WO2024066721A1 - 前置光源模组和显示装置 - Google Patents

前置光源模组和显示装置 Download PDF

Info

Publication number
WO2024066721A1
WO2024066721A1 PCT/CN2023/110351 CN2023110351W WO2024066721A1 WO 2024066721 A1 WO2024066721 A1 WO 2024066721A1 CN 2023110351 W CN2023110351 W CN 2023110351W WO 2024066721 A1 WO2024066721 A1 WO 2024066721A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dimming
layer
light source
source module
Prior art date
Application number
PCT/CN2023/110351
Other languages
English (en)
French (fr)
Inventor
陈秀云
侯婷琇
孙凌宇
钟鹏
谭祺瑞
邵喜斌
蔡斯特
王光泉
赵超越
张梓彦
杜景军
郝倩倩
孙亚新
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024066721A1 publication Critical patent/WO2024066721A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to the field of display, and in particular to a front light source module and a display device.
  • Reflective display panels rely on the reflective layer in the reflective display panel (using a metal layer with reflective function) to reflect ambient light to achieve display. They do not require a backlight and have the advantages of low power consumption and light weight. However, reflective display products require an additional light source to assist in display when the ambient light is relatively weak. Therefore, the development of front light source modules that can be applied to reflective display panels has become a new research direction in the display field.
  • an embodiment of the present disclosure provides a front light source module, including:
  • the light guide layer has a light incident side surface, wherein the light incident side surface is arranged opposite to the side light source in a first direction;
  • a first dimming layer is stacked with the light guide layer in a third direction, a side portion of the first dimming layer away from the light guide layer is provided with a plurality of microgroove structures, the microgroove structure comprising: a first inclined surface and a second inclined surface arranged opposite to each other in the first direction, the first inclined surface is configured to face the light incident side surface and is closer to the light incident side surface than the second inclined surface, an angle ⁇ formed between the first inclined surface and a plane on which a side surface of the first dimming layer away from the light guide layer is located is 26° to 42°, and a depth H of the microgroove structure is 4um to 15um;
  • the refractive index of the first dimming layer is greater than or equal to the refractive index of the light guiding layer.
  • the length of the opening of the microgroove structure on the surface of the first light-adjusting layer away from the light-guiding layer in the first direction is L 1 ;
  • L 1 /H The ratio of L 1 to H, L 1 /H, satisfies: L 1 /H ⁇ 4.
  • L1 satisfies L 1 ⁇ 80 um.
  • the first inclined surface is rectangular, a set of opposite sides of the first inclined surface of the rectangle extend along a second direction, and the second direction is perpendicular to both the first direction and the third direction;
  • the extension direction of another group of opposite sides of the rectangular first inclined surface is perpendicular to the third direction and intersects both the first direction and the second direction.
  • a length L 2 of a side of the rectangular first inclined surface extending along the second direction satisfies: L 2 ⁇ 80 um.
  • the shape of the cross section of the microgroove structure parallel to the first direction and parallel to the third direction includes: a triangle or a quadrilateral.
  • the second inclined surface is a plane or a curved surface.
  • an arrangement density of the micro-groove structures gradually increases.
  • a surface of the first dimming layer on one side away from the light guide layer is divided into a plurality of groove structure setting areas arranged along the first direction;
  • the spacing between the groove structure arrangement areas gradually decreases
  • the groove structure setting area is divided into a plurality of rectangular periodic areas arranged along the second direction; the length of the rectangular periodic area in the first direction is R, and the length of the rectangular periodic area in the second direction is Q;
  • M micro-groove structures are arranged in the rectangular periodic region, and the M micro-groove structures are evenly arranged in the corresponding rectangular periodic region.
  • the arrangement of the M microgroove structures within the same rectangular periodic region satisfies: the distance between the centers of any two microgroove structures in the first direction is greater than or equal to R/M, and the distance between the centers of any two microgroove structures in the second direction is greater than or equal to Q/M.
  • the side light source comprises:
  • a focusing structure located between the light source and the light incident side surface, configured to focus the light emitted by the light source, and make the angle ⁇ 1 between the light emitted from the focusing structure and the first reference plane satisfy ⁇ 1 ⁇ 52.4°;
  • the first reference plane is a plane perpendicular to the third direction.
  • the focusing structure includes: a wedge-shaped light-guiding structure
  • the wedge-shaped light guide structure comprises: a first light incident surface, a first light emitting surface, a first dimming surface, and a second dimming surface;
  • the first light incident surface and the first light emitting surface are arranged opposite to each other in the first direction, the first light incident surface and the second light incident surface are both perpendicular to the first direction, the length of the first light incident surface in the third direction is T1, the length of the second light incident surface in the third direction is T2, T2>T1, and the projection of the second light incident surface on the plane where the first light incident surface is located covers the first light incident surface;
  • the first dimming surface and the second dimming surface are arranged opposite to each other in the third direction, and in a direction from the first light incident surface to the second light incident surface along the first direction, a distance between the first dimming surface and the second dimming surface in the third direction gradually increases;
  • the light source is disposed opposite to the first light incident surface, and the light incident side surface is disposed opposite to the first light emitting surface.
  • the light source includes: a driving board and a light-emitting element fixed on the driving board, wherein a length T of the light-emitting element in the third direction is smaller than a length T1 of the first light incident surface in the third direction;
  • the orthographic projection of the light emitting element on the plane where the first light incident surface is located is located in the area defined by the first light incident surface.
  • a length T of the light emitting element in the third direction satisfies: T ⁇ 0.3 mm.
  • the wedge-shaped light guide structure and the light guide layer are made of the same material and the two are integrally formed;
  • the light incident side surface and the first light emitting surface are the same surface.
  • the focusing structure includes a focusing lens.
  • a cross-section of a surface of the condenser lens on one side away from the light source in a direction perpendicular to the second direction is in the shape of an arc line
  • the cross-section of the surface of the condenser lens on one side away from the light source in a direction perpendicular to the second direction is a curve formed by arcs and line segments connected alternately in sequence.
  • the light source includes: a driving board and a light-emitting element fixed on the driving board, and the focusing lens is disposed on the driving board and covers the light-emitting element.
  • a plurality of light-concentrating microstructures are disposed on a surface of the light-guiding layer away from the first dimming layer, and the light-concentrating microstructures are configured to concentrate light passing through the light-concentrating microstructures from the light-guiding layer.
  • the light-focusing microstructure is a light-focusing groove formed on a side surface of the first dimming layer, and the light-focusing groove extends along the second direction;
  • the cross-sectional shape of the surface of the light-focusing groove in a direction perpendicular to the second direction includes: a V-shape and an arc shape.
  • a length L 3 of the light-focusing groove in the first direction satisfies: L 3 ⁇ 80 um.
  • At least one second dimming layer is disposed on the side of the light guide layer away from the first dimming layer and stacked with the light guide layer in the first direction, and a dimming microstructure is disposed on the second dimming layer, and the dimming microstructure is configured to: The light emission angle of the light emitted from one side surface of the first dimming layer and passing through the dimming microstructure is adjusted.
  • the light emitted from the side of the light guide layer away from the first dimming layer propagates in a direction away from the plane where the light incident side surface is located;
  • the dimming microstructures disposed on at least one layer of the second dimming layer include: a first dimming microstructure, wherein the first dimming microstructure is configured such that light emitted from a surface of the light guide layer away from the first dimming layer and passing through the first dimming microstructure still propagates in a direction away from the plane where the light incident side surface is located, but an angle between the light and the third direction increases;
  • the dimming microstructures disposed on at least one layer of the second dimming layer include: a second dimming microstructure, wherein the second dimming microstructure is configured such that light emitted from a surface of the light guide layer away from the first dimming layer and passing through the second dimming microstructure still propagates in a direction away from the plane where the light incident side surface is located, but an angle between the light and the third direction is reduced;
  • the dimming microstructure arranged on at least one layer of the second dimming layer includes: a third dimming microstructure, and the third dimming microstructure is configured to make the light emitted from the side surface of the light guide layer away from the first dimming layer and passing through the third dimming microstructure propagate along a direction close to the plane where the light incident side is located.
  • the refractive index of the second light-adjusting layer closest to the light-guiding layer is greater than or equal to the refractive index of the light-guiding layer.
  • the number of the second dimming layers is greater than or equal to 2 layers
  • the refractive index of one of the two adjacent second dimming layers closer to the light guiding layer is less than or equal to the refractive index of the other of the two adjacent second dimming layers.
  • the first dimming layer is bonded to the light guide layer through a first bonding adhesive layer, the refractive index of the first bonding adhesive layer is greater than or equal to the refractive index of the light guide layer, and the refractive index of the first bonding adhesive layer is less than or equal to the refractive index of the first dimming layer.
  • the material of the first dimming layer includes nanoimprint material.
  • an embodiment of the present disclosure further provides a display device, comprising: a reflective display panel and the front light source module provided in the first aspect, wherein the front light source module is located on a light emitting surface of the reflective display panel.
  • the reflective display panel includes a plurality of sub-pixel regions arranged in an array along a first direction and a second direction, and a length of each sub-pixel region in the first direction is L 0 ;
  • the length of the microgroove structure in the first direction is less than or equal to 2/3*L 0
  • the length of the microgroove structure in the second direction is less than or equal to 2/3*L 0 .
  • a plurality of light-concentrating microstructures are disposed on a surface of the light-guiding layer on one side away from the first dimming layer, and the light-concentrating microstructures are configured to concentrate light passing through the light-concentrating microstructures from the light-guiding layer;
  • the length of the light-condensing microstructure in the first direction is less than or equal to 2/3*L 0 .
  • At least one second dimming layer is disposed on a side of the light guide layer away from the first dimming layer and stacked with the light guide layer in the first direction, and a dimming microstructure is disposed on the second dimming layer, and the dimming microstructure is configured to: adjust the light emission angle of light emitted from a surface of the light guide layer away from the first dimming layer and passing through the dimming microstructure;
  • the length of the dimming microstructure in the first direction is less than or equal to 2/3*L 0 .
  • the front light source module and the reflective display panel are bonded together by a second bonding adhesive layer
  • the refractive index of a portion of the front light source module that contacts the second bonding adhesive layer is greater than the refractive index of the second bonding adhesive layer.
  • FIG1 is a schematic diagram of a structure in which a front light source module and a reflective display panel are stacked in an embodiment of the present disclosure
  • FIG2 is a schematic diagram of a structure of a front light source module provided in an embodiment of the present disclosure
  • FIG3 is a cross-sectional schematic diagram of a front light source module provided by an embodiment of the present disclosure
  • FIG4 is a schematic diagram of testing the reflectivity of a reflective display panel under incident light at different angles
  • FIG5 is a schematic diagram of a curve showing the reflectivity of a reflective display panel under incident light at different angles
  • FIG6 is a schematic diagram of the light path of some positions in the front light source module provided by an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of light leakage at the opening of the microgroove structure in an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing how the light leakage probability P of the microgroove structure changes with ⁇ when the value of L 1 /H is 11.2/6 in an embodiment of the present disclosure
  • FIG10 is a schematic diagram showing the distribution of the light output brightness of the first dimming layer away from the light guide layer at different angles when simulating different ⁇ values in an embodiment of the present disclosure
  • FIG11 is a schematic diagram showing the distribution of the light output brightness of the first dimming layer close to the light guide layer at different angles when simulating different ⁇ values in an embodiment of the present disclosure
  • FIG12 is a schematic diagram of various different structures of the microgroove structure in the embodiment of the present disclosure.
  • FIG13 is a schematic diagram of an arrangement distribution of microgroove structures in an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of various arrangements of four microgroove structures within a rectangular periodic region in an embodiment of the present disclosure
  • FIG15A is a cross-sectional schematic diagram of a side light source in an embodiment of the present disclosure.
  • FIG15B is another cross-sectional schematic diagram of a side light source in an embodiment of the present disclosure.
  • FIG16A is another cross-sectional schematic diagram of a side light source in an embodiment of the present disclosure.
  • FIG16B is a schematic diagram of a structure of the side light source shown in FIG16A
  • FIG16C is a schematic diagram of the light emitting effect of the side light source shown in FIG16A;
  • FIG17A is another cross-sectional schematic diagram of a side light source in an embodiment of the present disclosure.
  • FIG17B is a schematic diagram of a structure of the side light source shown in FIG17A;
  • FIG17C is a schematic diagram of the light emitting effect of the side light source shown in FIG17A;
  • FIG18A is a schematic cross-sectional view of a light guide layer in an embodiment of the present disclosure.
  • FIG18B is another schematic cross-sectional view of the light guide layer in an embodiment of the present disclosure.
  • FIG19A is another cross-sectional schematic diagram of a light guide layer in an embodiment of the present disclosure.
  • FIG19B is another cross-sectional schematic diagram of the light guide layer in the embodiment of the present disclosure.
  • FIG20 is another schematic diagram of the structure of the front light source module provided in an embodiment of the present disclosure.
  • FIG21 is another cross-sectional schematic diagram of the front light source module provided in an embodiment of the present disclosure.
  • FIG22 is a schematic diagram of light modulation by three different dimming microstructures in an embodiment of the present disclosure.
  • FIG23 is a cross-sectional schematic diagram of a portion of the upper portion of the display device in an embodiment of the present disclosure.
  • FIG. 24 is another schematic cross-sectional view of a portion of the upper portion of the display device in an embodiment of the present disclosure.
  • FIG. 1 is a diagram of a front light source module and a reflective display panel stacked in an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the structure of a front light source module provided in an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a cross-section of a front light source module provided in an embodiment of the present disclosure.
  • the front light source module can be placed on the light-emitting side of the reflective display panel 100 to provide the reflective display panel 100 with light for display in an ambient light scene.
  • the front light source module includes: a side light source 400, a light guide layer 340 and a first dimming layer 320.
  • the light guide layer 340 has a light incident side surface 341, and the light incident side surface 341 and the side light source 400 are arranged opposite to each other in a first direction X (for example, the horizontal direction in FIG. 3 ); the light provided by the side light source 400 can be incident into the light guide layer 340 through the light incident side surface 341; the first light dimming layer 320 and the light guide layer 340 are stacked in a third direction Z (for example, the vertical direction in FIG.
  • the micro-groove structures 310 includes: a first inclined surface 311 and a second inclined surface 312 arranged opposite to each other in a first direction X, the first inclined surface 311 is configured to face the light incident side surface 341 and is closer to the light incident side surface 341 than the second inclined surface 312, the angle ⁇ between the first inclined surface 311 and the plane of the side surface of the first dimming layer 320 away from the light guiding layer 340 is 26° ⁇ 42°, the depth H of the microgroove structure 310 is 4um ⁇ 15um; the refractive index of the first dimming layer 320 is greater than or equal to the refractive index of the light guiding layer 340.
  • the first dimming layer 320 is bonded by a first bonding adhesive layer 330 , the refractive index of the first bonding adhesive layer 330 is greater than or equal to the refractive index of the light guide layer 340 , and the refractive index of the first bonding adhesive layer 330 is less than or equal to the refractive index of the first dimming layer 320 .
  • the light provided by the side light source 400 can be incident on the light guide layer 340 through the light incident side surface 341, and during the light conduction process in the light guide layer 340, part of the light will be incident on the first dimming layer 320; a microgroove structure 310 is arranged on the first dimming layer 320, and the microgroove structure 310 has a first inclined surface 311 facing the light incident side surface 341, and the first inclined surface 311 can reflect part of the light incident on the first dimming layer 320 on the first inclined surface 311, and the reflected light is directed toward the reflective display panel 100 (i.e., the side of the first dimming layer 320 close to the light guide layer 340), so as to provide the reflective display panel 100 with light for display.
  • the reflective display panel 100 i.e., the side of the first dimming layer 320 close to the light guide layer 340
  • setting the refractive index of the first dimming layer 320 to be greater than or equal to the refractive index of the light guiding layer 340 can effectively avoid total reflection of light when it is incident from the light guiding layer 340 to the first dimming layer 320, so as to ensure the amount of light that can be incident on the first dimming layer 320, which is beneficial to increase the amount of light that the front light source module ultimately provides to the reflective display panel 100.
  • first bonding adhesive layer 330 when a first bonding adhesive layer 330 is provided, by setting the refractive index of the first bonding adhesive layer 330 to be greater than or equal to the refractive index of the light guide layer 340 and less than or equal to the refractive index of the first dimming layer 320, total reflection of light during transmission from the light guide layer 340 to the first dimming layer 320 can also be avoided.
  • the side light source 400 does not need to be turned on in a strong ambient light scene, but the ambient light is displayed.
  • the ambient light needs to pass through the front light source module to reach the reflective display panel 100, and is reflected by the reflective display panel 100 to form imaging light.
  • the imaging light passes through the front light source module and then is emitted.
  • the microgroove structure 310 arranged on the first dimming layer 320 is bound to have a certain impact on the external ambient light or imaging light, thereby affecting the final display quality.
  • the size of the microgroove structure 310 located on the first dimming layer 320 is designed to be smaller; for example, the depth H of the microgroove structure 310 is 4um to 15um.
  • the microgroove structure 310 is difficult to be prepared by a conventional optical patterning process (the optical patterning process is difficult to form a flat first inclined surface and the first tilt angle is difficult to control) or an injection molding process (the process accuracy of the injection molding process is difficult to prepare a small-sized microgroove structure); therefore, in the embodiment of the present disclosure, the material of the first dimming layer 320 is preferably selected from a nanoimprint material, and a small-sized microgroove structure 310 can be formed based on the nanoimprint process, and the surface of the first inclined surface of the prepared microgroove structure 310 is flat.
  • the nanoimprint material includes a nanoimprint glue, such as an acrylic resin; the refractive index of the nanoimprint material can be adjusted by adding inorganic particles (e.g., TiO2, ZrO2, etc.) to the nanoimprint glue.
  • a nanoimprint glue such as an acrylic resin
  • the refractive index of the nanoimprint material can be adjusted by adding inorganic particles (e.g., TiO2, ZrO2, etc.) to the nanoimprint glue.
  • the first inclined surface 311 and the first dimming layer 320 are separated from the conductive layer.
  • the angle ⁇ formed by the plane on which the surface of one side of the optical layer 340 lies is 26° to 42°, so that the display light formed after reflection by the first inclined surface 311 and directed toward the reflective display panel 100 is as close to the high reflectivity incident angle range of the reflective display panel 100 as possible when reaching the reflective display panel 100, and the emission angle of the light refracted on the first inclined surface 311 and finally emitted from the opening of the microgroove structure 310 is as far as possible outside the viewing angle range of the display device.
  • FIG4 is a schematic diagram of testing the reflectivity of a reflective display panel under incident light at different angles.
  • FIG5 is a schematic diagram of a curve of the reflectivity of a reflective display panel under incident light at different angles.
  • the reflective layer in the reflective display panel 100 is mainly based on mirror reflection, and the reflected light formed by the reflective layer is modulated to the main viewing angle through the scattering layer or the panel bump structure in the reflective display panel 100.
  • the light detection unit is directly opposite to the reflective display panel 100, and then the position of the test light source is continuously adjusted to change the angle ⁇ directed to the reflective display panel 100.
  • can vary between -90° and 90 degrees.
  • the reflective display panel 100 is incident with light at different angles ⁇ , the reflectivity of the reflective display panel 100 varies greatly. Among them, when the incident light angle ⁇ is between -45° and +45°, the reflective display panel 100 can show a certain reflectivity, and when the incident light angle ⁇ is between -10° and -30°, the reflectivity of the reflective display panel 100 is at a higher level (greater than 40%).
  • the angle ⁇ between the first inclined surface 311 and the plane of the surface of the first dimming layer 320 away from the light guide layer 340 directly affects the incident angle of the display light formed after reflection from the first inclined surface 311 when reaching the reflective display panel 100.
  • FIG6 is a schematic diagram of the optical path of some positions in the front light source module provided by the embodiment of the present disclosure.
  • the refractive index of the light guide layer 340 is recorded as n(340)
  • the refractive index of the first bonding adhesive layer 330 is recorded as n(330)
  • the refractive index of the first dimming layer 320 is recorded as n(310)
  • the refractive index of the medium in contact with the surface 341 is recorded as n(air), and n(air) ⁇ n(340) ⁇ n(330) ⁇ n(310).
  • the angle between the second inclined surface 312 and the surface of the first dimming layer 320 away from the light guide layer 340 is ⁇ 2
  • the length of the opening of the micro-groove structure 310 in the first direction X is L 1 .
  • the critical angle of total reflection of the surface of the first dimming layer 320 away from the light guiding layer 340 is denoted as ⁇ c1 :
  • the critical angle of total reflection at the interface between the first dimming layer 320 and the first bonding adhesive layer 330 is denoted as ⁇ c2 :
  • the light that enters from the light incident side surface 341 and reaches the first dimming layer 320 may have the following four light path conditions:
  • Light path condition (b): The light reaches the surface of the first dimming layer 320 away from the light guide layer 340 at an angle of ⁇ 5 and is reflected. The reflected light reaches the first inclined surface 311 of the microgroove structure 310 and is reflected again. In order to achieve light convergence, the angle k of the reflected light should be less than ⁇ 5. At this time, the angle k of the reflected light has the following relationship: k 180- ⁇ 5 -2* ⁇ Formula (2)
  • the light exit angle ⁇ of the refracted light has the following relationship:
  • the refractive index n(330) of the first bonding layer 330 is equal to the refractive index n(310) of the first dimming layer 320.
  • n(air) is 1
  • n(340) is 1.49
  • n(330) is 1.5
  • n(310) is 1.58
  • is 37°
  • L1 is 11.2um
  • H is The following Table 1 can be obtained by calculating the above formulas (1) to (4).
  • the angle of the reflected light in the optical path situation (a) and the optical path situation (b) is less than or equal to 53°, which is a small-angle light. According to the reflectivity curve obtained in Figure 5, it can be seen that the reflectivity of the reflective display panel for small-angle light is relatively high. Therefore, the optical path situation (a) and the optical path situation (b) The light utilization value in the optical path situation (a) is relatively high.
  • the reflected light formed in the optical path situation (a) mainly comes from the light with an incident angle ⁇ 1 of 52.4° to 90° at the light incident side 341
  • the reflected light formed in the optical path situation (b) mainly comes from the light with an incident angle ⁇ 1 of 0° to 52.4° at the light incident side 341
  • the light intensity of the light with an incident angle ⁇ 1 of 0° to 52.4° is significantly greater than the light intensity of the light with an incident angle ⁇ 1 of 52.4° to 90°, that is, the light intensity of the reflected light for display formed in the optical path situation (b) is greater than the light intensity of the reflected light for display formed in the optical path situation (a). That is, the light utilization value in the optical path situation (b) is higher than the light utilization value in the optical path situation (a).
  • the amount of light forming the optical path condition (b) can be effectively increased, thereby increasing the amount of light provided by the front light source module to the reflective display panel 100, which is beneficial to improving the display brightness.
  • the existence of the optical path condition (c) indicates that there is light leakage at the microgroove structure 310, and the light leakage at the microgroove structure 310 will directly affect the contrast of the display device. Therefore, the light emission angle ⁇ of the light leakage from the microgroove structure 310 should be made as large as possible as possible to be greater than the maximum viewing angle ⁇ max of the display device, so as to prevent the user from receiving the light leakage at the microgroove structure 310 under the viewing angle. Generally, the maximum viewing angle ⁇ max of the display device is 60°.
  • the light-emitting angle ⁇ of the leakage light will be further limited.
  • the maximum viewing angle ⁇ max is 70°, it can be obtained by calculation that ⁇ 1 ⁇ 43°. It can be seen that in order to further reduce the light leakage effect at the opening of the light-leaking microgroove structure 310, the incident light angle ⁇ 1 at the light-entering side surface 341 can be further converged.
  • Fig. 7 is a schematic diagram of light leakage at the opening of the microgroove structure in the embodiment of the present disclosure. As shown in Fig. 7, the refracted light generated after irradiating the area indicated by w' and generating a fold line will form light leakage, while the refracted light generated after irradiating the area indicated by w-w' and generating a fold line will enter the first dimming layer 320 again through the second inclined surface 312 (no light leakage will be generated).
  • the light leakage probability of the opening of the micro-groove structure 310 is defined as P, and P satisfies:
  • the light leakage probability P is related to L 1 , H, ⁇ and ⁇ .
  • is 37°.
  • the light leakage probability increases linearly with the increase of L 1 /H; when ⁇ 1 is 43°, the light leakage probability increases linearly with the increase of L 1 /H.
  • FIG9 is a schematic diagram showing the variation of the light leakage probability P of the microgroove structure 310 with ⁇ when L 1 /H is 11.2/6 in the embodiment of the present disclosure. As shown in FIG9 , L 1 /H is 11.2/6. When ⁇ is in the range of 20° to 45°, the light leakage probability increases with the increase of ⁇ .
  • FIG10 is a schematic diagram showing the distribution of the brightness of the light emitted from the first dimming layer away from the light guide layer at different angles when simulating different ⁇ values in the embodiment of the present disclosure.
  • FIG11 is a schematic diagram showing the distribution of the brightness of the light emitted from the first dimming layer 320 close to the light guide layer 340 at different angles when simulating different ⁇ values in the embodiment of the present disclosure. As shown in FIGS.
  • the light is along the side away from the light incident side 341
  • the angle between the light and the third direction Z is a negative (-) angle
  • the angle between the light and the third direction Z is a positive (+) angle (which is consistent with the angle ⁇ in the previous Figures 4 and 5).
  • the light output angle of the light that is refracted on the first inclined surface 311 and finally emitted from the opening of the microgroove structure 310 can be as much as possible outside the viewing angle range of the display device, which is beneficial to improving the contrast of the display device.
  • the angle ⁇ between the first inclined surface 311 and the plane on which the surface of the first dimming layer 320 on one side away from the light guiding layer 340 is located is 32° ⁇ 42°, so that the display light formed after reflection by the first inclined surface 311 and directed to the reflective display panel 100 can be as close to the high reflectivity incident angle range of the reflective display panel 100 as possible when reaching the reflective display panel 100 (improving the display brightness), and the light refracted on the first inclined surface 311 and finally emitted from the opening of the micro-groove structure 310 can be as close to the exit angle of the viewing angle of the display device as possible (improving the display contrast).
  • the angle ⁇ between the first inclined surface 311 and the plane where the surface of the first dimming layer 320 away from the light guide layer 340 is located is less than 32° and greater than or equal to 26°
  • the simulated The peak brightness angle of the light emitted by the first dimming layer 320 on the side away from the light guiding layer 340 is still greater than 60°
  • the peak brightness angle of the light emitted by the first dimming layer 320 on the side close to the light guiding layer 340 is near -40°, that is, the emission angle of most of the light emitted from the opening of the microgroove structure 310 is outside the viewing angle range of the display device, and the display light emitted to the reflective display panel 100 after reflection by the first inclined surface 311 is better matched with the high reflectivity incident angle range of the reflective display panel 100.
  • the angle ⁇ between the first inclined surface 311 and the plane of the surface of the first dimming layer 320 away from the light guide layer 340 is greater than 42 degrees, as shown in FIG. 9 , the light leakage probability will quickly increase to 50%, which is at a high level and is not conducive to improving the display contrast.
  • the angle ⁇ between the first inclined surface 311 and the plane of the surface of the first dimming layer 320 away from the light guide layer 340 is 26° to 42°.
  • L 1 /H satisfies: L 1 /H ⁇ 4.
  • L 1 can be designed to be as small as possible.
  • L 1 satisfies L 1 ⁇ 80 um.
  • FIG12 is a schematic diagram of various different structures of the microgroove structure in the embodiments of the present disclosure.
  • the first inclined surface 311 is rectangular, and a set of opposite sides of the rectangular first inclined surface 311 extends along the second direction Y, and the second direction Y is perpendicular to both the first direction X and the third direction Z; the extension direction of another set of opposite sides of the rectangular first inclined surface 311 is perpendicular to the third direction Z, and intersects both the first direction X and the second direction Y.
  • the first direction X, the second direction Y, and the third direction Z are perpendicular to each other.
  • the length L 2 of the side of the rectangular first inclined surface 311 extending along the second direction Y satisfies: L 2 ⁇ 80 um.
  • the shape of the cross section of the microgroove structure 310 parallel to the first direction X and parallel to the third direction Z includes: a triangle or a quadrilateral.
  • the shape of the cross section of the microgroove structure 310 parallel to the first direction X and parallel to the third direction Z is a triangle
  • the shape of the cross section of the microgroove structure 310 parallel to the first direction X and parallel to the third direction Z in the cases (b) and (e) of Figure 12 is a trapezoid
  • the shape of the cross section of the microgroove structure 310 parallel to the first direction X and parallel to the third direction Z in the case (c) of Figure 12 is a parallelogram.
  • the second inclined surface 312 is a plane or a curved surface.
  • the second inclined surface 312 shown in (a), (b) and (c) in FIG. 12 is a plane
  • the second inclined surface 312 shown in (d) and (e) in FIG. 12 is a curved surface.
  • the micro-groove structure 310 can also adopt other shapes, as long as the angle ⁇ between the first inclined surface 311 and the plane of the side surface of the first dimming layer 320 away from the light guiding layer 340 is 26° to 42°, and the depth H of the micro-groove structure 310 is 4um to 15um.
  • Fig. 13 is a schematic diagram of the arrangement and distribution of the micro-groove structure 310 in the embodiment of the present disclosure. As shown in Fig. 13, in the direction away from the light incident side surface 341 along the first direction X from the light incident side surface 341, the arrangement density of the micro-groove structure 310 gradually increases, and this arrangement is conducive to improving the uniformity of the light provided by the front light source module to the reflective display panel 100, thereby helping to improve the brightness uniformity of the picture presented by the display device.
  • a surface of one side of the first dimming layer 320 away from the light guiding layer 340 is divided into a plurality of groove structure setting areas 31P arranged along a first direction X; in a direction away from the light incident side surface 341 along the first direction X, the spacing between the groove structure setting areas 31P gradually decreases;
  • the groove structure setting area 31P is divided into a plurality of rectangular periodic areas 31G arranged along a second direction Y; the length of the rectangular periodic area 31G in the first direction X is R, and the length of the rectangular periodic area 31G in the second direction Y is Q;
  • M micro-groove structures 310 are arranged in the rectangular periodic area 31G, and the M micro-groove structures 310 are evenly arranged in the corresponding rectangular periodic area 31G.
  • the M microgroove structures 310 in the same rectangular periodic region 31G The arrangement satisfies: the distance between the centers of any two microgroove structures 310 in the first direction X is greater than or equal to R/M, and the distance between the centers of any two microgroove structures 310 in the second direction Y is greater than or equal to Q/M.
  • the distance between the centers of any two microgroove structures 310 closest to each other in the first direction X in the same rectangular periodic region 31G in the first direction X is equal to R/M
  • the distance between the centers of any two microgroove structures 310 closest to each other in the second direction Y in the same rectangular periodic region 31G in the second direction Y is equal to Q/M
  • Q/M is less than or equal to 150 um, that is, the distance between the centers of the two closest micro-grooves 310 in the second direction Y is ensured not to be greater than 150 um in the second direction Y.
  • the above setting can ensure that the picture is delicate and has no graininess (if the spacing between the micro-grooves 310 in the second direction is too large, the human eye can recognize the graininess produced by the micro-grooves).
  • Fig. 14 is a schematic diagram of multiple arrangements of 4 microgrooves in a rectangular periodic region in the disclosed embodiment.
  • the distance between the centers of any two microgrooves 310 closest to each other in the first direction X in the same rectangular periodic region is equal to R/4 in the first direction X
  • the distance between the centers of any two microgrooves 310 closest to each other in the second direction Y in the same rectangular periodic region is equal to Q/4 in the second direction Y
  • the center point connection line of the 4 microgrooves 310 can be a straight line or a broken line; for example, the center point connection line of the 4 microgrooves 310 shown in the case of (a) in Fig. 14 is a straight line
  • the center point connection line of the 4 microgrooves 310 shown in the case of (b) (c) (d) in Fig. 14 is a broken line.
  • FIG15A is a schematic cross-sectional view of a side light source in an embodiment of the present disclosure.
  • FIG15B is another schematic cross-sectional view of a side light source in an embodiment of the present disclosure.
  • the side light source 400 includes: a light source 401 and a focusing structure; the focusing structure is located between the light source 401 and the light incident side surface 341, and is configured to focus the light emitted by the light source in a third direction Z, and make the angle ⁇ 1 between the light emitted from the focusing structure and the first reference plane satisfy ⁇ 1 ⁇ 52.4°; the first reference plane is a plane perpendicular to the third direction Z.
  • the light emitted by the light source is converged by the convergence structure.
  • the method can effectively increase the amount of light that forms the light path condition (b), thereby increasing the amount of light provided by the front light source module to the reflective display panel 100, which is beneficial to improving the display brightness.
  • the focusing structure includes: a wedge-shaped light guiding structure 402; the wedge-shaped light guiding structure 402 includes: a first light incident surface, a first light emitting surface, a first dimming surface and a second dimming surface; the first light incident surface and the first light emitting surface are arranged opposite to each other in the first direction X, the first light incident surface and the second light incident surface are both perpendicular to the first direction X, the length of the first light incident surface in the third direction Z is T1, the length of the second light incident surface in the third direction Z is T2, T2>T1, and the projection of the second light incident surface on the plane where the first light incident surface is located covers the first light incident surface; the first dimming surface and the second dimming surface are arranged opposite to each other in the third direction Z, and in the direction from the first light incident surface along the first direction X to the second light incident surface, the distance between the first dimming surface and the second dimming
  • the light source 401 includes: a driving board 4011 and a light-emitting element 4012 fixed on the driving board 4011, the length T of the light-emitting element 4012 in the third direction Z is less than the length T1 of the first light incident surface in the third direction Z; the orthographic projection of the light-emitting element 4012 on the plane where the first light incident surface is located is located within the area defined by the first light incident surface.
  • the light emitting element 4012 may be an LED chip.
  • the length T of the light emitting element 4012 in the third direction Z satisfies: T ⁇ 0.3 mm.
  • the value of T is 0.2 mm
  • the value of T1 is 0.25 mm
  • the value of T2 is 0.4 mm
  • the value of the distance LT between the first light incident surface and the first light emitting surface in the first direction X is 1.2 mm.
  • the first dimming surface and the second dimming surface are both planes; in other embodiments, as shown in FIG. 15B , the first dimming surface and the second dimming surface are both curved surfaces.
  • the wedge-shaped light guide structure 402 and the light guide layer 340 are made of the same material. Integrally formed; the light incident side surface 341 and the first light emitting surface are the same surface.
  • FIG. 16A is another cross-sectional schematic diagram of the side light source 400 in the embodiment of the present disclosure.
  • FIG. 16B is a structural schematic diagram of the side light source 400 shown in FIG. 16A
  • FIG. 16C is a schematic diagram of the light emission effect of the side light source 400 shown in FIG. 16A.
  • FIG. 17A is another cross-sectional schematic diagram of the side light source 400 in the embodiment of the present disclosure.
  • FIG. 17B is a structural schematic diagram of the side light source 400 shown in FIG. 17A.
  • FIG. 17C is a schematic diagram of the light emission effect of the side light source 400 shown in FIG. 17A.
  • the focusing structure includes a focusing lens 403.
  • the material of the focusing lens 403 is a resin material, and the focusing lens 403 can be manufactured on the driving board 4011 by an injection molding process, and the focusing lens 403 covers the light emitting element 4012 .
  • the focusing lens 403 is a cylindrical lens (extending along the second direction Y); the cross-section of the surface of the focusing lens 403 on one side away from the light source in a direction perpendicular to the second direction Y is an arc.
  • the cross-sectional shape of the focusing lens 403 shown in FIG16A in a direction perpendicular to the second direction Y includes a fixing portion 4031, a middle portion 4032 and a dimming portion 4033.
  • the fixing portion 4031 is located at two opposite sides of the light emitting element in the third direction Z
  • the middle portion 4032 is located between the fixing portion 4031 and the dimming portion 4033
  • the middle portion 4032 is in a rectangular shape
  • the edge of the dimming portion 4033 on one side close to the middle portion 4032 is in a line segment shape
  • the edge of the dimming portion 4033 on one side away from the middle portion 4032 is in an arc shape.
  • the length of the middle portion 4032 in the third direction Z is H'
  • the length of the middle portion 4032 in the first direction X is L'
  • the midpoint of the line segment edge of the dimming portion 4033 on one side close to the middle portion 4032 is marked as point O
  • the center of the circle corresponding to the arc edge of the dimming portion 4033 on one side away from the middle portion 4032 is marked as point O'
  • the radius is R.
  • the surface of the side of the focusing lens 403 away from the light source is a curved surface formed by a plurality of arc surfaces arranged along the third aspect.
  • the focusing lens 403 is a Fresnel lens structure; compared with the focusing lens shown in FIG. 16A and FIG. 16B 403, the thickness of the focusing lens 403 shown in Figures 17A and 17B is smaller.
  • the cross-section of the surface of the side of the focusing lens 403 away from the light source in the direction perpendicular to the second direction Y is a curve composed of arcs and line segments connected alternately in sequence, and the curve is an axially symmetrical figure (the axis of symmetry is parallel to the first direction X).
  • the focusing lens 403 shown in FIG17A includes a fixed portion 4031, a middle portion 4032 and a dimming portion 4033 in a cross-sectional shape perpendicular to the second direction Y, the fixed portion 4031 is located on opposite sides of the light-emitting element in the third direction Z, the middle portion 4032 is located between the fixed portion 4031 and the dimming portion 4033, the middle portion 4032 is in the shape of a rectangle, an edge of the dimming portion 4033 close to the middle portion 4032 is in the shape of a line segment, an edge of the dimming portion 4033 away from the middle portion 4032 is in the shape of a curve formed by alternating arc lines and line segments in sequence, and all the arc lines in the curve can form a complete arc after being connected in sequence by translating in the first direction X.
  • the length of the middle portion 4032 in the third direction Z is H'
  • the length of the middle portion 4032 in the first direction X is L'
  • the midpoint of the line segment edge of the dimming portion 4033 close to the middle portion 4032 is recorded as point O
  • the center of a circle corresponding to a segment of the arc edge of the dimming portion 4033 located in the middle and away from the middle portion 4032 is recorded as point O'
  • the radius is R.
  • the edge of the dimming portion 4033 away from the middle portion 4032 includes 7 arcs and 6 line segments arranged alternately in the second direction Y, wherein the 7 arcs are arranged in sequence along the second direction Y, the 1st arc is axially symmetrical with the 7th arc, the 2nd arc is axially symmetrical with the 6th arc, the 3rd arc is axially symmetrical with the 5th arc, and the 4th arc itself is axially symmetrical.
  • the length of the i-th arc in the third direction Z is recorded as H i , i is 1 to 7.
  • H' is 0.4 mm
  • L' is 0.1 mm
  • point O' is located on the side of point O away from the dimming unit 4033 and the line connecting point O' and point O is parallel to the first direction X
  • R is 0.2 mm
  • H4 340 um.
  • the focusing lens 403 in the embodiment of the present disclosure may also adopt other shapes, which will not be listed one by one here.
  • FIG18A is a cross-sectional schematic diagram of a light guide layer in an embodiment of the present disclosure.
  • FIG. 19A is another cross-sectional schematic diagram of the light guide layer in the embodiment of the present disclosure.
  • FIG. 19B is another cross-sectional schematic diagram of the light guide layer in the embodiment of the present disclosure.
  • a surface of the light guide layer 340 away from the first dimming layer 320 is provided with a plurality of light-concentrating microstructures 341, and the light-concentrating microstructures 341 are configured to concentrate light passing through the light-concentrating microstructures 341 from the light guide layer 340.
  • the light-focusing microstructure 341 is a light-focusing groove formed on one side surface of the first dimming layer 320, and the light-focusing groove extends along the second direction Y; the shape of the cross section of the surface of the light-focusing groove perpendicular to the second direction Y includes: V-shaped and arc-shaped.
  • the cross-sectional shape of the surface of the light-focusing groove shown in FIG. 18A and FIG. 18B is V-shaped
  • the cross-sectional shape of the surface of the light-focusing groove shown in FIG. 19A and FIG. 19B is arc-shaped.
  • any adjacent light-concentrating grooves in the embodiment of the present disclosure may be in contact with each other (such as shown in FIG. 18A or FIG. 19A ), or any adjacent light-concentrating grooves may be arranged at intervals (such as shown in FIG. 18B or FIG. 19B ), or some adjacent light-concentrating grooves may be in contact with each other and some adjacent light-concentrating grooves may be arranged at intervals.
  • the technical solution of the present disclosure does not limit the arrangement of the light-concentrating grooves.
  • the brightness of the display device when presenting grayscale L255 is about 112.5 nit, and the brightness of the display device when presenting grayscale L0 is about 6.8 nit, that is, the contrast of the display device is about 16.5;
  • the light guide layer 340 in the front light source module is not provided with the light-gathering microstructure 341 (the surface of the side of the light guide layer 340 away from the first dimming layer 320 is a plane parallel to the first direction X), the brightness of the display device when presenting grayscale L255 is about 89 nit, and the brightness of the display device when presenting grayscale L0 is about 5.8 nit; that is, the contrast of the display device is about 15.3.
  • the length L 3 of the light-focusing groove in the first direction X satisfies: L 3 ⁇ 80 um.
  • the size of the focusing groove is relatively small, and the focusing groove is difficult to pass through the conventional Therefore, in the embodiment of the present disclosure, the material of the light guide layer 340 is selected from nanoimprint material, and a small-sized focusing groove can be formed based on the nanoimprint process.
  • FIG20 is another structural schematic diagram of the front light source module provided in an embodiment of the present disclosure.
  • FIG21 is another cross-sectional schematic diagram of the front light source module provided in an embodiment of the present disclosure.
  • at least one second dimming layer 350 stacked with the light guide layer 340 in the first direction X is provided on the side of the light guide layer 340 away from the first dimming layer 320, and a dimming microstructure 360 is provided on the second dimming layer 350, and the dimming microstructure 360 is configured to adjust the light emission angle of the light emitted from the side surface of the light guide layer 340 away from the first dimming layer 320 and passing through the dimming microstructure 360.
  • FIG22 is a schematic diagram of light modulation by three different dimming microstructures in an embodiment of the present disclosure.
  • light emitted from the side of the light guide layer 340 away from the first dimming layer 320 propagates in a direction away from the plane where the light incident side surface 341 is located.
  • the dimming microstructures in the present disclosure can be divided into a first dimming microstructure 3601, a second dimming microstructure 3602, and a third dimming microstructure 3603.
  • the first dimming microstructure 3601 is configured so that the light emitted from the side surface of the light guide layer 340 away from the first dimming layer 320 and passing through the first dimming microstructure 3601 still propagates in a direction away from the plane where the light incident side surface 341 is located, but the angle between the light and the third direction Z increases.
  • the second dimming microstructure 3602 is configured such that the light emitted from the side surface of the light guide layer 340 away from the first dimming layer 320 and passing through the second dimming microstructure 3602 still propagates in a direction away from the plane where the light incident side surface 341 is located, but the angle between the light and the third direction Z is reduced.
  • the third dimming microstructure 3603 is configured such that the light emitted from a surface of the light guide layer 340 away from the first dimming layer 320 and passing through the third dimming microstructure 3603 propagates in a direction close to the plane where the light incident side surface 341 is located.
  • the dimming microstructure has a triangular cross-section perpendicular to the second direction Y.
  • the dimming microstructure is in the shape of a triangular prism as a whole and the extension direction is parallel to the second direction Y.
  • the triangular prism includes a third inclined surface 362 and a fourth inclined surface 364 intersecting the first direction X.
  • the third inclined surface 361 is closer to the plane where the light incident side surface 341 is located than the fourth inclined surface 361. It can be seen from the light path in FIG22 that the fourth inclined surface 361 is used to adjust the light exiting angle of the light.
  • the angle e1 between the fourth inclined surface 361 in the first dimming microstructure 3601 and the first direction X is smaller than the angle e2 between the fourth inclined surface 361 in the second dimming microstructure 3602 and the first direction X
  • the angle e2 between the fourth inclined surface 361 in the second dimming microstructure 3602 and the first direction X is smaller than the angle e3 between the fourth inclined surface 361 in the third dimming microstructure 3603 and the first direction X.
  • the present disclosure does not limit the angle between the third inclined surface 362 in the first dimming microstructure 3601, the second dimming microstructure 3602, and the third dimming microstructure 3603 and the first direction X.
  • the angle f1 between the third inclined surface 362 in the first dimming microstructure 3601 and the first direction X is greater than the angle f2 between the third inclined surface 362 in the second dimming microstructure 3602 and the first direction X
  • the angle f2 between the third inclined surface 362 in the second dimming microstructure 3602 and the first direction X is greater than the angle f3 between the fourth inclined surface 361 in the third dimming microstructure 3603 and the first direction X.
  • the number of the second dimming layers 350 may be 1, 2, 3 or more layers, and at least one of the first dimming microstructure 3601, the second dimming microstructure 3602, and the third dimming microstructure 3603 may be selectively disposed on each layer of the second dimming layer 350.
  • the technical solution of the present disclosure does not limit the number of the second dimming layers 350 and the type of the dimming microstructure disposed on each second dimming layer 350.
  • the refractive index of the second light-adjusting layer 350 closest to the light-guiding layer 340 is greater than or equal to the refractive index of the light-guiding layer 340 .
  • the number of second dimming layers 350 is greater than or equal to 2 layers; for any two adjacent second dimming layers 350, the refractive index of one of the two adjacent second dimming layers 350 that is closer to the light guiding layer 340 is less than or equal to the refractive index of the other second dimming layer 350 in the two adjacent second dimming layers 350.
  • the second dimming layer 350 closest to the light guide layer 340 is A first adhesive layer (not shown) is arranged between the two adjacent second light-adjusting layers 350, and the refractive index of the first adhesive layer is greater than or equal to the refractive index of the light-guiding layer 340 and less than or equal to the refractive index of the second light-adjusting layer 350 in contact with the light-guiding layer 340; a second adhesive layer (not shown) is arranged between any two adjacent second light-adjusting layers 350, and the refractive index of any second adhesive layer is greater than or equal to the refractive index of the second light-adjusting layer 350 in contact with the surface of the second adhesive layer close to the light-guiding layer 340 and less than or equal to the refractive index of the second light-adjusting layer 350 in contact with the surface of the second adhesive layer away from the light-guiding layer 340.
  • the thickness of the light guide layer 340 in the embodiment of the present disclosure is 0.2 mm to 0.4 mm
  • the thickness of the first dimming layer 320 is 0.085 mm to 0.145 mm
  • the thickness of the first bonding adhesive layer 330 is 0.05 mm to 0.1 mm
  • the thickness of the second dimming layer 350 is 0 to 0.2 mm.
  • the light guiding layer 340 and the first dimming layer 320 can be prepared separately; the microgroove structure 310 on the first dimming layer 320 can be prepared by a nanoimprinting process (generally including molding, imprinting, demolding and other process steps); if a focusing microstructure is designed on the light guiding layer 340, a focusing microstructure can be prepared on the light guiding layer 340 by a nanoimprinting process; and then the light guiding layer 340 and the first dimming layer 320 are bonded and fixed by a first bonding adhesive layer 330.
  • a nanoimprinting process generally including molding, imprinting, demolding and other process steps
  • the second dimming layer 350 is selectively prepared as needed, and the second dimming layer 350 and the light guide layer 340 are fixed.
  • the embodiment of the present disclosure also provides a display device.
  • the display device includes: a reflective display panel 100 and a front light source module 300, the front light source module 300 is located on the light emitting surface of the reflective display panel 100, and the front light source module 300 is sampled from the front light source module 300 provided in the previous embodiment.
  • the front light source module 300 please refer to the content in the previous embodiment, which will not be repeated here.
  • the reflective display panel 100 includes a plurality of sub-pixel regions arranged in an array along a first direction X and a second direction Y, and a length of the sub-pixel region in the first direction X is L 0 ;
  • the length of the microgroove structure 310 in the first direction X is less than or equal to 2/3*L 0
  • the length of the microgroove structure 310 in the second direction Y is less than or equal to 2/3*L 0 .
  • a plurality of light-concentrating microstructures are disposed on a surface of the light-guiding layer 340 away from the first dimming layer 320 (for details, see the contents of the previous embodiments), and the light-concentrating microstructures are configured to concentrate light passing through the light-concentrating microstructures from the light-guiding layer 340; the length of the light-concentrating microstructures in the first direction X is less than or equal to 2/3*L 0 .
  • the light-concentrating microstructures can have a smaller size, and the light-concentrating microstructures are invisible when the human eye looks directly at the display device, so as to improve the display effect of the display device.
  • At least one second dimming layer 350 is disposed on the side of the light guide layer 340 away from the first dimming layer 320 and is stacked with the light guide layer 340 in the first direction X.
  • a dimming microstructure is disposed on the second dimming layer 350 (for details, please refer to the content in the previous embodiment).
  • the dimming microstructure is configured to: adjust the light emission angle of the light emitted from the surface of the side of the light guide layer 340 away from the first dimming layer 320 and passing through the dimming microstructure; the length of the dimming microstructure in the first direction X is less than or equal to 2/3*L 0 .
  • the length L0 of the sub-pixel area in the first direction X is generally 36um; when the size of the reflective display panel 100 is 8 inches, the length L0 of the sub-pixel area in the first direction X is generally 60um; when the size of the reflective display panel 100 is 30 inches, the length L0 of the sub-pixel area in the first direction X is generally 80um.
  • FIG23 is a cross-sectional schematic diagram of a portion of the upper portion of the display device in the embodiment of the present disclosure.
  • the thickness of the light guide layer 340 (0.2 mm to 0.4 mm) can be less than
  • the thickness of the single-layer light guide plate (generally greater than 0.4 mm, around 0.8 mm) can be reduced accordingly due to the reduction in the thickness of the light guide layer 340, so that the size of the light-emitting element configured by the light guide layer 340 (generally, the length of the light-emitting element in the third direction Z is required to be slightly smaller than the length of the light incident side surface 341 of the light guide layer 340 in the third direction Z) can be reduced accordingly.
  • the spacing between two adjacent light-emitting elements on the driving backplane can be reduced.
  • the mixing distance required for the spaced light-emitting elements (the distance from the light-emitting element to the effective display area AA of the display device) can be reduced accordingly.
  • the length and width of the light-emitting element configured by the thicker light guide plate are both about 1.7 mm, and the minimum light mixing distance required is about 3.6 mm; while in the present application, the length and width of the light-emitting element configured by the thinner light guide layer 340 can be less than 0.56 mm, and the minimum light mixing distance required is about 1.5 mm.
  • FIG24 is another cross-sectional schematic diagram of a portion of the display device in the embodiment of the present disclosure.
  • the display device may include not only a reflective display panel 100 and a front light source module 300, but also a touch substrate 500, which is located on a side of the front light source module 300 away from the reflective display panel 100, and the touch substrate 500 is fixed to the front light source module 300 by a foam tape 700, so that the display device has a touch function.
  • the side light source 400 and the light guide layer 340 can be fixed using a reflective tape 600. On the one hand, this can achieve fixation of the side light source 400 and the light guide layer 340, and on the other hand, it can ensure that light will not be emitted from the upper and lower surfaces of the light guide layer 340 during the light mixing process, thereby improving light utilization.
  • the front light source module 300 is bonded to the reflective display panel 100 through the second bonding adhesive layer 200; the refractive index of the portion of the front light source module 300 that contacts the second bonding adhesive layer 200 is greater than the refractive index of the second bonding adhesive layer 200.
  • the front light source module 300 does not contain the second dimming layer 350
  • the light guide layer 340 is fixed to the reflective display panel 100 through the second bonding adhesive layer 200; when the front light source module 300 contains the second dimming layer 350, the light guide layer 340 is fixed to the reflective display panel 100 through the second bonding adhesive layer 200.
  • the plate 100 is fixed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种前置光源模组(300),包括:侧光源(400);导光层(340),具有入光侧面(341),入光侧面(341)与侧光源(400)在第一方向上相对设置;第一调光层(320),与导光层(340)在第三方向上层叠设置,第一调光层(320)上远离导光层(340)的一侧部分设置有多个微槽结构(310),微槽结构(310)包括:在第一方向上相对设置的第一倾斜面(311)和第二倾斜面(312),第一倾斜面(311)配置为朝向入光侧面(341)且相对于第二倾斜面(312)更靠近于入光侧面(341),第一倾斜面(311)与第一调光层(320)远离导光层(340)的一侧表面所处平面所呈夹角α为26°~42°,微槽结构(310)的深度H为4um~15um;第一调光层(320)的折射率大于或等于导光层(340)的折射率;还提供了一种显示装置。

Description

前置光源模组和显示装置 技术领域
本发明涉及显示领域,特别涉及一种前置光源模组和显示装置。
背景技术
当前,在户外显示及运动显示越来越受青睐的市场趋势下,各大面板厂商投入大部分精力设计可以利用户外环境光进行显示的低功耗显示产品,反射式显示面板应运而生。
反射式显示面板是依靠反射式显示面板中的反射层(利用具有反射功能的金属层)反射环境光实现显示,无需背光源,具有低功耗、轻薄化等优势;但反射式显示产品在环境光比较弱时则需要一个额外光源加以辅助显示;于是,能够应用于反射式显示面板的前置光源模组的开发,成为了显示领域的新研究方向。
发明内容
第一方面,本公开实施例提供了一种前置光源模组,包括:
侧光源;
导光层,具有入光侧面,所述入光侧面与所述侧光源在第一方向上相对设置;
第一调光层,与所述导光层在第三方向上层叠设置,所述第一调光层上远离所述导光层的一侧部分设置有多个微槽结构,所述微槽结构包括:在第一方向上相对设置的第一倾斜面和第二倾斜面,所述第一倾斜面配置为朝向所述入光侧面且相对于所述第二倾斜面更靠近于所述入光侧面,所述第一倾斜面与所述第一调光层远离所述导光层的一侧表面所处平面所呈夹角α为26°~42°,所述微槽结构的深度H为4um~15um;
所述第一调光层的折射率大于或等于所述导光层的折射率。
在一些实施例中,所述微槽结构在所述第一调光层远离所述导光层的一侧表面的开口在所述第一方向上的长度为L1
L1与H的比值L1/H满足:L1/H≤4。
在一些实施例中,L1满足L1≤80um。
在一些实施例中,所述第一倾斜面为矩形,呈矩形的所述第一倾斜面的一组对边沿第二方向延伸,所述第二方向与所述第一方向和所述第三方向均相垂直;
呈矩形的所述第一倾斜面的另一组对边的延伸方向与所述第三方向垂直,且与所述第一方向和所述第二方向均相交。
在一些实施例中,呈矩形的所述第一倾斜面上沿第二方向延伸的边的长度L2满足:L2≤80um。
在一些实施例中,所述微槽结构在平行于所述第一方向且平行于所述第三方向的截面的形状包括:三角形或四边形。
在一些实施例中,所述第二倾斜面为平面或曲面。
在一些实施例中,在从所述入光侧面沿所述第一方向远离所述入光侧面的方向上,所述微槽结构的排布密度逐渐增大。
在一些实施例中,所述第一调光层远离所述导光层的一侧表面划分有沿所述第一方向排布的多个槽结构设置区域;
在从所述入光侧面沿所述第一方向远离所述入光侧面的方向上,所述槽结构设置区域之间的间距逐渐减小;
所述槽结构设置区域划分为沿第二方向排布的多个矩形周期区域;所述矩形周期区域在所述第一方向上的长度为R,所述矩形周期区域在所述第二方向上的长度为Q;
所述矩形周期区域内设置有M个所述微槽结构,M个所述微槽结构在对应的所述矩形周期区域内的均匀排布。
在一些实施例中,在同一所述矩形周期区域内的M个所述微槽结构的排布满足:任意两个所述微槽结构的中心在所述第一方向上的距离均大于或等于R/M,任意两个所述微槽结构的中心在所述第二方向上的距离均大于或等于Q/M。
在一些实施例中,所述侧光源包括:
光源;
收束结构,位于所述光源与所述入光侧面之间,配置为将所述光源所出射光线进行收束处理,且使得从所述收束结构所出射光线与第一参考平面所呈夹角θ1满足θ1≤52.4°;
所述第一参考平面为与所述第三方向相垂直的平面。
在一些实施例中,所述收束结构包括:楔形导光结构;
所述楔形导光结构包括:第一入光面、第一出光面、第一调光面和第二调光面;
所述第一入光面与所述第一出光面在所述第一方向上相对设置,所述第一入光面与所述第二入光面均与所述第一方向相垂直,所述第一入光面在所述第三方向上的长度为T1,所述第二入光面在所述第三方向上的长度为T2,T2>T1,所述第二入光面在所述第一入光面所处平面上的投影覆盖所述第一入光面;
所述第一调光面和所述第二调光面在所述第三方向上相对设置,在由所述第一入光面沿所述第一方向指向所述第二入光面的方向上,所述第一调光面与所述第二调光面在所述第三方向上的间距逐渐增大;
所述光源与所述第一入光面相对设置,所述入光侧面与所述第一出光面相对设置。
在一些实施例中,所述光源包括:驱动板以及固定于所述驱动板上的发光元件,所述发光元件在所述第三方向上的长度T小于所述第一入光面在所述第三方向上的长度T1;
所述发光元件在所述第一入光面所处平面上的正投影位于所述第一入光面所限定区域内。
在一些实施例中,发光元件在所述第三方向上的长度T满足:T≤0.3mm。
在一些实施例中,所述楔形导光结构与所述导光层材料相同且二者一体成型;
所述入光侧面与所述第一出光面为同一个面。
在一些实施例中,所述收束结构包括聚光透镜。
在一些实施例中,所述聚光透镜远离所述光源的一侧表面在垂直于第二方向上的截面的形状为圆弧线;
或者,所述聚光透镜远离所述光源的一侧表面在垂直于第二方向上的截面的形状为由圆弧线和线段依次交替相连所构成的曲线。
在一些实施例中,所述光源包括:驱动板以及固定于所述驱动板上的发光元件,所述聚光透镜设置在所述驱动板上且覆盖所述发光元件。
在一些实施例中,所述导光层远离第一调光层的一侧表面设置有多个聚光微结构,所述聚光微结构配置为对从所述导光层穿过所述聚光微结构的光线进行聚光。
在一些实施例中,所述聚光微结构为形成于第一调光层的一侧表面的聚光槽,所述聚光槽沿所述第二方向延伸;
所述聚光槽的表面在垂直于第二方向的截面的形状包括:V字形、圆弧形。
在一些实施例中,所述聚光槽在所述第一方向上的长度L3满足:L3≤80um。
在一些实施例中,所述导光层远离第一调光层的一侧设置有与所述导光层在所述第一方向上层叠设置的至少一层第二调光层,所述第二调光层上设置有调光微结构,所述调光微结构配置为:对从所述导光层远 离所述第一调光层的一侧表面出射且穿过所述调光微结构的光线的出光角度进行调整。
在一些实施例中,从所述导光层远离所述第一调光层一侧出射的光线沿远离所述入光侧面所处平面的方向传播;
至少一层所述第二调光层上所设置的调光微结构包括:第一调光微结构,所述第一调光微结构配置为:使得从所述导光层远离所述第一调光层的一侧表面出射且穿过所述第一调光微结构的光线仍沿远离所述入光侧面所处平面的方向传播,但光线与第三方向所呈夹角增大;
和/或,至少一层所述第二调光层上所设置的调光微结构包括:第二调光微结构,所述第二调光微结构配置为:使得从所述导光层远离所述第一调光层的一侧表面出射且穿过所述第二调光微结构的光线仍沿远离所述入光侧面所处平面的方向传播,但光线与第三方向所呈夹角减小;
和/或,至少一层所述第二调光层上所设置的调光微结构包括:第三调光微结构,所述第三调光微结构配置为:使得从所述导光层远离所述第一调光层的一侧表面出射且穿过所述第三调光微结构的光线沿靠近所述入光侧面所处平面的方向传播。
在一些实施例中,最靠近所述导光层的所述第二调光层的折射率大于或等于所述导光层的折射率。
在一些实施例中,所述第二调光层的数量大于或等于2层;
对于任意相邻两层第二调光层,所述相邻两层第二调光层中更靠近于所述导光层的一层所述第二调光层的折射率小于或等于所述相邻两层第二调光层中另一层所述第二调光层的折射率。
在一些实施例中,所述第一调光层通过第一贴合胶层与导光层相贴合,所述第一贴合胶层的折射率大于或等于所述导光层的折射率,所述第一贴合胶层的折射率小于或等于所述第一调光层的折射率。
在一些实施例中,所述第一调光层的材料包括纳米压印材料。
第二方面,本公开实施例还提供了一种显示装置,包括:反射式显示面板和如第一方面中提供的所述前置光源模组,所述前置光源模组位于所述反射式显示面板的出光面。
在一些实施例中,所述反射式显示面板包括沿第一方向和第二方向呈阵列排布的多个亚像素区,每个所述亚像素区在所述第一方向上的长度为L0
所述微槽结构在所述第一方向上的长度小于或等于2/3*L0,且所述微槽结构在所述第二方向上的长度小于或等于2/3*L0
在一些实施例中,所述导光层远离第一调光层的一侧表面设置有多个聚光微结构,所述聚光微结构配置为对从所述导光层穿过所述聚光微结构的光线进行聚光;
所述聚光微结构在所述第一方向上的长度小于或等于2/3*L0
在一些实施例中,所述导光层远离第一调光层的一侧设置有与所述导光层在所述第一方向上层叠设置的至少一层第二调光层,所述第二调光层上设置有调光微结构,所述调光微结构配置为:对从所述导光层远离所述第一调光层的一侧表面出射且穿过所述调光微结构的光线的出光角度进行调整;
所述调光微结构在所述第一方向上的长度小于或等于2/3*L0
在一些实施例中,所述前置光源模组与所述反射式显示面板通过第二贴合胶层贴合;
所述前置光源模组中与所述第二贴合胶层相接触的部分的折射率大于所述第二贴合胶层的折射率。
附图说明
图1为本公开实施例中前置光源模组与反射式显示面板层叠放置时的一种结构示意图;
图2为本公开实施例提供的前置光源模组的一种结构示意图;
图3为本公开实施例所提供的前置光源模组的一种截面示意图;
图4为测试反射式显示面板在不同角度入射光下的反射率的一种示意图;
图5为反射式显示面板在不同角度入射光下的反射率的曲线示意图;
图6为本公开实施例所提供的前置光源模组内部分位置的光路示意图;
图7为本公开实施例中微槽结构的开口处漏光示意图;
图8为本公开实施例中在α=37°的情况下θ1分别取值为56.7°和43°时微槽结构的开口漏光概率P随L1/H变化的示意图;
图9为本公开实施例中L1/H取值为11.2/6时微槽结构的开口漏光概率P随α变化的示意图;
图10为本公开实施例中模拟不同α取值时第一调光层远离导光层一侧的出光亮度在不同角度的分布示意图;
图11为本公开实施例中模拟不同α取值时第一调光层靠近导光层一侧的出光亮度在不同角度的分布示意图;
图12为本公开实施例中微槽结构的多种不同结构示意图;
图13为本公开实施例中微槽结构的一种排布分布示意图;
图14为本公开实施例中一个矩形周期区域内4个微槽结构的多种排布的示意图;
图15A为本公开实施例中侧光源的一种截面示意图;
图15B为本公开实施例中侧光源的另一种截面示意图;
图16A为本公开实施例中侧光源的又一种截面示意图;
图16B为图16A所示侧光源的一种结构示意图,图16C为图16A所示侧光源的出光效果示意图;
图17A为本公开实施例中侧光源的再一种截面示意图;
图17B为图17A所示侧光源的一种结构示意图;
图17C为图17A所示侧光源的出光效果示意图;
图18A为本公开实施例中导光层的一种截面示意图;
图18B为本公开实施例中导光层的另一种截面示意图;
图19A为本公开实施例中导光层的又一种截面示意图;
图19B为本公开实施例中导光层的再一种截面示意图;
图20为本公开实施例所提供的前置光源模组的另一种结构示意图;
图21为本公开实施例所提供的前置光源模组的另一种截面示意图;
图22为本公开实施例中三种不同调光微结构对光线调制的示意图;
图23为本公开实施例中显示装置上部分位置的一种截面示意图;
图24为本公开实施例中显示装置上部分位置的另一种截面示意图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的一种前置光源模组和显示装置进行详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述目标的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为本公开实施例中前置光源模组与反射式显示面板层叠放置时 的一种结构示意图。图2为本公开实施例提供的前置光源模组的一种结构示意图。图3为本公开实施例所提供的前置光源模组的一种截面示意图。如图1至图3所示,该前置光源模组可放置于反射式显示面板100的出光侧,以在若环境光场景下为反射式显示面板100提供用于显示的光线。该前置光源模组包括:侧光源400、导光层340和第一调光层320。
其中,导光层340具有入光侧面341,入光侧面341与侧光源400在第一方向X(例如,图3中的水平方向)上相对设置;侧光源400所提供的光线可通过入光侧面341射入至导光层340内;第一调光层320与导光层340在第三方向Z(例如,图3中的竖直方向)上层叠设置,第一调光层320上远离导光层340的一侧部分设置有多个微槽结构310,微槽结构310包括:在第一方向X上相对设置的第一倾斜面311和第二倾斜面312,第一倾斜面311配置为朝向入光侧面341且相对于第二倾斜面312更靠近于入光侧面341,第一倾斜面311与第一调光层320远离导光层340的一侧表面所处平面所呈夹角α为26°~42°,微槽结构310的深度H为4um~15um;第一调光层320的折射率大于或等于导光层340的折射率。
在一些实施例中,第一调光层320通过第一贴合胶层330贴合,第一贴合胶层330的折射率大于或等于导光层340的折射率,第一贴合胶层330的折射率小于或等于第一调光层320的折射率。
在本公开实施例中,侧光源400所提供的光线可通过入光侧面341射入至导光层340内,并在导光层340内仅光传导的过程中,部分光线会射入至第一调光层320;在第一调光层320上设置微槽结构310,微槽结构310具有朝向入光侧面341的第一倾斜面311,该第一倾斜面311可将射入至第一调光层320的部分光线在该第一倾斜面311发生反射且反射光朝向反射式显示面板100(即第一调光层320靠近导光层340的一侧),以给反射式显示面板100提供显示用的光线。
其中,将第一调光层320的折射率设置为大于或等于导光层340的折射率,可以有效避免光线从导光层340射入至第一调光层320时发生全反射,以保证能够射入至第一调光层320的光线数量,有利于提升前置光源模组最终提供给反射式显示面板100的光线数量。
同理,在设置有第一贴合胶层330时,通过将第一贴合胶层330的折射率设置为大于或等于导光层340的折射率且小于或等于第一调光层320的折射率时,也能避免光线在由导光层340传输至第一调光层320的过程中发生全反射。
此外,在本公开实施例中,在强环境光场景下侧光源400无需点亮,而是环境光进行显示,此时环境光需要穿过前置光源模组到达反射式显示面板100,并经过反射式显示面板100的反射形成成像用光线,成像用光线穿过前置光源模组后射出。外部环境光或成像用光线在穿过前置光源模组的过程中,设置于第一调光层320上的微槽结构310势必会对外部环境光或成像用光线产生一定影响,从而会影响最终显示质量。为改善上述问题,本公开实施例中将位于第一调光层320上的微槽结构310的尺寸设计较小;例如,微槽结构310的深度H为4um~15um。然而,由于微槽结构310的尺寸过小,且对于第一倾斜面的平整度和倾斜角精度要求比较高,使得微槽结构310难以通过常规的光构图工艺(光构图工艺难以形成平整的第一倾斜面且对于第一倾斜角难以控制)或注塑工艺(注塑工艺的工艺精度难以制备出小尺寸的微槽结构)进行制备;故,本公开实施例中优选将第一调光层320的材料选用纳米压印材料,此时可基于纳米压印工艺来形成小尺寸的微槽结构310,制备出的微槽结构310的第一倾斜面的表面平整。在一些实施例中,纳米压印材料包括纳米压印胶,例如丙烯酸树脂;可通过向纳米压印胶中添加无机粒子(例如,TiO2、ZrO2等)来对纳米压印材料的折射率进行调整。
另外,本公开实施例中将第一倾斜面311与第一调光层320远离导 光层340的一侧表面所处平面所呈夹角α为26°~42°,是为了使得经过第一倾斜面311反射后所形成的射向反射式显示面板100的显示用光线在到达反射式显示面板100时尽可能的处于反射式显示面板100的高反射率入射角度范围内,以及尽可能的使得在第一倾斜面311上发生折射且最终从微槽结构310的开口出射的光线的出射角度位于显示装置的观看视角范围之外。
图4为测试反射式显示面板在不同角度入射光下的反射率的一种示意图。图5为反射式显示面板在不同角度入射光下的反射率的曲线示意图。如图4和图5所示,反射式显示面板100中的反射层是以镜面反射为主,通过反射式显示面板100内的散射层或面板凸块(Panel Bump)结构将反射层所形成的反射光调制到主视角。在图4所示测试场景中,将光线检测单元与反射式显示面板100正对,然后不断调整测试用光源的位置以使得射向反射式显示面板100的角度θ发生改变。其中,θ可在-90°~90度之间变化。
通过测试发现,反射式显示面板100在不同角度θ的入射光入射时,反射式显示面板100所呈现的反射率差异很大。其中,在入射光角度θ在-45°~+45°时反射式显示面板100能呈现出一定的反射率,在入射光角度θ为-10°~-30°时反射式显示面板100所呈现的反射率具有较高的水平(大于40%)。
本申请中第一倾斜面311与第一调光层320远离导光层340的一侧表面所处平面所呈夹角α,会直接影响经由第一倾斜面311反射后所形成的显示用光线在到达反射式显示面板100时的入射角度。
图6为本公开实施例所提供的前置光源模组内部分位置的光路示意图。如图6所示,其中导光层340的折射率记为n(340),第一贴合胶层330的折射率记为n(330),第一调光层320的折射率记为n(310),与第一调光层320远离导光层340一侧表面相接触的介质以及与入光侧 面341相接触的介质的折射率均记为n(air),且n(air)<n(340)<n(330)<n(310)。第二倾斜面312与第一调光层320远离导光层340一侧表面所呈夹角为α2,微槽结构310的开口在第一方向X上的长度为L1
第一调光层320远离导光层340一侧表面的全反射临界角记为θc1
第一调光层320与第一贴合胶层330之间界面的全反射临界角记为θc2
从入光侧面341输入并到达至第一调光层320的光线可能会出现如下4种光路情况:
光路情况(a):光线以角度θ5到达第一调光层320远离导光层340的一侧表面后发生反射,反射光线不经过微槽结构310。此时,θ5<90-α,反射光线以角度θ5向下传播。此时,存在如下关系:
n(air)*sinθ1=n(340)*sinθ2
θ3=90-θ2
n(340)*sinθ3=n(330)*sinθ4=n(310)*sinθ5
光路情况(b):光线以角度θ5到达第一调光层320远离导光层340的一侧表面后发生反射,反射光线到达微槽结构310的第一倾斜面311并再次发生反射。其中,为实现光线收束,应使得反射光的角度k<θ5。此时,反射光的角度k存在如下关系:
k=180-θ5-2*α  式(2)
光路情况(c):光线直接照射至微槽结构310的第一倾斜面311并在第一倾斜面311上发生折射,且折射光线直接从微槽结构310的开口射出,即微槽结构310处产生漏光。此时,折射光的出光角度δ存在如下关系:
光路情况(d):光线照射至微槽结构310的第一倾斜面311并在第一倾斜面311上发生折射,但是折射光线传播至第二倾斜面312,并在第二倾斜面312发生折射或再次进入第一调光层320。此时,折射光的折射角ω存在如下关系:


其中,由于折射角ω为一个大角度,因此大多数光线会约束在第一调光层320进行全反射,为了破坏全反射使光线向下继续传播,需要增大第一调光层320与第一贴合胶层330之间界面的全反射临界角θc2,优选地第一贴合胶层330的折射率n(330)等于第一调光层320的折射率n(310),此时任意折射角ω的光线均可穿过第一调光层320与第一贴合层之间的界面。
为便于本领域技术人员更好的理解本公开的技术方案,下面将结合一个具体示例来作详细描述。
其中,n(air)取值为1,n(340)取值为1.49,n(330)取值为1.55,n(310)取值为1.58,α取值为37°,L1取值为11.2um,H取值 为6um。通过上述式(1)~(4)进行计算可以得到如下表1。
表1.不同光路情况的角度计算结果表
在上述表1中,以入射角度θ1=0°入射至入光侧面341的光线的光强为I0,入射角度θ1=12°入射至入光侧面341的光线的光强为0.98*I0,入射角度θ1=19°入射至入光侧面341的光线的光强0.95*I0,入射角度θ1=43°入射至入光侧面341的光线的光强0.7*I0,等等。
通过上述表1的结果可见,光路情况(d)产生折射光线的夹角ω为一个较大值(ω≥74.4°)。这一部分大角度折射光即便能够传播至反射型显示面板,但是根据图5所得到反射率曲线可见,反射型显示面板对大角度光线的反射率极低。因此,光线情况(d)中的光线利用价值较低。
光路情况(a)和光路情况(b)中所形成反射光线的角度小于或等于53°,为小角度光,根据图5所得到反射率曲线可见,反射型显示面板对小角度光线的反射率相对较高。因此,光路情况(a)和光路情况(b) 中的光线利用价值相对较高。进一步地,由于光路情况(a)中所形成的反射光线主要来自于入光侧面341处入射角度θ1在52.4°~90°的光线,而光路情况(b)中所形成的反射光线主要来自于入光侧面341处入射角度θ1在0°~52.4°的光线,入射角度θ1在0°~52.4°的光线的光强明显大于入射角度θ1在52.4°~90°的光线的光强,即光路情况(b)中所形成的显示用反射光线的光强要大于光路情况(a)中所形成的显示用反射光线的光强。即,光路情况(b)中的光线利用价值要高于光路情况(a)中的光线利用价值。
基于上述计算结果,可以推断出当将侧光源400所输出的光线进行收束处理以使得入射至入光侧面341的所有光线的入射光角度θ1均处于0°~52.4°范围时,可以有效提升形成光路情况(b)的光线数量,从而提升前置光源模组提供给反射式显示面板100的光线数量,有利于提升显示亮度。
由于光路情况(c)的存在,即表示微槽结构310处存在漏光情况,微槽结构310处的漏光会直接影响到显示装置的对比度。为此,应尽量让从微槽结构310处漏光的出光角度δ大于显示装置的最大观看视角δmax,以避免用户在观看视角下接收到微槽结构310处的漏光。一般地,显示装置的最大观看视角δmax为60°。
根据式(1)和式(3),可以得到θ1满足如下关系:
其中,当δ>δmax=60°时,可以得到如下关系:
将n(air)=1,n(340)=1.49,n(310)=1.58,α=37°代入式 (5),可以计算出θ1<56.7°。
需要说明的是,当δmax取值更大时,漏光的出光角度δ将进一步限定。例如,当最大观看视角δmax为70°时,通过计算可以得出θ1<43°。由此可见,要进一步降低漏光微槽结构310的开口处漏光影响,可以对入光侧面341处入射光角度θ1作进一步收束。
图7为本公开实施例中微槽结构的开口处漏光示意图。如图7所示,照射至w’所指区域并发生折线后所产生的折射光会形成漏光,而照射至w-w’所指区域并发生折线后所产生的折射光会通过第二倾斜面312再次进入第一调光层320(不会形成漏光)。
定义微槽结构310的开口漏光概率为P,且P满足:
基于式(6)可见,漏光概率为P与L1、H、α和δ相关。
图8为本公开实施例中在α=37°的情况下θ1分别取值为56.7°和43°时微槽结构310的开口漏光概率P随L1/H变化的示意图。如图8所示,其中α取值为37°。当θ1取值为56.7°时,漏光概率随着L1/H的增大而成线性增大;当θ1取值为43°时,漏光概率随着L1/H的增大而成线性增大。
图9为本公开实施例中L1/H取值为11.2/6时微槽结构310的开口漏光概率P随α变化的示意图。如图9所示,其中L1/H取值为11.2/6。在α处于20°~45°范围内,漏光概率随着α的增大而增大。
图10为本公开实施例中模拟不同α取值时第一调光层远离导光层一侧的出光亮度在不同角度的分布示意图。图11为本公开实施例中模拟不同α取值时第一调光层320靠近导光层340一侧的出光亮度在不同角度的分布示意图。如图10和11所示,其中定义光线沿远离入光侧面341 的方向传播时光线与第三方向Z所呈夹角为负(-)角度,光线沿靠近入光侧面341的方向传播时与第三方向Z所呈夹角为正(+)角度(与前面图4和图5中角度θ取值方式统一)。
通过图10结果可见,在α取值为32°、37°、42°时,第一调光层320远离导光层340一侧的出光亮度峰值角度均大于75°,且绝大部分光线的出光角度都大于60°。即,微槽结构310的开口处导致漏光的绝大部分光线的出光角度都是位于显示装置的观看视角范围(最大观看视角δmax一般为60°)之外。故,将α取值设置在32°~42°范围时,可以尽可能的使得在第一倾斜面311上发生折射且最终从微槽结构310的开口出射的光线的出射角度位于显示装置的观看视角范围之外,有利于提高显示装置的对比度。
通过图11结果可见,在α取值为32°时第一调光层320靠近导光层340一侧的出光亮度峰值角度在-34°,在α取值为37°时第一调光层320靠近导光层340一侧的出光亮度峰值角度在-21°,在α取值为37°时第一调光层320靠近导光层340一侧的出光亮度峰值角度在-16°,三种不同α取值下的出光亮度峰值角度均与图5中所示反射式显示面板100的高反射率入射角度范围(-10°~-30°)有较佳的匹配。
由此可见,在本公开实施例中将第一倾斜面311与第一调光层320远离导光层340的一侧表面所处平面所呈夹角α为32°~42°,可使得经过第一倾斜面311反射后所形成的射向反射式显示面板100的显示用光线在到达反射式显示面板100时尽可能的处于反射式显示面板100的高反射率入射角度范围内(提高显示亮度),以及尽可能的使得在第一倾斜面311上发生折射且最终从微槽结构310的开口出射的光线的出射角度位于显示装置的观看视角范围之外(提高显示对比度)。
需要说明的是,当第一倾斜面311与第一调光层320远离导光层340的一侧表面所处平面所呈夹角α小于32且大于或等于26°时,所模拟 出的第一调光层320远离导光层340一侧的出光亮度峰值角度仍大于60°,且第一调光层320靠近导光层340一侧的出光亮度峰值角度在-40°附近,即从微槽结构310的开口出射的绝大部分光线的出射角度位于显示装置的观看视角范围之外,且经过第一倾斜面311反射后所形成的射向反射式显示面板100的显示用光线与反射式显示面板100的高反射率入射角度范围有较佳的匹配。
当第一倾斜面311与第一调光层320远离导光层340的一侧表面所处平面所呈夹角α大于42度时,通过图9可见,此时漏光概率会快速增大至50%,处于较高水平,不利于提高显示对比度。
基于上述多方面因素的综合考虑,本公开实施例中,第一倾斜面311与第一调光层320远离导光层340的一侧表面所处平面所呈夹角α取值在26°~42°
另外,在本公开实施例中基于图8所示,L1/H的值越大,漏光概率越大。本公开实施例中为有效的控制微槽结构310的漏光概率,L1/H满足:L1/H≤4。在实际应用中,在工艺运行的条件下,L1可以设计的尽可能小。可选地,L1满足L1≤80um。
图12为本公开实施例中微槽结构的多种不同结构示意图。如图12所示,在一些实施例中,第一倾斜面311为矩形,呈矩形的第一倾斜面311的一组对边沿第二方向Y延伸,第二方向Y与第一方向X和第三方向Z均相垂直;呈矩形的第一倾斜面311的另一组对边的延伸方向与第三方向Z垂直,且与第一方向X和第二方向Y均相交。可选地,第一方向X、第二方向Y、第三方向Z两两垂直。
在一些实施例中,呈矩形的第一倾斜面311上沿第二方向Y延伸的边的长度L2满足:L2≤80um。
在一些实施例中,微槽结构310在平行于第一方向X且平行于第三方向Z的截面的形状包括:三角形或四边形。例如,图12中(a)和(d) 情况所示微槽结构310在平行于第一方向X且平行于第三方向Z的截面的形状为三角形,图12中(b)和(e)情况所示微槽结构310在平行于第一方向X且平行于第三方向Z的截面的形状为梯形,图12中(c)情况所示微槽结构310在平行于第一方向X且平行于第三方向Z的截面的形状为平行四边形。
在一些实施例中,第二倾斜面312为平面或曲面。例如,图12中(a)、(b)(c)情况所示第二倾斜面312为平面,图12中(d)、(e)情况所示第二倾斜面312为曲面。
需要说明的是,在本公开实施例中微槽结构310还可以采用其他形状,仅需保证第一倾斜面311与第一调光层320远离导光层340的一侧表面所处平面所呈夹角α为26°~42°,微槽结构310的深度H为4um~15um即可。
图13为本公开实施例中微槽结构310的一种排布分布示意图。如图13所示,在从入光侧面341沿第一方向X远离入光侧面341的方向上,微槽结构310的排布密度逐渐增大,通过该设置有利于提升前置光源模组提供给反射式显示面板100的光线的均一性,从而有利于提升显示装置所呈现画面的亮度均一性。
在一些实施例中,第一调光层320远离导光层340的一侧表面划分有沿第一方向X排布的多个槽结构设置区域31P;在从入光侧面341沿第一方向X远离入光侧面341的方向上,槽结构设置区域31P之间的间距逐渐减小;槽结构设置区域31P划分为沿第二方向Y排布的多个矩形周期区域31G;矩形周期区域31G在第一方向X上的长度为R,矩形周期区域31G在第二方向Y上的长度为Q;矩形周期区域31G内设置有M个微槽结构310,M个微槽结构310在对应的矩形周期区域31G内的均匀排布。
进一步可选地,在同一矩形周期区域31G内的M个微槽结构310的 排布满足:任意两个微槽结构310的中心在第一方向X上的距离均大于或等于R/M,任意两个微槽结构310的中心在第二方向Y上的距离均大于或等于Q/M。通过该设置,可使得同一矩形周期区域31G内任意在第一方向X上最靠近的两个微槽结构310的中心在第一方向X上的距离等于R/M,同一矩形周期区域31G内任意在第二方向Y上最靠近的两个微槽结构310的中心在第二方向Y上的距离等于Q/M,此时整个槽结构设置区域31P具有较佳的亮度均一性。
在一些实施例中,Q/M小于或等于150um,即保证第二方向Y上最靠近的两个微槽结构310的中心在第二方向Y上的距离不会大于150um。通过上述设置可以保证画面细腻,无颗粒感(若微槽结构310在第二方向上间距过大,人眼可以识别到微槽结构产生的颗粒感)。
图14为本公开实施例中一个矩形周期区域内4个微槽结构的多种排布的示意图。如图14所示,以M取值为4为例,在同一矩形周期区域内任意在第一方向X上最靠近的两个微槽结构310的中心在第一方向X上的距离等于R/4,同一矩形周期区域内任意在第二方向Y上最靠近的两个微槽结构310的中心在第二方向Y上的距离等于Q/4,此时该4个微槽结构310的中心点连线可以为直线或折线;例如,图14中(a)情况所示4个微槽结构310的中心点连线为直线,图14中(b)(c)(d)情况所示4个微槽结构310的中心点连线为折线。
图15A为本公开实施例中侧光源的一种截面示意图。图15B为本公开实施例中侧光源的另一种截面示意图。如图15A和图15B所示,在一些实施例中,侧光源400包括:光源401和收束结构;收束结构位于光源401与入光侧面341之间,配置为将光源所出射光线在第三方向Z上进行收束处理,且使得从收束结构所出射光线与第一参考平面所呈夹角θ1满足θ1≤52.4°;第一参考平面为与第三方向Z相垂直的平面。
通过前面表1可见,通过收束结构来对光源所出射光线进行收束处 理,可有效提升形成光路情况(b)的光线数量,从而提升前置光源模组提供给反射式显示面板100的光线数量,有利于提升显示亮度。
继续参见15A和图15B所示,在一些实施例中,收束结构包括:楔形导光结构402;楔形导光结构402包括:第一入光面、第一出光面、第一调光面和第二调光面;第一入光面与第一出光面在第一方向X上相对设置,第一入光面与第二入光面均与第一方向X相垂直,第一入光面在第三方向Z上的长度为T1,第二入光面在第三方向Z上的长度为T2,T2>T1,第二入光面在第一入光面所处平面上的投影覆盖第一入光面;第一调光面和第二调光面在第三方向Z上相对设置,在由第一入光面沿第一方向X指向第二入光面的方向上,第一调光面与第二调光面在第三方向Z上的间距逐渐增大;光源与第一入光面相对设置,入光侧面341与第一出光面相对设置。
在一些实施例中,光源401包括:驱动板4011以及固定于驱动板4011上的发光元件4012,发光元件4012在第三方向Z上的长度T小于第一入光面在第三方向Z上的长度T1;发光元件4012在第一入光面所处平面上的正投影位于第一入光面所限定区域内。
在一些实施例中,发光元件4012可以为LED芯片。
在一些实施例中,发光元件4012在第三方向Z上的长度T满足:T≤0.3mm。
作为一个具体示例,T取值为0.2mm,T1取值为0.25mm,T2取值为0.4mm,第一入光面与第一出光面在第一方向X上的距离LT取值为1.2mm。
在一些实施例中,参见图15A所示,第一调光面和第二调光面均为平面;在另一些实施例中,参见图15B所示,第一调光面和第二调光面均为曲面。
在一些实施例中,楔形导光结构402与导光层340材料相同且二者 一体成型;入光侧面341与第一出光面为同一个面。
图16A为本公开实施例中侧光源400的又一种截面示意图。图16B为图16A所示侧光源400的一种结构示意图,图16C为图16A所示侧光源400的出光效果示意图。图17A为本公开实施例中侧光源400的再一种截面示意图。图17B为图17A所示侧光源400的一种结构示意图。图17C为图17A所示侧光源400的出光效果示意图。如图16A至图17C所示,在一些实施例中,收束结构包括聚光透镜403。
在一些实施例中,可选地,聚光透镜403的材料采用树脂材料,可通过注塑成型工艺以在驱动板4011上制备出聚光透镜403,聚光透镜403覆盖发光元件4012。
参见图16A和图16B所示,作为一种可选实施方案,聚光透镜403为柱型透镜(沿第二方向Y延伸);聚光透镜403远离光源的一侧表面在垂直于第二方向Y上的截面的形状为圆弧线。
作为一个具体示例,图16A中所示聚光透镜403在垂直于第二方向Y的截面形状包括固定部4031、中间部4032和调光部4033,固定部4031位于发光元件在第三方向Z上的相对两侧,中间部4032位于固定部4031和调光部4033之间,中间部4032的形状为矩形,调光部4033靠近中间部4032的一侧边缘形状为线段,调光部4033远离中间部4032的一侧边缘为圆弧。中间部4032在第三方向Z上的长度为H’,中间部4032在第一方向X上的长度为L’,调光部4033靠近中间部4032的一侧的线段形边缘的中点记为点O,调光部4033远离中间部4032的一侧的圆弧形边缘所对应的圆心记为点O'、半径为R。作为一种具体方案,H’取值为0.4mm,L’取值为0.1mm,点O与点O'重叠,R取值为0.2mm。
作为另一种可选实施方案,参见图17A和图17B所示,聚光透镜403远离光源的一侧表面为由多个弧面沿第三方面排布所形成的曲面,此时聚光透镜403为菲涅尔透镜结构;相较于图16A和图16B所示聚光透镜 403,图17A和图17B所示聚光透镜403的厚度更小。
作为一种具体示例,聚光透镜403远离光源的一侧表面在垂直于第二方向Y上的截面的形状为由圆弧线和线段依次交替相连所构成的曲线,且该曲线为轴对称图形(对称轴与第一方向X平行)。
作为一个具体示例,图17A中所示聚光透镜403在垂直于第二方向Y的截面形状包括固定部4031、中间部4032和调光部4033,固定部4031位于发光元件在第三方向Z上的相对两侧,中间部4032位于固定部4031和调光部4033之间,中间部4032的形状为矩形,调光部4033靠近中间部4032的一侧边缘形状为线段,调光部4033远离中间部4032的一侧边缘为由圆弧线和线段依次交替相连所构成的曲线且该曲线中所有圆弧线通过在第一方向X上平移实现依次相连后可以构成一段完整的圆弧。中间部4032在第三方向Z上的长度为H’,中间部4032在第一方向X上的长度为L’,调光部4033靠近中间部4032的一侧的线段形边缘的中点记为点O,调光部4033远离中间部4032的一侧且位于中间的一段圆弧形边缘所对应的圆心记为点O'、半径为R。进一步地,调光部4033远离中间部4032的一侧边缘包括在第二方向Y上交替排布的7条圆弧和6条线段,其中7条圆弧沿第二方向Y依次排布,第1条圆弧与第7条圆弧呈轴对称,第2条圆弧与第6条圆弧呈轴对称,第3条圆弧与第5条圆弧呈轴对称,第4条圆弧自身呈轴对称。第i条圆弧在第三方向Z上的长度记为Hi,i取值为1~7。作为一种具体方案,H’取值为0.4mm,L’取值为0.1mm,点O'位于点O远离调光部4033的一侧且点O'与点O的连线与第一方向X平行,R取值为0.2mm,H1=H7=11um,H2=H6=33um,H3=H5=66um,H4=340um。
当然,本公开实施例中的聚光透镜403还可以采用其他形状,此处不再一一举例。
图18A为本公开实施例中导光层的一种截面示意图。图18B为本公 开实施例中导光层的另一种截面示意图。图19A为本公开实施例中导光层的又一种截面示意图。图19B为本公开实施例中导光层的再一种截面示意图。如图18A至图19B所示,在一些实施例中,导光层340远离第一调光层320的一侧表面设置有多个聚光微结构341,聚光微结构341配置为对从导光层340穿过聚光微结构341的光线进行聚光。
在一些实施例中,聚光微结构341为形成于第一调光层320的一侧表面的聚光槽,聚光槽沿第二方向Y延伸;聚光槽的表面在垂直于第二方向Y的截面的形状包括:V字形、圆弧形。例如,图18A和图18B中所示聚光槽的表面的截面形状为V字形,图19A和图19B中所示聚光槽的表面的截面形状为圆弧形。
需要说明的是,本公开实施例中任意相邻的聚光槽可以相接触(例如图18A或图19A中所述),也可以是任意相邻的聚光槽间隔设置(例如图18B或图19B中所示),还可以是部分相邻的聚光槽相接触同时也存在部分相邻的聚光槽间隔设置。本公开的技术方案对于聚光槽的设置方式不作限定。
通过测试发现,当前置光源模组中导光层340设置有图18中所示V字形聚光微结构341时,显示装置呈现灰阶L255时的亮度约为112.5nit,显示装置呈现灰阶L0时的亮度约为6.8nit,即显示装置的对比度约为16.5;当前置光源模组中导光层340未设置有聚光微结构341(导光层340远离第一调光层320的一侧表面与第一方向X相平行的平面)时,显示装置呈现灰阶L255时的亮度约为89nit,显示装置呈现灰阶L0时的亮度约为5.8nit;即显示装置的对比度约为15.3。通过上述数据发现,在导光层340中设置上述聚光微结构341后,可以提升显示装置的显示亮度以及对比度。
在一些实施例中,聚光槽在第一方向X上的长度L3满足:L3≤80um。
在本公开实施例中,聚光槽的尺寸相对较小,聚光槽难以通过常规 的光构图工艺进行制备;故,本公开实施例中将导光层340的材料选用纳米压印材料,此时可基于纳米压印工艺来形成小尺寸的聚光槽。
图20为本公开实施例所提供的前置光源模组的另一种结构示意图。图21为本公开实施例所提供的前置光源模组的另一种截面示意图。如图20和图21所示,在一些实施例中,导光层340远离第一调光层320的一侧设置有与导光层340在第一方向X上层叠设置的至少一层第二调光层350,第二调光层350上设置有调光微结构360,调光微结构360配置为:对从导光层340远离第一调光层320的一侧表面出射且穿过调光微结构360的光线的出光角度进行调整。
图22为本公开实施例中三种不同调光微结构对光线调制的示意图。如图22所示,从导光层340远离第一调光层320一侧出射的光线沿远离入光侧面341所处平面的方向传播。根据调光功能的不同,本公开中的调光微结构可以分为第一调光微结构3601、第二调光微结构3602和第三调光微结构3603。
其中,第一调光微结构3601配置为:使得从导光层340远离第一调光层320的一侧表面出射且穿过第一调光微结构3601的光线仍沿远离入光侧面341所处平面的方向传播,但光线与第三方向Z所呈夹角增大。
第二调光微结构3602配置为:使得从导光层340远离第一调光层320的一侧表面出射且穿过第二调光微结构3602的光线仍沿远离入光侧面341所处平面的方向传播,但光线与第三方向Z所呈夹角减小。
第三调光微结构3603配置为:使得从导光层340远离第一调光层320的一侧表面出射且穿过第三调光微结构3603的光线沿靠近入光侧面341所处平面的方向传播。
在一些实施例中,调光微结构在垂直于第二方向Y上的截面的形状为三角形。此时,调光微结构整体呈三棱柱形且延伸方向与第二方向Y平行。该三棱柱形包括与第一方向X相交的第三倾斜面362和第四倾斜 面361,且相对于第四倾斜面361,第三倾斜面362更靠近于入光侧面341所处平面。通过图22中的光路可见,第四倾斜面361用作对光线的出光角度的调整。
其中,第一调光微结构3601中第四倾斜面361与第一方向X所呈夹角e1小于第二调光微结构3602中第四倾斜面361与第一方向X所呈夹角e2,第二调光微结构3602中第四倾斜面361与第一方向X所呈夹角e2小于第三调光微结构3603中第四倾斜面361与第一方向X所呈夹角e3。而对于第一调光微结构3601、第二调光微结构3602、第三调光微结构3603中第三倾斜面362与第一方向X所呈夹角,本公开不作限定。作为一种可选方案,第一调光微结构3601中第三倾斜面362与第一方向X所呈夹角f1大于第二调光微结构3602中第三倾斜面362与第一方向X所呈夹角f2,第二调光微结构3602中第三倾斜面362与第一方向X所呈夹角f2大于第三调光微结构3603中第四倾斜面361与第一方向X所呈夹角f3。
在本公开实施例中,第二调光层350的数量可以为1层、2层、3层或更多层,各层第二调光层350上可以选择性的设置第一调光微结构3601、第二调光微结构3602、第三调光微结构3603中的至少之一。本公开的技术方案对于第二调光层350的数量,以及各第二调光层350上所设置的调光微结构种类均不作限制。
在一些实施例中,最靠近导光层340的第二调光层350的折射率大于或等于导光层340的折射率。
在一些实施例中,第二调光层350的数量大于或等于2层;对于任意相邻两层第二调光层350,相邻两层第二调光层350中更靠近于导光层340的一层第二调光层350的折射率小于或等于相邻两层第二调光层350中另一层第二调光层350的折射率。
在一些实施例中,最靠近导光层340的第二调光层350与导光层340 之间设置有第一粘结层(未示出),第一粘接层的折射率大于或等于导光层340的折射率且小于或等于与其相接触的第二调光层350的折射率;任意相邻两层第二调光层350之间设置有第二粘接层(未示出),且任意一层第二粘接层的折射率大于或等于与该第二粘接层靠近导光层340一侧表面相接触的第二调光层350的折射率且小于或等于与该第二粘接层远离导光层340一侧表面相接触的第二调光层350的折射率。通过上述设定,可避免从导光层340射出且朝向反射式显示面板100的光线在传播过程中发生全反射,以保证到达反射式显示面板100的光线数量。
作为一个示例,本公开实施例中的导光层340的厚度在0.2mm~0.4mm,第一调光层320的厚度在0.085mm~0.145mm,第一贴合胶层330的厚度在0.05mm~0.1mm,第二调光层350的厚度在0~0.2mm。
在实际生产过程中,可分别制备导光层340和第一调光层320;其中第一调光层320上的微槽结构310可通过纳米压印工艺(一般包括制模、压印、脱模等工艺步骤)来进行制备;若导光层340上设计有聚光微结构,则可以通过纳米压印工艺在导光层340上制备出聚光微结构;然后再将导光层340和第一调光层320通过第一贴合胶层330进行贴合固定。
然后,根据需要来选择性的制备第二调光层350,并将第二调光层350与导光层340进行固定。
基于同一构思,本公开实施例还提供了一种显示装置。参见图1所示,其中该显示装置包括:反射式显示面板100和前置光源模组300,前置光源模组300位于反射式显示面板100的出光面,前置光源模组300采样前面实施例所提供的前置光源模组300,对于该前置光源模组300的具体描述,可参见前面实施例中的内容,此处不再赘述。
在一些实施例中,反射式显示面板100包括沿第一方向X和第二方向Y呈阵列排布的多个亚像素区,亚像素区在第一方向X上的长度为L0; 微槽结构310在第一方向X上的长度小于或等于2/3*L0,且微槽结构310在第二方向Y上的长度小于或等于2/3*L0。通过上述设置,可使得微槽结构310具有较小尺寸,人眼正视显示装置时微槽结构310不可见,以提升显示装置的显示效果。
在一些实施例中,导光层340远离第一调光层320的一侧表面设置有多个聚光微结构(具体可参见前面实施例中内容),聚光微结构配置为对从导光层340穿过聚光微结构的光线进行聚光;聚光微结构在第一方向X上的长度小于或等于2/3*L0。通过上述设置,可使得聚光微结构具有较小尺寸,人眼正视显示装置时聚光微结构不可见,以提升显示装置的显示效果。
在一些实施例中,导光层340远离第一调光层320的一侧设置有与导光层340在第一方向X上层叠设置的至少一层第二调光层350,第二调光层350上设置有调光微结构(具体可参见前面实施例中内容),调光微结构配置为:对从导光层340远离第一调光层320的一侧表面出射且穿过调光微结构的光线的出光角度进行调整;调光微结构在第一方向X上的长度小于或等于2/3*L0。通过上述设置,可使得调光微结构具有较小尺寸,人眼正视显示装置时调光微结构不可见,以提升显示装置的显示效果。
作为一个示例,反射式显示面板100的尺寸为1.5英寸时,亚像素区在第一方向X上的长度L0一般为36um;反射式显示面板100的尺寸为8英寸时,亚像素区在第一方向X上的长度L0一般为60um;反射式显示面板100的尺寸为30英寸时,亚像素区在第一方向X上的长度L0一般为80um。
图23为本公开实施例中显示装置上部分位置的一种截面示意图。如图23所示,在本公开实施例中,得益于本申请中导光层340和第一调光层320的双层设计,使得导光层340(0.2mm~0.4mm)的厚度可以小于 现有技术中单层导光板(一般大于0.4mm,在0.8mm左右)的厚度,由于导光层340的厚度的减小,使得导光层340所配置的发光元件的尺寸(一般需要发光元件在第三方向Z上的长度略小于导光层340的入光侧面341在第三方向Z上的长度)可以相应减小,因此位于驱动背板上相邻两个发光元件之间的间距可以缩小,此时间隔设置的发光元件所需配置的混光距离(发光元件到显示装置的有效显示区AA的距离)可以相应减小。
在相关技术中,厚度较厚的导光板所配置的发光元件的长、宽均约为1.7mm,所需要配置的最小混光距离约为3.6mm;而本申请中厚度较薄的导光层340所配置的发光元件的长、宽可以小于0.56mm,所需要配置的最小混光距离约为1.5mm。
图24为本公开实施例中显示装置上部分位置的另一种截面示意图。如图24所示,该显示装置不但可以包括反射式显示面板100和前置光源模组300,还可以包括触控基板500,触控基板500位于前置光源模组300远离反射式显示面板100的一侧,触控基板500通过泡棉胶带700与前置光源模组300固定,以使得显示装置具备触控功能。
另外,在一些实施例中可利用反射胶带600将侧光源400与导光层340固定,一方面可实现侧光源400与导光层340的固定,另一方面可以保证在混光过程中光线不会从导光层340的上、下表面射出,可提升光线利用率。
在一些实施例中,前置光源模组300与反射式显示面板100通过第二贴合胶层200贴合;前置光源模组300中与第二贴合胶层200相接触的部分的折射率大于第二贴合胶层200的折射率。例如,当前置光源模组300中不存在第二调光层350时,则为导光层340通过第二贴合胶层200与反射式显示面板100固定;当前置光源模组300中存在第二调光层350时,则为第二调光层350通过第二贴合胶层200与反射式显示面 板100固定。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (32)

  1. 一种前置光源模组,其特征在于,包括:
    侧光源;
    导光层,具有入光侧面,所述入光侧面与所述侧光源在第一方向上相对设置;
    第一调光层,与所述导光层在第三方向上层叠设置,所述第一调光层上远离所述导光层的一侧部分设置有多个微槽结构,所述微槽结构包括:在第一方向上相对设置的第一倾斜面和第二倾斜面,所述第一倾斜面配置为朝向所述入光侧面且相对于所述第二倾斜面更靠近于所述入光侧面,所述第一倾斜面与所述第一调光层远离所述导光层的一侧表面所处平面所呈夹角α为26°~42°,所述微槽结构的深度H为4um~15um;
    所述第一调光层的折射率大于或等于所述导光层的折射率。
  2. 根据权利要求1所述的前置光源模组,其特征在于,所述微槽结构在所述第一调光层远离所述导光层的一侧表面的开口在所述第一方向上的长度为L1
    L1与H的比值L1/H满足:L1/H≤4。
  3. 根据权利要求2所述的前置光源模组,其特征在于,L1满足L1≤80um。
  4. 根据权利要求1所述的前置光源模组,其特征在于,所述第一倾斜面为矩形,呈矩形的所述第一倾斜面的一组对边沿第二方向延伸,所述第二方向与所述第一方向和所述第三方向均相垂直;
    呈矩形的所述第一倾斜面的另一组对边的延伸方向与所述第三方向 垂直,且与所述第一方向和所述第二方向均相交。
  5. 根据权利要求3所述的前置光源模组,其特征在于,呈矩形的所述第一倾斜面上沿第二方向延伸的边的长度L2满足:L2≤80um。
  6. 根据权利要求1所述的前置光源模组,其特征在于,所述微槽结构在平行于所述第一方向且平行于所述第三方向的截面的形状包括:三角形或四边形。
  7. 根据权利要求6所述的前置光源模组,其特征在于,所述第二倾斜面为平面或曲面。
  8. 根据权利要求1所述的前置光源模组,其特征在于,在从所述入光侧面沿所述第一方向远离所述入光侧面的方向上,所述微槽结构的排布密度逐渐增大。
  9. 根据权利要求8所述的前置光源模组,其特征在于,所述第一调光层远离所述导光层的一侧表面划分有沿所述第一方向排布的多个槽结构设置区域;
    在从所述入光侧面沿所述第一方向远离所述入光侧面的方向上,所述槽结构设置区域之间的间距逐渐减小;
    所述槽结构设置区域划分为沿第二方向排布的多个矩形周期区域;所述矩形周期区域在所述第一方向上的长度为R,所述矩形周期区域在所述第二方向上的长度为Q;
    所述矩形周期区域内设置有M个所述微槽结构,M个所述微槽结构在对应的所述矩形周期区域内的均匀排布。
  10. 根据权利要求9所述的前置光源模组,其特征在于,在同一所述矩形周期区域内的M个所述微槽结构的排布满足:任意两个所述微槽结构的中心在所述第一方向上的距离均大于或等于R/M,任意两个所述微槽结构的中心在所述第二方向上的距离均大于或等于Q/M。
  11. 根据权利要求1所述的前置光源模组,其特征在于,所述侧光源包括:
    光源;
    收束结构,位于所述光源与所述入光侧面之间,配置为将所述光源所出射光线进行收束处理,且使得从所述收束结构所出射光线与第一参考平面所呈夹角θ1满足θ1≤52.4°;
    所述第一参考平面为与所述第三方向相垂直的平面。
  12. 根据权利要求11所述的前置光源模组,其特征在于,所述收束结构包括:楔形导光结构;
    所述楔形导光结构包括:第一入光面、第一出光面、第一调光面和第二调光面;
    所述第一入光面与所述第一出光面在所述第一方向上相对设置,所述第一入光面与所述第二入光面均与所述第一方向相垂直,所述第一入光面在所述第三方向上的长度为T1,所述第二入光面在所述第三方向上的长度为T2,T2>T1,所述第二入光面在所述第一入光面所处平面上的投影覆盖所述第一入光面;
    所述第一调光面和所述第二调光面在所述第三方向上相对设置,在由所述第一入光面沿所述第一方向指向所述第二入光面的方向上,所述第一调光面与所述第二调光面在所述第三方向上的间距逐渐增大;
    所述光源与所述第一入光面相对设置,所述入光侧面与所述第一出光面相对设置。
  13. 根据权利要求12所述的前置光源模组,其特征在于,所述光源包括:驱动板以及固定于所述驱动板上的发光元件,所述发光元件在所述第三方向上的长度T小于所述第一入光面在所述第三方向上的长度T1;
    所述发光元件在所述第一入光面所处平面上的正投影位于所述第一入光面所限定区域内。
  14. 根据权利要求13所述的前置光源模组,其特征在于,发光元件在所述第三方向上的长度T满足:T≤0.3mm。
  15. 根据权利要求12所述的前置光源模组,其特征在于,所述楔形导光结构与所述导光层材料相同且二者一体成型;
    所述入光侧面与所述第一出光面为同一个面。
  16. 根据权利要求10所述的前置光源模组,其特征在于,所述收束结构包括聚光透镜。
  17. 根据权利要求16所述的前置光源模组,其特征在于,所述聚光透镜远离所述光源的一侧表面在垂直于第二方向上的截面的形状为圆弧线;
    或者,所述聚光透镜远离所述光源的一侧表面在垂直于第二方向上的截面的形状为由圆弧线和线段依次交替相连所构成的曲线。
  18. 根据权利要求17所述的前置光源模组,其特征在于,所述光源包括:驱动板以及固定于所述驱动板上的发光元件,所述聚光透镜设置在所述驱动板上且覆盖所述发光元件。
  19. 根据权利要求1所述的前置光源模组,其特征在于,所述导光层远离第一调光层的一侧表面设置有多个聚光微结构,所述聚光微结构配置为对从所述导光层穿过所述聚光微结构的光线进行聚光。
  20. 根据权利要求19所述的前置光源模组,其特征在于,所述聚光微结构为形成于第一调光层的一侧表面的聚光槽,所述聚光槽沿所述第二方向延伸;
    所述聚光槽的表面在垂直于第二方向的截面的形状包括:V字形、圆弧形。
  21. 根据权利要求20所述的前置光源模组,其特征在于,所述聚光槽在所述第一方向上的长度L3满足:L3≤80um。
  22. 根据权利要求1至21中任一所述的前置光源模组,其特征在于,所述导光层远离第一调光层的一侧设置有与所述导光层在所述第一方向上层叠设置的至少一层第二调光层,所述第二调光层上设置有调光微结构,所述调光微结构配置为:对从所述导光层远离所述第一调光层的一侧表面出射且穿过所述调光微结构的光线的出光角度进行调整。
  23. 根据权利要求22所述的前置光源模组,其特征在于,从所述导光层远离所述第一调光层一侧出射的光线沿远离所述入光侧面所处平面的方向传播;
    至少一层所述第二调光层上所设置的调光微结构包括:第一调光微结构,所述第一调光微结构配置为:使得从所述导光层远离所述第一调光层的一侧表面出射且穿过所述第一调光微结构的光线仍沿远离所述入光侧面所处平面的方向传播,但光线与第三方向所呈夹角增大;
    和/或,至少一层所述第二调光层上所设置的调光微结构包括:第二调光微结构,所述第二调光微结构配置为:使得从所述导光层远离所述第一调光层的一侧表面出射且穿过所述第二调光微结构的光线仍沿远离所述入光侧面所处平面的方向传播,但光线与第三方向所呈夹角减小;
    和/或,至少一层所述第二调光层上所设置的调光微结构包括:第三调光微结构,所述第三调光微结构配置为:使得从所述导光层远离所述第一调光层的一侧表面出射且穿过所述第三调光微结构的光线沿靠近所述入光侧面所处平面的方向传播。
  24. 根据权利要求22所述的前置光源模组,其特征在于,最靠近所述导光层的所述第二调光层的折射率大于或等于所述导光层的折射率。
  25. 根据权利要求24所述的前置光源模组,其特征在于,所述第二调光层的数量大于或等于2层;
    对于任意相邻两层第二调光层,所述相邻两层第二调光层中更靠近于所述导光层的一层所述第二调光层的折射率小于或等于所述相邻两层第二调光层中另一层所述第二调光层的折射率。
  26. 根据权利要求1所述的前置光源模组,其特征在于,所述第一调光层通过第一贴合胶层与导光层相贴合,所述第一贴合胶层的折射率大于或等于所述导光层的折射率,所述第一贴合胶层的折射率小于或等于所述第一调光层的折射率。
  27. 根据权利要求1至26中任一所述的前置光源模组,其特征在于,所述第一调光层的材料包括纳米压印材料。
  28. 一种显示装置,其特征在于,包括:反射式显示面板和如上述权利要求1至27中任一所述的前置光源模组,所述前置光源模组位于所述反射式显示面板的出光面。
  29. 根据权利要求28所述的显示装置,其特征在于,所述反射式显示面板包括沿第一方向和第二方向呈阵列排布的多个亚像素区,每个所述亚像素区在所述第一方向上的长度为L0
    所述微槽结构在所述第一方向上的长度小于或等于2/3*L0,且所述微槽结构在所述第二方向上的长度小于或等于2/3*L0
  30. 根据权利要求29所述的显示装置,其特征在于,所述导光层远离第一调光层的一侧表面设置有多个聚光微结构,所述聚光微结构配置为对从所述导光层穿过所述聚光微结构的光线进行聚光;
    所述聚光微结构在所述第一方向上的长度小于或等于2/3*L0
  31. 根据权利要求29所述的显示装置,其特征在于,所述导光层远离第一调光层的一侧设置有与所述导光层在所述第一方向上层叠设置的至少一层第二调光层,所述第二调光层上设置有调光微结构,所述调光微结构配置为:对从所述导光层远离所述第一调光层的一侧表面出射且穿过所述调光微结构的光线的出光角度进行调整;
    所述调光微结构在所述第一方向上的长度小于或等于2/3*L0
  32. 根据权利要求28至31中任一所述的显示装置,其特征在于,所述前置光源模组与所述反射式显示面板通过第二贴合胶层贴合;
    所述前置光源模组中与所述第二贴合胶层相接触的部分的折射率大于所述第二贴合胶层的折射率。
PCT/CN2023/110351 2022-09-27 2023-07-31 前置光源模组和显示装置 WO2024066721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211183113.0A CN117826309A (zh) 2022-09-27 2022-09-27 前置光源模组和显示装置
CN202211183113.0 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024066721A1 true WO2024066721A1 (zh) 2024-04-04

Family

ID=90475972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110351 WO2024066721A1 (zh) 2022-09-27 2023-07-31 前置光源模组和显示装置

Country Status (2)

Country Link
CN (1) CN117826309A (zh)
WO (1) WO2024066721A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054258A1 (en) * 2000-11-08 2002-05-09 Nitto Denko Corporation Optical film and reflective liquid-crystal display device
CN1834754A (zh) * 2005-03-16 2006-09-20 欧姆龙株式会社 双面显示装置及面光源装置
CN110967869A (zh) * 2019-12-13 2020-04-07 京东方科技集团股份有限公司 一种前置光源、使用方法以及显示装置
CN112987410A (zh) * 2021-04-16 2021-06-18 京东方科技集团股份有限公司 一种前置光源及显示装置
CN113050328A (zh) * 2021-03-15 2021-06-29 合肥京东方光电科技有限公司 前置模组和显示装置
CN113311530A (zh) * 2021-06-23 2021-08-27 北京京东方光电科技有限公司 一种光源组件及显示装置
CN113763806A (zh) * 2020-06-01 2021-12-07 四川龙华光电薄膜股份有限公司 反射式显示装置及其前置光源模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054258A1 (en) * 2000-11-08 2002-05-09 Nitto Denko Corporation Optical film and reflective liquid-crystal display device
CN1834754A (zh) * 2005-03-16 2006-09-20 欧姆龙株式会社 双面显示装置及面光源装置
CN110967869A (zh) * 2019-12-13 2020-04-07 京东方科技集团股份有限公司 一种前置光源、使用方法以及显示装置
CN113763806A (zh) * 2020-06-01 2021-12-07 四川龙华光电薄膜股份有限公司 反射式显示装置及其前置光源模块
CN113050328A (zh) * 2021-03-15 2021-06-29 合肥京东方光电科技有限公司 前置模组和显示装置
CN112987410A (zh) * 2021-04-16 2021-06-18 京东方科技集团股份有限公司 一种前置光源及显示装置
CN113311530A (zh) * 2021-06-23 2021-08-27 北京京东方光电科技有限公司 一种光源组件及显示装置

Also Published As

Publication number Publication date
CN117826309A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
KR100657914B1 (ko) 프리즘 시트 및 이를 채용한 백라이트 유니트
CN100437273C (zh) 前光源及电子设备
JP4900439B2 (ja) 面状光源装置およびこれを用いた表示装置
US8388207B2 (en) Illuminating device and display device having the same
JP4672006B2 (ja) バックライトユニットおよび液晶表示装置
WO2011065052A1 (ja) 面状照明装置およびそれを備えた表示装置
KR20030085590A (ko) 전면발광 터치 패널
WO2006085526A1 (ja) 導光板、これを用いる面状照明装置および液晶表示装置
KR20100066001A (ko) 표시 장치
JP2010531045A (ja) バックライト出力特性を制御するシステム及び方法
WO2020192300A1 (zh) 光学准直组件、背光模组及显示装置
WO2007029433A1 (ja) 透明基板、照明装置、及び液晶表示装置
JP2000249837A (ja) 導光板
TW201932891A (zh) 導光膜及具有該導光膜的背光模組
WO2021213514A1 (zh) 一种侧入式背光模组、液晶显示装置
TW201915982A (zh) 拼接顯示裝置
TWM604898U (zh) 背光模組及顯示裝置
US20240192430A1 (en) Area light source device and flat panel display device
TW201215965A (en) Edge lighting back light module
TWI729951B (zh) 電子裝置
WO2024066721A1 (zh) 前置光源模组和显示装置
JP2007200736A (ja) 照明装置、電気光学装置及び電子機器
CN219799824U (zh) 前置光源模组和显示装置
US20240045257A1 (en) Viewing angle diffusion film and display device
CN206523723U (zh) 内置光源的显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869967

Country of ref document: EP

Kind code of ref document: A1