WO2024069811A1 - Motor drive device and refrigeration cycle instrument - Google Patents

Motor drive device and refrigeration cycle instrument Download PDF

Info

Publication number
WO2024069811A1
WO2024069811A1 PCT/JP2022/036253 JP2022036253W WO2024069811A1 WO 2024069811 A1 WO2024069811 A1 WO 2024069811A1 JP 2022036253 W JP2022036253 W JP 2022036253W WO 2024069811 A1 WO2024069811 A1 WO 2024069811A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
voltage
component
control unit
induced voltage
Prior art date
Application number
PCT/JP2022/036253
Other languages
French (fr)
Japanese (ja)
Inventor
和徳 畠山
慎也 豊留
亮一 佐々木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/036253 priority Critical patent/WO2024069811A1/en
Publication of WO2024069811A1 publication Critical patent/WO2024069811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • This disclosure relates to a motor drive device that drives a motor, and a refrigeration cycle device equipped with a motor drive device.
  • Patent Document 1 discloses a technique for reducing noise caused by resonance between a three-phase fan motor and the rotor of the fan motor. Specifically, Patent Document 1 discloses a technique for adding the fifth and seventh order components of the induced voltage generated by the fan motor to the applied voltage of each phase of the fan motor in order to cancel out the sixth order sound component in the dq coordinate system.
  • the fifth and seventh order components of the induced voltage component are added to the voltage command of each phase of the fan motor.
  • the fifth and seventh order components to be added have adjustment parameters such as the ratio G ( G5 , G7 ) to the amplitude of the induced voltage and the phase difference ⁇ ( ⁇ 5 , ⁇ 7 ) to the induced voltage component.
  • these adjustment parameters need to be adjusted depending on the operating state, and therefore there is a problem that the adjustment requires a lot of effort.
  • the present disclosure has been made in consideration of the above, and aims to provide a motor drive device that can easily suppress the generation of vibrations and noise, even when applied to equipment with large load fluctuations.
  • the motor drive device is a motor drive device that drives a motor that generates at least one harmonic voltage of the fifth harmonic component and seventh harmonic component of the induced voltage in addition to the fundamental component of the induced voltage.
  • the motor drive device includes an inverter that converts a DC voltage applied from a DC power source into an AC voltage and applies it to the motor, and a control unit that controls the inverter output voltage output by the inverter.
  • the control unit controls the inverter output voltage so as to suppress the torque fluctuation component that is generated from the product of the fundamental component of the motor current, which is the current flowing through the motor, and at least one harmonic induced voltage of the fifth harmonic component and seventh harmonic component.
  • the motor drive device disclosed herein has the advantage of being able to easily suppress the generation of vibrations and noise, even when applied to equipment with large load fluctuations.
  • FIG. 1 is a diagram showing an example of the configuration of a motor drive device according to an embodiment
  • FIG. 1 is a block diagram showing an example of a hardware configuration for implementing the functions of a control unit according to an embodiment
  • FIG. 11 is a block diagram showing another example of a hardware configuration for implementing the functions of the control unit according to the embodiment
  • FIG. 1 is a diagram for explaining a method for generating a PWM signal according to an embodiment
  • FIG. 1 is a diagram showing an example of a waveform of an induced voltage that may occur in a typical permanent magnet motor.
  • FIG. 6 is a diagram showing a change in power due to the fifth harmonic component of the induced voltage shown in FIG. 5 .
  • FIG. 7 is a diagram showing the results of extracting only the power ripple components from the results shown in FIG. 6 .
  • FIG. 6 is a diagram showing a change in power due to the seventh harmonic component of the induced voltage shown in FIG. 5 .
  • FIG. 9 is a diagram showing the results of extracting only the power ripple components from the results shown in FIG. 8 .
  • FIG. 6 is a diagram showing how power changes when the fifth harmonic component and the seventh harmonic component of the induced voltage shown in FIG. 5 exist simultaneously.
  • FIG. 11 is a diagram showing the result of extracting only the power ripple component from the result shown in FIG. 10 .
  • FIG. 2 is a diagram showing a configuration example of a control unit according to an embodiment; FIG.
  • FIG. 13 is a diagram showing an example of the configuration of a torque fluctuation compensation amount calculation unit provided in the control unit shown in FIG. 12 .
  • 1 is a flowchart showing a flow of processing by a control unit according to an embodiment.
  • FIG. 13 is a diagram showing a configuration example of a control unit according to a modified example of the embodiment;
  • FIG. 1 is a diagram showing a configuration example of a motor drive device 100 according to an embodiment.
  • the motor drive device 100 is connected to an AC power source 10 and a motor 40.
  • the motor drive device 100 converts a first AC power based on a power source voltage supplied from the AC power source 10 into a second AC power having a desired amplitude and phase and supplies the second AC power to the motor 40.
  • the motor drive device 100 includes a reactor 20, a rectifier 21, a capacitor 22, an inverter 30, a control unit 60, a current detection unit 74, and a DC voltage detection unit 76.
  • the motor drive device 100 according to the embodiment can be used in a refrigeration cycle device. Examples of the refrigeration cycle device include an air conditioner, a heat pump water heater, a refrigerator, and a freezer.
  • a motor 40 is connected to the inverter 30, and a load 50 is connected to the motor 40.
  • the motor 40 is assumed to be a three-phase motor.
  • An example of the load 50 is a propeller fan or a compressor of an outdoor unit provided in a refrigeration cycle device.
  • Figure 1 illustrates an example in which the load 50 is a propeller fan.
  • the AC power source 10 may be, for example, a 50 Hz or 60 Hz commercial power source, but is not limited to these commercial power sources.
  • the AC power source 10 may also be a power source system using distributed power sources that generate AC voltage using DC voltage output from a stationary storage battery, a solar power generation device, or the like.
  • the power supply voltage output from the AC power supply 10 is applied to the rectifier 21 via the reactor 20.
  • the rectifier 21 rectifies the power supply voltage and converts it into a DC voltage.
  • the capacitor 22 is connected in parallel to the rectifier 21 and the inverter 30 between the rectifier 21 and the inverter 30.
  • the capacitor 22 smoothes the DC voltage output from the rectifier 21.
  • the capacitor 22 outputs the smoothed DC voltage to the inverter 30.
  • the capacitor 22 functions as a DC power supply for the inverter 30.
  • the inverter 30 converts the DC voltage applied from the capacitor 22 into an AC voltage and applies it to the motor 40.
  • the reactor 20 may be an EI or EE type made of laminated electromagnetic steel sheets, or may use a ferrite or amorphous iron core. Copper or aluminum is used for the windings.
  • the rectifier 21 may be configured by arranging diodes in a bridge configuration, or may be configured by power semiconductor elements such as MOSFETs instead of diodes.
  • the power semiconductor elements such as diodes and MOSFETs may be made of general silicon materials, or may be made using wide band gap semiconductors with lower loss.
  • the capacitor 22 may be configured by using an aluminum electrolytic capacitor, a small capacity film capacitor, etc.
  • the inverter 30 has legs in which multiple switching elements 32 are connected in series, the number of which corresponds to the number of phases of the motor 40.
  • the legs, the number of which corresponds to the number of phases, are connected in parallel to each other.
  • the motor 40 is connected to the connection point between the switching elements 32 in each leg of the inverter 30.
  • FIG. 1 illustrates an example in which each leg includes two switching elements 32, but the number may be any number other than two as long as it is more than one.
  • FIG. 1 also illustrates an example in which the motor 40 is a three-phase motor, but this is not limited to this.
  • the motor 40 may also be a multi-phase motor other than a three-phase motor.
  • an IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • FIG. 1 is an IGBT, to which a diode is connected in parallel. Note that in the case of a MOSFET, because of its structure it has a built-in parasitic diode, a configuration in which the diode is not connected in parallel may also be used.
  • Semiconductor elements made of silicon (Si) are widely used as the switching element 32, but in recent years, MOSFETs with superjunction structures have also been used in response to demands for higher efficiency. Recently, switching elements made of wide band gap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), and diamond have also come to be used to achieve even higher efficiency.
  • the inverter 30 may be configured using any of these switching elements as long as it is capable of performing a switching operation to apply an AC voltage to the motor 40.
  • the motor 40 can be, for example, an induction motor or a synchronous motor. These motors may be configured in any manner. For example, if the motor 40 is a synchronous motor, the stator may be configured with either concentrated winding or distributed winding. The windings may be made of any material, such as copper or aluminum wire, as long as they can pass current. If the motor 40 is a permanent magnet synchronous motor, the rotor may have any structure, including surface magnet and embedded magnet types, as long as it is capable of generating rotational force.
  • the current detection unit 74 detects the motor current, which is the current flowing through the motor 40.
  • the DC voltage detection unit 76 detects the DC voltage applied to the inverter 30.
  • the DC voltage applied to the inverter 30 can be detected by detecting the voltage across the capacitor 22.
  • Representative examples of the current detection unit 74 include an ACCT (Alternating Current Transformer) that can detect only AC components, and a DCCT (Direct Current Transformer) that can detect both DC and AC components, but any device that can detect the motor current may be used.
  • the control unit 60 controls the inverter output voltage output by the inverter 30. Specifically, the control unit 60 generates a PWM (Pulse Width Modulation) signal, which is a signal that controls the switching of the switching element 32, based on the motor current detection value detected by the current detection unit 74 and the DC voltage detection value detected by the DC voltage detection unit 76, and sends it to the inverter 30.
  • PWM Pulse Width Modulation
  • the current detection unit 74 may detect the bus current flowing between the capacitor 22 and the inverter 30.
  • the motor current can be calculated inside the control unit 60 by sampling the detected value of the bus current at a timing determined based on a reference signal that serves as a reference when generating a PWM signal.
  • FIG. 2 is a block diagram showing an example of a hardware configuration that realizes the functions of the control unit 60 according to the embodiment.
  • FIG. 3 is a block diagram showing another example of a hardware configuration that realizes the functions of the control unit 60 according to the embodiment.
  • the configuration can include a processor 300 that performs calculations, a memory 302 that stores programs read by the processor 300, and an interface 304 that inputs and outputs signals, as shown in FIG. 2.
  • the configuration can include a processor 300 that performs calculations, a memory 302 that stores programs read by the processor 300, and an interface 304 that inputs and outputs signals.
  • the programs that execute the functions of the control unit 60 are held in the memory 302.
  • the control unit 60 transmits and receives necessary information via the interface 304, and performs the control described below by having the processor 300 execute the programs held in the memory 302.
  • Processor 300 is an example of a computing means.
  • Processor 300 may be a computing means called a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • Memory 302 may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (registered trademark) (Electrically EPROM).
  • the processing circuit 303 shown in FIG. 3 can be used.
  • the processing circuit 303 can be a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these.
  • Information input to the processing circuit 303 and information output from the processing circuit 303 can be exchanged via an interface 304.
  • control unit 60 may be performed by the processing circuit 303, and other processing that is not performed by the processing circuit 303 may be performed by the processor 300 and memory 302.
  • Figure 4 is a diagram used to explain the method of generating the PWM signal in the embodiment.
  • the upper part of Figure 4 shows the waveforms of the carrier signal and the voltage command values Vu*, Vv*, and Vw* of each phase
  • the lower part of Figure 4 shows the waveforms of the PWM signals UP, VP, WP, UN, VN, and WN of each phase.
  • the voltage command values Vu*, Vv*, Vw* are sinusoidal waveforms with phases differing by 2 ⁇ /3, and the carrier signal is a triangular waveform signal that changes with a period that is the inverse of a frequency called the carrier frequency.
  • the carrier signal is shown by a solid line
  • the U-phase voltage command value Vu* is shown by a dashed line
  • the V-phase voltage command value Vv* is shown by a dashed line
  • the W-phase voltage command value Vw* is shown by a dashed line.
  • the amplitudes of the voltage command values Vu*, Vv*, Vw* are determined by the voltage command value amplitude V*.
  • the amplitude of the carrier signal is set to 1/2 of the DC voltage Vdc applied to the inverter 30.
  • the control unit 60 generates PWM signals UP, VP, WP, UN, VN, and WN by comparing the amplitude of the carrier signal with the amplitudes of the voltage command values Vu*, Vv*, and Vw*.
  • the switching elements 32 of each phase in the inverter 30 perform switching operations using these PWM signals UP, VP, WP, UN, VN, and WN, and AC voltages according to the voltage command values Vu*, Vv*, and Vw* are applied to the motor 40. Note that in FIG.
  • a high-level signal is output when the amplitudes of the voltage command values Vu*, Vv*, and Vw* are greater than the amplitude of the carrier signal
  • a low-level signal is output when the amplitudes of the voltage command values Vu*, Vv*, and Vw* are smaller than the amplitude of the carrier signal, but the relationship between the high level and the low level may be reversed.
  • FIG. 5 is a diagram showing an example of an induced voltage waveform that can be generated in a typical permanent magnet motor.
  • the horizontal axis represents the phase ⁇ of the fundamental wave component of the induced voltage
  • the vertical axis represents the induced voltage.
  • This induced voltage is dominated by a fundamental component with a sine wave waveform, but in reality, the waveform is one in which harmonic components other than the fundamental component are superimposed. Note that in this article, harmonic components other than the fundamental component that may be included in the induced voltage are sometimes referred to as "harmonic induced voltage.”
  • the main harmonic components other than the fundamental wave component are the 5th harmonic component, which is a frequency component five times the fundamental wave frequency f, which is the frequency of the fundamental wave component, and the 7th harmonic component, which is a frequency component seven times the fundamental wave frequency f.
  • Figure 5 shows the combined waveform of the induced voltage, shown by the solid line, distorted by superimposing the 5th harmonic component (5f) shown by the dashed line and the 7th harmonic component (7f) shown by the dashed line on the fundamental wave component (1f) shown by the dashed line.
  • the motor current flowing through the motor 40 is controlled to have a sinusoidal shape, thereby reducing noise and vibration of the motor 40, but this is affected by induced voltage. If the waveform of the induced voltage is distorted as shown in Figure 5, torque pulsation occurs in the motor 40, causing increased noise and vibration. Below, torque pulsation, which causes increased noise and vibration, is explained using several formulas.
  • a U-phase induced voltage, a V-phase induced voltage, and a W-phase induced voltage are generated, each of which is 120 degrees out of phase with each other.
  • the current driving the motor 40 can also be divided into a U-phase current, a V-phase current, and a W-phase current, taking into consideration the phase difference. Therefore, the power Pm supplied to the motor 40 is the sum of the three-phase parts of the voltage-current products of the fundamental components of the three-phase induced voltages and the motor currents.
  • the torque ⁇ 1 for driving the motor 40 is determined by the power Pm supplied to the motor 40 and acts on the motor 40.
  • the above-mentioned power Pm can be expressed as in the following equation (7) using Eu1 , Iu1 , Ev1 , Iv1 , Ew1 , and Iw1 represented by the following equations (1) to (6).
  • Eu1 , Ev1 , and Ew1 respectively represent the fundamental wave component of the U-phase induced voltage, the fundamental wave component of the V-phase induced voltage, and the fundamental wave component of the W-phase induced voltage.
  • Iu1 , Iv1 , and Iw1 in the above formulas (2), (4), and (6) respectively represent the motor currents of the U-phase, V-phase, and W-phase, and ⁇ represents the phase of the fundamental wave component of the induced voltage.
  • E1 represents the effective value of the fundamental wave component of the induced voltage
  • I1 represents the effective value of the motor current
  • represents the phase difference between the induced voltage and the motor current.
  • the effective value E 1 , the effective value I 1 , and the phase difference ⁇ are constants. Therefore, it can be seen that the power P m is only a DC component, and the AC component, which is a fluctuating component, does not appear in the above formula (7).
  • the angular frequency of the rotation speed of the motor 40 is called the "mechanical angular frequency” and is represented by ⁇ .
  • the torque ⁇ 1 can be expressed as the following equation (8) based on the above equation (7).
  • this amount of fluctuation ⁇ includes the torque ⁇ 1 in the above formula (8) and can be expressed by the following formula (9).
  • ⁇ load is the load torque of the motor 40
  • J is the moment of inertia including the motor 40 and the load 50.
  • the load torque ⁇ load is approximately constant and is balanced with the torque ⁇ 1.
  • the moment of inertia J is very high and the fluctuation amount ⁇ of the mechanical angular frequency ⁇ is extremely small, so the impact on the generation of vibration and noise is also extremely small. From the above, it can be seen that the torque ⁇ 1 generated by the fundamental wave component of the induced voltage and the fundamental wave component of the motor current has an extremely small impact on noise and vibration.
  • the fifth harmonic component of each phase of the induced voltage can be expressed mathematically together with the motor current of each phase as shown in the following equations (10) to (15).
  • Eu5 , Ev5 , and Ew5 respectively represent the fifth harmonic component of the U-phase induced voltage, the fifth harmonic component of the V-phase induced voltage, and the fifth harmonic component of the W-phase induced voltage.
  • E5 represents the effective value of the fifth harmonic component of the induced voltage
  • represents the phase difference between the fifth harmonic component of the induced voltage and the motor current.
  • the above formulas (11), (13), and (15) also reproduce the U-phase motor current Iu1 , the V-phase motor current Iv1 , and the W-phase motor current Iw1 shown in the above formulas (2), (4), and (6).
  • Fig. 7 is a diagram showing the results of extracting only the power ripple component from the results shown in Fig. 6. The horizontal axis in Figs. 6 and 7 represents the phase ⁇ of the fundamental wave component of the induced voltage.
  • the seventh harmonic component of each phase of the induced voltage can be expressed mathematically together with the motor current of each phase as shown in the following equations (16) to (21).
  • Eu7 , Ev7 , and Ew7 respectively represent the seventh harmonic component of the U-phase induced voltage, the seventh harmonic component of the V-phase induced voltage, and the seventh harmonic component of the W-phase induced voltage.
  • E7 represents the effective value of the seventh harmonic component of the induced voltage
  • represents the phase difference between the seventh harmonic component of the induced voltage and the motor current.
  • the above formulas (17), (19), and (21) also reproduce the U-phase motor current Iu1 , the V-phase motor current Iv1 , and the W-phase motor current Iw1 shown in the above formulas (2), (4), and (6).
  • Fig. 9 is a diagram showing the results of extracting only the power ripple component from the results shown in Fig. 8. The horizontal axis in Figs. 8 and 9 represents the phase ⁇ of the fundamental wave component of the induced voltage.
  • Figs. 6 to 9 the calculation results are shown when either the 5th harmonic component or the 7th harmonic component of the induced voltage occurs alone, but in reality, the 5th harmonic component and the 7th harmonic component of the induced voltage occur simultaneously. Therefore, Figs. 10 and 11 show the calculation results when the 5th harmonic component and the 7th harmonic component of the induced voltage exist simultaneously.
  • Fig. 10 is a diagram showing the change in power when the 5th harmonic component and the 7th harmonic component of the induced voltage shown in Fig. 5 exist simultaneously.
  • Fig. 11 is a diagram showing the result of extracting only the power ripple component from the result shown in Fig. 10. Note that the horizontal axis in Figs. 10 and 11 represents the phase ⁇ of the fundamental wave component of the induced voltage, as in Figs. 6 to 10.
  • the motor current is controlled to be sinusoidal, it is possible to reduce noise and vibration of the motor 40.
  • the motor current is controlled to be sinusoidal, if the fifth harmonic component or seventh harmonic component that may be included in the induced voltage is large, as described above, power pulsation with a frequency six times the fundamental frequency f occurs, which generates a pulsating component in the torque ⁇ 1 output by the motor 40. Then, the difference between the torque ⁇ 1 and the load torque ⁇ load generates speed fluctuations, which ultimately lead to vibration and noise.
  • the power pulsation that causes the vibration and noise i.e., the power pulsation with a frequency six times the fundamental frequency f.
  • the power pulsation with a frequency six times the fundamental frequency f is referred to as "sixth-order power pulsation.”
  • FIG. 12 is a diagram showing an example of the configuration of a control unit 60 according to an embodiment.
  • Figure 13 is a diagram showing an example of the configuration of a torque fluctuation compensation amount calculation unit 66 provided in the control unit 60 shown in Figure 12.
  • the control unit 60 includes adders/subtractors 61, 63, 64, and 65, a speed control unit 62, a torque fluctuation compensation amount calculation unit 66, a coordinate conversion unit 67, a d-axis current control unit 68, a q-axis current control unit 69, a speed and position estimation unit 70, and a PWM signal generation unit 71.
  • Each adder/subtractor performs an addition or subtraction calculation according to the plus (+) or minus (-) sign next to it.
  • the motor currents Iu, Iv, and Iw of the UVW phases are input to the coordinate conversion unit 67 as detected values of the motor currents.
  • the coordinate conversion unit 67 calculates the d-axis current Id and the q-axis current Iq by converting the motor currents Iu, Iv, and Iw into current values on the dq coordinates using the electrical angle phase ⁇ e generated by the speed and position estimation unit 70 described below.
  • the speed and position estimator 70 calculates a speed estimate ⁇ e based on the d-axis current Id and the q-axis current Iq, as well as the d-axis voltage command value Vd* and the q-axis voltage command value Vq* described below.
  • the speed estimate ⁇ e is an estimate of the rotational speed of the motor 40.
  • the speed of the motor 40 varies with load fluctuations. Therefore, the speed and position estimator 70 estimates the rotational speed of the motor 40, which varies with load fluctuations, and outputs a speed estimate ⁇ e corresponding to the estimated rotational speed.
  • the speed and position estimator 70 also calculates an electrical angle phase ⁇ e based on the speed estimate ⁇ e.
  • the electrical angle phase ⁇ e can be obtained by integrating the speed estimate ⁇ e.
  • the torque fluctuation compensation amount calculation unit 66 generates a torque compensation current ⁇ Iq, which is a compensation amount for making the torque fluctuation component zero, based on the motor currents Iu, Iv, Iw, the electrical angle phase ⁇ e, and the speed estimate ⁇ e.
  • a torque compensation current ⁇ Iq which is a compensation amount for making the torque fluctuation component zero, based on the motor currents Iu, Iv, Iw, the electrical angle phase ⁇ e, and the speed estimate ⁇ e.
  • Adder-subtracter 61 calculates the speed deviation, which is the deviation between the speed command value ⁇ * and the speed estimate value ⁇ e.
  • Speed control unit 62 calculates the q-axis current command value Iq* based on the speed deviation.
  • Adder-subtracter 63 adds the q-axis current command value Iq* and the torque compensation current ⁇ Iq, and adder-subtracter 65 calculates the q-axis current deviation by subtracting the q-axis current Iq from the output of adder-subtracter 63.
  • q-axis current control unit 69 generates a q-axis voltage command value Vq* that converges the q-axis current deviation to zero and outputs it to the PWM signal generation unit 71.
  • the adder/subtractor 64 calculates the d-axis current deviation by subtracting the d-axis current Id from the d-axis current command value Id*.
  • the d-axis current control unit 68 generates a d-axis voltage command value Vd* that converges the d-axis current deviation to zero, and outputs it to the PWM signal generation unit 71.
  • the PWM signal generating unit 71 converts the d-axis voltage command value Vd* and the q-axis voltage command value Vq* into voltage command values in a three-phase coordinate system using the electrical angle phase ⁇ e, and generates PWM signals UP, VP, WP, UN, VN, and WN based on the converted voltage command values in the three-phase coordinate system and the DC voltage Vdc, and outputs them to the inverter 30.
  • Figure 13 shows an example of the configuration of the torque fluctuation compensation amount calculation unit 66, and we will explain the reason for configuring it in this way.
  • the torque fluctuation of the motor 40 due to the power pulsation can be easily restored by grasping the parameters of the induced voltage described above, that is, the effective value E1 of the fundamental wave component, the effective value E5 of the fifth harmonic component, the effective value E7 of the seventh harmonic component, and the phase differences ⁇ and ⁇ of the induced voltage. Therefore, as shown in Fig. 13, a processing unit for restoring the induced voltage is provided, and the restored induced voltages Eu, Ev, and Ew are multiplied by the motor currents Iu, Iv, and Iw for each phase, and the three phases are added to calculate the instantaneous power.
  • a band pass filter (BPF) is provided to extract only the 6-fold fluctuation component, and the BPF extracts the component of the 6-fold frequency of the fundamental wave frequency f of the induced voltage from the instantaneous power, thereby obtaining the component of the 6-fold power pulsation.
  • the torque fluctuation component ⁇ is obtained by dividing the sixth-order power pulsation component by the mechanical angular frequency ⁇ .
  • the phase ⁇ used for the restoration induced voltages Eu, Ev, and Ew can be obtained by multiplying the electrical angle phase ⁇ e by the reciprocal of the number of pole pairs P of the motor 40.
  • the mechanical angular frequency ⁇ used in the calculation of the torque fluctuation component ⁇ can be obtained by multiplying the speed estimate ⁇ e by the reciprocal of the number of pole pairs P of the motor 40.
  • the difference can be taken with zero as the target, proportional-integral control can be performed, and the output can be output as the torque compensation current ⁇ Iq, as shown in Figure 13. Then, the torque compensation current ⁇ Iq calculated in Figure 13 can be added to the q-axis current command value Iq*, as shown in Figure 12.
  • FIG. 14 is a flowchart showing the flow of processing by the control unit 60 in the embodiment.
  • a current detection step S001 the motor current is detected.
  • the phase ⁇ which is the position information of the motor 40
  • the mechanical angular frequency ⁇ which is the information of the rotation speed of the motor 40
  • the induced voltage is restored based on the effective value E 1 of the fundamental wave component, the effective value E 5 of the fifth harmonic component, the effective value E 7 of the seventh harmonic component, and the phase differences ⁇ and ⁇ , which are previously measured, and the phase ⁇ , which is the estimated position information of the motor 40.
  • a torque fluctuation component calculation step S004 the instantaneous power is calculated based on the restored induced voltage and the motor current, and the calculated instantaneous power is passed through a filter having a desired band to calculate the torque fluctuation component ⁇ .
  • a torque compensation current ⁇ Iq for making the torque fluctuation component ⁇ zero is calculated, and the calculated torque compensation current ⁇ Iq is reflected in the q-axis current command value.
  • the propeller fan mounted on the outdoor unit is a high inertia load because its radial length is longer than the direction of rotation of the motor 40. Furthermore, the propeller fan is thin, so vibrations are easily transmitted. Furthermore, since the propeller fan is made of resin, it has the characteristic that its hardness changes depending on the temperature. Since the outdoor unit is installed outdoors, not only is it easily affected by the outside temperature, but if it is installed in a place exposed to direct sunlight, the daytime temperature will be high. For this reason, the propeller fan mounted on the outdoor unit has the characteristic that its resonance point fluctuates.
  • the operating point of the motor 40 was determined by considering the relationship between the resonance point due to temperature changes and the torque pulsations according to the rotation speed.
  • the range of operating points that can be set is narrow, making it difficult to set an operating point that provides maximum efficiency.
  • changing the operating point requires changing the actuator operation for other refrigeration cycle equipment with similar specifications, which increases the time required for equipment adjustment work.
  • FIG. 15 is a diagram showing an example of the configuration of the control unit 60A according to a modified example of the embodiment.
  • the non-interference control unit 80 includes a multiplier 80a.
  • the non-interference control unit 80 calculates a compensation value Vdff* for the d-axis voltage command value Vd* based on the compensated q-axis current command value Iq* output from the adder/subtractor 63, that is, the q-axis current command value Iq* to which the torque compensation current ⁇ Iq has been added, and the speed estimate ⁇ e.
  • the compensation value Vdff* for the d-axis voltage command value Vd* is a compensation value for suppressing mutual interference with the d-axis due to the compensated q-axis current command value Iq*. As shown in FIG.
  • the compensation value Vdff* for the d-axis voltage command value Vd* can be obtained by multiplying the compensated q-axis current command value Iq* by the q-axis inductance Lq of the motor 40 and the speed estimate ⁇ e.
  • the control unit 60A shown in FIG. 15 it is possible to reduce the effect of the voltage error on the motor applied voltage caused by the compensation of the q-axis current command value Iq*.
  • the motor drive device includes an inverter that converts a DC voltage applied from a DC power supply into an AC voltage and applies it to a motor, and a control unit that controls the inverter output voltage output by the inverter.
  • the control unit controls the inverter output voltage so as to suppress the torque fluctuation component generated from the product of the fundamental component of the motor current, which is the current flowing through the motor, and at least one harmonic induced voltage of the fifth harmonic component and the seventh harmonic component. This makes it possible for the motor drive device to easily suppress the generation of vibrations and noise, even when applied to equipment with large load fluctuations.
  • the control unit can control the motor current to be sinusoidal, and can compensate the q-axis current command value based on a torque compensation current, which is a compensation amount generated based on the torque fluctuation component.
  • the torque compensation current here is a compensation amount for making the torque fluctuation component zero when the motor is driven.
  • the control unit may be equipped with a non-interference control unit that compensates for the d-axis voltage command value based on the compensated q-axis current command value and a speed estimation value that is an estimate of the motor rotation speed. By providing such a non-interference control unit, it is possible to reduce the effect of voltage error on the motor applied voltage caused by compensation of the q-axis current command value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A motor drive device (100) drives a motor (40) that generates, in addition to a fundamental wave component of an induced voltage, at least one harmonic voltage of a fifth-order harmonic component and a seventh-order harmonic component of the induced voltage. The motor drive device (100) comprises: an inverter (30) that converts a DC voltage applied from a capacitor (22) to an AC voltage and applies the resulting voltage to the motor (40); and a control unit (60) that controls an inverter output voltage outputted by the inverter (30). The control unit (60) controls the inverter output voltage so as to suppress a torque variation component generated from the product of the fundamental wave component of a motor current which is a current flowing through the motor (40), and at least one harmonic induced voltage of a fifth-order harmonic component and a seventh-order harmonic component.

Description

モータ駆動装置及び冷凍サイクル機器Motor drive device and refrigeration cycle equipment
 本開示は、モータを駆動するモータ駆動装置、及びモータ駆動装置を備えた冷凍サイクル機器に関する。 This disclosure relates to a motor drive device that drives a motor, and a refrigeration cycle device equipped with a motor drive device.
 下記特許文献1には、3相のファンモータと、ファンモータのロータとの共振による騒音を低減する技術が開示されている。具体的に、特許文献1では、dq座標系における6次成分の音を打ち消すために、ファンモータの各相の印加電圧にファンモータが発生する誘起電圧の5次成分と7次成分とを加算する技術が開示されている。 Patent Document 1 below discloses a technique for reducing noise caused by resonance between a three-phase fan motor and the rotor of the fan motor. Specifically, Patent Document 1 discloses a technique for adding the fifth and seventh order components of the induced voltage generated by the fan motor to the applied voltage of each phase of the fan motor in order to cancel out the sixth order sound component in the dq coordinate system.
特開2014-87167号公報JP 2014-87167 A
 前述のように、特許文献1の技術では、ファンモータの各相の電圧指令に誘起電圧成分の5次成分と7次成分とを加算することとしている。加算される5次成分及び7次成分は、誘起電圧の振幅に対する比率G(G,G)、誘起電圧成分に対する位相差φ(φ,φ)などが調整パラメータとなる。一方、これらの調整パラメータは、運転状態に応じて調整が必要となるため、調整に要する労力が大きいという課題がある。 As described above, in the technology of Patent Document 1, the fifth and seventh order components of the induced voltage component are added to the voltage command of each phase of the fan motor. The fifth and seventh order components to be added have adjustment parameters such as the ratio G ( G5 , G7 ) to the amplitude of the induced voltage and the phase difference φ ( φ5 , φ7 ) to the induced voltage component. However, these adjustment parameters need to be adjusted depending on the operating state, and therefore there is a problem that the adjustment requires a lot of effort.
 また、一意に調整パラメータを設定する手法の場合、負荷変動などが生じて電圧指令の周波数とモータ回転速度の周波数とが不一致になることが想定される。空気調和機などに用いられるプロペラファン及びファンモータは、温度変化の大きい環境下に置かれるため、負荷変動の大きい機器である。負荷変動が生じて電圧指令の周波数とモータ回転速度の周波数とが不一致になった場合、想定した位相と異なる位相に電圧を印加するおそれがあり、かえって振動及び騒音が悪化してしまうという問題がある。 Furthermore, in the case of a method of uniquely setting adjustment parameters, it is expected that load fluctuations will occur, causing a mismatch between the voltage command frequency and the motor rotation speed frequency. Propeller fans and fan motors used in air conditioners and other appliances are placed in environments with large temperature changes, and are therefore devices that experience large load fluctuations. If a load fluctuation occurs and the voltage command frequency and the motor rotation speed frequency do not match, there is a risk that voltage will be applied at a phase different from the expected phase, which could result in worsening vibrations and noise.
 本開示は、上記に鑑みてなされたものであって、負荷変動の大きい機器に適用された場合であっても、振動及び騒音の発生を容易に抑制可能なモータ駆動装置を得ることを目的とする。 The present disclosure has been made in consideration of the above, and aims to provide a motor drive device that can easily suppress the generation of vibrations and noise, even when applied to equipment with large load fluctuations.
 上述した課題を解決し、目的を達成するため、本開示に係るモータ駆動装置は、誘起電圧の基本波成分に加えて、誘起電圧の5次高調波成分及び7次高調波成分のうちの少なくとも1つの高調波電圧を発生するモータを駆動するモータ駆動装置である。モータ駆動装置は、直流電源から印加される直流電圧を交流電圧に変換してモータに印加するインバータと、インバータが出力するインバータ出力電圧を制御する制御部とを備える。制御部は、モータに流れる電流であるモータ電流の基本波成分と、5次高調波成分及び7次高調波成分のうちの少なくとも1つの高調波誘起電圧との積から発生するトルク変動成分を抑制するようにインバータ出力電圧を制御する。 In order to solve the above problems and achieve the objectives, the motor drive device according to the present disclosure is a motor drive device that drives a motor that generates at least one harmonic voltage of the fifth harmonic component and seventh harmonic component of the induced voltage in addition to the fundamental component of the induced voltage. The motor drive device includes an inverter that converts a DC voltage applied from a DC power source into an AC voltage and applies it to the motor, and a control unit that controls the inverter output voltage output by the inverter. The control unit controls the inverter output voltage so as to suppress the torque fluctuation component that is generated from the product of the fundamental component of the motor current, which is the current flowing through the motor, and at least one harmonic induced voltage of the fifth harmonic component and seventh harmonic component.
 本開示に係るモータ駆動装置によれば、負荷変動の大きい機器に適用された場合であっても、振動及び騒音の発生を容易に抑制できるという効果を奏する。 The motor drive device disclosed herein has the advantage of being able to easily suppress the generation of vibrations and noise, even when applied to equipment with large load fluctuations.
実施の形態に係るモータ駆動装置の構成例を示す図FIG. 1 is a diagram showing an example of the configuration of a motor drive device according to an embodiment; 実施の形態に係る制御部の機能を実現するハードウェア構成の一例を示すブロック図FIG. 1 is a block diagram showing an example of a hardware configuration for implementing the functions of a control unit according to an embodiment; 実施の形態に係る制御部の機能を実現するハードウェア構成の他の例を示すブロック図FIG. 11 is a block diagram showing another example of a hardware configuration for implementing the functions of the control unit according to the embodiment; 実施の形態におけるPWM信号の生成手法の説明に供する図FIG. 1 is a diagram for explaining a method for generating a PWM signal according to an embodiment; 一般的な永久磁石型モータにおいて発生し得る誘起電圧の波形の例を示す図FIG. 1 is a diagram showing an example of a waveform of an induced voltage that may occur in a typical permanent magnet motor. 図5に示す誘起電圧の5次高調波成分による電力の変化の様子を示す図FIG. 6 is a diagram showing a change in power due to the fifth harmonic component of the induced voltage shown in FIG. 5 . 図6に示される結果から電力脈動成分のみを抽出した結果を示す図FIG. 7 is a diagram showing the results of extracting only the power ripple components from the results shown in FIG. 6 . 図5に示す誘起電圧の7次高調波成分による電力の変化の様子を示す図FIG. 6 is a diagram showing a change in power due to the seventh harmonic component of the induced voltage shown in FIG. 5 . 図8に示される結果から電力脈動成分のみを抽出した結果を示す図FIG. 9 is a diagram showing the results of extracting only the power ripple components from the results shown in FIG. 8 . 図5に示す誘起電圧の5次高調波成分及び7次高調波成分が同時に存在する場合の電力の変化の様子を示す図FIG. 6 is a diagram showing how power changes when the fifth harmonic component and the seventh harmonic component of the induced voltage shown in FIG. 5 exist simultaneously. 図10に示される結果から電力脈動成分のみを抽出した結果を示す図FIG. 11 is a diagram showing the result of extracting only the power ripple component from the result shown in FIG. 10 . 実施の形態に係る制御部の構成例を示す図FIG. 2 is a diagram showing a configuration example of a control unit according to an embodiment; 図12に示す制御部に備えられるトルク変動補償量演算部の構成例を示す図FIG. 13 is a diagram showing an example of the configuration of a torque fluctuation compensation amount calculation unit provided in the control unit shown in FIG. 12 . 実施の形態の制御部による処理の流れを示すフローチャート1 is a flowchart showing a flow of processing by a control unit according to an embodiment. 実施の形態の変形例に係る制御部の構成例を示す図FIG. 13 is a diagram showing a configuration example of a control unit according to a modified example of the embodiment;
 以下に、本開示の実施の形態に係るモータ駆動装置及び冷凍サイクル機器を図面に基づいて詳細に説明する。 Below, the motor drive device and refrigeration cycle equipment according to the embodiment of the present disclosure are described in detail with reference to the drawings.
実施の形態.
 図1は、実施の形態に係るモータ駆動装置100の構成例を示す図である。モータ駆動装置100は、交流電源10及びモータ40に接続される。モータ駆動装置100は、交流電源10から供給される電源電圧による第1の交流電力を所望の振幅及び位相を有する第2の交流電力に変換してモータ40に供給する。モータ駆動装置100は、リアクトル20と、整流器21と、コンデンサ22と、インバータ30と、制御部60と、電流検出部74と、直流電圧検出部76とを備える。実施の形態に係るモータ駆動装置100は、冷凍サイクル機器に用いることができる。冷凍サイクル機器の例は、空気調和機、ヒートポンプ給湯器、冷蔵庫、冷凍機などである。
Embodiment
FIG. 1 is a diagram showing a configuration example of a motor drive device 100 according to an embodiment. The motor drive device 100 is connected to an AC power source 10 and a motor 40. The motor drive device 100 converts a first AC power based on a power source voltage supplied from the AC power source 10 into a second AC power having a desired amplitude and phase and supplies the second AC power to the motor 40. The motor drive device 100 includes a reactor 20, a rectifier 21, a capacitor 22, an inverter 30, a control unit 60, a current detection unit 74, and a DC voltage detection unit 76. The motor drive device 100 according to the embodiment can be used in a refrigeration cycle device. Examples of the refrigeration cycle device include an air conditioner, a heat pump water heater, a refrigerator, and a freezer.
 インバータ30にはモータ40が接続され、モータ40には負荷50が接続される。なお、本稿において、モータ40は、三相モータを想定する。負荷50の例は、冷凍サイクル機器に備えられる室外機のプロペラファン又は圧縮機である。図1では、負荷50がプロペラファンである場合を例示している。 A motor 40 is connected to the inverter 30, and a load 50 is connected to the motor 40. In this paper, the motor 40 is assumed to be a three-phase motor. An example of the load 50 is a propeller fan or a compressor of an outdoor unit provided in a refrigeration cycle device. Figure 1 illustrates an example in which the load 50 is a propeller fan.
 交流電源10としては、50Hz又は60Hzの商用電源を例示できるが、これらの商用電源に限定されない。交流電源10は、定置型の蓄電池、太陽光発電装置などから出力される直流電圧を用いて交流電圧を生成するような分散型電源による電源システムであってもよい。 The AC power source 10 may be, for example, a 50 Hz or 60 Hz commercial power source, but is not limited to these commercial power sources. The AC power source 10 may also be a power source system using distributed power sources that generate AC voltage using DC voltage output from a stationary storage battery, a solar power generation device, or the like.
 モータ駆動装置100において、交流電源10から出力される電源電圧は、リアクトル20を介して整流器21に印加される。整流器21は、電源電圧を整流して直流電圧に変換する。コンデンサ22は、整流器21とインバータ30との間において、整流器21及びインバータ30に対して互いに並列に接続される。コンデンサ22は、整流器21から出力される直流電圧を平滑する。コンデンサ22は、平滑した直流電圧をインバータ30に出力する。コンデンサ22は、インバータ30の直流電源として機能する。インバータ30は、コンデンサ22から印加される直流電圧を交流電圧に変換してモータ40に印加する。 In the motor drive device 100, the power supply voltage output from the AC power supply 10 is applied to the rectifier 21 via the reactor 20. The rectifier 21 rectifies the power supply voltage and converts it into a DC voltage. The capacitor 22 is connected in parallel to the rectifier 21 and the inverter 30 between the rectifier 21 and the inverter 30. The capacitor 22 smoothes the DC voltage output from the rectifier 21. The capacitor 22 outputs the smoothed DC voltage to the inverter 30. The capacitor 22 functions as a DC power supply for the inverter 30. The inverter 30 converts the DC voltage applied from the capacitor 22 into an AC voltage and applies it to the motor 40.
 リアクトル20は、電磁鋼板などを積層したEI形状又はEE形状のものでもよいし、フェライト又はアモルファスなどの鉄心を用いたものでもよい。巻線には、銅又はアルミなどが用いられる。 The reactor 20 may be an EI or EE type made of laminated electromagnetic steel sheets, or may use a ferrite or amorphous iron core. Copper or aluminum is used for the windings.
 整流器21は、ダイオードをブリッジ状に配置したものでもよいし、ダイオードに代えてMOSFETなどのパワー半導体素子により構成されていてもよい。ダイオード、MOSFETなどのパワー半導体素子は、一般的なシリコン材料により形成されていてもよいし、より損失の低いワイドバンドギャップ半導体を用いて形成されていてもよい。コンデンサ22は、アルミ電解コンデンサ、小容量のフィルムコンデンサなどを用いて構成されていてもよい。 The rectifier 21 may be configured by arranging diodes in a bridge configuration, or may be configured by power semiconductor elements such as MOSFETs instead of diodes. The power semiconductor elements such as diodes and MOSFETs may be made of general silicon materials, or may be made using wide band gap semiconductors with lower loss. The capacitor 22 may be configured by using an aluminum electrolytic capacitor, a small capacity film capacitor, etc.
 インバータ30は、複数のスイッチング素子32が直列接続されたレグをモータ40の相数分有する。相数分のレグは、互いに並列に接続される。モータ40は、インバータ30の各レグにおけるスイッチング素子32同士の接続点に接続される。図1では、各レグを構成するスイッチング素子32の数が2である場合を例示しているが、複数であればよく、2以外の数であってもよい。また、図1では、モータ40が三相モータである場合を例示しているが、これに限定されない。モータ40は、三相モータ以外の多相モータであってもよい。 The inverter 30 has legs in which multiple switching elements 32 are connected in series, the number of which corresponds to the number of phases of the motor 40. The legs, the number of which corresponds to the number of phases, are connected in parallel to each other. The motor 40 is connected to the connection point between the switching elements 32 in each leg of the inverter 30. FIG. 1 illustrates an example in which each leg includes two switching elements 32, but the number may be any number other than two as long as it is more than one. FIG. 1 also illustrates an example in which the motor 40 is a three-phase motor, but this is not limited to this. The motor 40 may also be a multi-phase motor other than a three-phase motor.
 スイッチング素子32としては、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などが広く用いられる。図1の例はIGBTであり、IGBTには、並列にダイオードが接続されている。なお、MOSFETの場合、構造上、寄生ダイオードが内蔵された構成となっているので、ダイオードが並列に接続されない構成が採用される場合もある。 As the switching element 32, an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), etc. are widely used. The example in FIG. 1 is an IGBT, to which a diode is connected in parallel. Note that in the case of a MOSFET, because of its structure it has a built-in parasitic diode, a configuration in which the diode is not connected in parallel may also be used.
 また、スイッチング素子32としては、シリコン(Si)を素材とする半導体素子が広く用いられているが、近年は、高効率化の要望により、スーパージャンクション構造のMOSFETなども用いられている。また、最近では、更なる高効率化のため、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンドなどに代表されるワイドバンドギャップ半導体を用いて形成されるスイッチング素子も用いられるようになってきている。インバータ30は、モータ40に交流電圧を印加するようにスイッチング動作が可能であればよく、これらの何れのスイッチング素子を用いて構成されていてもよい。 Semiconductor elements made of silicon (Si) are widely used as the switching element 32, but in recent years, MOSFETs with superjunction structures have also been used in response to demands for higher efficiency. Recently, switching elements made of wide band gap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), and diamond have also come to be used to achieve even higher efficiency. The inverter 30 may be configured using any of these switching elements as long as it is capable of performing a switching operation to apply an AC voltage to the motor 40.
 モータ40としては、誘導モータ又は同期モータを例示できる。これらのモータは、どのように構成されていてもよい。例えば、モータ40が同期モータである場合、ステータは、集中巻き、分布巻きの何れで構成されていてもよい。また、巻線については、銅、アルミ線など、電流を流せる材料であればよく、どのような材料の巻線を用いてもよい。また、モータ40が永久磁石同期モータである場合、ロータの構造は、表面磁石型、埋込磁石型などが存在するが、回転力を発生させられる構造であればよく、どのような構造のロータでもよい。 The motor 40 can be, for example, an induction motor or a synchronous motor. These motors may be configured in any manner. For example, if the motor 40 is a synchronous motor, the stator may be configured with either concentrated winding or distributed winding. The windings may be made of any material, such as copper or aluminum wire, as long as they can pass current. If the motor 40 is a permanent magnet synchronous motor, the rotor may have any structure, including surface magnet and embedded magnet types, as long as it is capable of generating rotational force.
 電流検出部74は、モータ40に流れる電流であるモータ電流を検出する。直流電圧検出部76は、インバータ30に印加される直流電圧を検出する。インバータ30に印加される直流電圧は、コンデンサ22の両端の電圧を検出することで検出できる。なお、電流検出部74の例には、交流成分のみを検出可能なACCT(Alternating Current Current Transformer)、直流成分及び交流成分の双方を検出可能なDCCT(Direct Current Current Transformer)などが代表的であるが、モータ電流が検出可能なものであれば、どのようなものを用いてもよい。 The current detection unit 74 detects the motor current, which is the current flowing through the motor 40. The DC voltage detection unit 76 detects the DC voltage applied to the inverter 30. The DC voltage applied to the inverter 30 can be detected by detecting the voltage across the capacitor 22. Representative examples of the current detection unit 74 include an ACCT (Alternating Current Transformer) that can detect only AC components, and a DCCT (Direct Current Transformer) that can detect both DC and AC components, but any device that can detect the motor current may be used.
 制御部60は、インバータ30が出力するインバータ出力電圧を制御する。具体的に、制御部60は、電流検出部74によって検出されたモータ電流の検出値、及び直流電圧検出部76によって検出された直流電圧の検出値に基づいて、スイッチング素子32をスイッチング制御する信号であるPWM(Pulse Width Modulation)信号を生成してインバータ30に送出する。 The control unit 60 controls the inverter output voltage output by the inverter 30. Specifically, the control unit 60 generates a PWM (Pulse Width Modulation) signal, which is a signal that controls the switching of the switching element 32, based on the motor current detection value detected by the current detection unit 74 and the DC voltage detection value detected by the DC voltage detection unit 76, and sends it to the inverter 30.
 なお、図1の構成に代え、電流検出部74は、コンデンサ22とインバータ30との間に流れる母線電流を検出してもよい。この構成の場合、モータ電流は、制御部60の内部において、母線電流の検出値を、PWM信号を生成する際の基準となる基準信号に基づいて定められるタイミングでサンプリングすることで演算することが可能である。 Instead of the configuration of FIG. 1, the current detection unit 74 may detect the bus current flowing between the capacitor 22 and the inverter 30. In this configuration, the motor current can be calculated inside the control unit 60 by sampling the detected value of the bus current at a timing determined based on a reference signal that serves as a reference when generating a PWM signal.
 図2は、実施の形態に係る制御部60の機能を実現するハードウェア構成の一例を示すブロック図である。また、図3は、実施の形態に係る制御部60の機能を実現するハードウェア構成の他の例を示すブロック図である。 FIG. 2 is a block diagram showing an example of a hardware configuration that realizes the functions of the control unit 60 according to the embodiment. FIG. 3 is a block diagram showing another example of a hardware configuration that realizes the functions of the control unit 60 according to the embodiment.
 実施の形態に係る制御部60の機能の一部又は全部を実現する場合には、図2に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 When implementing some or all of the functions of the control unit 60 according to the embodiment, the configuration can include a processor 300 that performs calculations, a memory 302 that stores programs read by the processor 300, and an interface 304 that inputs and outputs signals, as shown in FIG. 2.
 制御部60の機能を実現する場合には、図2に示すように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302及び信号の入出力を行うインタフェース304を含む構成とすることができる。制御部60の機能を実行するプログラムは、メモリ302に保持される。制御部60は、インタフェース304を介して必要な情報の授受を行い、メモリ302で保持されているプログラムをプロセッサ300に実行させることにより、後述する制御を実施する。 When implementing the functions of the control unit 60, as shown in FIG. 2, the configuration can include a processor 300 that performs calculations, a memory 302 that stores programs read by the processor 300, and an interface 304 that inputs and outputs signals. The programs that execute the functions of the control unit 60 are held in the memory 302. The control unit 60 transmits and receives necessary information via the interface 304, and performs the control described below by having the processor 300 execute the programs held in the memory 302.
 プロセッサ300は、演算手段の一例である。プロセッサ300は、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)と称される演算手段であってもよい。また、メモリ302とは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが該当する。 Processor 300 is an example of a computing means. Processor 300 may be a computing means called a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). Memory 302 may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (registered trademark) (Electrically EPROM).
 また、実施の形態に係る制御部60の機能を実現する場合には、図3に示す処理回路303を用いることもできる。処理回路303は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路303に入力する情報、及び処理回路303から出力する情報は、インタフェース304を介して授受することができる。 In addition, when implementing the functions of the control unit 60 according to the embodiment, the processing circuit 303 shown in FIG. 3 can be used. The processing circuit 303 can be a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these. Information input to the processing circuit 303 and information output from the processing circuit 303 can be exchanged via an interface 304.
 なお、制御部60における一部の処理を処理回路303で実施し、処理回路303で実施しない処理をプロセッサ300及びメモリ302で実施してもよい。 In addition, some of the processing in the control unit 60 may be performed by the processing circuit 303, and other processing that is not performed by the processing circuit 303 may be performed by the processor 300 and memory 302.
 次に、PWM信号の生成手法について説明する。図4は、実施の形態におけるPWM信号の生成手法の説明に供する図である。図4の上段部には、キャリア信号及び各相の電圧指令値Vu*,Vv*,Vw*の波形が示され、図4の下段部には、各相のPWM信号UP,VP,WP,UN,VN,WNの波形が示されている。 Next, the method of generating the PWM signal will be described. Figure 4 is a diagram used to explain the method of generating the PWM signal in the embodiment. The upper part of Figure 4 shows the waveforms of the carrier signal and the voltage command values Vu*, Vv*, and Vw* of each phase, and the lower part of Figure 4 shows the waveforms of the PWM signals UP, VP, WP, UN, VN, and WN of each phase.
 電圧指令値Vu*,Vv*,Vw*は、位相が2π/3ずつ異なる正弦波状の波形であり、キャリア信号は、キャリア周波数と呼ばれる周波数の逆数の周期で変化する三角波形状の信号である。図1では、キャリア信号が実線で示され、U相の電圧指令値Vu*が破線で示され、V相の電圧指令値Vv*が一点鎖線で示され、W相の電圧指令値Vw*が二点鎖線で示されている。電圧指令値Vu*,Vv*,Vw*の振幅は、電圧指令値振幅V*によって規定される。また、図4では、キャリア信号の振幅は、インバータ30に印加される直流電圧Vdcの1/2とされている。 The voltage command values Vu*, Vv*, Vw* are sinusoidal waveforms with phases differing by 2π/3, and the carrier signal is a triangular waveform signal that changes with a period that is the inverse of a frequency called the carrier frequency. In FIG. 1, the carrier signal is shown by a solid line, the U-phase voltage command value Vu* is shown by a dashed line, the V-phase voltage command value Vv* is shown by a dashed line, and the W-phase voltage command value Vw* is shown by a dashed line. The amplitudes of the voltage command values Vu*, Vv*, Vw* are determined by the voltage command value amplitude V*. Also, in FIG. 4, the amplitude of the carrier signal is set to 1/2 of the DC voltage Vdc applied to the inverter 30.
 制御部60は、キャリア信号の振幅と、電圧指令値Vu*,Vv*,Vw*の各振幅とを比較することで、PWM信号UP,VP,WP,UN,VN,WNを生成する。インバータ30における各相のスイッチング素子32は、このようなPWM信号UP,VP,WP,UN,VN,WNによってスイッチング動作することにより、電圧指令値Vu*,Vv*,Vw*に従った交流電圧がモータ40に印加される。なお、図4では、電圧指令値Vu*,Vv*,Vw*の各振幅がキャリア信号の振幅よりも大きいときにハイレベルの信号が出力され、電圧指令値Vu*,Vv*,Vw*の各振幅がキャリア信号の振幅よりも小さいときにローレベルの信号が出力されるように図示されているが、ハイレベルとローレベルとの関係が逆であってもよい。 The control unit 60 generates PWM signals UP, VP, WP, UN, VN, and WN by comparing the amplitude of the carrier signal with the amplitudes of the voltage command values Vu*, Vv*, and Vw*. The switching elements 32 of each phase in the inverter 30 perform switching operations using these PWM signals UP, VP, WP, UN, VN, and WN, and AC voltages according to the voltage command values Vu*, Vv*, and Vw* are applied to the motor 40. Note that in FIG. 4, a high-level signal is output when the amplitudes of the voltage command values Vu*, Vv*, and Vw* are greater than the amplitude of the carrier signal, and a low-level signal is output when the amplitudes of the voltage command values Vu*, Vv*, and Vw* are smaller than the amplitude of the carrier signal, but the relationship between the high level and the low level may be reversed.
 近年、特に冷凍サイクル機器に備えられる三相モータについては、高効率化の要望から、ロータに永久磁石を内蔵した永久磁石型モータが広く用いられている。このような永久磁石型モータでは、ロータが回転すると、ロータの回転速度に応じた発電電圧である誘起電圧が発生する。図5は、一般的な永久磁石型モータにおいて発生し得る誘起電圧の波形の例を示す図である。横軸は、誘起電圧の基本波成分の位相θを表し、縦軸は誘起電圧を表している。 In recent years, permanent magnet motors with permanent magnets built into the rotor have been widely used, particularly for three-phase motors installed in refrigeration cycle equipment, due to the demand for higher efficiency. In such permanent magnet motors, when the rotor rotates, an induced voltage is generated, which is a generated voltage that corresponds to the rotation speed of the rotor. Figure 5 is a diagram showing an example of an induced voltage waveform that can be generated in a typical permanent magnet motor. The horizontal axis represents the phase θ of the fundamental wave component of the induced voltage, and the vertical axis represents the induced voltage.
 この誘起電圧は、正弦波の波形形状を有する基本波成分が主流であるが、実際には、基本波成分以外の高調波成分が重畳された波形となる。なお、本稿では、誘起電圧に含まれ得る基本波成分以外の高調波成分を「高調波誘起電圧」と呼ぶことがある。 This induced voltage is dominated by a fundamental component with a sine wave waveform, but in reality, the waveform is one in which harmonic components other than the fundamental component are superimposed. Note that in this article, harmonic components other than the fundamental component that may be included in the induced voltage are sometimes referred to as "harmonic induced voltage."
 基本波成分以外の主要な高調波成分は、基本波成分の周波数である基本波周波数fの5倍の周波数成分である5次高調波成分、及び基本波周波数fの7倍の周波数成分である7次高調波成分である。図5では、破線で示される基本波成分(1f)に、一点鎖線で示される5次高調波成分(5f)と、二点鎖線で示される7次高調波成分(7f)とが重畳されることで歪んだ、実線で示される誘起電圧の合算波形が示されている。 The main harmonic components other than the fundamental wave component are the 5th harmonic component, which is a frequency component five times the fundamental wave frequency f, which is the frequency of the fundamental wave component, and the 7th harmonic component, which is a frequency component seven times the fundamental wave frequency f. Figure 5 shows the combined waveform of the induced voltage, shown by the solid line, distorted by superimposing the 5th harmonic component (5f) shown by the dashed line and the 7th harmonic component (7f) shown by the dashed line on the fundamental wave component (1f) shown by the dashed line.
 一般的なモータ制御においては、モータ40に流れるモータ電流を正弦波状に制御することで、モータ40の低騒音化及び低振動化が図られるが、誘起電圧の影響を受けることになる。誘起電圧の波形が図5のように歪んだ場合には、モータ40にトルク脈動が発生して騒音及び振動が増加する原因となる。以下、騒音や振動が増加する原因となるトルク脈動について、幾つかの数式を用いて説明する。 In typical motor control, the motor current flowing through the motor 40 is controlled to have a sinusoidal shape, thereby reducing noise and vibration of the motor 40, but this is affected by induced voltage. If the waveform of the induced voltage is distorted as shown in Figure 5, torque pulsation occurs in the motor 40, causing increased noise and vibration. Below, torque pulsation, which causes increased noise and vibration, is explained using several formulas.
 モータ40においては、120度ずつ位相が異なるU相誘起電圧、V相誘起電圧及びW相誘起電圧が発生する。また、モータ40を駆動する電流についても、位相差を考慮すると、U相電流、V相電流及びW相電流に区分することができる。従って、モータ40に供給される電力Pは、これらの三相の誘起電圧の基本波成分とモータ電流とにおける各相ごとの電圧電流積の三相分の和となる。そして、モータ40を駆動するためのトルクτは、モータ40に供給される電力Pによって決定されてモータ40に作用する。 In the motor 40, a U-phase induced voltage, a V-phase induced voltage, and a W-phase induced voltage are generated, each of which is 120 degrees out of phase with each other. In addition, the current driving the motor 40 can also be divided into a U-phase current, a V-phase current, and a W-phase current, taking into consideration the phase difference. Therefore, the power Pm supplied to the motor 40 is the sum of the three-phase parts of the voltage-current products of the fundamental components of the three-phase induced voltages and the motor currents. The torque τ1 for driving the motor 40 is determined by the power Pm supplied to the motor 40 and acts on the motor 40.
 具体的に、上述した電力Pは、以下の(1)~(6)式で表されるEu1,Iu1,Ev1,Iv1,Ew1,Iw1を用いて、下記(7)式のように表すことができる。 Specifically, the above-mentioned power Pm can be expressed as in the following equation (7) using Eu1 , Iu1 , Ev1 , Iv1 , Ew1 , and Iw1 represented by the following equations (1) to (6).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記(1)、(3)、(5)式におけるEu1,Ev1,Ew1は、それぞれU相誘起電圧の基本波成分、V相誘起電圧の基本波成分、及びW相誘起電圧の基本波成分を表している。また、上記(2)、(4)、(6)式におけるIu1,Iv1,Iw1は、それぞれU相、V相及びW相のモータ電流を表し、θは、前述した誘起電圧の基本波成分の位相を表している。また、Eは誘起電圧の基本波成分の実効値を表し、Iはモータ電流の実効値を表し、φは誘起電圧とモータ電流との間の位相差を表している。 In the above formulas (1), (3), and (5), Eu1 , Ev1 , and Ew1 respectively represent the fundamental wave component of the U-phase induced voltage, the fundamental wave component of the V-phase induced voltage, and the fundamental wave component of the W-phase induced voltage. In addition, Iu1 , Iv1 , and Iw1 in the above formulas (2), (4), and (6) respectively represent the motor currents of the U-phase, V-phase, and W-phase, and θ represents the phase of the fundamental wave component of the induced voltage. In addition, E1 represents the effective value of the fundamental wave component of the induced voltage, I1 represents the effective value of the motor current, and φ represents the phase difference between the induced voltage and the motor current.
 上記(7)式において、実効値E、実効値I及び位相差φは定数である。このため、電力Pは、直流成分のみとなり、変動成分である交流成分は、上記(7)式には表れないことが分かる。 In the above formula (7), the effective value E 1 , the effective value I 1 , and the phase difference φ are constants. Therefore, it can be seen that the power P m is only a DC component, and the AC component, which is a fluctuating component, does not appear in the above formula (7).
 ここで、本稿では、モータ40の回転速度の角周波数を「機械角周波数」と呼び、ωで表す。機械角周波数ωと回転速度[rps]との間には、ω=2π×回転速度[rps]の関係がある。この機械角周波数ωを用いると、トルクτは、上記(7)式に基づいて、下記(8)式のように表すことができる。 In this paper, the angular frequency of the rotation speed of the motor 40 is called the "mechanical angular frequency" and is represented by ω. The mechanical angular frequency ω and the rotation speed [rps] have the relationship ω = 2π × rotation speed [rps]. Using this mechanical angular frequency ω, the torque τ1 can be expressed as the following equation (8) based on the above equation (7).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、機械角周波数ωの変動量をΔωで表すと、この変動量Δωは、上記(8)式のトルクτを含み、下記(9)式で表すことができる。 Here, if the amount of fluctuation in the mechanical angular frequency ω is represented as Δω, this amount of fluctuation Δω includes the torque τ 1 in the above formula (8) and can be expressed by the following formula (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記(9)式において、τloadは、モータ40の負荷トルクであり、Jは、モータ40と負荷50とを含めた慣性モーメントである。 In the above formula (9), τ load is the load torque of the motor 40, and J is the moment of inertia including the motor 40 and the load 50.
 ここで、負荷50が冷凍サイクル機器の室外機に搭載されるプロペラファンである場合、負荷トルクτloadは概ね一定であり、トルクτと釣り合っている。また負荷50がプロペラファンである場合、慣性モーメントJは非常に高く、機械角周波数ωの変動量Δωが極めて小さくなるので、振動及び騒音の発生へ与える影響も極めて小さくなる。以上のことから、誘起電圧の基本波成分と、モータ電流の基本波成分とによって発生するトルクτは、騒音及び振動に与える影響が極めて小さいことが分かる。 Here, when the load 50 is a propeller fan mounted on the outdoor unit of a refrigeration cycle device, the load torque τ load is approximately constant and is balanced with the torque τ 1. Also, when the load 50 is a propeller fan, the moment of inertia J is very high and the fluctuation amount Δω of the mechanical angular frequency ω is extremely small, so the impact on the generation of vibration and noise is also extremely small. From the above, it can be seen that the torque τ 1 generated by the fundamental wave component of the induced voltage and the fundamental wave component of the motor current has an extremely small impact on noise and vibration.
 次に、誘起電圧の波形に上述した5次高調波成分が含まれる場合に、この5次高調波成分とモータ電流の基本波成分とによって発生するトルクについて考える。 Next, let us consider the torque generated by the fifth harmonic component and the fundamental component of the motor current when the induced voltage waveform contains the fifth harmonic component described above.
 まず、基本波成分のときと同様に、誘起電圧の各相の5次高調波成分を各相のモータ電流と共に数式で表すと、以下の(10)~(15)式で表すことができる。 First, in the same way as with the fundamental wave component, the fifth harmonic component of each phase of the induced voltage can be expressed mathematically together with the motor current of each phase as shown in the following equations (10) to (15).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 上記(10)、(12)、(14)式におけるEu5,Ev5,Ew5は、それぞれU相誘起電圧の5次高調波成分、V相誘起電圧の5次高調波成分、及びW相誘起電圧の5次高調波成分を表している。また、Eは誘起電圧の5次高調波成分の実効値を表し、αは誘起電圧の5次高調波成分とモータ電流との間の位相差を表している。また、上記(11)、(13)、(15)式は、上記(2)、(4)、(6)式で示した、U相モータ電流Iu1、V相モータ電流Iv1及びW相モータ電流Iw1を再掲している。 In the above formulas (10), (12), and (14), Eu5 , Ev5 , and Ew5 respectively represent the fifth harmonic component of the U-phase induced voltage, the fifth harmonic component of the V-phase induced voltage, and the fifth harmonic component of the W-phase induced voltage. E5 represents the effective value of the fifth harmonic component of the induced voltage, and α represents the phase difference between the fifth harmonic component of the induced voltage and the motor current. The above formulas (11), (13), and (15) also reproduce the U-phase motor current Iu1 , the V-phase motor current Iv1 , and the W-phase motor current Iw1 shown in the above formulas (2), (4), and (6).
 図6は、図5に示す誘起電圧の5次高調波成分による電力の変化の様子を示す図である。具体的に、図6には、上記(10)~(15)式における実効値E、実効値I及び位相差αを、それぞれ、E=0.1、I=1.0、α=0とした場合の電力を計算した結果が示されている。また、図7は、図6に示される結果から電力脈動成分のみを抽出した結果を示す図である。なお、図6及び図7の横軸は、誘起電圧の基本波成分の位相θを表している。 Fig. 6 is a diagram showing the change in power due to the fifth harmonic component of the induced voltage shown in Fig. 5. Specifically, Fig. 6 shows the results of calculating power when the effective value E5 , effective value I1 , and phase difference α in the above formulas (10) to (15) are E5 = 0.1, I1 = 1.0, and α = 0, respectively. Fig. 7 is a diagram showing the results of extracting only the power ripple component from the results shown in Fig. 6. The horizontal axis in Figs. 6 and 7 represents the phase θ of the fundamental wave component of the induced voltage.
 図6及び図7には、誘起電圧の基本波周波数fに対して6倍の周波数の電力脈動が発生していることが示されている。この電力脈動成分をモータ40の機械角周波数ωで除した値は、モータ40が出力するトルクの変動分となる。例えばモータ40が10極のモータである場合、極対数(10÷2)×6=30、即ちモータ40の回転速度の周波数の30倍の周波数のトルク脈動が発生する。このトルク脈動がモータ40の回転速度に影響を与え、更にモータ40の速度変動によってモータ40が加振源となり、モータ40の速度変動の周波数が負荷50の共振周波数に近くなると、モータ40及び負荷50による騒音及び振動が増加する原因となる。 6 and 7 show that power pulsation occurs at a frequency six times the fundamental frequency f of the induced voltage. The value obtained by dividing this power pulsation component by the mechanical angular frequency ω of the motor 40 is the fluctuation in the torque output by the motor 40. For example, if the motor 40 is a 10-pole motor, the number of pole pairs (10÷2)×6=30, that is, torque pulsation occurs at a frequency 30 times the frequency of the rotational speed of the motor 40. This torque pulsation affects the rotational speed of the motor 40, and the speed fluctuation of the motor 40 makes the motor 40 a vibration source. If the frequency of the speed fluctuation of the motor 40 approaches the resonant frequency of the load 50, this will cause an increase in noise and vibration from the motor 40 and the load 50.
 次に、誘起電圧の波形に上述した7次高調波成分が含まれる場合の騒音及び振動に与える影響についても説明する。 Next, we will explain the effect on noise and vibration when the induced voltage waveform contains the seventh harmonic component mentioned above.
 誘起電圧の5次高調波成分のときと同様に、誘起電圧の各相の7次高調波成分を各相のモータ電流と共に数式で表すと、以下の(16)~(21)式で表すことができる。 Similar to the fifth harmonic component of the induced voltage, the seventh harmonic component of each phase of the induced voltage can be expressed mathematically together with the motor current of each phase as shown in the following equations (16) to (21).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 上記(16)、(18)、(20)式におけるEu7,Ev7,Ew7は、それぞれU相誘起電圧の7次高調波成分、V相誘起電圧の7次高調波成分、及びW相誘起電圧の7次高調波成分を表している。また、Eは誘起電圧の7次高調波成分の実効値を表し、βは誘起電圧の7次高調波成分とモータ電流との間の位相差を表している。また、上記(17)、(19)、(21)式は、上記(2)、(4)、(6)式で示した、U相モータ電流Iu1、V相モータ電流Iv1及びW相モータ電流Iw1を再掲している。 In the above formulas (16), (18), and (20), Eu7 , Ev7 , and Ew7 respectively represent the seventh harmonic component of the U-phase induced voltage, the seventh harmonic component of the V-phase induced voltage, and the seventh harmonic component of the W-phase induced voltage. E7 represents the effective value of the seventh harmonic component of the induced voltage, and β represents the phase difference between the seventh harmonic component of the induced voltage and the motor current. The above formulas (17), (19), and (21) also reproduce the U-phase motor current Iu1 , the V-phase motor current Iv1 , and the W-phase motor current Iw1 shown in the above formulas (2), (4), and (6).
 図8は、図5に示す誘起電圧の7次高調波成分による電力の変化の様子を示す図である。具体的に、図8には、上記(16)~(21)式における実効値E、実効値I及び位相差βを、それぞれ、E=0.1、I=1.0、β=0とした場合の電力を計算した結果が示されている。また、図9は、図8に示される結果から電力脈動成分のみを抽出した結果を示す図である。なお、図8及び図9の横軸は、誘起電圧の基本波成分の位相θを表している。 Fig. 8 is a diagram showing the change in power due to the seventh harmonic component of the induced voltage shown in Fig. 5. Specifically, Fig. 8 shows the results of calculating power when the effective value E 7 , the effective value I 1 and the phase difference β in the above formulas (16) to (21) are E 7 =0.1, I 1 =1.0 and β=0, respectively. Fig. 9 is a diagram showing the results of extracting only the power ripple component from the results shown in Fig. 8. The horizontal axis in Figs. 8 and 9 represents the phase θ of the fundamental wave component of the induced voltage.
 図8及び図9には、誘起電圧の5次高調波成分のときと同様に、誘起電圧の基本波周波数fに対して6倍の周波数の電力脈動が発生していることが示されている。この電力脈動成分をモータ40の機械角周波数ωで除した値は、モータ40が出力するトルクの変動分となる。例えばモータ40が10極のモータである場合、極対数(10÷2)×6=30、即ちモータ40の回転速度の周波数の30倍の周波数のトルク脈動が発生する。このトルク脈動がモータ40の回転速度に影響を与え、更にモータ40の速度変動によってモータ40が加振源となり、モータ40の速度変動の周波数が負荷50の共振周波数に近くなると、モータ40及び負荷50による騒音や振動が増加する原因となる。 8 and 9 show that, as with the fifth harmonic component of the induced voltage, power pulsation occurs at a frequency six times the fundamental frequency f of the induced voltage. The value obtained by dividing this power pulsation component by the mechanical angular frequency ω of the motor 40 is the fluctuation in the torque output by the motor 40. For example, if the motor 40 is a 10-pole motor, the number of pole pairs (10÷2)×6=30, that is, torque pulsation occurs at a frequency 30 times the frequency of the rotational speed of the motor 40. This torque pulsation affects the rotational speed of the motor 40, and the speed fluctuation of the motor 40 makes the motor 40 a vibration source. If the frequency of the speed fluctuation of the motor 40 approaches the resonant frequency of the load 50, this will cause an increase in noise and vibration from the motor 40 and the load 50.
 図6~図9では、誘起電圧の5次高調波成分又は7次高調波成分の何れかが単独で発生した場合の計算結果を示したが、現実的には、誘起電圧の5次高調波成分及び7次高調波成分は同時に発生する。そこで、誘起電圧の5次高調波成分及び7次高調波成分が同時に存在する場合の計算結果を図10及び図11に示す。図10は、図5に示す誘起電圧の5次高調波成分及び7次高調波成分が同時に存在する場合の電力の変化の様子を示す図である。また、図11は、図10に示される結果から電力脈動成分のみを抽出した結果を示す図である。なお、図10及び図11の横軸は、図6~図10と同様に、誘起電圧の基本波成分の位相θを表している。 In Figs. 6 to 9, the calculation results are shown when either the 5th harmonic component or the 7th harmonic component of the induced voltage occurs alone, but in reality, the 5th harmonic component and the 7th harmonic component of the induced voltage occur simultaneously. Therefore, Figs. 10 and 11 show the calculation results when the 5th harmonic component and the 7th harmonic component of the induced voltage exist simultaneously. Fig. 10 is a diagram showing the change in power when the 5th harmonic component and the 7th harmonic component of the induced voltage shown in Fig. 5 exist simultaneously. Fig. 11 is a diagram showing the result of extracting only the power ripple component from the result shown in Fig. 10. Note that the horizontal axis in Figs. 10 and 11 represents the phase θ of the fundamental wave component of the induced voltage, as in Figs. 6 to 10.
 図10には、上記(10)~(15)式における実効値E、実効値I及び位相差αを、それぞれ、E=0.1、I=1.0、α=0とし、上記(16)~(21)式における実効値E、実効値I及び位相差βを、それぞれ、E=0.05、I=1.0、β=0とした場合の電力を計算した結果が示されている。なお、現実的に、誘起電圧の5次高調波成分の振幅は、誘起電圧の7次高調波成分の振幅よりも大きいと考えられるので、E>Eの関係としている。また、位相差α及び位相差βは、現実的にはα≠βであることが多いと考えられるが、α=βとしても一般性が失われないので、便宜的にα=β=0に設定している。 10 shows the results of calculating the power when the effective value E 5 , the effective value I 1 and the phase difference α in the above formulas (10) to (15) are set to E 5 =0.1, I 1 =1.0 and α=0, respectively, and the effective value E 7 , the effective value I 1 and the phase difference β in the above formulas (16) to (21) are set to E 7 =0.05, I 1 =1.0 and β=0, respectively. Note that, in reality, the amplitude of the fifth harmonic component of the induced voltage is considered to be larger than the amplitude of the seventh harmonic component of the induced voltage, so the relationship E 5 >E 7 is set. Furthermore, in reality, the phase differences α and β are considered to be often α≠β, but since there is no loss of generality even if α=β, for convenience, α=β=0 is set.
 図10及び図11には、図6~図9のときと同様に、誘起電圧の基本波周波数fに対して6倍の周波数の電力脈動が発生している。従って、モータ40が10極のモータである場合、図6~図9のときと同様に、モータ40の回転速度の周波数の30倍の周波数のトルク脈動が発生することになる。 10 and 11, as in the cases of Figs. 6 to 9, power pulsations occur at a frequency six times the fundamental frequency f of the induced voltage. Therefore, if the motor 40 is a 10-pole motor, torque pulsations occur at a frequency 30 times the frequency of the rotational speed of the motor 40, as in the cases of Figs. 6 to 9.
 前述したように、モータ制御においては、モータ電流を正弦波状に制御すれば、モータ40の低騒音化及び低振動化を図ることができる。しかしながら、モータ電流を正弦波状に制御しても、誘起電圧に含まれ得る5次高調波成分又は7次高調波成分が大きい場合、前述のように、基本波周波数fの6倍の周波数の電力脈動が発生し、これによりモータ40が出力するトルクτに脈動成分を発生させる。そして、トルクτと負荷トルクτloadとの差分により速度変動が発生し、結果的に振動及び騒音につながる。 As described above, in motor control, if the motor current is controlled to be sinusoidal, it is possible to reduce noise and vibration of the motor 40. However, even if the motor current is controlled to be sinusoidal, if the fifth harmonic component or seventh harmonic component that may be included in the induced voltage is large, as described above, power pulsation with a frequency six times the fundamental frequency f occurs, which generates a pulsating component in the torque τ1 output by the motor 40. Then, the difference between the torque τ1 and the load torque τload generates speed fluctuations, which ultimately lead to vibration and noise.
 従って、モータ40及び負荷50の振動及び騒音を抑制するには、振動及び騒音の原因となる電力脈動、即ち基本波周波数fの6倍の周波数の電力脈動を低減する必要がある。本稿では、基本波周波数fの6倍の周波数の電力脈動を、便宜的に「6次の電力脈動」と呼ぶ。 Therefore, to suppress vibration and noise in the motor 40 and the load 50, it is necessary to reduce the power pulsation that causes the vibration and noise, i.e., the power pulsation with a frequency six times the fundamental frequency f. In this paper, for the sake of convenience, the power pulsation with a frequency six times the fundamental frequency f is referred to as "sixth-order power pulsation."
 6次の電力脈動低減する方法としては、2つの方法が考えられる。1つは、モータ40の誘起電圧に含まれ得る5次高調波成分及び7次高調波成分を限りなくゼロに近づける方法である。他の1つは、モータ電流を制御して、6次の電力脈動を相殺する方法である。前者の方法は、モータ40の設計上の制約から、これ以上の高調波成分の低減は困難である。そこで、本稿では、後者の方法を提案する。具体的には、図12及び図13に示す制御系により実現する。図12は、実施の形態に係る制御部60の構成例を示す図である。図13は、図12に示す制御部60に備えられるトルク変動補償量演算部66の構成例を示す図である。 There are two possible methods for reducing the sixth-order power pulsation. One is to bring the fifth-order and seventh-order harmonic components that may be included in the induced voltage of the motor 40 as close to zero as possible. The other is to control the motor current to cancel the sixth-order power pulsation. With the former method, it is difficult to reduce the harmonic components any further due to design constraints of the motor 40. Therefore, this paper proposes the latter method. Specifically, this is realized by the control systems shown in Figures 12 and 13. Figure 12 is a diagram showing an example of the configuration of a control unit 60 according to an embodiment. Figure 13 is a diagram showing an example of the configuration of a torque fluctuation compensation amount calculation unit 66 provided in the control unit 60 shown in Figure 12.
 制御部60は、図12に示すように、加減算器61,63,64,65と、速度制御部62と、トルク変動補償量演算部66と、座標変換部67と、d軸電流制御部68と、q軸電流制御部69と、速度及び位置推定部70と、PWM信号生成部71とを備える。それぞれの加減算器では、脇に付されているプラス(+)又はマイナス(-)の符号に従って、加算又は減算の演算が行われる。 As shown in FIG. 12, the control unit 60 includes adders/ subtractors 61, 63, 64, and 65, a speed control unit 62, a torque fluctuation compensation amount calculation unit 66, a coordinate conversion unit 67, a d-axis current control unit 68, a q-axis current control unit 69, a speed and position estimation unit 70, and a PWM signal generation unit 71. Each adder/subtractor performs an addition or subtraction calculation according to the plus (+) or minus (-) sign next to it.
 座標変換部67には、モータ電流の検出値として、UVW各相のモータ電流Iu,Iv,Iwが入力される。座標変換部67は、モータ電流Iu,Iv,Iwを、後述の速度及び位置推定部70で生成される電気角位相θeを用いてdq座標上の電流値に座標変換することでd軸電流Id及びq軸電流Iqを演算する。 The motor currents Iu, Iv, and Iw of the UVW phases are input to the coordinate conversion unit 67 as detected values of the motor currents. The coordinate conversion unit 67 calculates the d-axis current Id and the q-axis current Iq by converting the motor currents Iu, Iv, and Iw into current values on the dq coordinates using the electrical angle phase θe generated by the speed and position estimation unit 70 described below.
 速度及び位置推定部70は、d軸電流Id及びq軸電流Iq、並びに後述するd軸電圧指令値Vd*及びq軸電圧指令値Vq*に基づいて、速度推定値ωeを演算する。速度推定値ωeは、モータ40の回転速度の推定値である。モータ40の速度は、負荷変動によって変化する。このため、速度及び位置推定部70は、負荷変動によって変化するモータ40の回転速度を推定し、推定した回転速度に対応する速度推定値ωeを出力する。また、速度及び位置推定部70は、速度推定値ωeに基づいて電気角位相θeを演算する。電気角位相θeは、速度推定値ωeを積分することで求めることができる。 The speed and position estimator 70 calculates a speed estimate ωe based on the d-axis current Id and the q-axis current Iq, as well as the d-axis voltage command value Vd* and the q-axis voltage command value Vq* described below. The speed estimate ωe is an estimate of the rotational speed of the motor 40. The speed of the motor 40 varies with load fluctuations. Therefore, the speed and position estimator 70 estimates the rotational speed of the motor 40, which varies with load fluctuations, and outputs a speed estimate ωe corresponding to the estimated rotational speed. The speed and position estimator 70 also calculates an electrical angle phase θe based on the speed estimate ωe. The electrical angle phase θe can be obtained by integrating the speed estimate ωe.
 トルク変動補償量演算部66は、モータ電流Iu,Iv,Iw、電気角位相θe及び速度推定値ωeに基づいて、トルク変動成分をゼロにするための補償量であるトルク補償電流ΔIqを生成する。なお、トルク変動補償量演算部66の構成及び動作の詳細は、後述する。 The torque fluctuation compensation amount calculation unit 66 generates a torque compensation current ΔIq, which is a compensation amount for making the torque fluctuation component zero, based on the motor currents Iu, Iv, Iw, the electrical angle phase θe, and the speed estimate ωe. The configuration and operation of the torque fluctuation compensation amount calculation unit 66 will be described in detail later.
 加減算器61は、速度指令値ω*と速度推定値ωeとの偏差である速度偏差を演算する。速度制御部62は、速度偏差に基づいて、q軸電流指令値Iq*を演算する。加減算器63は、q軸電流指令値Iq*とトルク補償電流ΔIqとを加算し、加減算器65は、加減算器63の出力に対してq軸電流Iqを減算することでq軸電流偏差を演算する。q軸電流制御部69は、q軸電流偏差をゼロに収束させるq軸電圧指令値Vq*を生成してPWM信号生成部71に出力する。 Adder-subtracter 61 calculates the speed deviation, which is the deviation between the speed command value ω* and the speed estimate value ωe. Speed control unit 62 calculates the q-axis current command value Iq* based on the speed deviation. Adder-subtracter 63 adds the q-axis current command value Iq* and the torque compensation current ΔIq, and adder-subtracter 65 calculates the q-axis current deviation by subtracting the q-axis current Iq from the output of adder-subtracter 63. q-axis current control unit 69 generates a q-axis voltage command value Vq* that converges the q-axis current deviation to zero and outputs it to the PWM signal generation unit 71.
 また、加減算器64は、d軸電流指令値Id*に対してd軸電流Idを減算することでd軸電流偏差を演算する。d軸電流制御部68は、d軸電流偏差をゼロに収束させるd軸電圧指令値Vd*を生成してPWM信号生成部71に出力する。 The adder/subtractor 64 calculates the d-axis current deviation by subtracting the d-axis current Id from the d-axis current command value Id*. The d-axis current control unit 68 generates a d-axis voltage command value Vd* that converges the d-axis current deviation to zero, and outputs it to the PWM signal generation unit 71.
 PWM信号生成部71は、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を電気角位相θeを用いて三相座標系の電圧指令値に変換すると共に、変換した三相座標系の電圧指令値及び直流電圧Vdcに基づいてPWM信号UP,VP,WP,UN,VN,WNを生成してインバータ30に出力する。 The PWM signal generating unit 71 converts the d-axis voltage command value Vd* and the q-axis voltage command value Vq* into voltage command values in a three-phase coordinate system using the electrical angle phase θe, and generates PWM signals UP, VP, WP, UN, VN, and WN based on the converted voltage command values in the three-phase coordinate system and the DC voltage Vdc, and outputs them to the inverter 30.
 次に、トルク変動補償量演算部66の構成及び動作について説明する。図13には、トルク変動補償量演算部66の構成例が示されているが、このように構成する理由について説明する。 Next, we will explain the configuration and operation of the torque fluctuation compensation amount calculation unit 66. Figure 13 shows an example of the configuration of the torque fluctuation compensation amount calculation unit 66, and we will explain the reason for configuring it in this way.
 まず、電力脈動によるモータ40の速度変動が微小であると仮定すると、電力脈動に起因するモータ40のトルク変動は、前述した誘起電圧のパラメータ、即ち誘起電圧における、基本波成分の実効値E、5次高調波成分の実効値E、7次高調波成分の実効値E、及び位相差α,βを把握しておけば、誘起電圧を容易に復元することが可能である。そこで、図13に示すように、誘起電圧を復元する処理部を設け、復元した誘起電圧である復元誘起電圧Eu,Ev,Ewに対して、各相ごとにモータ電流Iu,Iv,Iwを乗じて三相分を加算することで瞬時電力を演算する。そして、6倍の変動成分のみ抽出する帯域通過フィルタ(Band Pass Filter:BPF)を設け、このBPFによって、瞬時電力から、誘起電圧の基本波周波数fの6倍の周波数の成分を抽出することで、6次の電力脈動の成分を求める。そして、6次の電力脈動の成分を機械角周波数ωで除することでトルク変動成分Δτが求まる。なお、復元誘起電圧Eu,Ev,Ewに用いる位相θは、電気角位相θeにモータ40の極対数Pの逆数を乗算することで求めることができる。また、トルク変動成分Δτの演算に用いる機械角周波数ωは、速度推定値ωeにモータ40の極対数Pの逆数を乗算することで求めることができる。 First, assuming that the speed fluctuation of the motor 40 due to the power pulsation is small, the torque fluctuation of the motor 40 due to the power pulsation can be easily restored by grasping the parameters of the induced voltage described above, that is, the effective value E1 of the fundamental wave component, the effective value E5 of the fifth harmonic component, the effective value E7 of the seventh harmonic component, and the phase differences α and β of the induced voltage. Therefore, as shown in Fig. 13, a processing unit for restoring the induced voltage is provided, and the restored induced voltages Eu, Ev, and Ew are multiplied by the motor currents Iu, Iv, and Iw for each phase, and the three phases are added to calculate the instantaneous power. Then, a band pass filter (BPF) is provided to extract only the 6-fold fluctuation component, and the BPF extracts the component of the 6-fold frequency of the fundamental wave frequency f of the induced voltage from the instantaneous power, thereby obtaining the component of the 6-fold power pulsation. The torque fluctuation component Δτ is obtained by dividing the sixth-order power pulsation component by the mechanical angular frequency ω. The phase θ used for the restoration induced voltages Eu, Ev, and Ew can be obtained by multiplying the electrical angle phase θe by the reciprocal of the number of pole pairs P of the motor 40. The mechanical angular frequency ω used in the calculation of the torque fluctuation component Δτ can be obtained by multiplying the speed estimate ωe by the reciprocal of the number of pole pairs P of the motor 40.
 トルク変動成分Δτを抑制する制御手法としては、種々の例が考えられるが、ここでは、その一例について説明する。 There are various possible control methods for suppressing the torque fluctuation component Δτ, but here we will explain one example.
 トルク変動成分Δτが分かれば、図13に示されるように、ゼロを目標として差分をとり、比例積分制御を行って、その出力をトルク補償電流ΔIqとして出力すればよい。そして、図13で求めたトルク補償電流ΔIqを、図12に示すようにq軸電流指令値Iq*に加算すればよい。 Once the torque fluctuation component Δτ is known, the difference can be taken with zero as the target, proportional-integral control can be performed, and the output can be output as the torque compensation current ΔIq, as shown in Figure 13. Then, the torque compensation current ΔIq calculated in Figure 13 can be added to the q-axis current command value Iq*, as shown in Figure 12.
 上述した処理をフローチャートの形式で表現すると図14のようになる。図14は、実施の形態の制御部60による処理の流れを示すフローチャートである。 The above-mentioned process can be expressed in the form of a flowchart as shown in FIG. 14. FIG. 14 is a flowchart showing the flow of processing by the control unit 60 in the embodiment.
 まず、電流検出ステップS001では、モータ電流が検出される。位置及び速度推定ステップS002では、モータ40の位置情報である位相θと、モータ40の回転速度の情報である機械角周波数ωとが推定される。誘起電圧復元ステップS003では、予め測定した基本波成分の実効値E、5次高調波成分の実効値E、7次高調波成分の実効値E、及び位相差α,βと、推定したモータ40の位置情報である位相θとに基づいて誘起電圧が復元される。トルク変動成分演算ステップS004では、復元誘起電圧とモータ電流とに基づいて瞬時電力が演算され、演算した瞬時電力を所望の帯域を有するフィルタを通すことでトルク変動成分Δτが演算される。q軸電流指令値演算ステップS005では、トルク変動成分Δτをゼロにするためのトルク補償電流ΔIqが演算され、演算したトルク補償電流ΔIqはq軸電流指令値に反映される。以上のステップを実施することで、モータ40における振動及び騒音の低減が図られる。 First, in a current detection step S001, the motor current is detected. In a position and speed estimation step S002, the phase θ, which is the position information of the motor 40, and the mechanical angular frequency ω, which is the information of the rotation speed of the motor 40, are estimated. In an induced voltage restoration step S003, the induced voltage is restored based on the effective value E 1 of the fundamental wave component, the effective value E 5 of the fifth harmonic component, the effective value E 7 of the seventh harmonic component, and the phase differences α and β, which are previously measured, and the phase θ, which is the estimated position information of the motor 40. In a torque fluctuation component calculation step S004, the instantaneous power is calculated based on the restored induced voltage and the motor current, and the calculated instantaneous power is passed through a filter having a desired band to calculate the torque fluctuation component Δτ. In a q-axis current command value calculation step S005, a torque compensation current ΔIq for making the torque fluctuation component Δτ zero is calculated, and the calculated torque compensation current ΔIq is reflected in the q-axis current command value. By carrying out the above steps, vibration and noise in the motor 40 are reduced.
 次に、上述した実施の形態の制御部60の処理による効果について説明する。まず、予め、モータ40において発生し得る誘起電圧の基本波成分、5次高調波成分、及び7次高調波成分を把握しておくようにすれば、どの程度の6次成分のトルク変動がモータ40に生じるかを演算することができる。そして、そのトルク変動がゼロとなるようq軸電流指令値Iq*を補償すれば、複雑な制御をすることなく容易に6次成分に起因する騒音及び振動を抑制することが可能となる。これにより、モータ40の振動を防止するための防振材、騒音を吸収するための吸音材といった対策が不要となる。このため、装置のコストアップを避けることができ、安価で信頼性の高いモータ駆動装置を得ることが可能となる。 Next, the effects of the processing by the control unit 60 in the above-described embodiment will be described. First, by grasping in advance the fundamental wave component, the fifth harmonic component, and the seventh harmonic component of the induced voltage that may occur in the motor 40, it is possible to calculate the extent to which the torque fluctuation of the sixth harmonic component will occur in the motor 40. Then, by compensating the q-axis current command value Iq* so that the torque fluctuation becomes zero, it is possible to easily suppress the noise and vibration caused by the sixth harmonic component without complex control. This eliminates the need for measures such as vibration-proofing materials to prevent vibration of the motor 40 and sound-absorbing materials to absorb noise. This makes it possible to avoid an increase in the cost of the device and to obtain an inexpensive and highly reliable motor drive device.
 また、負荷が空気調和機又はヒートポンプ給湯器である場合、室外機に搭載されるプロペラファンは、モータ40の回転径方向に比べて半径方向の長さが長いため高慣性な負荷となる。また、プロペラファンは、厚みが薄いため振動が伝わり易い。また、プロペラファンは、素材が樹脂であるため、温度によって硬度が変化するという特徴がある。室外機は、屋外に設置するため、外気温の影響を受けやすいだけでなく、直射日光が当たる場所に設置されると日中の温度が高くなる。このため、室外機に搭載されるプロペラファンは、共振点が変動するという特徴を有している。 Furthermore, when the load is an air conditioner or a heat pump water heater, the propeller fan mounted on the outdoor unit is a high inertia load because its radial length is longer than the direction of rotation of the motor 40. Furthermore, the propeller fan is thin, so vibrations are easily transmitted. Furthermore, since the propeller fan is made of resin, it has the characteristic that its hardness changes depending on the temperature. Since the outdoor unit is installed outdoors, not only is it easily affected by the outside temperature, but if it is installed in a place exposed to direct sunlight, the daytime temperature will be high. For this reason, the propeller fan mounted on the outdoor unit has the characteristic that its resonance point fluctuates.
 前述したように、モータ40が10極モータの場合、誘起電圧の5次高調波成分と7次高調波成分とにより、回転速度の30倍のトルク脈動が発生する。このため、従来は、温度変化による共振点と回転速度に応じたトルク脈動との関係を考慮して、モータ40の動作点を決定していた。一方、この手法は、設定できる動作点の範囲が狭く、最大効率となる動作点を設定することが困難であった。また、この手法は、動作点を変更したことにより、同じような仕様の他の冷凍サイクル機器に対して、アクチュエータ動作を変更する必要性が生じ、機器の調整作業に要する時間が増加するといった課題があった。 As mentioned above, when the motor 40 is a 10-pole motor, the fifth and seventh harmonic components of the induced voltage generate torque pulsations 30 times the rotation speed. For this reason, conventionally, the operating point of the motor 40 was determined by considering the relationship between the resonance point due to temperature changes and the torque pulsations according to the rotation speed. However, with this method, the range of operating points that can be set is narrow, making it difficult to set an operating point that provides maximum efficiency. In addition, with this method, changing the operating point requires changing the actuator operation for other refrigeration cycle equipment with similar specifications, which increases the time required for equipment adjustment work.
 上記の課題に対し、上述した実施の形態の制御手法を用いることにより、モータ40の誘起電圧に含まれ得る5次高調波成分及び7次高調波成分によって生じる、回転速度の30倍のトルク脈動を抑制でき、モータ40の振動及び騒音の発生を抑制することができる。これにより、モータ40を共振周波数以外の回転速度で動作させるなどの制約が無くなるので、機器の調整に要する時間を短縮することが可能となる。また、モータ40の最大効率点の周波数とモータ40の共振周波数点とが接近している場合であっても、振動及び騒音の発生を抑制しながら、モータ40を最大効率点で動作させることができるので、モータ40の運転効率を高めることが可能となる。 In response to the above problems, by using the control method of the above embodiment, it is possible to suppress torque pulsation 30 times the rotational speed caused by the fifth and seventh harmonic components that may be included in the induced voltage of the motor 40, and to suppress the generation of vibration and noise in the motor 40. This eliminates the constraint of operating the motor 40 at a rotational speed other than the resonant frequency, making it possible to shorten the time required to adjust the equipment. Furthermore, even if the frequency of the maximum efficiency point of the motor 40 and the resonant frequency point of the motor 40 are close to each other, it is possible to operate the motor 40 at the maximum efficiency point while suppressing the generation of vibration and noise, thereby making it possible to increase the operating efficiency of the motor 40.
 なお、図12の構成の場合、q軸電流指令値Iq*のみを補償するので、q軸電圧指令値Vq*のみが操作される一方で、d軸電圧指令値Vd*は操作されないので、モータ40への印加電圧に電圧誤差が生じる可能性がある。そこで、この電圧誤差の影響を小さくするため、図15に示す制御部60Aの構成を提案する。図15は、実施の形態の変形例に係る制御部60Aの構成例を示す図である。 In the case of the configuration of FIG. 12, since only the q-axis current command value Iq* is compensated, only the q-axis voltage command value Vq* is manipulated, while the d-axis voltage command value Vd* is not manipulated, so there is a possibility that a voltage error will occur in the voltage applied to the motor 40. Therefore, in order to reduce the effect of this voltage error, the configuration of the control unit 60A shown in FIG. 15 is proposed. FIG. 15 is a diagram showing an example of the configuration of the control unit 60A according to a modified example of the embodiment.
 図15に示す制御部60Aと、図12に示す制御部60とを比較すると、図15では、非干渉制御部80と、加減算器72とが追加されている。その他の構成は、制御部60と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。 Comparing the control unit 60A shown in FIG. 15 with the control unit 60 shown in FIG. 12, a non-interference control unit 80 and an adder/subtractor 72 have been added in FIG. 15. The other configurations are the same or equivalent to those of the control unit 60, and the same or equivalent components are denoted by the same reference numerals, and duplicated explanations will be omitted.
 非干渉制御部80は、乗算器80aを備える。非干渉制御部80は、加減算器63から出力される補償後のq軸電流指令値Iq*、即ちトルク補償電流ΔIqが加算されたq軸電流指令値Iq*と、速度推定値ωeとに基づいて、d軸電圧指令値Vd*への補償値Vdff*を演算する。d軸電圧指令値Vd*への補償値Vdff*は、補償後のq軸電流指令値Iq*によるd軸への相互干渉を抑制するための補償値である。図15に示すように、d軸電圧指令値Vd*への補償値Vdff*は、補償後のq軸電流指令値Iq*に、モータ40のq軸インダクタンスLqと、速度推定値ωeとを乗算することで求めることができる。図15に示す制御部60Aを用いれば、q軸電流指令値Iq*の補償がモータ印加電圧に及ぼす電圧誤差の影響を小さくすることが可能となる。 The non-interference control unit 80 includes a multiplier 80a. The non-interference control unit 80 calculates a compensation value Vdff* for the d-axis voltage command value Vd* based on the compensated q-axis current command value Iq* output from the adder/subtractor 63, that is, the q-axis current command value Iq* to which the torque compensation current ΔIq has been added, and the speed estimate ωe. The compensation value Vdff* for the d-axis voltage command value Vd* is a compensation value for suppressing mutual interference with the d-axis due to the compensated q-axis current command value Iq*. As shown in FIG. 15, the compensation value Vdff* for the d-axis voltage command value Vd* can be obtained by multiplying the compensated q-axis current command value Iq* by the q-axis inductance Lq of the motor 40 and the speed estimate ωe. By using the control unit 60A shown in FIG. 15, it is possible to reduce the effect of the voltage error on the motor applied voltage caused by the compensation of the q-axis current command value Iq*.
 以上説明したように、実施の形態に係るモータ駆動装置は、直流電源から印加される直流電圧を交流電圧に変換してモータに印加するインバータと、インバータが出力するインバータ出力電圧を制御する制御部とを備える。制御部は、モータに流れる電流であるモータ電流の基本波成分と、5次高調波成分及び7次高調波成分のうちの少なくとも1つの高調波誘起電圧との積から発生するトルク変動成分を抑制するようにインバータ出力電圧を制御する。これにより、モータ駆動装置は、負荷変動の大きい機器に適用された場合であっても、振動及び騒音の発生を容易に抑制することが可能となる。 As described above, the motor drive device according to the embodiment includes an inverter that converts a DC voltage applied from a DC power supply into an AC voltage and applies it to a motor, and a control unit that controls the inverter output voltage output by the inverter. The control unit controls the inverter output voltage so as to suppress the torque fluctuation component generated from the product of the fundamental component of the motor current, which is the current flowing through the motor, and at least one harmonic induced voltage of the fifth harmonic component and the seventh harmonic component. This makes it possible for the motor drive device to easily suppress the generation of vibrations and noise, even when applied to equipment with large load fluctuations.
 上記の構成において、制御部は、モータ電流を正弦波状に制御すると共に、トルク変動成分に基づいて生成した補償量であるトルク補償電流に基づいてq軸電流指令値を補償することができる。ここで言うトルク補償電流は、モータ駆動時のトルク変動成分をゼロにするための補償量である。この制御を行う場合、制御部は、補償後のq軸電流指令値と、モータの回転速度の推定値である速度推定値とに基づいて、d軸電圧指令値を補償する非干渉制御部を備えていてもよい。このような非干渉制御部を備えることにより、q軸電流指令値の補償がモータ印加電圧に及ぼす電圧誤差の影響を小さくすることが可能となる。 In the above configuration, the control unit can control the motor current to be sinusoidal, and can compensate the q-axis current command value based on a torque compensation current, which is a compensation amount generated based on the torque fluctuation component. The torque compensation current here is a compensation amount for making the torque fluctuation component zero when the motor is driven. When performing this control, the control unit may be equipped with a non-interference control unit that compensates for the d-axis voltage command value based on the compensated q-axis current command value and a speed estimation value that is an estimate of the motor rotation speed. By providing such a non-interference control unit, it is possible to reduce the effect of voltage error on the motor applied voltage caused by compensation of the q-axis current command value.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are merely examples, and may be combined with other known technologies. Parts of the configurations may be omitted or modified without departing from the spirit of the invention.
 10 交流電源、20 リアクトル、21 整流器、22 コンデンサ、30 インバータ、32 スイッチング素子、40 モータ、50 負荷、60,60A 制御部、61,63,64,65,72 加減算器、62 速度制御部、66 トルク変動補償量演算部、67 座標変換部、68 d軸電流制御部、69 q軸電流制御部、70 速度及び位置推定部、71 PWM信号生成部、74 電流検出部、76 直流電圧検出部、80 非干渉制御部、80a 乗算器、100 モータ駆動装置、300 プロセッサ、302 メモリ、303 処理回路、304 インタフェース。 10 AC power supply, 20 reactor, 21 rectifier, 22 capacitor, 30 inverter, 32 switching element, 40 motor, 50 load, 60, 60A control unit, 61, 63, 64, 65, 72 adder/subtractor, 62 speed control unit, 66 torque fluctuation compensation amount calculation unit, 67 coordinate conversion unit, 68 d-axis current control unit, 69 q-axis current control unit, 70 speed and position estimation unit, 71 PWM signal generation unit, 74 current detection unit, 76 DC voltage detection unit, 80 non-interference control unit, 80a multiplier, 100 motor drive device, 300 processor, 302 memory, 303 processing circuit, 304 interface.

Claims (5)

  1.  誘起電圧の基本波成分に加えて前記誘起電圧の5次高調波成分及び7次高調波成分のうちの少なくとも1つの高調波電圧を発生するモータを駆動するモータ駆動装置であって、
     直流電源から印加される直流電圧を交流電圧に変換して前記モータに印加するインバータと、
     前記インバータが出力するインバータ出力電圧を制御する制御部と、
     を備え、
     前記制御部は、前記モータに流れる電流であるモータ電流の基本波成分と、前記5次高調波成分及び7次高調波成分のうちの少なくとも1つの高調波誘起電圧との積から発生するトルク変動成分を抑制するように前記インバータ出力電圧を制御する
     モータ駆動装置。
    1. A motor drive device that drives a motor that generates at least one harmonic voltage selected from a fifth harmonic component and a seventh harmonic component of an induced voltage in addition to a fundamental component of the induced voltage, comprising:
    an inverter that converts a DC voltage applied from a DC power supply into an AC voltage and applies the AC voltage to the motor;
    A control unit that controls an inverter output voltage output by the inverter;
    Equipped with
    The control unit controls the inverter output voltage so as to suppress a torque fluctuation component generated from a product of a fundamental wave component of a motor current, which is a current flowing through the motor, and at least one of the fifth harmonic component and the seventh harmonic component.
  2.  前記制御部は、前記モータ電流を正弦波状に制御すると共に、前記トルク変動成分に基づいて生成した補償量に基づいてq軸電流指令値を補償する
     請求項1に記載のモータ駆動装置。
    The motor drive device according to claim 1 , wherein the control unit controls the motor current to be sinusoidal, and compensates a q-axis current command value based on a compensation amount generated based on the torque fluctuation component.
  3.  前記制御部は、補償後のq軸電流指令値と、前記モータの回転速度の推定値である速度推定値とに基づいて、d軸電圧指令値を補償する非干渉制御部を備える
     請求項2に記載のモータ駆動装置。
    The motor drive device according to claim 2 , wherein the control unit includes a non-interference control unit that compensates for the d-axis voltage command value based on a compensated q-axis current command value and a speed estimate that is an estimate of a rotation speed of the motor.
  4.  請求項1から3の何れか1項に記載のモータ駆動装置を備えた冷凍サイクル機器。 A refrigeration cycle device equipped with a motor drive device according to any one of claims 1 to 3.
  5.  前記冷凍サイクル機器は、空気調和機又はヒートポンプ給湯器の室外機に備えられ、
     前記モータは、前記室外機におけるプロペラファンを駆動するモータである
     請求項4に記載の冷凍サイクル機器。
    The refrigeration cycle equipment is provided in an outdoor unit of an air conditioner or a heat pump water heater,
    The refrigeration cycle equipment according to claim 4 , wherein the motor drives a propeller fan in the outdoor unit.
PCT/JP2022/036253 2022-09-28 2022-09-28 Motor drive device and refrigeration cycle instrument WO2024069811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036253 WO2024069811A1 (en) 2022-09-28 2022-09-28 Motor drive device and refrigeration cycle instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036253 WO2024069811A1 (en) 2022-09-28 2022-09-28 Motor drive device and refrigeration cycle instrument

Publications (1)

Publication Number Publication Date
WO2024069811A1 true WO2024069811A1 (en) 2024-04-04

Family

ID=90476849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036253 WO2024069811A1 (en) 2022-09-28 2022-09-28 Motor drive device and refrigeration cycle instrument

Country Status (1)

Country Link
WO (1) WO2024069811A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198221A (en) * 2012-03-16 2013-09-30 Toshiba Corp Electric motor controller
WO2020095377A1 (en) * 2018-11-07 2020-05-14 三菱電機株式会社 Load driving device, refrigeration cycle device, and air conditioner
JP2020178429A (en) * 2019-04-17 2020-10-29 株式会社 日立パワーデバイス Motor drive device and outdoor equipment of air conditioner using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198221A (en) * 2012-03-16 2013-09-30 Toshiba Corp Electric motor controller
WO2020095377A1 (en) * 2018-11-07 2020-05-14 三菱電機株式会社 Load driving device, refrigeration cycle device, and air conditioner
JP2020178429A (en) * 2019-04-17 2020-10-29 株式会社 日立パワーデバイス Motor drive device and outdoor equipment of air conditioner using the same

Similar Documents

Publication Publication Date Title
JP4988329B2 (en) Beatless control device for permanent magnet motor
JP4022630B2 (en) Power conversion control device, power conversion control method, and program for power conversion control
TWI282209B (en) Controller for synchronous motor, electric appliance and module
JP4019842B2 (en) Motor control device
JPWO2008139518A1 (en) Power converter
JP5229419B2 (en) Power converter control method
WO2013105187A1 (en) Inverter control device
JP2008206323A (en) Motor driving device
JP5813934B2 (en) Power converter
JP4253156B2 (en) Inverter control method and apparatus
JP2014180148A (en) Motor controller
JP4120304B2 (en) Wind power generation operation control method and control device therefor
RU2486658C1 (en) Electric motor control device
JP2010068581A (en) Electric motor drive unit
JP2013150498A (en) Controller and control method of synchronous motor
JPWO2017037945A1 (en) Power conversion device and heat pump device
JP2016100994A (en) Motor control device and power generation control device
WO2020095377A1 (en) Load driving device, refrigeration cycle device, and air conditioner
WO2024069811A1 (en) Motor drive device and refrigeration cycle instrument
JP2013126284A (en) Electric motor drive apparatus
JP4581603B2 (en) Electric motor drive
JP7311778B2 (en) power converter
JP5078925B2 (en) Electric motor drive device and equipment
JP2010028981A (en) Rotor position estimating method for synchronous motor, and controller for the synchronous motor
JP5838554B2 (en) Power converter