他の処理が施された被処理物であってもよい。
〔薬液〕
 薬液は、砥粒を含まない。
 上記薬液が含まない砥粒としては、例えば、シリカ(例えば、表面修飾されていてもよいコロイダルシリカ、及び、ヒュームドシリカ)、セリア、アルミナ、及び、チタニア等の不溶性粒子が挙げられる。
 薬液としては、被処理物の種類、並びに、除去対象とする不純物の種類及び量に応じて、公知の組成物を適宜使用でき、例えば、公知のバフ研磨用組成物が使用できる。薬液に含まれる成分としては、例えば、ポリビニルアルコール等の水溶性ポリマー、分散媒としての水、及び、硝酸等の酸が挙げられる。
 また、薬液として、上記研磨液から砥粒を除いた液、又は、上記処理液を使用することも好ましい。
〔工程3の手順〕
 工程3は、被処理物に対して薬液を用いて研磨処理を施す工程である。
 上記研磨処理としては、例えば、バフ研磨処理が挙げられる。
 バフ研磨処理は、研磨パッドを用いて被処理物表面における不純物を低減する処理である。具体的には、工程1のCMP処理が施された被処理物の被研磨面と研磨パッドとを接触させて、その接触部分に薬液を供給しながら、被処理物と研磨パッドとを相対摺動させる。その結果、被処理物表面の不純物が、研磨パッドによる摩擦力及び薬液による化学的作用によって除去される。
 バフ研磨処理において使用する研磨装置及び研磨条件等については、被処理物の種類及び除去対象物等に応じて、公知の装置及び条件から適宜選択できる。バフ研磨処理としては、例えば、国際公開第2017/169539号の段落[0085]~[0088]に記載の処理が挙げられ、これらの内容は本明細書に組み込まれる。
[その他の工程]
 本製造工程は、上記以外のその他の工程を有していてもよい。その他の工程としては、例えば、リンス工程及び乾燥工程が挙げられる。
〔リンス工程〕
 リンス工程は、被処理物とリンス液とを接触させる工程である。リンス工程を実施することにより、被処理物をリンス液で洗浄し、被処理物表面の欠陥を効率的に除去できる。
 リンス工程は、上記工程1、工程2及び工程3からなる群から選択される工程の後に連続して実施されることが好ましく、工程2の後に連続して実施されることがより好ましい。
 リンス工程は、リンス液を用いて被処理物をすすぐ工程であることが好ましい。リンス工程は、上記機械的撹拌方法を用いて行ってもよい。
 リンス液としては、例えば、水(好ましくはDI水)、メタノール、エタノール、イソプロピルアルコール(IPA)、N-メチルピロリジノン、γ-ブチロラクトン、ジメチルスルホキシド、乳酸エチル、及び、プロピレングリコールモノメチルエーテルアセテートが挙げられる。また、pHが8.0超である水性リンス液(希釈した水性の水酸化アンモニウム等)を利用してもよい。
 リンス液を被処理物に接触させる方法としては、上述の処理液を被処理物に接触させる方法を使用できる。
 被処理物とリンス液との接触時間は、処理液に含まれる各成分の種類及び含有量、並びに、処理液の使用対象及び目的に応じて適宜変更できる。実用的には、10~120秒が好ましく、20~90秒がより好ましく、30~60秒が更に好ましい。
〔乾燥工程〕
 乾燥工程は、被処理物を乾燥させる工程である。乾燥工程を実施することにより、被処理物表面の液状成分を除去でき、後の工程における欠陥が抑制できる。
 乾燥工程は、上記工程2又はリンス工程の後に実施されることが好ましく、本製造工程がリンス工程を有する場合、リンス工程の後に実施されることがより好ましい。
 乾燥方法としては、例えば、スピン乾燥法、被処理物上に乾性ガスを流過させる方法、ホットプレート及び赤外線ランプ等の加熱手段によって基板を加熱する方法、マランゴニ乾燥法、ロタゴニ乾燥法、IPA(イソプロピルアルコール)乾燥法、並びに、これらを任意に組み合わせた方法が挙げられる。
〔その他の製造工程〕
 本製造方法は、電子デバイスの製造において基板について行われるその他の工程の前又は後に組み合わせて実施してもよい。
 その他の製造工程としては、例えば、金属配線、ゲート構造、ソース構造、ドレイン構造、絶縁膜、強磁性層、及び、非磁性層等の構造の形成工程(例えば、層形成、エッチング、化学的機械的研磨、及び、変成等)、レジストの形成工程、露光工程及び除去工程、熱処理工程、洗浄工程、並びに、検査工程が挙げられる。
 本製造方法は、バックエンドプロセス(BEOL:Back end of the line)、ミドルプロセス(MOL:Middle of the line)、及び、フロントエンドプロセス(FEOL:Front end of the line)中のいずれの段階で実施してもよく、フロントエンドプロセス又はミドルプロセス中で実施することが好ましい。
[キット]
 上記研磨液及び処理液は、研磨液と処理液とを備えるキットとして用いてもよい。
 上記キットは、タングステンを含む被処理物の処理のために用いられることが好ましく、タングステンを含む被処理物の平坦化処理のために用いられることがより好ましい。
 キットの製造方法としては特に制限されず、例えば、上記の研磨液と処理液とをそれぞれ製造した後、それぞれを異なる収容体に収容することにより製造できる。収容体としては、例えば、上述した研磨液の容器が使用できる。
 以下に実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
 以下の実施例において、研磨液及び処理液のpHは、pHメーター(堀場製作所社製、型式「F-74」)を用いて、JIS Z8802-1984に準拠して25℃において測定した。
 また、実施例及び比較例の研磨液及び処理液の製造にあたって、容器の取り扱い、研磨液及び処理液の調製、充填、保管及び分析測定は、全てISOクラス2以下を満たすレベルのクリーンルーム内、23℃下で行った。
 以下の実施例において、コロイダルシリカのゼータ電位は、ゼータ電位測定システム(大塚電子社製、「ELSZ-2000ZS」)を用いて、研磨液中、25℃にて測定した。
[部材の調製]
〔研磨液の調製〕
 下記の原料を下記の組成となるように混合し、必要に応じてpH調整剤を用いてpHを調整することにより、下記組成の研磨液1~3を調製した。なお、下記「遷移金属イオン源」とは、研磨液中で解離して遷移金属イオンを供給する、遷移金属を含む化合物である。
 研磨液1(pH3.5)
 ・PL5D(スルホ基で表面修飾されたコロイダルシリカ、扶桑化学工業社製、平均一次粒径100nm、会合度2、平均アスペクト比1.5、研磨液中におけるゼータ電位-35mV) 3.0質量%
 ・マロン酸(キレート剤) 0.05質量%
 ・HEDP(1-ヒドロキシエタン-1,1-ジホスホン酸、キレート剤) 0.1質量%
 ・グリシン(キレート剤) 0.1質量%
 ・硝酸鉄(III)(遷移金属イオン源) 350質量ppm
 ・過酸化水素(酸化剤) 5.0質量%
 ・pH調整剤(アンモニア及び硝酸)
 ・水 残部
 研磨液2(pH2.5)
 ・PL3C(アミノ基で表面修飾されたコロイダルシリカ、扶桑化学工業社製、平均一次粒径70nm、会合度2、平均アスペクト比1.5、研磨液中におけるゼータ電位25mV) 3.0質量%
 ・マロン酸(キレート剤) 0.05質量%
 ・グリシン(キレート剤) 0.1質量%
 ・硝酸鉄(III)(遷移金属イオン源) 350質量ppm
 ・過酸化水素(酸化剤) 5.0質量%
 ・pH調整剤(アンモニア及び硝酸)
 ・水 残部
 研磨液3(pH3.5)
 ・PL5D(スルホ基で表面修飾されたコロイダルシリカ、扶桑化学工業社製、平均一次粒径100nm、会合度2、平均アスペクト比1.5、研磨液中におけるゼータ電位-32mV) 3.0質量%
 ・マロン酸(キレート剤) 0.05質量%
 ・HEDP(キレート剤) 0.1質量%
 ・グリシン(キレート剤) 0.1質量%
 ・硝酸銅(II)(遷移金属イオン源) 500質量ppm
 ・過酸化水素(酸化剤) 5.0質量%
 ・pH調整剤(アンモニア及び硝酸)
 ・水 残部
〔処理液の調製〕
 下記の原料(特定化合物、有機酸、アミノアルコール、及び、抗菌剤)及び、水を、表1~10に示す組成となるように混合して濃縮液を調製した。なお、各濃縮液の残部(特定化合物、有機酸、アミノアルコール、及び、抗菌剤以外の成分)は水である。また、表1~10に示す濃縮液のpHは、必要に応じてpH調整剤として硝酸及び/又は水酸化カリウムを添加することにより調整した。
 更に、表1~10に記載の希釈倍率にて、超純水を希釈剤として上記濃縮液を希釈することで、各実施例及び比較例の処理液を調製した。
<特定化合物>
 ・TMA(トリメリット酸)
 ・4-ヒドロキシフタル酸
 ・4-アミノフタル酸
 ・4-スルホフタル酸
 ・5-スルホサリチル酸
 ・2,5-ジヒドロキシ安息香酸
 ・5-アミノサリチル酸
 ・4-ヒドロキシイソフタル酸
 ・5-ヒドロキシアントラニル酸
 ・2,5-ジアミノ安息香酸
 ・5-スルホアントラニル酸
 ・1,3-フェニレンジアミン-4-スルホン酸
 ・アミドール
 ・3-アミノ-4-ヒドロキシ安息香酸
 ・3-アミノ-4-ヒドロキシベンゼンスルホン酸
 ・Polymer-1(ポリアクリル酸、Mw=5000)
 ・Polymer-2(ポリアクリル酸、Mw=2000)
 ・Polymer-3(ポリアクリル酸、Mw=10000)
 ・Polymer-4(ポリマレイン酸、Mw=5000)
 ・Polymer-5(アクリル酸-マレイン酸共重合体、アクリル酸/マレイン酸=1/1(モル比)、Mw=5000)
 ・Polymer-6(ポリスチレンスルホン酸、Mw=5000)
 ・Polymer-7(ポリビニルスルホン酸、Mw=5000)
 ・Polymer-8(ポリビニルホスホン酸、Mw=5000)
 ・Polymer-9(アクリル酸-スチレンスルホン酸共重合体、アクリル酸/スチレンスルホン酸=1/1(モル比)、Mw=6000)
 ・Polymer-10(アクリル酸-アクリル酸メチル共重合体、アクリル酸/アクリル酸メチル=1/1(モル比)、Mw=5000)
<有機酸X>
 ・クエン酸(ヒドロキシポリカルボン酸)
 ・酢酸(カルボン酸)
 ・プロピオン酸(カルボン酸)
 ・シュウ酸(ポリカルボン酸)
 ・グルクロン酸(ヒドロキシカルボン酸)
 ・マロン酸(ポリカルボン酸)
 ・コハク酸(ポリカルボン酸)
 ・グリコール酸(ヒドロキシカルボン酸)
 ・乳酸(ヒドロキシカルボン酸)
 ・リンゴ酸(ヒドロキシポリカルボン酸)
 ・酒石酸(ヒドロキシポリカルボン酸)
 ・グルコン酸(ヒドロキシカルボン酸)
 ・ソルビン酸(カルボン酸)
 ・デヒドロ酢酸(ヒドロキシカルボン酸)
 ・安息香酸(ヒドロキシカルボン酸)
<有機酸Y>
 ・L-アルギニン
 ・L-リシン
 ・L-ヒスチジン
 ・L-オルニチン
 ・2,4-ジアミノ酪酸
<アミノアルコール>
 ・Tris(トリスヒドロキシメチルアミノメタン、ヒドロキシ基を3つ有する)
 ・MEA(モノエタノールアミン、ヒドロキシ基を1つ有する)
 ・DEA(ジエタノールアミン、ヒドロキシ基を2つ有する)
 ・MDEA(N-メチルジエタノールアミン、ヒドロキシ基を2つ有する)
 ・Bis-Tris(ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、ヒドロキシ基を5つ有する)
 ・Bis-TrisP(1,3-ビス[トリス(ヒドロキシメチル)メチルアミノ]プロパン、ヒドロキシ基を6つ有する)
<抗菌剤>
 ・MIT(メチルイソチアゾリノン)
 ・OIT(2-n-オクチル-4-イソチアゾリン-3-オン)
 ・クレゾール
 ・カテコール
 ・PHMB(ポリヘキサメチレンビグアナイド)
 ・CHG(クロルヘキシジン)
[評価]
 下記手順に従い、各実施例及び比較例の研磨液、及び、処理液を用いた際の欠陥除去性、並びに、各実施例及び比較例の処理液の腐食抑制性を評価した。
 被処理物としては、シリコンウエハ上にタングステンを約100nmの厚さで成膜した12インチのウエハを使用した。
〔欠陥除去性〕
 上記の方法で製造した研磨液を用いて、CMP処理を施し、次いで、上記の方法で製造した処理液を用いて洗浄処理を施した後の被処理物上の欠陥除去性を評価した。以下、評価方法について説明する。
<研磨液1を用いた欠陥除去性評価>
 FREX300S-II(研磨装置、荏原製作所社製)を用いて、下記の条件で研磨液1を供給しながら、被処理物のタングステンを成膜した面を被研磨面として60秒間研磨した。
 テ-ブル回転数:80rpm
 ヘッド回転数: 78rpm
 研磨圧力:   105hPa
 研磨パッド:  ロデール・ニッタ株式会社製 VP6000
 研磨液供給速度:250ml/L
 その後、研磨後の被処理物の被研磨面を、各実施例及び比較例の処理液を用いて上記研磨装置の洗浄ユニット1にて30秒間ブラシによるスクラブ洗浄を行い、更に、洗浄ユニット2にて30秒間ブラシによるスクラブ洗浄を行った。純水を用いて60秒間リンスした後、乾燥ユニットにて窒素ガスをウエハ面に吹きかけながら、回転数1000rpmにてスピン乾燥した。
 その後、得られたウエハの被研磨面について、欠陥検査装置(ComPlus II、AMAT社製)を用いて欠陥数を確認した。更に、Review SEM/EDXを用いて欠陥種及び欠陥サイズを確認した。
 欠陥の種類、サイズ及び数から、下記評価基準に従って、研磨液1を用いた際の欠陥除去性である欠陥除去性1を評価した。なお、下記「個/Wf」とは、ウエハあたりの欠陥の個数を意味する。
 A:砥粒を含む0.1μm以上の欠陥数が、50個/Wf未満
 B:砥粒を含む0.1μm以上の欠陥数が、50個/Wf以上、100個/Wf未満
 C:砥粒を含む0.1μm以上の欠陥数が、100個/Wf以上、200個/Wf未満
 D:砥粒を含む0.1μm以上の欠陥数が、200個/Wf以上、300個/Wf未満
 E:砥粒を含む0.1μm以上の欠陥数が、300個/Wf以上
<研磨液2又は研磨液3を用いた欠陥除去性評価>
 研磨液として研磨液2を使用した以外は、上記研磨液1を用いた欠陥除去性評価に準じて欠陥除去性2の評価を実施した。
 研磨液として研磨液3を使用した以外は、上記研磨液1を用いた欠陥除去性評価に準じて欠陥除去性3の評価を実施した。
〔腐食抑制性〕
 上記の方法で製造した処理液を用いて、処理液のタングステンに対する腐食抑制性を評価した。
 被処理物である12インチのウエハをカットし、2cm×2cmの表面にタングステンを有するウエハを準備した。
 各実施例及び比較例の処理液に、室温下、撹拌回転数250rpmにて、上記ウエハを30分間浸漬した。その後、VR250(国際電気セミコンダクターサービス社製)を用いて得られたウエハの膜厚を測定し、上記浸漬処理前後の膜厚差から単位時間当たりの腐食速度(Å/min)を算出した。
 下記評価基準に従って、処理液の腐食抑制性を評価した。腐食速度(Å/min)が低いほど、処理液は腐食抑制性に優れる。
 A:腐食速度が0.1Å/min以下
 B:腐食速度が0.1Å/min超0.3Å/min以下
 C:腐食速度が0.3Å/min超0.5Å/min以下
 D:腐食速度が0.5Å/min超
[結果]
 表1~10に、実施例及び比較例の処理液の濃縮液の組成、希釈倍率、及び評価結果を示す。
 表1~10中、「含有量」欄は、処理液の濃縮液の全質量に対する各成分の含有量(単位:質量%)を示す。
 表1~10中、「質量比」欄は、処理液の溶媒を除いた成分の合計質量に対する各成分の含有量(単位:質量%)を示す。なお、(A)有機酸欄における「質量比」は、処理液に含まれる全ての有機酸の含有量の、処理液の溶媒を除いた成分の合計質量に対する質量比である。
 表1~10中、「pH」欄は、上記のpHメーターにより測定した実施例及び比較例の処理液の濃縮液の25℃におけるpHを示す。
 表1~10中、「A/B」欄は、特定化合物の含有量に対する、有機酸の含有量の質量比を示す。
 表1~10中、「A/D」欄は、抗菌剤の含有量に対する、有機酸の含有量の質量比を示す。
 表1~10中、「X/Y」欄は、有機酸Yの含有量に対する、有機酸Xの含有量の質量比を示す。
 表1~10中、「C/D」欄は、抗菌剤の含有量に対する、アミノアルコールの含有量の質量比を示す。
 なお、上記「A」として用いられる有機酸の含有量は、有機酸Xの含有量及び有機酸Yの含有量の合計の量である。
 表1~10中、「希釈倍率(倍)」欄は、表1~10に記載の組成の濃縮液を試験に用いる際の希釈倍率(体積比)を示す。例えば、「希釈倍率(倍)」欄が200である場合、表に記載の組成の濃縮液を、純水を希釈剤として体積比200倍に希釈した液を上述した評価に使用したことを意味する。
 表1~10中、「欠陥除去性1」欄は、研磨液として研磨液1を用いた際の欠陥除去性の評価結果を示し、「欠陥除去性2」欄は、研磨液として研磨液2を用いた際の欠陥除去性の評価結果を示し、「欠陥除去性3」欄は、研磨液として研磨液3を用いた際の欠陥除去性の評価結果を示す。
 表2は表1の続きであり、表4は表3の続きであり、表6は表5の続きであり、表8は表7の続きであり、表10は表9の続きである。例えば、実施例19の処理液の濃縮液は、表3に記載のクエン酸と、表4に記載のMITとを含むことを表す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表1~10に示す通り、本製造工程は、タングステンを含む被処理物に適用した際に、タングステン上の欠陥除去性に優れることが確認された。
 実施例19~51の結果より、特定化合物は、4-ヒドロキシフタル酸、4-スルホフタル酸、5-スルホサリチル酸、2,5-ジヒドロキシ安息香酸、4-ヒドロキシイソフタル酸、5-ヒドロキシアントラニル酸、5-スルホアントラニル酸、1,3-フェニレンジアミン-4-スルホン酸、アミドール、3-アミノ-4-ヒドロキシ安息香酸、3-アミノ-ヒドロキシベンゼンスルホン酸、又は、アニオン性基を有するポリマーである場合、本発明の効果がより優れ、4-スルホフタル酸、5-スルホサリチル酸、5-スルホアントラニル酸、1,3-フェニレンジアミン-4-スルホン酸、又は、アニオン性基を有するポリマーである場合、本発明の効果が更に優れることが確認された。
 実施例19及び52~62の結果より、有機酸Xは、ヒドロキシモノカルボン酸又はポリカルボン酸である場合、本発明の効果がより優れ、ポリカルボン酸である場合、本発明の効果が更に優れ、ポリヒドロキシカルボン酸である場合、本発明の効果が特に優れることが確認された。
 実施例63~72の結果より、処理液中、特定化合物の含有量に対する、有機酸の含有量の質量比が、100以下である場合、本発明の効果がより優れ、2.5以上である場合、腐食抑制性が更に優れることが確認された。
 実施例19、73~75、及び、85~86の結果より、処理液は、有機酸X及び有機酸Yを含む場合、腐食抑制性がより優れることが確認された。
 実施例19、73~75、85~86、93、及び、96~97の結果より、処理液が、有機酸を2種以上含む場合、本発明の効果がより優れ、3種以上含む場合、腐食抑制性が更に優れることが確認された。
 実施例19及び87~92の結果より、処理液が、アミノアルコールを含む場合、本発明の効果がより優れることが確認された。
 実施例19及び88~92の結果より、アミノアルコールが、2つ以上のヒドロキシ基を有する場合、本発明の効果がより優れ、3つ以上のヒドロキシ基を有する場合、腐食抑制性が更に優れることが確認された。
 実施例101~111の結果より、有機酸の含有量が、処理液中の溶媒を除いた成分の合計質量に対して、11.0質量%以上の場合、本発明の効果がより優れ、15.0質量%以上の場合、本発明の効果が更に優れることが確認された。
 実施例101~105の結果より、抗菌剤の含有量に対する、有機酸の含有量の質量比が、3.5以上である場合、本発明の効果がより優れ、5以上である場合、本発明の効果が更に優れることが確認された。
 実施例101~111の結果より、有機酸Xの含有量の、有機酸Yの含有量に対する質量比が、1以上である場合、本発明の効果がより優れ、20以下である場合、本発明の効果が更に優れることが確認された。
 実施例112~117の結果より、抗菌剤の含有量に対する、アミノアルコールの含有量の質量比が、100以下である場合、本発明の効果がより優れ、5以上である場合、腐食抑制性が更に優れることが確認された。
 研磨液1の遷移金属イオン源を、硝酸ニッケル(II)又は硝酸コバルト(II)に変更した以外は、上記<研磨液1を用いた欠陥除去性評価>と同様の評価を行ったところ、研磨液1を用いた際の欠陥除去性と同等の結果が得られた。

Claims (20)

  1.  遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液を用いて、タングステンを含む被処理物に対して、化学的機械的研磨処理を施す工程1と、
     前記工程1の後に、式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、前記特定化合物とは異なる有機酸とを含む処理液を用いて、前記被処理物に対して、洗浄処理を施す工程2と、を含む、半導体デバイスの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、X及びXは、それぞれ独立に親水性基を表す。X~Xは、それぞれ独立に水素原子又は置換基を表し、X~Xのうち少なくとも1つが親水性基を表す。X~Xのうち隣接する2つが互いに結合して環を形成していてもよい。
  2.  前記表面修飾されたコロイダルシリカが、表面に-SO 、-OSO 、-PO 2-、-OPO 2-、及び、-NHからなる群から選択される少なくとも1種の官能基を有し、Mはカチオンを表し、
     前記アニオン性基を有するポリマーの重量平均分子量が、1000~50000であり、
     前記有機酸が、ポリカルボン酸である、請求項1に記載の半導体デバイスの製造方法。
  3.  前記表面修飾されたコロイダルシリカが、表面に-SO 、-OSO 、及び、-NHからなる群から選択される少なくとも1種の官能基を有する、請求項2に記載の半導体デバイスの製造方法。
  4.  前記特定化合物の含有量に対する、前記有機酸の含有量の質量比が、1~150である、請求項1に記載の半導体デバイスの製造方法。
  5.  前記処理液のpHが3.0~8.0である、請求項1に記載の半導体デバイスの製造方法。
  6.  前記有機酸の含有量が、前記処理液中の溶媒を除いた成分の合計質量に対して、11.0~55.0質量%である、請求項1に記載の半導体デバイスの製造方法。
  7.  前記式(1)で表される化合物が、トリメリット酸、4-ヒドロキシフタル酸、4-アミノフタル酸、4-スルホフタル酸、5-スルホサリチル酸、2,5-ジヒドロキシ安息香酸、5-アミノサリチル酸、4-ヒドロキシイソフタル酸、5-ヒドロキシアントラニル酸、2,5-ジアミノ安息香酸、5-スルホアントラニル酸、アミドール、1,3-フェニレンジアミン-4-スルホン酸、3-アミノ-4-ヒドロキシ安息香酸、及び、3-アミノ-4-ヒドロキシベンゼンスルホン酸からなる群から選択される少なくとも1種を含む、請求項1に記載の半導体デバイスの製造方法。
  8.  前記アニオン性基を有するポリマーが、アクリル酸由来の繰り返し単位、又は、マレイン酸由来の繰り返し単位を含み、
     前記アニオン性基を有するポリマーの重量平均分子量が、1000~10000である、請求項1に記載の半導体デバイスの製造方法。
  9.  前記特定化合物の含有量が、前記処理液中の溶媒を除いた成分の合計質量に対して、0.2~15.0質量%である、請求項1に記載の半導体デバイスの製造方法。
  10.  前記処理液が、更にアミノアルコールを含む、請求項1に記載の半導体デバイスの製造方法。
  11.  前記アミノアルコールが、ヒドロキシ基を2つ以上有する、請求項10に記載の半導体デバイスの製造方法。
  12.  前記処理液が、更に抗菌剤を含む、請求項1に記載の半導体デバイスの製造方法。
  13.  前記抗菌剤の含有量に対する、前記有機酸の含有量の質量比が、3.5~300である、請求項12に記載の半導体デバイスの製造方法。
  14.  前記処理液が、前記有機酸を2種以上を含む、請求項1に記載の半導体デバイスの製造方法。
  15.  前記有機酸の少なくとも1種が、アミノ酸又はその誘導体である、請求項14に記載の半導体デバイスの製造方法。
  16.  前記アミノ酸及びその誘導体の含有量に対する、前記アミノ酸及びその誘導体とは異なる有機酸の含有量の質量比が、0.5~20である、請求項15に記載の半導体デバイスの製造方法。
  17.  前記処理液が、更にアミノアルコール及び抗菌剤を含み、
     前記抗菌剤の含有量に対する、前記アミノアルコールの含有量の質量比が、5~100である、請求項1に記載の半導体デバイスの製造方法。
  18.  前記工程1と、前記工程2との間に、砥粒を含まない薬液を用いて、前記被処理物を研磨する工程3を含む、請求項1に記載の半導体デバイスの製造方法。
  19.  遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液を用いて、タングステンを含む被処理物に対して、化学的機械的研磨処理を施す工程の後に用いられる処理液であって、
     式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、前記特定化合物とは異なる有機酸とを含む、処理液。
    Figure JPOXMLDOC01-appb-C000002
     式(1)中、X及びXは、それぞれ独立に親水性基を表す。X~Xは、それぞれ独立に水素原子又は置換基を表し、X~Xのうち少なくとも1つが親水性基を表す。X~Xのうち隣接する2つが互いに結合して環を形成していてもよい。
  20.  遷移金属イオンと、キレート剤と、表面修飾されたコロイダルシリカとを含む研磨液、及び、
     式(1)で表される化合物及びアニオン性基を有するポリマーからなる群から選択される特定化合物と、前記特定化合物とは異なる有機酸とを含む処理液を備える、キット。
    Figure JPOXMLDOC01-appb-C000003
     式(1)中、X及びXは、それぞれ独立に親水性基を表す。X~Xは、それぞれ独立に水素原子又は置換基を表し、X~Xのうち少なくとも1つが親水性基を表す。X~Xのうち隣接する2つが互いに結合して環を形成していてもよい。
PCT/JP2023/035359 2022-09-30 2023-09-28 半導体デバイスの製造方法、処理液、キット WO2024071285A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158503 2022-09-30
JP2022-158503 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071285A1 true WO2024071285A1 (ja) 2024-04-04

Family

ID=90478037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035359 WO2024071285A1 (ja) 2022-09-30 2023-09-28 半導体デバイスの製造方法、処理液、キット

Country Status (1)

Country Link
WO (1) WO2024071285A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180079A1 (ja) * 2012-05-30 2013-12-05 株式会社クラレ 化学機械研磨用スラリーおよび化学機械研磨方法
JP2015067773A (ja) * 2013-09-30 2015-04-13 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
JP2015084432A (ja) * 2009-05-15 2015-04-30 山口精研工業株式会社 炭化ケイ素基板用研磨剤組成物
JP2020047832A (ja) * 2018-09-20 2020-03-26 Jsr株式会社 化学機械研磨用水系分散体及びその製造方法、並びに化学機械研磨方法
WO2021131451A1 (ja) * 2019-12-26 2021-07-01 富士フイルムエレクトロニクスマテリアルズ株式会社 洗浄方法、洗浄液
WO2021131449A1 (ja) * 2019-12-26 2021-07-01 富士フイルムエレクトロニクスマテリアルズ株式会社 洗浄液、洗浄方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084432A (ja) * 2009-05-15 2015-04-30 山口精研工業株式会社 炭化ケイ素基板用研磨剤組成物
WO2013180079A1 (ja) * 2012-05-30 2013-12-05 株式会社クラレ 化学機械研磨用スラリーおよび化学機械研磨方法
JP2015067773A (ja) * 2013-09-30 2015-04-13 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
JP2020047832A (ja) * 2018-09-20 2020-03-26 Jsr株式会社 化学機械研磨用水系分散体及びその製造方法、並びに化学機械研磨方法
WO2021131451A1 (ja) * 2019-12-26 2021-07-01 富士フイルムエレクトロニクスマテリアルズ株式会社 洗浄方法、洗浄液
WO2021131449A1 (ja) * 2019-12-26 2021-07-01 富士フイルムエレクトロニクスマテリアルズ株式会社 洗浄液、洗浄方法

Similar Documents

Publication Publication Date Title
EP1892285B1 (en) Cleaning composition, cleaning method, and manufacturing method of semiconductor device
JP5441345B2 (ja) 研磨液、及び研磨方法
TWI565797B (zh) 電子元件用洗淨液組成物
TWI468509B (zh) 半導體元件用清潔劑及使用其之半導體元件之製造方法
TW200914589A (en) Metal-polishing composition and chemical mechanical polishing method by using the same
JP2007299942A (ja) 金属研磨用組成物及びそれを用いた化学的機械的研磨方法
JPWO2017057156A1 (ja) 研磨方法
JP2009064881A (ja) 金属用研磨用組成物及びそれを用いた化学的機械的研磨方法
TW202129739A (zh) 研磨組成物及其使用方法
JP2009088080A (ja) 化学的機械的研磨用研磨液
TW202022160A (zh) 鎢溶解抑制劑、以及使用其之研磨用組成物及表面處理組成物
TW202125614A (zh) 洗淨方法及洗淨液
WO2024071285A1 (ja) 半導体デバイスの製造方法、処理液、キット
JP2009231298A (ja) 金属研磨用組成物、及び化学的機械的研磨方法
WO2020255603A1 (ja) 研磨液、及び、化学的機械的研磨方法
TW202419597A (zh) 半導體器件之製造方法、處理液、試劑盒
JP6892035B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
TW202140765A (zh) 洗淨液、半導體基板的洗淨方法
JP6892034B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP6892033B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
WO2021095415A1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
WO2020255616A1 (ja) 研磨液、及び、化学的機械的研磨方法
TWI804963B (zh) 後化學機械平坦化(cmp)清潔
WO2023189432A1 (ja) 洗浄組成物、半導体基板の製造方法
WO2023140049A1 (ja) 研磨液、研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872507

Country of ref document: EP

Kind code of ref document: A1