WO2024066710A1 - 空调器及其控制方法 - Google Patents

空调器及其控制方法 Download PDF

Info

Publication number
WO2024066710A1
WO2024066710A1 PCT/CN2023/109685 CN2023109685W WO2024066710A1 WO 2024066710 A1 WO2024066710 A1 WO 2024066710A1 CN 2023109685 W CN2023109685 W CN 2023109685W WO 2024066710 A1 WO2024066710 A1 WO 2024066710A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
user
preset
heat exchange
parameter
Prior art date
Application number
PCT/CN2023/109685
Other languages
English (en)
French (fr)
Inventor
李书佳
黄罡
付述杨
匡帅
曹师增
孙升华
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024066710A1 publication Critical patent/WO2024066710A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the technical field of air conditioner design, and in particular to an air conditioner and a control method thereof.
  • the air conditioner of the prior art can be used by the user by actively presetting the temperature, operating mode and function settings, but the air conditioner cannot adapt to the different states of the user. Whether the air conditioner is turned on or has been running for a period of time, the user still needs to adjust the various operating parameters of the air conditioner by himself, resulting in a poor user experience. At the same time, the user can only manually adjust the operating parameters of the air conditioner by feeling, resulting in the operating parameters of the air conditioner cannot accurately match the actual needs of the user, which again reduces the user's experience.
  • An object of the present invention is to provide an air conditioner and a control method thereof which can solve at least one technical defect in the prior art.
  • a further object of the present invention is to enable the air conditioner to adjust operating parameters according to the user's status to improve the user experience.
  • Another further object of the present invention is to enable the operating parameters adjusted by the air conditioner to more accurately match the needs of the user.
  • the present invention provides a method for controlling an air conditioner, comprising:
  • step of adjusting the operating parameters of the air conditioner according to the life vitality parameter includes:
  • the air conditioner is controlled to operate according to preset operating parameters corresponding to the life vitality parameters.
  • the operating parameters include a preset temperature and a wind speed of the fresh air flow.
  • the preset temperature decreases as the preset life energy parameter increases in a stepwise manner; and/or,
  • the wind speed of the fresh air flow decreases as the preset vitality parameter increases in a step-by-step manner.
  • the operating parameters also include the outlet mode of the heat exchange airflow and the wind speed of the heat exchange airflow.
  • the air outlet mode of the heat exchange airflow is a forward horizontal blowing anti-direct blowing mode;
  • the wind speed of the heat exchange airflow is a preset low speed value;
  • the wind outlet mode of the heat exchange airflow is a sweeping mode of left and right sweeping and up and down sweeping;
  • the wind speed of the heat exchange airflow is an automatic wind speed value determined according to the temperature of the indoor space and the temperature of the outdoor space; wherein the maximum threshold of the first preset range is less than or equal to the minimum threshold of the second preset range.
  • the step of calculating the user's vitality parameter according to the sleep index, physiological parameters and personal information includes:
  • the user's life vitality parameters are calculated based on the sleep index, physiological parameters and personal information using a preset algorithm relationship.
  • personal information includes age and gender; and,
  • the vital energy parameter increases with the increase of the sex coefficient preset according to the sex;
  • the vital energy parameters increased with the increase of sleep index
  • the sleep index includes the user's most recent sleep duration or an average of multiple sleep durations of the user.
  • the physiological parameter includes at least one of blood oxygen saturation, blood pressure, pulse, heart rate, body surface temperature, and respiratory rate.
  • the present invention also provides an air conditioner, comprising:
  • An acquisition device used to acquire a user's sleep index and a user's physiological parameters
  • the controller includes a memory and a processor, wherein the memory stores a machine executable program, and when the machine executable program is executed by the processor, the control method of the air conditioner is implemented.
  • the acquisition device includes a wearable monitoring device or a medical monitoring device
  • the air conditioner also includes:
  • a heat exchange fan used for providing a heat exchange airflow with adjustable wind speed
  • a fresh air fan is used to provide a fresh air flow with adjustable wind speed
  • the air guide plate assembly is used to adjust the air outlet pattern of the heat exchange airflow.
  • the control method of the air conditioner of the present invention can obtain the user's personal information, sleep index and physiological parameters of the user, calculate the user's vitality parameters based on the user's personal information, sleep index and physiological parameters of the user, and adjust the operating parameters of the air conditioner based on the vitality parameters. Therefore, the control method of the air conditioner of the present invention can adjust its own operating parameters according to the user's state without the user manually adjusting the operating parameters of the air conditioner, thereby improving the user experience. At the same time, compared with the user manually adjusting the operating parameters of the air conditioner, the control method avoids the situation where the user adjusts the operating parameters of the air conditioner by feeling, and thus the control method ensures the accuracy of the matching between the user's needs and the operating parameters of the air conditioner.
  • the control method of the air conditioner of the present invention since the sleep index and physiological parameters can show the current state of the user on different types of users, and then, the vitality parameters calculated according to the sleep index, physiological parameters and personal information are more in line with or appropriate to the current state of the user. Therefore, the operating parameters of the air conditioner adjusted according to the vitality parameters by the control method are more in line with the needs of the user, ensuring the user's experience of using the air conditioner. For example, when the user's sleep index or physiological parameters are low, the user's current state is not good. At this time, the user does not actually need a too low indoor temperature.
  • the control method can increase the preset temperature parameters of the air conditioner to make the user feel comfortable; for another example, when the user's sleep index or physiological parameters are high, the user's current state is full of vitality. If the indoor temperature is high, it will feel hot.
  • the control method can reduce the preset temperature parameters of the air conditioner to make the user feel comfortable.
  • the air conditioner of the present invention can implement the above control method, so the air conditioner of the present invention also has the beneficial technical effects of the above control method.
  • FIG1 is a schematic diagram of a three-dimensional structure of an air conditioner according to an embodiment of the present invention.
  • FIG2 is a second schematic diagram of the three-dimensional structure of an air conditioner according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an air conditioner according to an embodiment of the present invention.
  • FIG4 is a schematic block diagram of connectivity of an air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • FIG6 is a schematic flow chart of adjusting operating parameters of an air conditioner according to life vitality parameters in a method for controlling an air conditioner according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of the features, that is, include one or more of the features.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “disposed”, “connected” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • a person skilled in the art should be able to understand the specific meanings of the above terms in the present invention according to the specific circumstances.
  • the first feature “above” or “below” the second feature may include the first and second features being in direct contact, or the first and second features being in contact not directly but through another feature between them. That is, in the description of this embodiment, the first feature being “above”, “above” and “above” the second feature includes the first feature being directly above the second feature.
  • the first feature being “below”, “below”, or “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • the description with reference to the terms “embodiment”, “implementation method”, etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described can be combined in any one or more embodiments or examples in a suitable manner.
  • Figure 1 is one of the three-dimensional structural schematic diagrams of an air conditioner according to an embodiment of the present invention
  • Figure 2 is a second three-dimensional structural schematic diagram of an air conditioner according to an embodiment of the present invention, wherein Figure 2 hides the air guide plate and the left side plate and front panel of the housing on the basis of Figure 1
  • Figure 3 is a cross-sectional schematic diagram of an air conditioner according to an embodiment of the present invention
  • Figure 4 is a schematic block diagram of connectivity of an air conditioner according to an embodiment of the present invention.
  • the air conditioner can be an indoor unit of a split air conditioner, such as a wall-mounted air conditioner indoor unit, or a cabinet unit, or an integrated air conditioner, or other forms of air conditioners, but for the convenience of describing this embodiment, the following embodiments and the referenced drawings will be described by taking the indoor unit of a split wall-mounted air conditioner as an example, and should not be considered to limit the protection scope of the present invention.
  • the air conditioner includes a housing 100 and an air inlet 110 and a heat exchange outlet 120 provided on the housing 100.
  • the air conditioner further includes a heat exchange duct 130, a heat exchange fan 210 and a heat exchanger 220, the heat exchange duct 130, the heat exchange fan 210 and the heat exchanger 220 are all arranged in the housing 100, and the two ends of the heat exchange duct 130 are respectively connected to the air inlet 110 and the heat exchange outlet 120, the heat exchange fan 210 and the heat exchanger 220 are both arranged in the heat exchange duct 130, and the heat exchange fan 210 is used to provide a heat exchange airflow with adjustable wind speed.
  • the heat exchange fan 210 is used to introduce the airflow in the indoor space from the air inlet 110 into the heat exchange duct 130 in the housing 100, and guide the airflow to flow through the heat exchanger 220 to exchange heat with the heat exchanger 220 to form a heat exchange airflow, and then discharge it from the heat exchange outlet 120 to the indoor space.
  • the wind speed of the heat exchange airflow changes with the rotation speed of the heat exchange fan 210, so that the heat exchange fan 210 can provide a heat exchange airflow with adjustable wind speed.
  • the heat exchange fan 210 may be a cross-flow fan, and the heat exchange fan 210 may be driven to rotate by providing a heat exchange fan 320.
  • the heat exchange air duct 130 may be configured as a relatively closed irregular space structure formed by the housing 100 or various components provided in the housing 100.
  • the air conditioner further includes a fresh air system, which includes a fresh air fan (not shown), a fresh air outlet provided on the housing 100, and a ventilation pipe 250 connected to and extending to the outdoor space.
  • the fresh air fan is provided in the housing 100, and may also be provided in the outdoor unit casing of a split air conditioner, and the fresh air fan introduces the airflow in the outdoor space into the housing 100 through the ventilation pipe 250.
  • the wind speed of the fresh air flow changes with the rotation speed of the fresh air fan, and the fresh air fan can provide a fresh air flow with adjustable wind speed.
  • the fresh air fan may be a centrifugal fan, and the fresh air fan may be driven to rotate by providing a fresh air blower 330 .
  • the fresh air outlet and the heat exchange outlet 120 can be one outlet, and the fresh air flow sucked into the housing 100 by the fresh air fan can be guided into the heat exchange duct 130 to mix with the air flow flowing in from the air inlet 110 through the connecting air duct 260.
  • the fresh air flow can be guided to mix before the air flow flowing in from the air inlet 110 and the heat exchanger 220 perform heat exchange, and then the heat exchange fan 210 is also used to promote the fresh air flow and the air flow flowing in from the air inlet 110 to perform heat exchange with the heat exchanger 220 to form a heat exchange air flow, and then discharged from the heat exchange outlet 120 to the indoor space, so as to achieve various air mixing effects and ensure the comfort of users.
  • the fresh air fan can also directly discharge the fresh air flow introduced into the shell 100 into the indoor space through the fresh air outlet without exchanging heat with the heat exchanger 220 or mixing with the air flow flowing into the heat exchange duct 130 from the air inlet 110.
  • the air conditioner further comprises an air guide component, which is used to adjust the air outlet mode of the heat exchange airflow.
  • the air guide assembly includes an air guide plate 230 and a swing blade 240.
  • the air guide plate 230 is disposed at the heat exchange air outlet 120
  • the swing blade 240 is disposed at a position of the heat exchange air duct 130 close to the heat exchange air outlet 120.
  • the air guide plate 230 can guide the air outlet direction of the heat exchange airflow in the vertical direction
  • the swing blade 240 can guide the air outlet direction of the heat exchange airflow in the horizontal direction, thereby adjusting the air outlet mode of the heat exchange airflow.
  • the air outlet mode can be an anti-direct blowing mode that guides the heat exchange airflow to blow forward horizontally, which can be achieved by rotating the air guide plate 230 to a horizontal state; the air outlet mode can also be a sweeping mode that guides the heat exchange airflow to sweep left and right and up and down.
  • the mode can be realized by, specifically, rotating the air guide plate 230 between a position closing the heat exchange air outlet 120 and a position fully opening the heat exchange air outlet 120 .
  • the air guide plate 230 and the swing blade 240 can realize respective rotation through a plurality of air guide motors 340 connected respectively.
  • the air guide assembly includes a first air guide plate 231, a second air guide plate 232 and a swing blade 240. Furthermore, the first air guide plate 231 and the second air guide plate 232 are arranged at the heat exchange air outlet 120, the first air guide plate 231 and the second air guide plate 232 can jointly close the heat exchange air outlet 120, and the first air guide plate 231 is located above the second air guide plate 232, and the swing blade 240 is arranged in the air outlet duct of the air conditioner.
  • the first air guide plate 231 and the second air guide plate 232 can guide the air outlet direction of the heat exchange airflow in the vertical direction, and the swing blade 240 can guide the air outlet direction of the heat exchange airflow in the horizontal direction, thereby realizing the adjustment of the air outlet mode of the heat exchange airflow.
  • the air outlet mode can be an anti-direct blowing mode for guiding the heat exchange airflow to blow forward horizontally, and specifically, it can be achieved by rotating the second air guide plate 232 to a horizontal position; the air outlet mode can also be a sweeping mode for guiding the heat exchange airflow to sweep left and right and up and down, and it can be achieved by rotating the first air guide plate 231 and/or the second air guide plate 232 between a position closing the heat exchange air outlet 120 and a position fully opening the heat exchange air outlet 120.
  • first air guide plate 231, the second air guide plate 232 and the swing blade 240 can realize respective rotations through a plurality of air guide motors 340 connected respectively.
  • the air conditioner includes an acquisition device 310, and the acquisition device 310 can be used to acquire the user's sleep index and the user's physiological parameters.
  • the acquisition device 310 can also be used to acquire personal information of the user who uses the air conditioner.
  • the acquisition device 310 may be a wearable monitoring device, such as a smart watch, a smart bracelet, a smart eye mask, or a smart massager.
  • the acquisition device 310 may be a medical monitoring device, such as a blood oximeter, a blood pressure monitor, a pulse heart rate detector, a human body temperature sensor, or a respiratory monitor.
  • a medical monitoring device such as a blood oximeter, a blood pressure monitor, a pulse heart rate detector, a human body temperature sensor, or a respiratory monitor.
  • the air conditioner further includes a first temperature sensor and a second temperature sensor, wherein the first temperature sensor is used to obtain the ambient temperature of the indoor space, and the second temperature sensor is used to obtain the ambient temperature of the outdoor space.
  • the first temperature sensor may be arranged on the housing of the indoor unit of the air conditioner, preferably on the outside of the housing; and the second temperature sensor may be arranged on the housing of the outdoor unit of the air conditioner, preferably on the outside of the housing.
  • the air conditioner further includes a controller 400, which includes The memory 410 and the processor 420, wherein the memory 410 stores a machine executable program 411, and the machine executable program 411 implements the control method of the air conditioner of the following embodiment when executed by the processor 420. Therefore, the air conditioner of this embodiment can have the beneficial technical effects possessed by the control method of the following embodiment.
  • the heat exchange fan 320, the fresh air fan 330, the air guide motor 340, the acquisition device 310, the first temperature sensor and the second temperature sensor are connected to the controller 400 through electrical communication.
  • the electrical communication connection between the heat exchange fan 320, the fresh air fan 330, the air guide motor 340, the acquisition device 310, the first temperature sensor and the second temperature sensor and the controller 400 can be realized through wireless communication technology
  • the electrical communication connection between the heat exchange fan 320, the fresh air fan 330, the air guide motor 340 and the acquisition device 310, the first temperature sensor and the second temperature sensor and the controller 400 can also be realized through wired communication technology.
  • Figure 5 is a schematic flow chart of the control method of the air conditioner according to an embodiment of the present invention
  • Figure 6 is a schematic flow chart of adjusting the operating parameters of the air conditioner according to the vitality parameter in the control method of the air conditioner according to an embodiment of the present invention.
  • control method of the air conditioner includes:
  • Step S502 obtaining personal information of the user who uses the air conditioner.
  • the control method of this embodiment can obtain the user's personal information by asking for personal information, and store the personal information fed back by the user in a storage device.
  • the personal information of the user using the air conditioner can be obtained by the acquisition device 310.
  • the query information of the personal information can be sent to the acquisition device 310, and the feedback information is received after the user edits the operation on the acquisition device 310, and the feedback personal information is stored in the control or the storage unit of the acquisition device 310; for another example, the user's personal information can be obtained by a mobile terminal with control authority of the air conditioner.
  • the query information of the personal information can be sent to the mobile terminal, and the feedback information is received after the user edits the operation on the mobile terminal, and the feedback personal information is stored in the control or the storage unit of the mobile terminal, and the mobile terminal can be an app (application software, application) on a mobile phone, or a remote control.
  • the control method of this embodiment can obtain the user's personal information by asking for personal information, and store the personal information fed back by the user in a storage device.
  • the user's personal information can also be obtained by detection.
  • the user's facial features can be collected, and the user's personal information can be further detected and determined by image analysis of the user's facial features.
  • Collect the user's voice information and further detect and judge the user's personal information by analyzing the user's voice information.
  • personal information may include age and gender.
  • Step S504 obtaining the user's sleep index and the user's physiological parameters.
  • the user's sleep index and the user's physiological parameters can be obtained through the acquisition device 310 in the air conditioner of the above embodiment, which will not be described in detail here.
  • the user's sleep index may include the user's most recent sleep duration or the average of multiple sleep durations of the user.
  • the physiological parameter may include at least one of blood oxygen saturation, blood pressure, pulse, heart rate, body surface temperature, and respiratory rate.
  • Step S506 calculating the user's vitality parameter according to the sleep index, physiological parameters and personal information.
  • the vitality parameter is a parameter that characterizes the user's physical strength, energy, spirit and/or state
  • the vitality parameter can be understood as vitality combat power
  • the specific value of the vitality combat power can be the vitality value
  • the vitality parameter or vitality combat power is a parameter that can characterize multiple levels of physical strength, energy, spirit and/or state of the human body, including weakness, fatigue, full of vitality, strong and explosive.
  • Step S508 adjusting the operating parameters of the air conditioner according to the life vitality parameters.
  • control method of the air conditioner of this embodiment can obtain the user's personal information, sleep index and physiological parameters of the user, and calculate the user's vitality parameters based on the user's personal information, sleep index and physiological parameters of the user, and adjust the operating parameters of the air conditioner according to the vitality parameters. Therefore, the control method of the air conditioner of this embodiment can adjust its own operating parameters according to the user's state without the user manually adjusting the operating parameters of the air conditioner, thereby improving the user experience. At the same time, compared with the user manually adjusting the operating parameters of the air conditioner, the control method of this embodiment avoids the situation where the user adjusts the operating parameters of the air conditioner by feeling, and thus the control method ensures the accuracy of the matching between the user's needs and the operating parameters of the air conditioner.
  • the control method of this embodiment adjusts the operating parameters of the air conditioner based on the vitality parameters to better meet the needs of the user and ensure the user's experience of using the air conditioner. For example, when the user's sleep index or physiological parameters are low, the user's current state is not good. At this time, the user does not actually need a too low indoor temperature.
  • This control method can increase the air conditioner's operating parameters.
  • the preset temperature parameters of the air conditioner make the user feel comfortable. For example, when the user's sleep index or physiological parameters are high, the user's current state is full of energy. If the indoor temperature is high, he will feel hot. This control method can lower the preset temperature parameters of the air conditioner, thereby making the user feel comfortable.
  • step S508 adjusting the operating parameters of the air conditioner according to the life vitality parameter includes:
  • Step S602 obtaining the corresponding relationship between the preset life vitality parameter and the preset operation parameter.
  • the corresponding relationship can be a corresponding relationship obtained by a technician through experimental testing. For example, by testing experimental volunteers to experience different operating parameters of the air conditioner under the same vitality parameter, find the operating parameter that can make the user experience comfortable, and determine the correspondence between the operating parameter and the vitality parameter. By increasing the sleep duration, adjusting the breath, or changing the way the experimental volunteers are tested, the vitality parameter is changed and the above test is repeated, and the corresponding relationship between different vitality parameters and operating parameters is measured one by one, and the corresponding relationship is pre-stored in the controller 400.
  • Step S604 determining preset operating parameters corresponding to the life vitality parameters according to the corresponding relationship.
  • Step S606 controlling the air conditioner to operate according to preset operating parameters corresponding to the life vitality parameters.
  • the operating parameters include a preset temperature and a wind speed of the fresh air flow; and the corresponding relationship is expressed as: the preset temperature decreases as the preset vitality parameter increases in a step-by-step manner; and/or, and/or, the wind speed of the fresh air flow decreases as the preset vitality parameter increases in a step-by-step manner.
  • the corresponding relationship is manifested as a step-by-step increase in the preset vitality parameters, indicating that the user's vitality/energy, etc. are changing in a positive direction. Then, the preset temperature can be lowered and/or the wind speed of the fresh air flow can be lowered to avoid the user's feeling of heat, ensuring that the environment of the indoor space where the air conditioner works can adapt to the user, thereby ensuring the user experience.
  • the corresponding relationship can also be manifested as a step-by-step decrease in the preset vitality parameters, indicating that the user's vitality/energy, etc. are changing in a negative direction.
  • the preset temperature can be increased and/or the wind speed of the fresh air flow can be increased, so that the temperature of the indoor space is adjusted in a warm direction, maintaining the user's body temperature, and allowing the outdoor fresh air flow to quickly enter the indoor space to improve the user's vitality parameters.
  • the step-by-step increase in the preset vitality parameters can be understood as the preset vitality parameters being within the previous range value.
  • the maximum threshold value is less than or equal to the minimum threshold value in the latter range value of the preset vitality parameter.
  • fresh air flow and the wind speed of the fresh air flow can be provided and adjusted by the fresh air fan in the air conditioner of the above embodiment, which will not be described in detail here.
  • the operating parameters also include the air outlet mode of the heat exchange airflow and the wind speed of the heat exchange airflow; and the corresponding relationship is expressed as follows: within the first preset range of the preset vitality parameters, the air outlet mode of the heat exchange airflow is a forward blowing anti-direct blowing mode; the wind speed of the heat exchange airflow is a preset low speed value; within the second preset range of the preset vitality parameters, the air outlet mode of the heat exchange airflow is a sweeping mode of sweeping left and right and sweeping up and down; the wind speed of the heat exchange airflow is an automatic wind speed value determined according to the temperature of the indoor space and the temperature of the outdoor space; wherein the maximum threshold value of the first preset range is less than or equal to the minimum threshold value of the second preset range.
  • the corresponding relationship in this embodiment can be understood as that the user's vitality parameter changes in a positive direction from the first preset range to the second preset range, and then the anti-direct blowing mode can be switched to the left and right sweeping mode and the up and down sweeping mode, and the wind speed of the heat exchange airflow can be switched from the preset low speed value to the automatic wind speed value, so that the heat exchange airflow of the air conditioner can act on the indoor space quickly, so that the temperature of the indoor space changes quickly, avoiding the user's feeling of dryness and heat, and ensuring that the environment of the indoor space where the air conditioner acts can adapt to the user, and thus ensuring the user experience.
  • the corresponding relationship can also be understood as that the user's vitality parameter changes from the second preset range to the first preset range, and then the user's vitality parameter changes in a worse direction, and then the left and right sweeping mode and the up and down sweeping mode can be switched to the anti-direct blowing mode to avoid the heat exchange airflow blowing directly to the user, so that the user will not feel the heat exchange airflow blowing directly; and the wind speed of the heat exchange airflow is adjusted from the automatic wind speed value to the preset low speed value, so that the heat exchange airflow is adjusted in a gentle direction, so that the user can bear the current wind speed of the heat exchange airflow. Then the user's vitality parameter can be guaranteed and the user experience can be improved.
  • the air outlet pattern of the heat exchange airflow can be achieved by the air guide component in the air conditioner of the above embodiment; and the heat exchange airflow and the wind speed of the heat exchange airflow can be provided and adjusted by the heat exchange fan 210 in the air conditioner of the above embodiment; the temperature of the indoor space and the temperature of the outdoor space can be obtained respectively by the first temperature sensor and the second temperature sensor in the air conditioner of the above embodiment.
  • the preset low speed value is the preset wind speed value when the air conditioner is running at a low wind gear, that is, the adjustable wind speed range of the air conditioner can be divided or set in advance to a high wind gear, a medium wind gear and a low wind gear.
  • the wind speed value of the low wind gear is smaller than the wind speed value of the medium wind gear, and the wind speed value of the medium wind gear is smaller than the wind speed value of the high wind gear. Therefore, the wind speed of the heat exchange airflow can be adjusted to a preset low speed value within the first preset range of the preset vitality parameters.
  • the preset temperature is the first preset temperature value
  • the wind speed of the heat exchange airflow is the first preset flow rate value
  • the air outlet mode of the heat exchange airflow is the forward horizontal blowing anti-direct blowing mode
  • the wind speed of the fresh air flow is the first preset flow rate value
  • the preset temperature is the second preset temperature value
  • the wind speed of the heat exchange airflow is the second preset flow rate value
  • the air outlet mode of the heat exchange airflow is the forward horizontal blowing anti-direct blowing mode
  • the wind speed of the fresh air flow is the second preset flow rate value
  • the preset temperature is the third preset temperature value
  • the wind speed of the heat exchange airflow is the third preset flow rate value
  • the air outlet mode of the heat exchange airflow is a left-right sweeping mode and an up-and-down sweeping mode
  • the wind speed of the fresh air flow is the third preset flow rate value
  • the preset temperature is the fourth preset temperature value
  • the wind speed of the heat exchange airflow is the fourth preset flow rate value
  • the air outlet mode of the heat exchange airflow is a left-right sweeping mode and an up-and-down sweeping mode
  • the wind speed of the fresh air flow is the fourth preset flow rate value
  • the first preset value is less than the second preset value
  • the second preset value is less than the third preset value
  • the third preset value is less than the fourth preset value
  • the first preset temperature value is greater than the second preset temperature value
  • the second preset temperature value is greater than the third preset temperature value
  • the third preset temperature value is greater than the fourth preset temperature value
  • the first preset flow rate value is less than the second preset flow rate value
  • the second preset flow rate value is less than the third preset flow rate value
  • the third preset flow rate value is less than the fourth preset flow rate value
  • the first predetermined flow rate value is less than the second predetermined flow rate value
  • the second predetermined flow rate value is less than the third predetermined flow rate value
  • the third predetermined flow rate value is less than the fourth predetermined flow rate value.
  • the corresponding relationship may be:
  • the preset temperature is the first preset temperature value
  • the wind speed of the heat exchange airflow is the preset low speed value
  • the air outlet mode of the heat exchange airflow is the forward horizontal blowing anti-direct blowing mode
  • the wind speed of the fresh air flow is the first predetermined flow rate value
  • the preset temperature is the second preset temperature value
  • the wind speed of the heat exchange airflow is the preset low speed value
  • the air outlet mode of the heat exchange airflow is the forward horizontal blowing anti-direct blowing mode
  • the wind speed of the fresh air flow is the first preset flow rate value
  • the preset temperature is the third preset temperature value
  • the wind speed of the heat exchange airflow is the automatic wind speed value determined according to the temperature of the indoor space and the temperature of the outdoor space
  • the air outlet mode of the heat exchange airflow is left-right sweeping and up-down sweeping.
  • the wind speed of the fresh air flow is a second predetermined flow speed value
  • the preset temperature is the fourth preset temperature value
  • the wind speed of the heat exchange airflow is the automatic wind speed value determined according to the temperature of the indoor space and the temperature of the outdoor space
  • the air outlet mode of the heat exchange airflow is a left-right sweeping mode and an up-and-down sweeping mode
  • the wind speed of the fresh air flow is the second preset flow rate value
  • the first preset value is less than the second preset value
  • the second preset value is less than the third preset value
  • the third preset value is less than the fourth preset value
  • the first preset temperature value is greater than the second preset temperature value
  • the second preset temperature value is greater than the third preset temperature value
  • the third preset temperature value is greater than the fourth preset temperature value
  • the first preset flow rate value is less than the second preset flow rate value.
  • the first preset value may be 60
  • the second preset value may be 75
  • the third preset value may be 85
  • the fourth preset value may be 100.
  • the preset vitality parameter when the preset vitality parameter is less than the first preset value, it can be reflected that the user is weak at the moment; when the preset vitality parameter is greater than or equal to the first preset value and less than the second preset value, it can be reflected that the user is tired at the moment; when the preset vitality parameter is greater than or equal to the second preset value and less than the third preset value, it can be reflected that the user is strong at the moment; when the preset vitality parameter is greater than or equal to the third preset value and less than the fourth preset value, it can be reflected that the user is over the top at the moment.
  • the third preset temperature value can be set as the standard temperature value, and the difference between two adjacent preset temperature values can be 1°C.
  • the preset temperature of the air conditioner can be adjusted by increasing or decreasing the difference on the basis of the standard temperature value, thereby realizing automatic adjustment of the preset temperature, thereby improving the intelligence of the air conditioner.
  • the step of calculating the user's vitality parameter according to the sleep index, physiological parameters and personal information includes:
  • the user's life vitality parameters are calculated based on the sleep index, physiological parameters and personal information using a preset algorithm relationship.
  • the preset algorithm relationship can be obtained by technicians through repeated deliberation and verification through a large number of calculations and experimental tests of the above corresponding relationships. Then, by calculating the user's vitality parameters according to the sleep index, physiological parameters and personal information through the preset algorithm relationship, it can be ensured that the vitality parameters are more in line with the user's current state, thereby ensuring the accuracy of matching the operating parameters of the air conditioner with the actual needs of the user. And the preset algorithm relationship can be pre-stored in the controller 400. In the process of executing the above calculation steps, the controller 400 calculates the sleep index, physiological parameters and personal information according to the logic of the preset algorithm relationship and obtains the vitality parameters.
  • the vitality parameter increases with the increase of the gender coefficient preset according to the gender; the vitality parameter increases with the increase of the age; the vitality parameter increases with the increase of the sleep index; the vitality parameter increases with the increase of the physiological parameter.
  • the gender coefficient of boys is greater than that of girls.
  • the gender coefficient increases, the age increases, the sleep index increases and/or the physiological parameters increase, the vitality parameter increases, indicating that the user's vitality is better, and the physical strength, energy, spirit and/or state are stronger.
  • is the life energy parameter or vitality combat power
  • D is the sleep index
  • X1 is the sleep coefficient determined based on the sleep index
  • E is the physiological parameter
  • X2 is the physiological coefficient determined based on the physiological parameter
  • A0 is age
  • G0 is the gender coefficient. When the gender is male, G0 is 1; when the gender is female, G0 is 0.9.
  • the sleep coefficient can be determined based on the sleep index, and the sleep coefficient may be different depending on its meaning. For example, when the sleep index is the length of the most recent sleep, the sleep coefficient may be 0.4; similarly, when the physiological parameter is blood pressure, the physiological parameter is 0.4.
  • is the life energy parameter or vitality combat power
  • S0 is the most recent sleep duration
  • B0 blood pressure
  • A0 is age
  • G0 is the gender coefficient. When the gender is male, G0 is 1; when the gender is female, G0 is 0.9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器及其控制方法,空调器的控制方法包括:获取使用所述空调器的用户的个人信息;获取所述用户的睡眠指数和所述用户的生理参数;根据所述睡眠指数、所述生理参数和所述个人信息计算所述用户的生命活力参数;根据所述生命活力参数调节所述空调器的运行参数。该空调器的控制方法无需用户自己手动调节空调器的运行参数就能够根据用户的状态调整自身的运行参数,提升了用户体验。并且相比用户手动调节空调器的运行参数,本控制方法避免了用户靠感觉调节空调器的运行参数的情况的出现,保证了用户的需求与空调器运行参数的匹配的精准性。

Description

空调器及其控制方法 技术领域
本发明涉及空调器设计技术领域,特别是涉及一种空调器及其控制方法。
背景技术
随着科学技术的发展,用户对于空调器功能的需求越来越多样化。其中,空调器的舒适性体验感是用户特别看重的一点。
目前,现有技术的空调器,可以通过用户主动预设温度、运行模式及功能的设定来使用空调器,但空调器无法适应用户的不同状态,无论在空调器开机时还是已经运行一段时间,仍然需要用户自己来调节空调器的各种运行参数,导致用户的体验不佳。同时,用户只能靠感觉手动调节空调器的运行参数,导致空调器的运行参数无法精准地和用户的实际需求匹配,再次降低了用户的使用体验。
发明内容
本发明的一个目的是要提供一种能够解决现有技术中至少一个技术缺陷的空调器及其控制方法。
本发明一个进一步的目的是要使得空调器能够根据用户的状态来调节运行的参数,提升用户体验。
本发明另一个进一步的目的是要使得空调器调节的运行参数可以更精准地匹配用户的需求。
特别地,本发明提供了一种空调器的控制方法,其包括:
获取使用空调器的用户的个人信息;
获取用户的睡眠指数和用户的生理参数;
根据睡眠指数、生理参数和个人信息计算用户的生命活力参数;
根据生命活力参数调节空调器的运行参数。
进一步地,根据生命活力参数调节空调器的运行参数的步骤包括:
获取预设的生命活力参数与预设的运行参数的对应关系;
根据对应关系确定与生命活力参数对应的预设的运行参数;
控制空调器按照与生命活力参数对应的预设的运行参数运行。
进一步地,运行参数包括预设温度和新风气流的风速;并且,
对应关系表现为:
预设温度随着预设的生命活力参数的阶梯式上升而降低;和/或者,
新风气流的风速随着预设的生命活力参数的阶梯式上升而降低。
进一步地,运行参数还包括换热气流的出风模式和换热气流的风速;并且,
对应关系表现为:
在预设的生命活力参数的第一预设范围内,换热气流的出风模式为向前平吹的防直吹模式;换热气流的风速为预设低速值;
在预设的生命活力参数的第二预设范围内,换热气流的出风模式为左右扫风及上下扫风的扫风模式;换热气流的风速为根据室内空间的温度和室外空间的温度确定的自动风速值;其中,第一预设范围的最大阈值小于等于第二预设范围的最小阈值。
进一步地,根据睡眠指数、生理参数和个人信息计算用户的生命活力参数的步骤包括:
采用预设算法关系式根据睡眠指数、生理参数和个人信息计算用户的生命活力参数。
进一步地,个人信息包括年龄和性别;并且,
生命活力参数随根据性别预设的性别系数的增大而增大;
生命活力参数随年龄的增大而增大;
生命活力参数随睡眠指数的增大而增大;
生命活力参数随生理参数的增大而增大。
进一步地,睡眠指数包括用户的最近一次睡眠时长或者用户的多次睡眠时长的均值。
进一步地,生理参数包括血氧饱和度、血压、脉搏、心率、体表温度、呼吸率中的至少一项。
特别的,本发明还提供了一种空调器,其包括:
获取装置,用于获取用户的睡眠指数和用户的生理参数;
控制器,控制器包括存储器和处理器,其中存储器存储有机器可执行程序,机器可执行程序被处理器执行时实现上述空调器的控制方法。
进一步地,获取装置包括可穿戴监测设备或者医用监测设备;
空调器还包括:
换热风扇,用于提供风速可调的换热气流;
新风风扇,用于提供风速可调的新风气流;
导风板组件,用于调节换热气流的出风模式。
本发明的空调器的控制方法,由于其可以获取到用户的个人信息、睡眠指数和用户的生理参数,并根据用户的个人信息、睡眠指数和用户的生理参数来计算出用户的生命活力参数,且根据生命活力参数调节空调器的运行参数。因此,本发明的空调器的控制方法无需用户自己手动调节空调器的运行参数就能够根据用户的状态调整自身的运行参数,提升了用户体验。同时,相比用户手动调节空调器的运行参数,本控制方法避免了用户靠感觉调节空调器的运行参数的情况的出现,进而本控制方法保证了用户的需求与空调器运行参数的匹配的精准性。
本发明的空调器的控制方法,由于睡眠指数和生理参数可以在不同类型的用户身上表现出用户当前的状态,进而,根据睡眠指数、生理参数和个人信息计算出的生命活力参数更符合或贴切用户当前的状态。因此,本控制方法根据生命活力参数调节的空调器的运行参数更符合用户的需求,保证了用户使用空调器的体验。例如,当用户的睡眠指数或者生理参数低的情况下,用户当前的状态不佳,此时用户实际不需要过低的室内温度,本控制方法可以提升空调器的预设温度参数,使得用户感觉舒适;又例如,当用户的睡眠指数或者生理参数高的情况下,用户当前的状态活力满满,若室内温度较高的话,会感觉到燥热,本控制方法可以降低空调器的预设温度参数,进而使得用户感觉舒适。
本发明的空调器,由于其能实现上述控制方法,因此,上述控制方法具备的有益技术效果本发明的空调器同样具备。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调器的立体结构示意图之一;
图2是根据本发明一个实施例的空调器的立体结构示意图之二;
图3是根据本发明一个实施例的空调器的截面示意图;
图4是根据本发明一个实施例的空调器的连接性示意框图;
图5是根据本发明一个实施例的空调器的控制方法的示意性流程图;
图6是根据本发明一个实施例的空调器的控制方法中根据生命活力参数调节空调器的运行参数的示意性流程图。
具体实施方式
在本实施例的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“设置”、“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本发明中的具体含义。
此外,在本实施例的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。也即在本实施例的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上 方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”、或“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
除非另有限定,本本实施例的描述中所使用的全部术语(包含技术术语与科学术语)具有与本申请所属的技术领域的普通技术人员所通常理解的相同含义。
在本实施例的描述中,参考术语“实施例”、“实施方式”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
下面参照图1至图4来详细描述本实施例的空调器。图1是根据本发明一个实施例的空调器的立体结构示意图之一;图2是根据本发明一个实施例的空调器的立体结构示意图之二,其中,图2在图1的基础上隐去了导风板和壳体的左侧板和前面板;图3是根据本发明一个实施例的空调器的截面示意图;图4是根据本发明一个实施例的空调器的连接性示意框图。
在本实施例中,空调器可以是分体式空调器的室内机,例如挂壁式空调器室内机,或者柜机,还可以是一体式空调器,也可以是其他形式的空调器,但为了方便表述本实施例,下列实施例以及参照的附图中会以分体挂壁式空调器的室内机为例来说明,并且不应该被认为限定了本发明的保护范围。并且,参照图1和图2,空调器包括壳体100以及设置在壳体100上的进风口110和换热出风口120。
参照图2和图3,在本实施例中,空调器还包括换热风道130、换热风扇210和热交换器220,换热风道130、换热风扇210和热交换器220均设置于壳体100内,且换热风道130的两端分别连通进风口110和换热出风口120,换热风扇210和热交换器220均设置于换热风道130内,且换热风扇210用于提供风速可调的换热气流。具体的,换热风扇210用于将室内空间中的气流由进风口110引入到壳体100内的换热风道130中,并将气流引导流经热交换器220与热交换器220换热形成换热气流后从换热出风口120排出到室内空间中。同时换热气流的风速随着换热风扇210的转速变化而变化,进而换热风扇210可以提供风速可调的换热气流。
另外,在分体挂壁式的空调器的室内机中,换热风扇210可以是贯流风扇,并且可通过设置换热风机320带动换热风扇210转动。换热风道130可以被配置为由壳体100或者设置在壳体100内的各部件形成的相对封闭的不规则的空间结构。
参照图1,在本实施例中,空调器还包括新风系统,新风系统包括新风风扇(未示出)、设置在壳体100上的新风出风口和连通于以及延伸至室外空间的换气管250。新风风扇设置在壳体100内,还可以设置在分体式空调器的室外机机壳内,且新风风扇通过换气管250将室外空间中的气流引入到壳体100内。同时,新风气流的风速随着新风风扇的转速变化而变化,进而新风风扇可以提供风速可调的新风气流。
另外,在分体挂壁式的空调器的室内机中,新风风扇可以是离心风扇,并且可通过设置新风风机330带动新风风扇转动。
参照图1和图2,在本实施例中,新风出风口可以和换热出风口120是一个出风口,并且,可以通过连接风道260将由新风风扇吸入到壳体100内的新风气流引导至换热风道130内与由进风口110流入的气流混合。具体的,新风气流可以被引导在由进风口110流入的气流和热交换器220进行换热之前混合,进而换热风扇210还用于促使新风气流和由进风口110流入的气流与热交换器220进行换热形成换热气流后从换热出风口120排至室内空间中,以实现各种混风效果,保证用户的舒适性。
在变形实施例中,新风风扇还可以将被其引入到壳体100内的新风气流通过新风出风口不经与热交换器220进行换热或者不与由进风口110流入换热风道130内的气流混合直接排入到室内空间中。
在本实施例中,空调器还包括导风组件。导风组件用于调节换热气流的出风模式。
参照图1和图3,在本实施例的导风组件的一种实施方式中,导风组件包括导风板230和摆叶240。并且,导风板230设置在换热出风口120处,摆叶240设置到换热风道130靠近换热出风口120的位置。导风板230可以在竖直方向上引导换热气流的出风方向,摆叶240可以在水平方向上引导换热气流的出风方向,进而实现调节换热气流的出风模式。其中,出风模式可以是引导换热气流向前平吹的防直吹模式,具体的导风板230转动至水平状态即可实现;出风模式还可以是引导换热气流向左右扫风及上下扫风的扫风 模式,具体的,导风板230在关闭换热出风口120的位置和完全打开换热出风口120的位置之间转动即可实现。
另外,导风板230和摆叶240可以通过分别连接的多个导风电机340实现各自的转动。
参照图3,在本实施例的导风组件的一种实施方式中,导风组件包括第一导风板231、第二导风板232和摆叶240。并且,第一导风板231和第二导风板232设置在换热出风口120处,第一导风板231和第二导风板232可以共同封闭换热出风口120,且第一导风板231位于第二导风板232的上方,摆叶240设置到空调器的出风风道内。第一导风板231和第二导风板232可以在竖直方向上引导换热气流的出风方向,摆叶240可以在水平方向上引导换热气流的出风方向,进而实现调节换热气流的出风模式。其中,出风模式可以是引导换热气流向前平吹的防直吹模式,具体的,第二导风板232转动至水平位置即可实现;出风模式还可以是引导换热气流向左右扫风及上下扫风的扫风模式,第一导风板231和/或者第二导风板232在关闭换热出风口120的位置和完全打开换热出风口120的位置之间转动即可实现。
另外,第一导风板231、第二导风板232和摆叶240可以通过分别连接的多个导风电机340实现各自的转动。
在本实施例中,空调器包括获取装置310,获取装置310可以用于获取用户的睡眠指数和用户的生理参数。
另外,获取装置310还可以用于获取使用空调器的用户的个人信息。
在本实施例的获取装置310的一种实施方式中,获取装置310可以是可穿戴监测设备。例如,智能手表、智能手环、智能眼罩或者智能按摩仪等。
在本实施例的获取装置310的另一种实施方式中,获取装置310可以是医用监测设备。例如,血氧仪、血压仪、脉搏心率检测仪、人体温度传感器或者呼吸监护仪等。
在本实施例中,空调器还包括第一温度传感器和第二温度传感器,第一温度传感器用于获取室内空间的环境温度,第二温度传感器用于获取室外空间的环境温度。并且,第一温度传感器可以设置在空调器的室内机的壳体上,优选的设置在壳体的外部;第二温度传感器可以设置在空调器的室外机的机壳上,并优选设置在机壳外。
参照图4,在本实施例中,空调器还包括控制器400,控制器400包括 存储器410和处理器420,其中存储器410存储有机器可执行程序411,机器可执行程序411被处理器420执行时实现下列实施例的空调器的控制方法。因此,本实施例的空调器可以具有下列实施例的控制方法所具备的有益技术效果。
另外,换热风机320、新风风机330、导风电机340、获取装置310、第一温度传感器和第二温度传感器通过电通信连接于控制器400。具体的,可以通过无线通信技术实现换热风机320、新风风机330、导风电机340、获取装置310、第一温度传感器和第二温度传感器与控制器400的电通信连接,也可以通过有线通信技术实现换热风机320、新风风机330、导风电机340和获取装置310、第一温度传感器和第二温度传感器与控制器400的电通信连接。
下面结合图5和图6来详细描述本实施例的空调器的控制方法。图5是根据本发明一个实施例的空调器的控制方法的示意性流程图;图6是根据本发明一个实施例的空调器的控制方法中根据生命活力参数调节空调器的运行参数的示意性流程图。
参照图5,在本实施例中,空调器的控制方法包括:
步骤S502,获取使用空调器的用户的个人信息。
可以理解的是,本实施例的控制方法可以通过询问个人信息的方式获取到用户的个人信息,并将用户反馈的个人信息存储到存储设备内。例如,可以通过获取装置310获取使用空调器的用户的个人信息,在用户将获取装置310连接到空调器时,可以向获取装置310发送个人信息的询问信息,在用户通过在获取装置310上编辑操作后再接收到反馈信息,并将反馈的个人信息存储到控制内或者获取装置310的储存单元;又例如,可以通过具有空调器的控制权限的移动终端来获取用户的跟人信息,具体的,可以向移动终端发送个人信息的询问信息,在用户通过在移动终端上编辑操作后再接收到反馈信息,并将反馈的个人信息存储到控制内或移动终端的存储单元,并且移动终端可以是手机上的app(应用软件,application),也可以是遥控器。本实施例的控制方法可以通过询问个人信息的方式获取到用户的个人信息,并将用户反馈的个人信息存储到存储设备内。并且,还可以通过检测的方式来获取用户的个人信息。例如,可以通过采集用户的面部特征,进一步地通过对用户面部特征的图像分析来检测判断用户的个人信息。又例如,可以通过 采集用户的语音信息,进一步地通过对用户的语音信息分析来检测判断用户的个人信息。
另外,个人信息可以包括年龄和性别。
步骤S504,获取用户的睡眠指数和用户的生理参数。
可以理解的是,可以通过上述实施例的空调器中的获取装置310来获取用户的睡眠指数和用户的生理参数,在次不再赘述。
另外,用户的睡眠指数可以包括用户的最近一次睡眠时长或者用户的多次睡眠时长的均值。生理参数可以包括血氧饱和度、血压、脉搏、心率、体表温度、呼吸率中的至少一项。
步骤S506,根据睡眠指数、生理参数和个人信息计算用户的生命活力参数。
可以理解的是,生命活力参数为一表征用户体力、精力、精神和/或状态等的参数,并且生命活力参数可以被理解为元气战斗力,并且,元气战斗力的具体值可以是元气值。以及,生命活力参数或者元气战斗力为可以表征包括虚弱、疲惫、元气满满、强悍和爆表等人体的多级体力、精力、精神和/或状态的参数。
步骤S508,根据生命活力参数调节空调器的运行参数。
由于本实施例的空调器的控制方法可以获取到用户的个人信息、睡眠指数和用户的生理参数,并根据用户的个人信息、睡眠指数和用户的生理参数来计算出用户的生命活力参数,且根据生命活力参数调节空调器的运行参数。因此,本实施例的空调器的控制方法无需用户自己手动调节空调器的运行参数就能够根据用户的状态调整自身的运行参数,提升了用户体验。同时,相比用户手动调节空调器的运行参数,本本实施例的控制方法避免了用户靠感觉调节空调器的运行参数的情况的出现,进而本控制方法保证了用户的需求与空调器运行参数的匹配的精准性。
并且,由于睡眠指数和生理参数可以在不同类型的用户身上表现出用户当前的状态,进而,根据睡眠指数、生理参数和个人信息计算出的生命活力参数更符合或贴切用户当前的状态。因此,本实施例的控制方法根据生命活力参数调节的空调器的运行参数更符合用户的需求,保证了用户使用空调器的体验。例如,当用户的睡眠指数或者生理参数低的情况下,用户当前的状态不佳,此时用户实际不需要过低的室内温度,本控制方法可以提升空调器 的预设温度参数,使得用户感觉舒适;又例如,当用户的睡眠指数或者生理参数高的情况下,用户当前的状态活力满满,若室内温度较高的话,会感觉到燥热,本控制方法可以降低空调器的预设温度参数,进而使得用户感觉舒适。
参照图6,在本实施例中,步骤S508,根据生命活力参数调节空调器的运行参数包括:
步骤S602,获取预设的生命活力参数与预设的运行参数的对应关系。
需要说明的是,对应关系可以是技术人员通过实验测试得到的对应关系。例如,通过测试实验志愿者在同一生命活力参数下体验空调器的不同运行参数,找到能够使用户体验感舒适的运行参数,并确定该运行参数和该生命力参数对应。通过增加睡眠时长、调整气息或者变换测试实验志愿者的方式改变生命活力参数并重复上述试验,一一测得不同生命活力参数与运行参数的对应关系,并将该对应关系预先存储在控制器400内。
步骤S604,根据对应关系确定与生命活力参数对应的预设的运行参数。
步骤S606,控制空调器按照与生命活力参数对应的预设的运行参数运行。
进而实现了根据生命活力参数调节空调器的运行参数,提升并保证了用户使用空调器的体验。
在本实施例中,运行参数包括预设温度和新风气流的风速;并且,对应关系表现为:预设温度随着预设的生命活力参数的阶梯式上升而降低;和/或者,和/或者,新风气流的风速随着预设的生命活力参数的阶梯式上升而降低。
可以理解的是,对应关系表现为在预设的生命活力参数的阶梯式上升表明用户的元气/精力等在向好的方向变化,进而,可以将预设温度下调和/或者新风气流的风速下调,避免用户出现燥热的感受,保证空调器作用的室内空间的环境可以和用户相适应,进而能够保证用户体验。相反的,对应关系还可表现为在预设的生命活力参数的阶梯式下降表明用户的元气/精力等在向差的方向变化,进而,可以将预设温度上调和/或者新风气流的风速上调,使得室内空间的温度向温暖的方向调节,保持用户的体温,使得室外的新风气流快速进入到室内空间中,以改善用户的生命活力参数。其中,预设的生命活力参数的阶梯式上升可以理解为,预设的生命活力参数的前一范围值中 的最大阈值小于等于预设的生命活力参数的后一范围值中的最小阈值。
并且,新风气流与新风气流的风速可以由上述实施例的空调器中的新风风扇来提供以及调节,在此不再赘述。
在本实施例中,运行参数包括还包括换热气流的出风模式和换热气流的风速;并且,对应关系表现为:在预设的生命活力参数的第一预设范围内,换热气流的出风模式为向前平吹的防直吹模式;换热气流的风速为预设低速值;在预设的生命活力参数的第二预设范围内,换热气流的出风模式为左右扫风及上下扫风的扫风模式;换热气流的风速为根据室内空间的温度和室外空间的温度确定的自动风速值;其中,第一预设范围的最大阈值小于等于第二预设范围的最小阈值。
在该实施例中的对应关系,可以理解为,由第一预设范围内到第二预设范围内,用户的生命活力参数在向好的方向变化,进而,可以将防直吹模式切换为左右扫风及上下扫风的扫风模式,并将换热气流的风速从预设低速值解除切换至自动风速值,进而能够使得空调器的换热气流快速地作用于室内空间,使室内空间的温度快速发生变化,避免用户出现燥热的感受,保证空调器作用的室内空间的环境可以和用户相适应,进而能够保证用户体验。相反的,在该实施例中,对应关系还可以理解为由第二预设范围向第一预设范围变化的用户的生命活力参数在向较差的方向变化,进而,可以将左右扫风及上下扫风的扫风模式切换为防直吹模式,避免换热气流直吹到用户,使得用户不会出现换热气流直吹的感觉;并将换热气流的风速从自动风速值调整至预设低速值,使得换热气流向柔和的方向调整,使得用户可以承受换热气流的当前风速。进而可以保证用户的生命活力参数,提升用户体验。
并且,换热气流的出风模式可以通过上述实施例的空调器中的导风组件实现;并且换热气流与换热气流的风速可以由上述实施例的空调器中的换热风扇210来提供以及调节;室内空间的温度和室外空间的温度可以分别通过上述实施例的空调器中的第一温度传感器和第二温度传感器获取得到。
另外,需要说明的是,预设低速值为空调器在低风档位运行时的预设的风速值,即,可以预先将空调器的风速可调范围划分或设置为高风档位、中风档位和低风档位,低风档位的风速值小于中风档位的风速值,中风档位的风速值小于高风档位的风速值,进而可以在预设的生命活力参数的第一预设范围内,将换热气流的风速调整为预设低速值。
在本实施例中,对应关系的一种具体实施方式,对应关系可以是:
在预设的生命活力参数小于第一预设值的情况下,预设温度为第一预设温度值,换热气流的风速为第一预设流速值,换热气流的出风模式为向前平吹的防直吹模式,新风气流的风速为第一预定流速值;
在预设的生命活力参数大于等于第一预设值小于第二预设值的情况下,预设温度为第二预设温度值,换热气流的风速为第二预设流速值,换热气流的出风模式为向前平吹的防直吹模式,新风气流的风速为第二预定流速值;
在预设的生命活力参数大于等于第二预设值小于第三预设值的情况下,预设温度为第三预设温度值,换热气流的风速为第三预设流速值,换热气流的出风模式为左右扫风及上下扫风的扫风模式,新风气流的风速为第三预定流速值;
在预设的生命活力参数大于等于第三预设值小于第四预设值的情况下,预设温度为第四预设温度值,换热气流的风速为第四预设流速值,换热气流的出风模式为左右扫风及上下扫风的扫风模式,新风气流的风速为第四预定流速值;
并且,第一预设值小于第二预设值,第二预设值小于第三预设值,第三预设值小于第四预设值,第一预设温度值大于第二预设温度值,第二预设温度值大于第三预设温度值,第三预设温度值大于第四预设温度值,第一预设流速值小于第二预设流速值,第二预设流速值小于第三预设流速值,第三预设流速值小于第四预设流速值,第一预定流速值小于第二预定流速值,第二预定流速值小于第三预定流速值,第三预定流速值小于第四预定流速值。
在本实施例中,对应关系的又一种具体实施方式,对应关系可以是:
在预设的生命活力参数小于第一预设值的情况下,预设温度为第一预设温度值,换热气流的风速为预设低速值,换热气流的出风模式为向前平吹的防直吹模式,新风气流的风速为第一预定流速值;
在预设的生命活力参数大于等于第一预设值小于第二预设值的情况下,预设温度为第二预设温度值,换热气流的风速为预设低速值,换热气流的出风模式为向前平吹的防直吹模式,新风气流的风速为第一预定流速值;
在预设的生命活力参数大于等于第二预设值小于第三预设值的情况下,预设温度为第三预设温度值,换热气流的风速为根据室内空间的温度和室外空间的温度确定的自动风速值,换热气流的出风模式为左右扫风及上下扫风 的扫风模式,新风气流的风速为第二预定流速值;
在预设的生命活力参数大于等于第三预设值小于第四预设值的情况下,预设温度为第四预设温度值,换热气流的风速为根据室内空间的温度和室外空间的温度确定的自动风速值,换热气流的出风模式为左右扫风及上下扫风的扫风模式,新风气流的风速为第二预定流速值;
并且,第一预设值小于第二预设值,第二预设值小于第三预设值,第三预设值小于第四预设值,第一预设温度值大于第二预设温度值,第二预设温度值大于第三预设温度值,第三预设温度值大于第四预设温度值,第一预定流速值小于第二预定流速值。
在本实施例中,第一预设值可以是60,第二预设值可以是75,第三预设值可以是85,第四预设值可以是100。进而,在预设的生命活力参数小于第一预设值的情况下,可以体现出用户此刻虚弱,在预设的生命活力参数大于等于第一预设值小于第二预设值的情况下,可以体现出用户此刻疲惫,在预设的生命活力参数大于等于第二预设值小于第三预设值的情况下,可以体现出用户此刻强悍,在预设的生命活力参数大于等于第三预设值小于第四预设值的情况下,可以体现出用户此刻爆表。
并且,可以将第三预设温度值设置为标准温度值,并且,相邻两个预设温度值之间的差值可以是1℃,在根据生命活力参数调节空调器的运行参数的过程中,调整空调器的预设温度可以在标准温度值的基础上进行增加或减小差值即可以实现对预设温度的自动调节,提升了空调器的智能性。
在本实施例中,根据睡眠指数、生理参数和个人信息计算用户的生命活力参数的步骤包括:
采用预设算法关系式根据睡眠指数、生理参数和个人信息计算用户的生命活力参数。
可以理解的是,预设算法关系式可以是技术人员通过大量的计算及上述对应关系的实验测试反复推敲并验证得到的。进而通过预设算法关系式根据睡眠指数、生理参数和个人信息计算用户的生命活力参数可以保证生命活力参数更加贴合于用户的当前状态,进而保证空调器的运行参数与用户的实际需求的匹配精准性。并且该预设算法关系式可以预先存储在控制器400内。在执行上述计算步骤的过程中,由控制器400实现根据该预设算法关系式的逻辑对睡眠指数、生理参数和个人信息进行计算并得到生命活力参数。
在本实施例中,生命活力参数随根据性别预设的性别系数的增大而增大;生命活力参数随年龄的增大而增大;生命活力参数随睡眠指数的增大而增大;生命活力参数随生理参数的增大而增大。
可以理解的是,男生的性别系数大于女生的性别系数,当性别系数增大、年龄增大、睡眠指数增大和/或者生理参数增大时,生命活力参数增大,表明用户的元气越好,体力、精力、精神和/或状态越强。
在本实施例中,以年龄、性别、睡眠指标和生理参数为例,预设算法关系式可以是:
φ=(X1×D+X2×E+0.2×A0)×G0
其中:
φ是生命活力参数或者元气战斗力;
D是睡眠指标,X1是根据睡眠指标确定的睡眠系数;
E是生理参数,X2是根据生理参数确定的生理系数;
A0是年龄;
G0是性别系数,当性别为男性时,G0为1;当性别为女性时,G0为0.9。
需要说明的是,睡眠系数可以根据睡眠指标确定,睡眠系数的含义不同睡眠系数可以不相同,例如,当睡眠指标为最近一次睡眠时长时,睡眠系数可以是0.4;同理,当生理参数为血压时,生理参数为0.4。
在本实施例中,以年龄、性别、最近一次睡眠时长和血压为例,预设算法关系式可以是:
φ=(0.4×S0+0.4×B0+0.2×A0)×G0
其中:
φ是生命活力参数或者元气战斗力;
S0是最近一次睡眠时长;
B0是血压;
A0是年龄;
G0是性别系数,当性别为男性时,G0为1;当性别为女性时,G0为0.9。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根 据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调器的控制方法,包括:
    获取使用所述空调器的用户的个人信息;
    获取所述用户的睡眠指数和所述用户的生理参数;
    根据所述睡眠指数、所述生理参数和所述个人信息计算所述用户的生命活力参数;
    根据所述生命活力参数调节所述空调器的运行参数。
  2. 根据权利要求1所述的空调器的控制方法,其中,
    所述根据所述生命活力参数调节所述空调器的运行参数的步骤包括:
    获取预设的所述生命活力参数与预设的所述运行参数的对应关系;
    根据所述对应关系确定与所述生命活力参数对应的预设的所述运行参数;
    控制所述空调器按照与所述生命活力参数对应的预设的所述运行参数运行。
  3. 根据权利要求2所述的空调器的控制方法,其中,
    所述运行参数包括预设温度和新风气流的风速;并且,
    所述对应关系表现为:
    所述预设温度随着预设的所述生命活力参数的阶梯式上升而降低;和/或者,
    所述新风气流的风速随着预设的所述生命活力参数的阶梯式上升而降低。
  4. 根据权利要求2所述的空调器的控制方法,其中,
    所述运行参数还包括换热气流的出风模式和换热气流的风速;并且,
    所述对应关系表现为:
    在预设的所述生命活力参数的第一预设范围内,所述换热气流的出风模式为向前平吹的防直吹模式;所述换热气流的风速为预设低速值;
    在预设的所述生命活力参数的第二预设范围内,所述换热气流的出风模式为左右扫风及上下扫风的扫风模式;所述换热气流的风速为根据室内空间 的温度和室外空间的温度确定的自动风速值;其中,所述第一预设范围的最大阈值小于等于所述第二预设范围的最小阈值。
  5. 根据权利要求1-4中任一项所述的空调器的控制方法,其中,
    所述根据所述睡眠指数、所述生理参数和所述个人信息计算所述用户的生命活力参数的步骤包括:
    采用预设算法关系式根据所述睡眠指数、所述生理参数和所述个人信息计算所述用户的生命活力参数。
  6. 根据权利要求5所述的空调器的控制方法,其中,
    所述个人信息包括年龄和性别;并且,
    所述生命活力参数随根据所述性别预设的性别系数的增大而增大;
    所述生命活力参数随所述年龄的增大而增大;
    所述生命活力参数随所述睡眠指数的增大而增大;
    所述生命活力参数随所述生理参数的增大而增大。
  7. 根据权利要求1-4中任一项所述的空调器的控制方法,其中,
    所述睡眠指数包括所述用户的最近一次睡眠时长或者所述用户的多次睡眠时长的均值。
  8. 根据权利要求1-4中任一项所述的空调器的控制方法,其中,
    所述生理参数包括血氧饱和度、血压、脉搏、心率、体表温度、呼吸率中的至少一项。
  9. 一种空调器,包括:
    获取装置,用于获取所述用户的睡眠指数和所述用户的生理参数;
    控制器,所述控制器包括存储器和处理器,其中所述存储器存储有机器可执行程序,所述机器可执行程序被处理器执行时实现权利要求1至8中任一项所述的空调器的控制方法。
  10. 根据权利要求9所述的空调器,其中,
    所述获取装置包括可穿戴监测设备或者医用监测设备;
    所述空调器还包括:
    换热风扇,用于提供风速可调的换热气流;
    新风风扇,用于提供风速可调的新风气流;
    导风板组件,用于调节所述换热气流的出风模式。
PCT/CN2023/109685 2022-09-27 2023-07-27 空调器及其控制方法 WO2024066710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211184730.2 2022-09-27
CN202211184730.2A CN115388529A (zh) 2022-09-27 2022-09-27 空调器及其控制方法

Publications (1)

Publication Number Publication Date
WO2024066710A1 true WO2024066710A1 (zh) 2024-04-04

Family

ID=84127875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109685 WO2024066710A1 (zh) 2022-09-27 2023-07-27 空调器及其控制方法

Country Status (2)

Country Link
CN (1) CN115388529A (zh)
WO (1) WO2024066710A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115388529A (zh) * 2022-09-27 2022-11-25 青岛海尔空调器有限总公司 空调器及其控制方法
CN115807961A (zh) * 2022-11-30 2023-03-17 青岛海尔空调器有限总公司 空调及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556122A (zh) * 2016-12-30 2017-04-05 广东美的制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法
CN106705367A (zh) * 2016-12-30 2017-05-24 广东美的制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法
CN109099551A (zh) * 2018-07-20 2018-12-28 珠海格力电器股份有限公司 一种空调器的控制方法、装置、存储介质及空调器
CN112344528A (zh) * 2019-08-07 2021-02-09 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN115388529A (zh) * 2022-09-27 2022-11-25 青岛海尔空调器有限总公司 空调器及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556122A (zh) * 2016-12-30 2017-04-05 广东美的制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法
CN106705367A (zh) * 2016-12-30 2017-05-24 广东美的制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法
CN109099551A (zh) * 2018-07-20 2018-12-28 珠海格力电器股份有限公司 一种空调器的控制方法、装置、存储介质及空调器
CN112344528A (zh) * 2019-08-07 2021-02-09 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN115388529A (zh) * 2022-09-27 2022-11-25 青岛海尔空调器有限总公司 空调器及其控制方法

Also Published As

Publication number Publication date
CN115388529A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2024066710A1 (zh) 空调器及其控制方法
US11598548B2 (en) Device for estimating drowsiness of a user based on image and environment information
CN111279135B (zh) 集中度推断装置
CN109945429A (zh) 运行控制方法、装置、空调器和计算机可读存储介质
JP2004125376A (ja) 使用者の特性に合わせて運転される空調装置および空調方法
JP6327843B2 (ja) 空気調和システム、空気調和機、空気調和方法、及び、プログラム
CN111609471B (zh) 涡环发生装置运行控制方法、空调及计算机可读存储介质
WO2022217938A1 (zh) 用于导风板的转速调节方法及装置、空调
CN107449113A (zh) 空调器的控制方法、控制系统和空调器
JP6861366B2 (ja) 空気調和機
CN113819594B (zh) 空调控制方法、空调遥控器、空调器和空调器系统
CN109323381A (zh) 空调器的控制方法、装置及具有其的空调器
JP6917552B2 (ja) 空気調和機
US11835247B2 (en) Air conditioning control device and air conditioning apparatus
CN108036476A (zh) 一种空调器
CN108019866A (zh) 一种加湿器控制方法
CN114060945B (zh) 空调器及其控制方法、控制装置和可读存储介质
KR200467394Y1 (ko) 공기조화시스템
CN115807961A (zh) 空调及其控制方法
CN108050675A (zh) 一种空调器控制方法
CN115540234A (zh) 一种可穿戴式控制器、空调控制方法和装置
JP2014129964A (ja) 空調制御システム
CN114484723A (zh) 空调出风控制方法、装置、空调器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869956

Country of ref document: EP

Kind code of ref document: A1