WO2024113920A1 - 空调及其控制方法 - Google Patents

空调及其控制方法 Download PDF

Info

Publication number
WO2024113920A1
WO2024113920A1 PCT/CN2023/109684 CN2023109684W WO2024113920A1 WO 2024113920 A1 WO2024113920 A1 WO 2024113920A1 CN 2023109684 W CN2023109684 W CN 2023109684W WO 2024113920 A1 WO2024113920 A1 WO 2024113920A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
human body
air
control method
operating parameters
Prior art date
Application number
PCT/CN2023/109684
Other languages
English (en)
French (fr)
Inventor
卫洁
董山东
李雅婷
李书佳
孙升华
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024113920A1 publication Critical patent/WO2024113920A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the technical field of air conditioning, and in particular to an air conditioner and a control method thereof.
  • Air conditioners With the improvement of living standards, air conditioners have become an indispensable electrical appliance in homes and commercial settings. Air conditioners usually have a variety of adjustment options for users to adjust. For example, users can adjust the target temperature, wind speed, wind direction of the air guide plate (i.e., up and down wind direction), and wind direction of the swing blade.
  • the object of the present invention is to solve at least one of the above-mentioned defects in the prior art and to provide an air conditioner with an intelligent body sensing mode and a control method thereof.
  • a further object of the present invention is to enable the intelligent body sensing mode of the air conditioner to match the different cooling and heating needs of the user in different states.
  • the present invention provides a method for controlling an air conditioner, comprising:
  • Obtain indoor human body status parameters including sleep index S, blood oxygen index B, human age A and gender coefficient G;
  • the operating parameters of the air conditioner are controlled according to the vitality value.
  • the operating parameters of the air conditioner include: cooling target temperature, heating target temperature, indoor wind speed, operating status of the swing blade assembly, the number of air guide plates opened, the air guide angle, and one or more of the fresh air volume.
  • the step of “controlling the operating parameters of the air conditioner according to the vitality value” includes:
  • the operating parameters of the air conditioner are determined according to the pre-stored correspondence between the energy value interval gear and the air conditioner operating parameters.
  • the cooling capacity/heating capacity of the high-grade energy value interval is increased compared with the adjacent low-grade energy value interval, the wind speed remains unchanged or increases, the number of air guide plates opened remains unchanged or increases, and the fresh air volume remains unchanged or increases.
  • the step of "obtaining indoor human body state parameters" includes: obtaining the indoor human body state parameters collected by a wearable device.
  • the sleep index S is taken as the sleep index S of a human body collected most recently by the wearable device.
  • the present invention also provides an air conditioner, comprising a controller, the controller comprising a processor and a memory, the memory storing a computer program, and the computer program, when executed by the processor, is used to implement the control method according to any one of the above items.
  • the air conditioner has an intelligent somatosensory mode, which simplifies user operation and improves the intelligence level of the air conditioner.
  • the air conditioner calculates the vitality value M of the human body according to the human body state parameters (including sleep index S, blood oxygen index B, human age A and gender coefficient G), and controls the operating parameters of the air conditioner according to the vitality value to accurately match the different hot and cold needs of the user in different states, so that the wind feeling of the human body is more comfortable.
  • the present invention can enter the intelligent somatosensory mode through one-button operation, and then no user operation is required, which improves the intelligence, fashion and technological sense of the air conditioner.
  • the vitality value comprehensively considers the sleep index, blood oxygen index, human age and gender, and can more accurately reflect the state of the human body, thereby better evaluating its cooling and heating needs, so as to better adjust the air-conditioning parameters.
  • FIG1 is a schematic structural diagram of an air conditioner according to an embodiment of the present invention.
  • FIG2 is a schematic enlarged cross-sectional view of the air conditioner shown in FIG1 ;
  • FIG3 is a schematic diagram of the air conditioner shown in FIG2 when the air guide plate is upwardly guided;
  • FIG4 is a schematic diagram of the air conditioner shown in FIG2 when the air guide plate is sinking to guide air;
  • FIG5 is a schematic block diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method for controlling an air conditioner according to an embodiment of the present invention.
  • each square frame in the flow chart or block diagram can represent a part of a module, program segment or instruction, and a part of the module, program segment or instruction includes one or more executable instructions for realizing the specified logical function.
  • the function marked in the square frame can also occur in a sequence different from that marked in the accompanying drawings. For example, two continuous square frames can actually be executed substantially in parallel, and they can sometimes be executed in reverse order, depending on the functions involved.
  • each square frame in the block diagram and/or flow chart, and the combination of the square frames in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs the specified function or action, or can be implemented with a combination of special hardware and computer instructions.
  • the flow chart provided by the present embodiment is not intended to indicate that the operation of the method will be performed in any particular order, or that all operations of the method are included in all every case.
  • the method may include additional operations.
  • additional changes may be made to the above method.
  • logic and/or steps represented in the flowchart or described in other ways herein, for example, can be considered as a sequenced list of executable instructions for implementing logical functions, and can be specifically implemented in any computer-readable medium for an instruction execution system, device or apparatus (such as a computer-based system, a system including a processor or other system that can be executed from an instruction execution system, device or apparatus).
  • the invention may be used in conjunction with a system, apparatus or device for fetching instructions and executing instructions, or in combination with such instruction execution systems, apparatus or devices.
  • An embodiment of the present invention provides an air conditioner.
  • Air conditioners are used to regulate indoor air, including adjusting the temperature, humidity, and air quality of the air, humidifying and dehumidifying the indoor air, introducing fresh air, etc.
  • Air conditioners can form a vapor compression refrigeration cycle system consisting of an evaporator, condenser, compressor, throttling device, and other necessary components to output cold/hot air through an indoor fan to achieve cooling and heating of the indoor environment.
  • the air conditioner of the embodiment of the present invention can be a household air conditioner or a central air conditioner.
  • the specific form of the air conditioner can be various forms such as split wall-mounted, split vertical, integrated, and patio-type.
  • the embodiment of the present invention does not impose any restrictions on the specific form of the air conditioner.
  • the technical solution of the present invention will be introduced below by taking a split wall-mounted air conditioner as an example.
  • Figures 2 to 4 illustrate cross-sectional views of the indoor unit of a split wall-mounted air conditioner, specifically cross-sectional views with the vertical plane extending front and back as the cutting plane.
  • Figure 1 is a schematic diagram of the structure of an air conditioner according to an embodiment of the present invention
  • Figure 2 is a schematic enlarged sectional view of the air conditioner shown in Figure 1
  • Figure 3 is a schematic diagram of the air conditioner shown in Figure 2 when the air guide plate is performing upward air guiding
  • Figure 4 is a schematic diagram of the air conditioner shown in Figure 2 when the air guide plate is performing downward air guiding
  • Figure 5 is a schematic block diagram of an air conditioner according to an embodiment of the present invention.
  • the indoor unit of the air conditioner includes a housing 10 , an indoor fan 30 , a plurality of air guide plates 51 , 52 , a swing blade assembly 60 and a controller 800 .
  • the housing 10 defines a storage space for accommodating the main components of the indoor unit, including an evaporator 20, an indoor fan 30, a swing blade assembly 60, a controller 800, and the like.
  • An air outlet 12 is provided at the lower front portion of the housing 10 for blowing out a heat exchange airflow.
  • the housing 10 may be in the shape of a long strip with a length direction along a horizontal transverse direction.
  • An air inlet 11 may be provided at the top of the housing 10 for inhaling indoor air.
  • An air duct 15 is defined inside the housing 10, and the outlet of the air duct 15 is connected to the air outlet 12.
  • the indoor fan 30 is disposed in the housing 10, and is used to blow the regulated airflow in the housing 10 out of the air outlet 12 through the air duct 15 to regulate the indoor air.
  • the regulated airflow is, for example, a heat exchange airflow (cold airflow, hot airflow), a purified airflow, a humidified airflow, a fresh airflow, and the like.
  • Multiple air guide plates 52, 52 can be rotatably mounted on the housing 10, and their respective rotation axes are parallel to the lateral direction of the housing 10, and are used to guide the air up and down, that is, to guide the pitch angle of the air outlet 12, or the up and down air outlet angle, that is, the angle between the airflow and the horizontal plane.
  • multiple air guide plates can be used to close the air outlet 12 to prevent dust and impurities from entering the air outlet 12, as shown in Figure 2.
  • the air outlet 12 can be opened to the front and bottom, so that the air guide plates 51 and 52 are respectively located at the outlet.
  • the front and lower sides of the air outlet 12 can be rotated to different angles to obtain various wind guide effects.
  • the wind guide plate 51 is raised to guide the wind, and the wind guide plate 52 is in a closed state.
  • the wind guide plate 51 is in a closed state, and the wind guide plate 52 is used to sink the wind, as shown in FIG4.
  • Each wind guide plate 51, 52 is matched with a motor (not shown), and each motor is independently controlled by the controller 800.
  • the swing blade assembly 60 is installed at the air outlet 12 for swinging air left and right.
  • the swing blade assembly 60 specifically includes a plurality of swing blades, which are driven by a driving mechanism to swing left/right synchronously and swing back and forth in a cycle.
  • the driving mechanism that can realize the synchronous swinging of the swing blades is widely used in the field of air conditioning, and may include, for example, a motor, a rocker and a connecting rod, which will not be described in detail.
  • the controller 800 includes a processor 810 and a memory 820.
  • the memory 820 stores a computer program 821. When the computer program 821 is executed by the processor 810, it is used to implement the control method of the air conditioner of any embodiment of the present invention.
  • the processor 810 can be a central processing unit (CPU), or a digital processing unit, etc.
  • the processor 810 sends and receives data through a communication interface.
  • the memory 820 is used to store the program executed by the processor 810.
  • the memory 820 is any medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, and can also be a combination of multiple memories 820.
  • the above-mentioned computer program 821 can be downloaded from a computer-readable storage medium to a corresponding computing/processing device or downloaded and installed to the controller 800 via a network (such as the Internet, a local area network, a wide area network and/or a wireless network).
  • a network such as the Internet, a local area network, a wide area network and/or a wireless network.
  • air conditioners mainly adjust operating parameters according to indoor ambient temperature, and lack attention to human body status.
  • the present invention provides a control method for an air conditioner, which has an intelligent body sensing mode, so that the operating parameters of the air conditioner are associated with the human body status to match the different cooling and heating needs of users in different states.
  • FIG. 6 is a schematic diagram of a method for controlling an air conditioner according to an embodiment of the present invention.
  • the air conditioner control method may generally include the following steps:
  • Step S602 Receive the intelligent somatosensory mode entry instruction.
  • the instruction can be obtained in a variety of ways, including from a remote control, the display and control device of the air conditioner, a voice device, or a mobile terminal bound to the air conditioner.
  • the mobile terminal can be a smart phone, tablet computer, etc.
  • the remote control, display and control device, mobile terminal, etc. of the air conditioner can be set with a button, and the user can enter the intelligent somatosensory mode with one click after pressing the button.
  • the controller 800 After the controller 800 receives the entry instruction, it controls the air conditioner to enter the preset "intelligent somatosensory mode". The following steps are the specific steps of the intelligent somatosensory mode.
  • Step S604 Obtaining indoor human body status parameters, including sleep index S, blood oxygen index B, human Body age A and gender coefficient G.
  • the physiological sensor may be non-contact type and is arranged on the air conditioner.
  • the physiological sensor may include: infrared thermometer, Doppler sensor, ultrasonic sensor, optical sensor, etc.
  • the wearable device 200 or physiological sensors are used to detect the deep sleep time, light sleep time, number of night awakenings and other parameters of the human body, and the sleep index S is comprehensively evaluated, with a normal range of 0-138.
  • the blood oxygen index B is the oxygen content in the blood, with a normal range of 90%-100%.
  • Conventional wearable devices can detect/calculate the above S and B, which will not be repeated here.
  • Step S606 Calculate the vitality value M of the human body according to the human body state parameters and the preset “relationship between the vitality value M and the human body state parameters”.
  • Step S608 Control the operating parameters of the air conditioner according to the vitality value M.
  • the air conditioner has an intelligent body sensing mode, which simplifies user operation and improves the intelligence level of the air conditioner.
  • the air conditioner calculates the human body's vitality value M according to human body state parameters (including sleep index S, blood oxygen index B, human age A, and gender coefficient G), and controls the operating parameters of the air conditioner according to the vitality value M to accurately match the user's different cooling and heating needs in different states, making the human body feel more comfortable.
  • the embodiment of the present invention can enter the intelligent body sensing mode through one-button operation, and then no user operation is required, which improves
  • the air conditioner is intelligent, fashionable and technological.
  • a b>c.
  • the vitality value comprehensively considers the sleep index, blood oxygen index, human age and gender, and can more accurately reflect the state of the human body, thereby better evaluating its cooling and heating needs, so as to better adjust the air-conditioning parameters.
  • the operating parameters of the air conditioner mentioned in the above step S608 include: cooling target temperature, heating target temperature, indoor wind speed, operating state of the swing blade assembly 60, number of openings of the air guide plate, air guide angle, and one or more of the fresh air volume.
  • the indoor wind speed is controlled by controlling the rotation speed of the machine 30, and the fresh air volume is controlled by controlling the rotation speed of the fresh air fan 70.
  • the aforementioned step of “controlling the operating parameters of the air conditioner according to the vitality value” includes:
  • the operating parameters of the air conditioner are determined according to the correspondence between the pre-stored energy value interval gear and the air conditioner operating parameters. In this way, there is no need to frequently adjust the air conditioner operating parameters.
  • the cooling capacity/heating capacity of the high-grade energy value interval is increased compared with the adjacent low-grade energy value interval, the wind speed remains unchanged or increases, the number of air guide plates opened remains unchanged or increases, and the fresh air volume remains unchanged or increases.
  • the range of vitality values that the vitality value may fall into can be divided into four levels, from low to high, namely weak, tired, strong and over the top.
  • the vitality value range corresponding to the weak gear is M ⁇ 60;
  • the vitality value range corresponding to the fatigue gear is 60 ⁇ M ⁇ 75;
  • the vitality value range corresponding to the powerful gear is 75 ⁇ M ⁇ 85;
  • the vitality value range corresponding to the explosive gear is 85 ⁇ M ⁇ 100.
  • the “correspondence between energy value interval gears and air-conditioning operating parameters” includes cooling and heating. Please refer to the examples in Table 3 and Table 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调及其控制方法,控制方法包括接收智能体感模式进入指令;获取室内人体状态参数,包括睡眠指数S、血氧指数B、人体年龄A以及性别系数G;根据人体状态参数,以及预设的元气值与人体状态参数的关系来计算人体的元气值M;根据元气值来控制空调的运行参数。该空调的智能体感模式能匹配于用户在不同状态的不同的冷热需求。

Description

空调及其控制方法 技术领域
本发明涉及空气调节技术领域,特别涉及一种空调及其控制方法。
背景技术
随着生活水平的提高,空调已经成为家庭和商用场合必不可少的电器产品。空调通常具有丰富的调节选项,以供用户调节。例如,用户可以对空调的目标温度、风速、导风板的导风方向(也即上下导风状态)和摆叶的导风方向进行调节。
但是,很多用户在使用空调时仅仅设定目标温度,甚少关注或主动使用其他调节功能。还有些用户热衷于对空调的各种调节功能进行组合调节以及频繁地调节,但因缺少专业知识,反而难以获得最好的制冷效果。
发明内容
本发明的目的在于至少解决现有技术存在的上述缺陷之一,提供一种具有智能体感模式的空调及其控制方法。
本发明的进一步的目的是要使空调的智能体感模式匹配于用户在不同状态时的不同的冷热需求。
一方面,本发明提供了一种空调的控制方法,包括:
接收智能体感模式进入指令;
获取室内人体状态参数,包括睡眠指数S、血氧指数B、人体年龄A以及性别系数G;
根据所述人体状态参数,以及预设的元气值与人体状态参数的关系来计算人体的元气值M;
根据所述元气值来控制所述空调的运行参数。
可选地,所述预设的元气值与人体状态参数的关系为:
M=(a*S+b*B+c*A)*G;
其中,a、b、c均为预设系数;若人体性别为男,G=1;人体性别为女,G为小于1的正数。
可选地,a=b>c。
可选地,0.35<a<0.45,0.35<b<0.45,0.15<b<0.25;人体性别为女 时,G的取值范围为0.85<G<0.95。
可选地,所述空调的运行参数包括:制冷目标温度,制热目标温度,室内风速,摆叶组件的运行状态,导风板的开启数量、导风角度,以及新风风量的一个或多个。
可选地,“根据所述元气值来控制所述空调的运行参数”的步骤包括:
判断所述元气值处的元气值区间档位;
根据预先存储的元气值区间档位与空调运行参数的对应关系,来确定所述空调的运行参数。
可选地,所述元气值区间档位与空调运行参数的对应关系中,高档位元气值区间与相邻的低档位元气值区间相比,制冷量/制热量提升,风速不变或增加,导风板开启数量不变或增加,新风量不变或增加。
可选地,“获取室内人体状态参数”的步骤包括:获取由穿戴设备所采集的所述室内人体状态参数。
可选地,以所述穿戴设备最近一次所采集的人体睡眠指数作为所述睡眠指数S。
另一方面,本发明还提供了一种空调,包括控制器,所述控制器包括处理器和存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时用于实现根据以上任一项所述的控制方法。
本发明的空调及其控制方法中,空调具有智能体感模式,简化了用户操作,提高了空调的智能化水平。在智能体感模式下,空调根据人体状态参数(包括睡眠指数S、血氧指数B、人体年龄A以及性别系数G)来计算人体的元气值M,根据元气值来控制空调的运行参数,以精准匹配用户在不同状态的不同的冷热需求,使得人体的风感更加舒适。而且,本发明可通过一键操作进入智能体感模式,然后无需用户操作,提升了空调的智能化、时尚化和科技感。
进一步地,本发明的控制方法中,根据关系式M=(a*S+b*B+c*A)*G来计算人体元气值,元气值综合考虑了睡眠指数、血氧指数、人体年龄以及性别,能更精准地反映出人体的状态,从而更好地评估其冷热需求,以便更好地调节空调参数。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调的结构示意图;
图2是图1所示空调的示意性剖视放大图;
图3是图2所示空调在导风板进行上扬导风时的示意图;
图4是图2所示空调在导风板进行下沉导风时的示意图;
图5是根据本发明一个实施例的空调的示意性框图;
图6是根据本发明一个实施例的空调的控制方法的示意图。
具体实施方式
下面参照图1至图6来介绍本发明实施例的空调及其控制方法。
附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
本实施例提供的流程图并不旨在指示方法的操作将以任何特定的顺序执行,或者方法的所有操作都包括在所有的每种情况下。此外,方法可以包括附加操作。在本实施例方法提供的技术思路的范围内,可以对上述方法进行附加的变化。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设 备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。
本发明实施例提供了一种空调。
空调用于对室内空气进行调节,包括调节空气的温度、湿度、空气质量、对室内空气进行加湿、除湿、引入新风等等。空调可由蒸发器、冷凝器、压缩机、节流装置以及其他必要的元件构成蒸气压缩制冷循环系统,以通过室内风机输出冷风/热风,实现对室内环境的制冷和制热。
本发明实施例的空调可以为家用空调,也可以为中央空调。具体地,空调的具体形式可以为分体壁挂式、分体立式、整体式、天井式等各种形式。本发明实施例对于空调的具体形式不进行任何的限定。下面将以分体壁挂式空调为例介绍本发明的技术方案。具体地,图2至图4示意了分体壁挂式空调的室内机的剖视图,具体是以前后延伸的竖直面为剖切面的剖视图。
图1是根据本发明一个实施例的空调的结构示意图;图2是图1所示空调的示意性剖视放大图;图3是图2所示空调在导风板进行上扬导风时的示意图;图4是图2所示空调在导风板进行下沉导风时的示意图;图5是根据本发明一个实施例的空调的示意性框图。
如图1至图5所示,本发明实施例的空调的室内机包括壳体10,室内风机30,多个导风板51、52,摆叶组件60和控制器800。
壳体10限定有容纳空间,以用于容纳室内机的主体部件,包括蒸发器20、室内风机30、摆叶组件60、控制器800等等。壳体10的前侧下部开设有出风口12,以用于吹出换热气流。壳体10可为长度方向沿水平横向的长条状。壳体10的顶部可开设有进风口11,用于吸入室内空气。壳体10内部限定有风道15,风道15的出口连通出风口12。室内风机30设置于壳体10内,用于将壳体10内的调节气流经风道15吹出出风口12,以调节室内空气。调节气流例如为换热气流(冷风气流、热风气流)、净化气流、加湿气流、新风气流等等。
多个导风板52、52均可转动地安装于壳体10,各自的转动轴线均平行于壳体10的横向方向,用于上下导风,也即引导出风口12的俯仰角度,或者称为上下出风角度,也就是气流与水平面的夹角。在空调关机或待机时,还可利用多个导风板来封闭出风口12,以避免灰尘、杂质进入出风口12,如图2。可使出风口12朝前下方敞开,使导风板51和导风板52分别位于出 风口12的前侧和下侧,以通过转动至不同角度来获取多种导风效果。例如图3,使导风板51上扬导风,使导风板52处于关闭状态。如图4所示,使导风板51处于关闭状态,利用导风板52下沉导风,如图4。每个导风板51、52各自匹配有电机(未图示),每个电机各自独立地接受控制器800的控制。
摆叶组件60安装于出风口12处,用于左右摆风。摆叶组件60具体包括多个摆叶,多个摆叶在驱动机构的驱动下实现同步地左摆动/右摆动、循环往复摆动。能实现摆叶同步摆动的驱动机构在空调领域广泛应用,例如可包括电机、摇杆和连杆,具体不再赘述。
控制器800包括处理器810和存储器820,存储器820存储有计算机程序821,计算机程序821被处理器810执行时用于实现本发明任一实施例的空调的控制方法。处理器810可以是一个中央处理单元(central processing unit,简称CPU),或者为数字处理单元等等。处理器810通过通信接口收发数据。存储器820用于存储处理器810执行的程序。存储器820是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,也可以是多个存储器820的组合。上述计算机程序821可以从计算机可读存储介质下载到相应计算/处理设备或者经由网络(例如因特网、局域网、广域网和/或无线网络)下载并安装到控制器800。
目前空调主要根据室内环境温度来调节运行参数,缺乏对人体状态的关注。为此,本发明提供了一种空调的控制方法,其具有智能体感模式,使空调的运行参数与人体状态相关联,以匹配用户在不同状态时不同的冷热需求。
本发明另一方面提供了空调的控制方法。图6是根据本发明一个实施例的空调的控制方法的示意图。
如图6所示,本发明实施例的空调的控制方法一般性地可包括以下步骤:
步骤S602:接收智能体感模式进入指令。该指令可通过多种方式获取,包括从遥控器、空调的显控装置、语音装置或者与空调绑定的移动终端获取,移动终端可为智能手机、平板电脑等。空调的遥控器、显控装置、移动终端等可设置一个按钮,用户按动按钮后可一键进入该智能体感模式。控制器800接收到该进入指令后,即控制空调进入预设的“智能体感模式”,下述步骤即智能体感模式的具体步骤
步骤S604:获取室内人体状态参数,包括睡眠指数S、血氧指数B、人 体年龄A以及性别系数G。
该步骤中,可获取由穿戴设备200所采集的室内人体状态参数。穿戴设备可为智能手表、智能手环、智能腰带、可监测睡眠的耳机、头套、眼镜、服装、枕头等。穿戴设备200配置有各种生理传感器,如压力传感器(测心率)、生物电极传感器(测心电/肌电/脑电等),以收集人体状态参数,包括心率、血压、体温、年龄、性别等,还能够计算睡眠指数、血氧指数等,穿戴设备的结构以及对上述参数的收集和计算手段为现有技术,在此无须赘述。以穿戴设备200最近一次所采集的人体睡眠指数作为所述睡眠指数S,因为人体最近一次的睡眠状态更能反映人体当前的状态。
可使穿戴设备200与空调建立通讯连接。通讯方式包括:蓝牙、WiFi、Mesh、ZigBee、Thread、Z-Wave、NFC、Hilink(如华为Hilink协议)、UWB、LiFi中的任意一种。空调开机后与穿戴设备200建立通讯连接,以获取由穿戴设备采集到的人体状态参数。具体地,可使空调自主向穿戴设备200获取人体状态参数,也可以使空调接收由穿戴设备200主动发送的人体状态参数。或者,也可获取由穿戴设备200上传至云端的人体状态参数。
或者,获取由生理传感器所检测的人体状态参数。生理传感器可为非接触式,其设置在空调上。生理传感器可以包括:红外测温仪、多普勒传感器、超声波传感器、光学传感器中等等。
通过穿戴设备200或生理传感器等手段检测人体的深睡时间、浅睡时间、夜醒次数等参数,综合评估得出睡眠指数S,正常范围为0-138。血氧指数B为血液中的氧气含量,正常范围为90%-100%。常规的穿戴设备均可检测/计算上述的S、B,在此不再赘述。
步骤S606:根据人体状态参数,以及预设的“元气值M与人体状态参数的关系”来计算人体的元气值M。
步骤S608:根据元气值M来控制空调的运行参数。
本发明实施例的空调及其控制方法中,空调具有智能体感模式,简化了用户操作,提高了空调的智能化水平。在智能体感模式下,空调根据人体状态参数(包括睡眠指数S、血氧指数B、人体年龄A以及性别系数G)来计算人体的元气值M,根据元气值M来控制空调的运行参数,以精准匹配用户在不同状态的不同的冷热需求,使得人体的风感更加舒适。而且,本发明实施例可通过一键操作进入智能体感模式,然后则无需用户的操作,提升了 空调的智能化、时尚化和科技感。
在一些实施例中,前述步骤S606中的“预设的元气值M与人体状态参数的关系”为M=(a*S+b*B+c*A)*G。其中,a、b、c均为预设系数;若人体性别为男,G=1;人体性别为女,G为小于1的正数。优选地,a=b>c。优选地,0.35<a<0.45,0.35<b<0.45,0.15<b<0.25,例如a=0.4,b=0.4。人体性别为女时,G的取值范围为0.85<G<0.95,例如G=0.9。
例如,以a=0.4,b=0.4,男性G=1,女性G=0.9为例,元气值M的几个重要点值的如下表:
表1:男性元气值M的重要点值
表2:女性元气值M的一些点值
本实施例根据关系式M=(a*S+b*B+c*A)*G来计算人体元气值,元气值综合考虑了睡眠指数、血氧指数、人体年龄以及性别,能更精准地反映出人体的状态,从而更好地评估其冷热需求,以便更好地调节空调参数。
在一些实施例中,前述步骤S608中提及的空调的运行参数包括:制冷目标温度,制热目标温度,室内风速,摆叶组件60的运行状态,导风板的开启数量、导风角度,以及新风风量的一个或多个。空调可通过控制室内风 机30的转速来控制室内风速,通过控制新风风机70的转速来控制新风风量。
前述“根据元气值来控制空调的运行参数”的步骤包括:
判断元气值处的元气值区间档位;
根据预先存储的元气值区间档位与空调运行参数的对应关系,来确定空调的运行参数。如此无需频繁调节空调运行参数。
具体地,元气值区间档位与空调运行参数的对应关系中,高档位元气值区间与相邻的低档位元气值区间相比,制冷量/制热量提升,风速不变或增加,导风板开启数量不变或增加,新风量不变或增加。
例如,可将元气值可能落入的元气值区间分为四个档位,由低至高分别为虚弱、疲惫、强悍和爆表。例如:
虚弱档位所对应的元气值区间为M<60;
疲惫档位所对应的元气值区间为60≤M<75;
强悍档位所对应的元气值区间为75≤M<85;
爆表档位所对应的元气值区间为85≤M<100。
进一步地,“元气值区间档位与空调运行参数的对应关系”包括制冷和制热两种情况,请参考表3、表4的示例。
表3:制冷模式下“元气值区间档位与空调运行参数的对应关系”
表4:制热模式下“元气值区间档位与空调运行参数的对应关系”
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调的控制方法,包括:
    接收智能体感模式进入指令;
    获取室内人体状态参数,包括睡眠指数S、血氧指数B、人体年龄A以及性别系数G;
    根据所述人体状态参数,以及预设的元气值与人体状态参数的关系来计算人体的元气值M;
    根据所述元气值来控制所述空调的运行参数。
  2. 根据权利要求1所述的控制方法,其中
    所述预设的元气值与人体状态参数的关系为:
    M=(a*S+b*B+c*A)*G;
    其中,a、b、c均为预设系数;若人体性别为男,G=1;人体性别为女,G为小于1的正数。
  3. 根据权利要求2所述的控制方法,其中
    a=b>c。
  4. 根据权利要求2所述的控制方法,其中
    0.35<a<0.45,0.35<b<0.45,0.15<b<0.25;
    人体性别为女时,G的取值范围为0.85<G<0.95。
  5. 根据权利要求1-4中任一项所述的控制方法,其中
    所述空调的运行参数包括:制冷目标温度,制热目标温度,室内风速,摆叶组件的运行状态,导风板的开启数量、导风角度,以及新风风量的一个或多个。
  6. 根据权利要求1-4中任一项所述的控制方法,其中“根据所述元气值来控制所述空调的运行参数”的步骤包括:
    判断所述元气值处的元气值区间档位;
    根据预先存储的元气值区间档位与空调运行参数的对应关系,来确定所 述空调的运行参数。
  7. 根据权利要求6所述的控制方法,其中
    在所述元气值区间档位与空调运行参数的对应关系中,高档位元气值区间与相邻的低档位元气值区间相比,制冷量/制热量提升,风速不变或增加,导风板开启数量不变或增加,新风量不变或增加。
  8. 根据权利要求1-4中任一项所述的控制方法,其中“获取室内人体状态参数”的步骤包括:
    获取由穿戴设备所采集的所述室内人体状态参数。
  9. 根据权利要求8所述的控制方法,其中
    以所述穿戴设备最近一次所采集的人体睡眠指数作为所述睡眠指数S。
  10. 一种空调,包括控制器,所述控制器包括处理器和存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时用于实现根据权利要求1至9中任一项所述的控制方法。
PCT/CN2023/109684 2022-11-30 2023-07-27 空调及其控制方法 WO2024113920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211529007.3 2022-11-30
CN202211529007.3A CN115807961A (zh) 2022-11-30 2022-11-30 空调及其控制方法

Publications (1)

Publication Number Publication Date
WO2024113920A1 true WO2024113920A1 (zh) 2024-06-06

Family

ID=85484711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109684 WO2024113920A1 (zh) 2022-11-30 2023-07-27 空调及其控制方法

Country Status (2)

Country Link
CN (1) CN115807961A (zh)
WO (1) WO2024113920A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115807961A (zh) * 2022-11-30 2023-03-17 青岛海尔空调器有限总公司 空调及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099551A (zh) * 2018-07-20 2018-12-28 珠海格力电器股份有限公司 一种空调器的控制方法、装置、存储介质及空调器
CN110553358A (zh) * 2019-08-30 2019-12-10 珠海格力电器股份有限公司 一种基于智能穿戴设备的空调控制方法、系统及空调器
CN115388529A (zh) * 2022-09-27 2022-11-25 青岛海尔空调器有限总公司 空调器及其控制方法
CN115807961A (zh) * 2022-11-30 2023-03-17 青岛海尔空调器有限总公司 空调及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300602B2 (ja) * 2008-10-31 2013-09-25 三菱電機株式会社 空気調和機
CN106500265A (zh) * 2016-10-28 2017-03-15 美的集团武汉制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法
CN106679098A (zh) * 2016-12-30 2017-05-17 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099551A (zh) * 2018-07-20 2018-12-28 珠海格力电器股份有限公司 一种空调器的控制方法、装置、存储介质及空调器
CN110553358A (zh) * 2019-08-30 2019-12-10 珠海格力电器股份有限公司 一种基于智能穿戴设备的空调控制方法、系统及空调器
CN115388529A (zh) * 2022-09-27 2022-11-25 青岛海尔空调器有限总公司 空调器及其控制方法
CN115807961A (zh) * 2022-11-30 2023-03-17 青岛海尔空调器有限总公司 空调及其控制方法

Also Published As

Publication number Publication date
CN115807961A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN111279135B (zh) 集中度推断装置
CN110017587B (zh) 运行控制方法、装置、空调器和计算机可读存储介质
CN104697109B (zh) 制冷控制方法、控制装置及变频空调
WO2017067341A1 (zh) 一种智能空调系统
WO2020248978A1 (zh) 空调器的控制方法及空调器
WO2024113920A1 (zh) 空调及其控制方法
CN104833063A (zh) 一种空调控制方法及系统
CN107525245B (zh) 用于控制空调的方法及装置、空调
CN110332662B (zh) 一种空调控制方法及空调装置
WO2020248636A1 (zh) 空调器的控制方法及空调器
WO2024066710A1 (zh) 空调器及其控制方法
WO2024099213A1 (zh) 空调及其控制方法
CN109028516A (zh) 空调器控制方法、装置以及存储介质
CN105841317A (zh) 智能空调手环及空调控制方法
CN109323377A (zh) 空调器及其控制方法和控制装置
CN113494755A (zh) 智能终端及室内空气调节方法
CN110986322A (zh) 空调运行控制方法、控制装置及空调系统
CN106705380A (zh) 一种中央空调系统室内空气温度设定方法及装置
CN109442688A (zh) 一种空调控制方法、装置、存储介质及空调
CN106052041B (zh) 空调制冷控制方法和控制装置
JP2019045050A (ja) 空気調和機
WO2024159747A1 (zh) 空调器的控制方法、控制装置及空调器
CN210354663U (zh) 一种仿真切脉设备以及智能空调控制系统
WO2020054519A1 (ja) 空調制御装置および空気調和装置
CN115435457B (zh) 基于边缘计算的空调控制方法、系统及服务器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896083

Country of ref document: EP

Kind code of ref document: A1