WO2024066441A1 - 流量控制方法及计算节点 - Google Patents
流量控制方法及计算节点 Download PDFInfo
- Publication number
- WO2024066441A1 WO2024066441A1 PCT/CN2023/097951 CN2023097951W WO2024066441A1 WO 2024066441 A1 WO2024066441 A1 WO 2024066441A1 CN 2023097951 W CN2023097951 W CN 2023097951W WO 2024066441 A1 WO2024066441 A1 WO 2024066441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- flow rate
- processor
- pressure
- computing node
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 239000007788 liquid Substances 0.000 claims abstract description 91
- 230000017525 heat dissipation Effects 0.000 claims abstract description 65
- 239000002826 coolant Substances 0.000 claims abstract description 59
- 230000000694 effects Effects 0.000 abstract description 29
- 239000007921 spray Substances 0.000 abstract description 9
- 238000005057 refrigeration Methods 0.000 abstract description 2
- 230000001276 controlling effect Effects 0.000 description 29
- 239000000243 solution Substances 0.000 description 24
- 238000010586 diagram Methods 0.000 description 18
- 238000004590 computer program Methods 0.000 description 16
- 238000001816 cooling Methods 0.000 description 16
- 230000001105 regulatory effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D27/00—Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
- G05D27/02—Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/208—Liquid cooling with phase change
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20836—Thermal management, e.g. server temperature control
Definitions
- the present application relates to the field of computer technology, and in particular to a flow control method and a computing node.
- Two-phase cooling technology is a cooling technology used in data centers.
- a plurality of computing nodes may be arranged in a data center.
- the computing node may be a server.
- Each computing node may include at least one electronic component.
- the electronic component may be a central processing unit (CPU) in the computing node.
- the computing node may be a sealed structure, and a cooling medium may be contained in the computing node to cool down the electronic components in the computing node through the cooling medium.
- the cooling medium may be a fluorinated liquid.
- Liquid cooling medium can be sprayed through the nozzle inside the computing node so that the electronic components can be immersed in the liquid cooling medium.
- the liquid cooling medium can absorb the heat generated by the electronic components and vaporize, thereby taking away the heat generated by the electronic components.
- the spraying speed of the liquid cooling medium is inappropriate, the liquid level in the computing node may be too high or too low, resulting in poor cooling effect inside the computing node.
- the embodiment of the present application provides a flow control method and a computing node.
- the method can adjust the size of the nozzle flow according to the node parameters of the computing node to achieve the purpose of adjusting the liquid level in the computing node, so that the cooling effect of the computing node is better.
- an embodiment of the present application provides a flow control method, which is applied to a computing node, wherein the computing node includes a housing, a heat dissipation device, and a nozzle, wherein the heat dissipation device and the nozzle are located in a closed cavity of the housing; the method includes:
- Acquire node parameters of the computing node including at least one of the following: processor parameters of a processor and pressure information of the closed cavity, the device to be cooled includes the processor;
- the flow rate of the liquid cooling medium sprayed by the nozzle to the heat dissipation device is adjusted.
- the above technical solution can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the node parameters, so as to achieve the purpose of adjusting the liquid level in the computing node, so that the cooling effect of the computing node is better.
- adjusting the flow rate of the liquid cooling medium sprayed by the nozzle toward the heat dissipation device according to the node parameter includes:
- the flow rate of the nozzle is controlled to increase or remain unchanged; or
- the flow rate of the nozzle is controlled to decrease or remain unchanged.
- the above technical solution can adjust the nozzle flow rate according to the processor parameters/pressure information of the closed chamber, so that the control accuracy of the nozzle flow rate is higher.
- the processor parameter includes a temperature of the processor; and controlling the flow rate of the nozzle to increase or remain unchanged according to the processor parameter includes:
- the flow rate of the nozzle is controlled to increase; or,
- the flow rate of the nozzle is controlled to remain unchanged.
- the above technical solution can control the nozzle flow rate to increase or remain unchanged according to whether the temperature of the processor exceeds the first preset temperature, so that the liquid level control accuracy of the cooling medium in the computing node is higher.
- the processor parameters include a temperature of the processor, a temperature increase rate of the processor, and a first power increase rate of the processor;
- the controlling the flow rate of the nozzle to increase or remain unchanged according to the processor parameter includes:
- the flow rate of the nozzle is controlled to increase or remain unchanged according to the first power increase rate and the temperature of the processor.
- the above technical solution can adjust the nozzle flow rate according to the temperature increase rate of the processor, so that the control accuracy of the nozzle flow rate is higher.
- controlling the flow rate of the nozzle to increase or remain unchanged according to the first power increase rate and the temperature of the processor includes:
- the flow rate of the nozzle is controlled to increase; if the temperature of the processor is less than the second preset temperature, the flow rate of the nozzle is controlled to remain unchanged.
- the above technical scheme can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the temperature of the processor, the temperature increase rate of the processor and the first power increase rate, so that the liquid level control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- the pressure information of the closed chamber includes the pressure of the closed chamber; and controlling the flow rate of the nozzle to decrease or remain unchanged according to the pressure information of the closed chamber includes:
- the flow rate of the nozzle is controlled to decrease; or,
- the flow rate of the nozzle is controlled to remain unchanged.
- the above technical solution can control the nozzle flow rate to decrease or remain unchanged according to whether the pressure of the closed cavity is greater than or equal to the first preset pressure, so that the liquid level control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- the pressure information of the closed chamber includes the pressure of the closed chamber and the pressure increase rate of the closed chamber; and controlling the flow rate of the nozzle to decrease or remain unchanged according to the pressure information of the closed chamber includes:
- the flow rate of the nozzle is controlled to decrease or remain unchanged according to the second power increase rate of the computing node and the pressure of the closed chamber.
- the above technical solution can adjust the nozzle flow rate according to the pressure increase rate of the closed chamber, so that the nozzle flow rate can be controlled Higher accuracy.
- controlling the flow rate of the nozzle to increase or remain unchanged according to the second power increase rate and the pressure of the closed chamber includes:
- the second power increase rate is greater than the fourth threshold, if the pressure of the closed chamber is greater than or equal to the second preset pressure, the flow rate of the nozzle is controlled to decrease; if the pressure of the closed chamber is less than the second preset pressure, the flow rate of the nozzle is controlled to remain unchanged.
- the above technical scheme can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the pressure increase rate of the closed cavity, the pressure of the closed cavity and the second power increase rate, so that the liquid level control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- an embodiment of the present application provides a computing node, including a housing, a device to be cooled, a nozzle, and a controller, wherein the device to be cooled and the nozzle are located in a closed cavity of the housing, wherein:
- the controller is used to execute the method described in any one of the first aspects to adjust the flow rate of the liquid cooling medium sprayed by the nozzle to the heat dissipation device.
- the nozzle flow rate can be adjusted by the controller to achieve the purpose of adjusting the liquid level in the closed cavity.
- the computing node further includes a pressure sensor, which is disposed in the closed cavity, and is used to collect the pressure of the closed cavity and send the pressure of the closed cavity to the controller.
- the pressure in the closed cavity can be measured by a pressure sensor to achieve the purpose of monitoring the pressure in the closed cavity.
- an embodiment of the present application provides a flow control device, which can be applied to a computing node, wherein the computing node includes a housing, a device to be cooled and a nozzle, wherein the device to be cooled and the nozzle are located in a closed cavity of the housing; the flow control device includes an acquisition module and a regulation module, wherein:
- the acquisition module is used to acquire node parameters of the computing node, wherein the node parameters include at least one of the following: processor parameters of a processor and pressure information of the closed cavity, and the device to be cooled includes the processor;
- the regulating module is used to regulate the flow rate of the liquid cooling medium sprayed by the nozzle to the heat dissipation device according to the node parameters.
- the above technical solution can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the node parameters, so as to achieve the purpose of adjusting the liquid level in the computing node, so that the cooling effect of the computing node is better.
- the adjustment module is specifically used to:
- the flow rate of the nozzle is controlled to increase or remain unchanged; or
- the flow rate of the nozzle is controlled to decrease or remain unchanged.
- the above technical solution can adjust the nozzle flow rate according to the processor parameters/pressure information of the closed chamber, so that the control accuracy of the nozzle flow rate is higher.
- the processor parameter includes a temperature of the processor; and the adjustment module is specifically configured to:
- the flow rate of the nozzle is controlled to increase; or,
- the flow rate of the nozzle is controlled to remain unchanged.
- the above technical solution can control the nozzle flow rate to increase or remain unchanged according to whether the temperature of the processor exceeds the first preset temperature, so that the liquid level control accuracy of the cooling medium in the computing node is higher.
- the processor parameters include the temperature of the processor, the temperature increase rate of the processor, and the first power increase rate of the processor; the adjustment module is specifically configured to:
- the flow rate of the nozzle is controlled to increase or remain unchanged according to the first power increase rate and the temperature of the processor.
- the above technical solution can adjust the nozzle flow rate according to the temperature increase rate of the processor, so that the control accuracy of the nozzle flow rate is higher.
- the adjustment module is specifically used to:
- the flow rate of the nozzle is controlled to increase; if the temperature of the processor is less than the second preset temperature, the flow rate of the nozzle is controlled to remain unchanged.
- the above technical scheme can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the temperature of the processor, the temperature increase rate of the processor and the first power increase rate, so that the liquid level control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- the pressure information includes the pressure of the closed cavity; the regulating module is specifically configured to:
- the flow rate of the nozzle is controlled to decrease; or,
- the flow rate of the nozzle is controlled to remain unchanged.
- the above technical solution can control the nozzle flow rate to decrease or remain unchanged according to whether the pressure of the closed cavity is greater than or equal to the first preset pressure, so that the liquid level control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- the pressure information includes the pressure of the sealed chamber and the pressure increase rate of the sealed chamber; the regulating module is specifically configured to:
- the flow rate of the nozzle is controlled to decrease or remain unchanged according to the second power increase rate of the computing node and the pressure of the closed chamber.
- the above technical solution can adjust the nozzle flow rate according to the pressure increase rate of the closed chamber, so that the control accuracy of the nozzle flow rate is higher.
- the adjustment module is specifically used to:
- the second power increase rate is greater than the fourth threshold, if the pressure of the closed chamber is greater than or equal to the second preset pressure, the flow rate of the nozzle is controlled to decrease; if the pressure of the closed chamber is less than the second preset pressure, the flow rate of the nozzle is controlled to remain unchanged.
- the above technical scheme can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the pressure increase rate of the closed cavity, the pressure of the closed cavity and the second power increase rate, so that the liquid level control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- an embodiment of the present application provides a flow control device, including a processor, and a Memory connected to the letter;
- the memory stores a computer program
- the processor executes the computer program to implement the method as described in any one of the first aspects.
- the above technical solution can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the node parameters, so as to achieve the purpose of adjusting the liquid level height in the computing node, so that the cooling effect of the computing node is better.
- an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the method as described in any one of the first aspects is implemented.
- the above technical solution can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the node parameters, so as to achieve the purpose of adjusting the liquid level in the computing node, so that the cooling effect of the computing node is better.
- an embodiment of the present application provides a computer program product, including a computer program, which, when executed by a computer, implements the method as described in any one of the first aspects.
- the above technical solution can adjust the flow rate of liquid cooling medium sprayed by the nozzle to the device to be cooled according to the node parameters, so as to achieve the purpose of adjusting the liquid level in the computing node, so that the cooling effect of the computing node is better.
- FIG1 is a schematic diagram of a flow control system architecture provided by an embodiment of the present application.
- FIG2 is a schematic diagram of a nozzle flow control method
- FIG3A is a schematic diagram of a flow control method provided in an embodiment of the present application.
- FIG3B is a schematic diagram of another flow control method provided in an embodiment of the present application.
- FIG4 is a flow chart of a flow control method provided in an embodiment of the present application.
- FIG5 is a schematic flow chart of a method for adjusting nozzle flow rate according to processor parameters provided in an embodiment of the present application
- FIG6 is a flow chart of another method for adjusting nozzle flow rate according to processor parameters provided in an embodiment of the present application.
- FIG. 7 is a schematic flow chart of a method for adjusting the flow rate of a nozzle according to pressure information of a closed cavity provided in an embodiment of the present application;
- FIG8 is a flow chart of another method for adjusting the flow rate of a nozzle according to the pressure information of a closed cavity provided in an embodiment of the present application;
- FIG9 is a schematic structural diagram of a flow control device provided in an embodiment of the present application.
- FIG. 10 is a schematic diagram of the hardware structure of the flow control device provided in this application.
- the present application relates to a two-phase heat dissipation technology. To facilitate the understanding of the embodiments of the present application, the two-phase heat dissipation technology is first described in detail.
- Two-phase heat dissipation refers to the refrigeration technology in which the liquid cooling medium absorbs the heat generated by the electronic components and vaporizes, thereby taking away the heat generated by the electronic components; the gaseous cooling medium is condensed by other equipment and turned back into liquid cooling medium to continue cooling the electronic components.
- Fig. 1 is a schematic diagram of a flow control system architecture provided by an embodiment of the present application.
- a computing node 100 is included.
- the computing node 100 includes a heat dissipation device 101 and a nozzle 102 .
- the computing node 100 may be a server, a server cluster, etc., arranged in a data center.
- One or more electronic components may be arranged in the computing node 100. When the electronic components are working, heat is generated.
- the heat dissipation device 101 may be a heat generating device in the computing node 100.
- the heat dissipation device 101 may be a central processing unit (CPU), a graphics processing unit (GPU), a circuit board, a memory, and the like.
- the nozzle 102 is used to spray the cooling medium to the heat dissipation device 101, so that the heat dissipation device 101 can be immersed in the cooling medium. It should be understood that the number of the nozzles 102 can be one or more, which is not limited in the embodiment of the present application.
- the computing node 100 has a closed cavity, which can be used to accommodate the device to be cooled 101, the nozzle 102 and the cooling medium.
- a liquid inlet and an air outlet are provided on the cavity wall of the computing node 100.
- the liquid inlet is used to supply the liquid cooling medium to enter the computing node 100, and the liquid inlet is connected to the nozzle 102.
- the nozzle 102 can spray the liquid cooling medium to the processor.
- the liquid cooling medium can absorb the heat generated by the device to be cooled 101 and vaporize.
- the vaporized cooling medium can be discharged from the air outlet of the computing node 100.
- the system architecture and application scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
- the structure of the computing node illustrated in the embodiments of the present application does not constitute a specific limitation on the computing node.
- the computing node may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange the components differently.
- the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
- the flow rate of the nozzle 102 can be controlled so that the liquid level in the computing node 100 is maintained at an appropriate height, thereby achieving the purpose of cooling the computing node 100.
- the liquid level can be lower than the height of the device to be cooled 101 in the vertical direction, or the liquid level can be higher than the height of the device to be cooled 101 in the vertical direction.
- the embodiment of the present application does not limit the height of the liquid level, and the liquid level height can meet the heat dissipation requirements of the computing node 100.
- FIG2 is a schematic diagram of a method for controlling the flow rate of a nozzle.
- a computing node 200 includes a processor 201 , a baffle 202 , a liquid level sensor 203 and a liquid level sensor 204 .
- Liquid level sensor 203 and liquid level sensor 204 are disposed on the side wall of computing node 200 near baffle 202.
- the level sensor 203 and the liquid level sensor 204 can be used to detect the liquid level height in the computing node 200, so that the computing node 200 can adjust the flow rate of the nozzle according to the liquid level height. For example, if the liquid level height is higher than the position where the liquid level sensor 203 is set, the computing node 200 controls the nozzle flow rate to decrease; if the liquid level height is lower than the position where the liquid level sensor 204 is set, the computing node 200 controls the nozzle flow rate to increase.
- liquid level in computing node 200 is prone to fluctuate.
- liquid level sensor 203 and/or liquid level sensor 204 it is difficult for liquid level sensor 203 and/or liquid level sensor 204 to determine the height of the liquid level in computing node 200, making it impossible for computing node 200 to accurately control the flow rate of the nozzle, resulting in poor cooling effect inside the computing node.
- an embodiment of the present application provides a flow control method.
- the flow control method provided by the embodiment of the present application is described below in conjunction with FIG. 3A-FIG 3B.
- FIG3A is a schematic diagram of a flow control method provided in an embodiment of the present application.
- a computing node 300 includes a controller 301 , a processor 302 , a pressure sensor 303 , and a flow control valve 304 .
- the processor 302 may be a device in a computing node that generates relatively large amounts of heat and needs to be cooled.
- the controller 301 may be a management module of a non-business module in the computing node 300.
- the controller 301 may be a baseboard management controller (BMC) outside the computing node 300, a monitoring management device outside the computing node 300, a management system in a management chip outside the processor, or a system management module (SMM) of the computing node 300.
- BMC baseboard management controller
- SMM system management module
- the embodiments of the present application do not limit the specific form of the controller 301, and the above is only an exemplary description.
- the controller 301 is taken as an example of a BMC.
- the controller 301 can monitor the temperature of the processor 302, the power of the processor 302, and the power of the computing node 300.
- the pressure sensor 303 can measure the pressure in the closed cavity of the computing node 300.
- the controller 301 can be connected (communicated) with the pressure sensor 303 to monitor the pressure in the closed cavity of the computing node 300 through the pressure sensor 303.
- the controller 301 can also adjust the opening size of the flow control valve 304 according to the temperature of the processor 302, the power of the processor 302, the power of the computing node 300, and the pressure in the closed cavity.
- FIG3B is a schematic diagram of another flow control method provided in an embodiment of the present application.
- the computing node 300 may further include a nozzle 305 .
- the flow regulating valve 304 can be connected to the nozzle 305 and can be used to adjust the size of the injection flow of 305.
- the processor 302 can be immersed in the cooling medium injected by the nozzle 305.
- the pressure sensor 303 is arranged above the liquid level so that the fluctuation of the liquid level does not affect the measurement result of the pressure sensor 303.
- the pressure sensor 303 can be arranged at the upper cover position of the closed cavity in the computing node 300.
- the controller 301 can adjust the opening size of the flow control valve 304 according to the temperature of the processor 302, the power of the processor 302, the power of the computing node 300 and the pressure in the closed cavity, and then adjust the size of the injection flow of the nozzle 305 to achieve the purpose of adjusting the liquid level height in the computing node 300, so that the cooling effect of the computing node 300 is better.
- FIG4 is a flow chart of a flow control method provided in an embodiment of the present application. Referring to FIG4 , the method may include:
- the execution subject of this embodiment may be a controller, or a flow control device in the controller.
- the flow control device may be implemented by software, or by a combination of software and hardware.
- the computing node comprises a shell, a heat dissipation device and a nozzle, wherein the heat dissipation device and the nozzle are located in a closed cavity of the shell.
- the computing node may be an electronic device that generates heat when working, for example, a server.
- the device to be cooled may be a heat generating device in a computing node, for example, a circuit board, a CPU, a GPU, a memory, etc. in a computing node.
- the nozzle can be used to spray a cooling medium onto the heat dissipation device to achieve the purpose of cooling the heat dissipation device.
- the cooling medium can be a fluorinated liquid.
- the node parameters include at least one of the following: processor parameters of the processor and pressure information of the closed cavity, and the device to be cooled includes the processor.
- the processor may be a device with a relatively large heat generation in the computing node.
- the processor may be a CPU.
- the processor parameter may be state data of the processor during operation, for example, the temperature of the processor.
- the pressure information of the sealed cavity may be the pressure inside the sealed cavity for accommodating the heat dissipation device and the nozzle.
- the controller may directly or indirectly obtain the node parameters.
- the controller may directly monitor and obtain the operation status data of the node; or the controller may obtain the node parameters from other monitoring devices.
- the other monitoring devices may be temperature sensors, pressure sensors, etc.
- the flow rate of the nozzle and/or the liquid level in the closed cavity can affect the heat dissipation effect of the computing node. For example, when the flow rate of the nozzle is small, the liquid level may be too low, resulting in poor heat dissipation effect; when the liquid level is too high, the cooling medium may fill the closed cavity, resulting in poor heat dissipation effect.
- the flow rate of the nozzle can be controlled to increase or remain unchanged according to the processor parameters; or the flow rate of the nozzle can be controlled to decrease or remain unchanged according to the pressure information of the closed chamber.
- the node parameters of the computing node can be obtained, and according to the node parameters, the flow rate of the liquid cooling medium sprayed by the nozzle to the device to be cooled is adjusted to achieve the purpose of adjusting the liquid level height in the computing node, so that the cooling effect of the computing node is better.
- the method of controlling the flow rate of the nozzle to increase or remain unchanged is also different, which may include the following two situations:
- Case 1 Processor parameters include processor temperature.
- the temperature of the processor may be the current operating temperature of the processor.
- controller can monitor and obtain the operating temperature of the processor.
- the processor parameters include the temperature of the processor, the temperature increase rate of the processor, and the first power increase rate of the processor.
- the temperature increase rate of the processor may be the temperature increase rate of the processor in a first period between a certain time before the current time and the current time.
- the length of the first period may be set according to actual needs, and this application does not limit this.
- controller can calculate the temperature increase rate of the processor according to the operating temperature of the processor.
- the first power increase rate may be the increase rate of the processor power in a second period between a certain time before the current time and the current time.
- the second period may be the same as the first period, or the second period may be different from the first period.
- the length of the second period can be set according to actual needs, and this application does not limit this.
- controller may monitor the power of the processor and may calculate the first power increase rate according to the power of the processor.
- Figure 5 is a flow chart of a method for adjusting the nozzle flow rate according to processor parameters provided in an embodiment of the present application. Referring to Figure 5, the method may include:
- S501 Determine whether the temperature of the processor is greater than or equal to a first preset temperature.
- the first preset temperature may be a warning temperature of the processor.
- the warning temperature may be a temperature lower than a maximum operating temperature of the processor.
- the warning temperature of the processor may be as shown in Table 1:
- the first preset temperature in this embodiment can be set to any of the above-mentioned warning temperatures according to actual heat dissipation requirements.
- the current nozzle flow rate may not meet the heat dissipation requirement of the processor, and the nozzle flow rate needs to be controlled to increase.
- the speed at which the nozzle currently sprays the cooling medium may be controlled to remain unchanged.
- the nozzle flow rate can be controlled to increase or remain unchanged according to whether the temperature of the processor exceeds the first preset temperature, so that the liquid level control accuracy of the cooling medium in the computing node is higher and the heat dissipation effect of the computing node is better.
- Figure 6 is a flow chart of another method for adjusting the nozzle flow rate according to the processor parameters provided by an embodiment of the present application. Referring to Figure 6, the method may include:
- S601 Determine whether the temperature increase rate is less than or equal to a first threshold.
- the first threshold may be an alarm value of a temperature increase rate of the processor set according to a heat dissipation requirement of the computing node.
- the current heat dissipation strategy may not meet the heat dissipation requirements of the computing node, that is, the flow rate of the nozzle may need to be adjusted.
- the first threshold may be 3°C/min.
- the heat dissipation strategy may be the flow rate of the cooling medium sprayed by the nozzle.
- S602 Determine whether the first power increase rate is less than or equal to a second threshold.
- the second threshold may be an alarm value of a power increase rate of the processor set according to a heat dissipation requirement of the computing node.
- the second threshold may be 10W/min.
- the temperature increase rate is greater than the first threshold and the first power increase rate is less than or equal to the second threshold, the temperature of the processor may increase due to insufficient liquid level in the closed chamber, and the flow rate of the nozzle needs to be controlled to increase.
- the flow rate of the nozzle needs to be controlled to increase.
- S603 Determine whether the temperature of the processor is greater than or equal to a second preset temperature.
- the second preset temperature may be a warning temperature of the processor.
- the second preset temperature may be the same as the first preset temperature, or the second preset temperature may be different from the first preset temperature.
- the temperature increase rate is greater than the first threshold, the first power increase rate is greater than the second threshold, and the temperature of the processor is greater than or equal to the second preset temperature, the current flow rate of the nozzle is too small and does not meet the heat dissipation requirements of the processor, so it is necessary to control the flow rate of the nozzle to increase.
- the first threshold is 3°C/min
- the second threshold is 10W/min
- the second preset temperature is 90°C
- the flow rate of the liquid cooling medium sprayed by the nozzle to the device to be cooled can be adjusted according to the temperature of the processor, the temperature increase rate of the processor and the first power increase rate, so that the liquid level height control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- the method of controlling the flow rate of the nozzle to decrease or remain unchanged is also different, which may include the following two situations:
- Case 1 The pressure information of the closed cavity includes the pressure of the closed cavity.
- the pressure of the sealed chamber may be the current pressure in the sealed chamber monitored by the controller via a pressure sensor in the sealed chamber.
- Case 2 The pressure information of the closed chamber includes the pressure of the closed chamber and the pressure increase rate of the closed chamber.
- the pressure increase rate of the sealed chamber can be the third period between a certain time before the current time and the current time.
- the third period may be the same as the first period/the second period, or the third period may be different from the first period/the second period.
- the length of the third period may be set according to actual needs, and this application does not limit this.
- controller can monitor the pressure of the closed chamber and can calculate the pressure increase rate of the closed chamber according to the pressure of the closed chamber.
- FIG7 is a flow chart of a method for adjusting the flow rate of a nozzle according to the pressure information of a closed cavity provided by an embodiment of the present application.
- the method may include:
- the first preset pressure may be a warning pressure of the closed cavity of the computing node.
- the warning pressure may be a pressure lower than the maximum working pressure in the closed cavity.
- multiple levels of warning pressure can be set according to actual needs. For example, a pressure 4kpa lower than the maximum working pressure of the closed chamber can be set as a severe warning pressure, and a pressure 5kpa lower than the maximum working pressure of the closed chamber can be set as a general warning pressure.
- the warning pressure of the closed chamber can be as shown in Table 2:
- the first preset pressure in this embodiment can be set to any of the above-mentioned levels of warning pressure according to the heat dissipation requirements of the computing node.
- the liquid level in the sealed chamber may be too high, and the flow rate of the nozzle needs to be controlled to be reduced.
- the pressure in the sealed chamber is less than the first preset pressure, the current liquid level in the sealed chamber can meet the heat dissipation requirement, and the flow rate of the nozzle can be controlled to remain unchanged.
- the nozzle flow rate can be controlled to decrease or remain unchanged according to whether the pressure of the closed chamber is greater than or equal to the first preset pressure, so that the liquid level control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- Figure 8 is a flow chart of another method for adjusting the flow rate of the nozzle according to the pressure information of the closed cavity provided by an embodiment of the present application. Referring to Figure 8, the method may include:
- the third threshold may be an alarm value of the pressure increase rate in the closed cavity, which is set according to the heat dissipation requirement of the computing node.
- the current heat dissipation strategy may not meet the heat dissipation requirements of the computing node, that is, the flow rate of the nozzle may need to be adjusted.
- the third threshold may be 3 kPa/min.
- the heat dissipation strategy may be the flow rate of the cooling medium sprayed by the nozzle.
- S802 Determine whether the second power increase rate of the computing node is less than or equal to a fourth threshold.
- the second power increase rate may be a power increase rate of the computing node in a fourth time period between a certain time before the current time and the current time.
- the fourth time period may be the same as the first time period/the second time period/the third time period, or the fourth time period may be different from the first time period/the second time period/the third time period.
- the length of the fourth time period may be set according to actual needs, and this application does not limit this.
- controller may monitor the power of the computing node and may calculate the second power increase rate according to the power of the computing node.
- the fourth threshold may be an alarm value of a power increase rate of the computing node, which is set according to a heat dissipation requirement of the computing node.
- the fourth threshold may be 100 W/min.
- the pressure increase rate is greater than the third threshold and the second power increase rate is less than or equal to the fourth threshold, the pressure in the closed chamber may increase due to the high liquid level in the closed chamber, and the flow rate of the nozzle needs to be controlled to decrease.
- the third threshold is 3 kpa/min and the fourth threshold is 100 W/min
- the flow rate of the nozzle needs to be controlled to decrease.
- S803 Determine whether the pressure of the sealed cavity is greater than or equal to a second preset pressure.
- the second preset pressure may be a warning pressure of the sealed chamber.
- the second preset pressure may be the same as the first preset pressure, or the second preset pressure may be different from the first preset pressure.
- the pressure increase rate is greater than the third threshold, the second power increase rate is greater than the fourth threshold, and the pressure in the closed chamber is greater than or equal to the second preset pressure, the boiling height of the liquid level in the closed chamber is relatively high, and therefore the flow rate of the nozzle needs to be controlled to be reduced.
- the third threshold is 3 kpa/min
- the fourth threshold is 100 W/min
- the second preset pressure is 10 kpa
- the pressure of the closed cavity can be adjusted according to the pressure information of the closed cavity.
- the force increase rate, the pressure of the closed cavity and the second power increase rate are used to adjust the flow rate of the liquid cooling medium sprayed by the nozzle to the device to be cooled, so that the liquid level height control accuracy of the cooling medium in the node is higher and the heat dissipation effect of the computing node is better.
- FIG9 is a schematic diagram of the structure of a flow control device provided in an embodiment of the present application.
- the flow control device 10 can be applied to a computing node, wherein the computing node comprises a housing, a device to be cooled and a nozzle, wherein the device to be cooled and the nozzle are located in a closed cavity of the housing; the flow control device 10 comprises an acquisition module 11 and a regulation module 12, wherein:
- the acquisition module 11 is used to acquire node parameters of the computing node, wherein the node parameters include at least one of the following: processor parameters of the processor and pressure information of the closed cavity, and the device to be cooled includes the processor;
- the regulating module 12 is used to regulate the flow rate of the liquid cooling medium sprayed by the nozzle to the heat dissipation device according to the node parameters.
- the flow control device provided in this embodiment can be used to execute the technical solution shown in any of the above method embodiments. Its implementation principle and technical effects are similar and will not be described in detail here.
- the adjustment module 12 is specifically configured to:
- the flow rate of the nozzle is controlled to increase or remain unchanged; or
- the flow rate of the nozzle is controlled to decrease or remain unchanged.
- the processor parameter includes the temperature of the processor; the adjustment module 12 is specifically configured to:
- the flow rate of the nozzle is controlled to increase; or,
- the flow rate of the nozzle is controlled to remain unchanged.
- the processor parameters include the temperature of the processor, the temperature increase rate of the processor, and the first power increase rate of the processor; the adjustment module 12 is specifically configured to:
- the flow rate of the nozzle is controlled to increase or remain unchanged according to the first power increase rate and the temperature of the processor.
- the adjustment module 12 is specifically configured to:
- the flow rate of the nozzle is controlled to increase; if the temperature of the processor is less than the second preset temperature, the flow rate of the nozzle is controlled to remain unchanged.
- the pressure information includes the pressure of the closed cavity; the regulating module 12 is specifically configured to:
- the flow rate of the nozzle is controlled to decrease; or,
- the flow rate of the nozzle is controlled to remain unchanged.
- the pressure information includes the pressure of the closed chamber and the pressure increase rate of the closed chamber; the regulating module 12 is specifically configured to:
- the flow rate of the nozzle is controlled to decrease or remain unchanged according to the second power increase rate of the computing node and the pressure of the closed chamber.
- the adjustment module 12 is specifically configured to:
- the second power increase rate is greater than the fourth threshold, if the pressure of the closed chamber is greater than or equal to the second preset pressure, the flow rate of the nozzle is controlled to decrease; if the pressure of the closed chamber is less than the second preset pressure, the flow rate of the nozzle is controlled to remain unchanged.
- the flow control device provided in this embodiment can be used to execute the technical solution shown in any of the above method embodiments. Its implementation principle and technical effects are similar and will not be described in detail here.
- FIG10 is a schematic diagram of the hardware structure of the flow control device provided by the present application.
- the flow control device 20 may include: a processor 21 and a memory 22, wherein the processor 21 and the memory 22 can communicate; illustratively, the processor 21 and the memory 22 communicate via a communication bus 23, the memory 22 is used to store program instructions, and the processor 21 is used to call the program instructions in the memory to execute the flow control method shown in any of the above method embodiments.
- the flow control device 20 may further include a communication interface, which may include a transmitter and/or a receiver.
- the processor may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), etc.
- a general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the present application may be directly implemented as being executed by a hardware processor, or may be implemented by a combination of hardware and software modules in the processor.
- An embodiment of the present application also provides a computer-readable storage medium, which stores a computer program.
- the computer program When executed by a computer, it implements the flow control method performed by any of the above method embodiments.
- the implementation principle and technical effects are similar and will not be repeated here.
- An embodiment of the present application also provides a computer program product, including a computer program.
- the computer program When the computer program is executed by a computer, it implements the flow control method performed by any of the above method embodiments. Its implementation principle and technical effects are similar and will not be repeated here.
- the embodiment of the present application further provides a computing node, comprising a housing, a device to be cooled, a nozzle and a controller, wherein the device to be cooled and the nozzle are located in a closed cavity of the housing, wherein:
- the controller is used in any one of the above method embodiments to adjust the flow rate of the liquid cooling medium sprayed by the nozzle to the device to be cooled.
- the computing node further includes a pressure sensor, which is disposed in the closed cavity and is used to collect the pressure of the closed cavity and send the pressure of the closed cavity to the controller.
- a pressure sensor which is disposed in the closed cavity and is used to collect the pressure of the closed cavity and send the pressure of the closed cavity to the controller.
- the computing node provided in this embodiment can be used to execute the technical solution shown in any of the above method embodiments, and its implementation principle and technical effects are not repeated here.
- the aforementioned program can be stored in a readable memory.
- the steps of the above-mentioned method embodiments are executed; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.
- Computer program instructions are input to a processing unit of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable terminal device to produce a machine, so that the instructions executed by the processing unit of the computer or other programmable terminal device produce a device for implementing the functions specified in one or more processes in the flowchart and/or one or more blocks in the block diagram.
- These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable terminal device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
- These computer program instructions may also be loaded onto a computer or other programmable terminal device so that a series of operating steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in a flowchart and/or one or more boxes in a block diagram.
- the term “include” and its variations may refer to non-restrictive inclusion; the term “or” and its variations may refer to “and/or”.
- the terms “first”, “second”, etc. in the present application are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
- “plurality” refers to two or more.
- “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may mean: A exists alone, A and B exist at the same time, and B exists alone. The character “/" generally indicates that the previously associated objects are in an "or” relationship.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
一种流量控制方法及计算节点(100,200,300),流量控制方法应用于计算节点(100,200,300),计算节点(100,200,300)包括壳体、待散热器件(101)和喷头(102,305),待散热器件(101)和喷头(102,305)位于壳体的密闭腔内。流量控制方法包括:获取计算节点(100,200,300)的节点参数(S401),节点参数包括如下至少一种:处理器(201,302)的处理器参数和密闭腔的压力信息,待散热器件(101)包括处理器(201,302);根据节点参数,调节喷头(102,305)向待散热器件(101)喷射液态冷却介质的流量(S402)。流量控制方法可以根据计算节点(100,200,300)的节点参数调节喷头(102,305)流量的大小,以实现调节计算节点(100,200,300)内液面高度的目的,使得计算节点(100,200,300)的制冷效果较好。
Description
本申请要求于2022年09月26日提交中国专利局、申请号为202211175094.7、申请名称为“流量控制方法及计算节点”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及计算机技术领域,尤其涉及一种流量控制方法及计算节点。
两相散热技术为一种用于数据中心的制冷技术。
目前,数据中心内可以设置多个计算节点。例如,计算节点可以为服务器。每个计算节点可以包括至少一个电子元器件。例如,电子元器件可以为计算节点中的中央处理器(central processing unit,CPU)。计算节点可以为密封结构,且计算节点内可以容纳冷却介质,以通过冷却介质对计算节点内的电子元器件进行降温。例如,冷却介质可以为氟化液。
在计算节点内部,可以通过喷头喷射液态的冷却介质,以使电子元器件可以浸入液态的冷却介质中。液态的冷却介质可以吸收电子元器件产生的热量,并发生气化,从而将电子元器件产生的热量带走。然而,若液态冷却介质的喷射速度不当,可能造成计算节点内液位过高或过低,导致计算节点内部的制冷效果较差。
发明内容
本申请实施例提供了一种流量控制方法及计算节点,该方法可以根据计算节点的节点参数调节喷头流量的大小,以实现调节计算节点内液面高度的目的,使得计算节点的制冷效果较好。
第一方面,本申请实施例提供一种流量控制方法,应用于计算节点,所述计算节点包括壳体、待散热器件和喷头,所述待散热器件和所述喷头位于所述壳体的密闭腔内;所述方法包括:
获取所述计算节点的节点参数,所述节点参数包括如下至少一种:处理器的处理器参数和所述密闭腔的压力信息,所述待散热器件包括所述处理器;
根据所述节点参数,调节所述喷头向所述待散热器件喷射液态冷却介质的流量。
上述技术方案可以根据节点参数,调节喷头向待散热器件喷射液态冷却介质的流量,以实现调节计算节点内液面高度的目的,使得计算节点的散热效果较好。
一种可能的实现方式中,所述根据所述节点参数,调节所述喷头向所述待散热器件喷射液态冷却介质的流量,包括:
根据所述处理器参数,控制所述喷头的流量增大或者不变;或者,
根据所述密闭腔的压力信息,控制所述喷头的流量减小或者不变。
上述技术方案可以根据处理器参数/密闭腔的压力信息,调节喷头流量,使得喷头流量的控制精度较高。
一种可能的实现方式中,所述处理器参数包括所述处理器的温度;所述根据所述处理器参数,控制所述喷头的流量增大或者不变,包括:
若所述处理器的温度大于或等于第一预设温度,则控制所述喷头的流量增大;或者,
若所述处理器的温度小于所述第一预设温度,则控制所述喷头的流量不变。
上述技术方案可以根据处理器的温度是否超过第一预设温度,控制喷头流量增大或不变,使得计算节点内冷却介质的液面高度控制精度较高。
一种可能的实现方式中,所述处理器参数包括所述处理器的温度、所述处理器的温度增大速率和所述处理器的第一功率增大速率;
所述根据所述处理器参数,控制所述喷头的流量增大或者不变,包括:
在所述温度增大速率小于或等于第一阈值时,控制所述喷头的流量不变;或者,
在所述温度增大速率大于所述第一阈值时,根据所述第一功率增大速率和所述处理器的温度,控制所述喷头的流量增大或者不变。
上述技术方案可以根据处理器的温度增大速率,调节喷头流量,使得喷头流量的控制精度较高。
一种可能的实现方式中,所述根据所述第一功率增大速率和所述处理器的温度,控制所述喷头的流量增大或者不变,包括:
在所述第一功率增大速率小于或等于第二阈值时,控制所述喷头的流量增大;或者,
在所述第一功率增大速率大于所述第二阈值时,若所述处理器的温度大于或等于第二预设温度,则控制所述喷头的流量增大,若所述处理器的温度小于所述第二预设温度,则控制所述喷头的流量不变。
上述技术方案可以根据处理器的温度、处理器的温度增大速率和第一功率增大速率,调节喷头向待散热器件喷射液态冷却介质的流量,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
一种可能的实现方式中,所述密闭腔的压力信息包括所述密闭腔的压力;所述根据所述密闭腔的压力信息,控制所述喷头的流量减小或者不变,包括:
若所述密闭腔的压力大于或等于第一预设压力,则控制所述喷头的流量减小;或者,
若所述密闭腔的压力小于所述第一预设压力,则控制所述喷头的流量不变。
上述技术方案可以根据密闭腔的压力是否大于或等于第一预设压力,控制喷头流量减小或不变,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
一种可能的实现方式中,所述密闭腔的压力信息包括所述密闭腔的压力和所述密闭腔的压力增大速率;根据所述密闭腔的压力信息,控制所述喷头的流量减小或者不变,包括:
在所述压力增大速率小于或等于第三阈值时,控制所述喷头的流量不变;或者,
在所述压力增大速率大于所述第三阈值时,根据所述计算节点的第二功率增大速率和所述密闭腔的压力,控制所述喷头的流量减小或者不变。
上述技术方案可以根据密闭腔的压力增大速率,调节喷头流量,使得喷头流量的控制
精度较高。
一种可能的实现方式中,所述根据所述第二功率增大速率和所述密闭腔的压力,控制所述喷头的流量增大或者不变,包括:
在所述第二功率增大速率小于或等于第四阈值时,控制所述喷头的流量减小;或者,
在所述第二功率增大速率大于所述第四阈值时,若所述密闭腔的压力大于或等于第二预设压力,则控制所述喷头的流量减小,若所述密闭腔的压力小于所述第二预设压力,则控制所述喷头的流量不变。
上述技术方案可以根据密闭腔的压力增大速率、密闭腔的压力和第二功率增大速率,调节喷头向待散热器件喷射液态冷却介质的流量,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
第二方面,本申请实施例提供一种计算节点,包括壳体、待散热器件、喷头和控制器,所述待散热器件和所述喷头位于所述壳体的密闭腔内,其中,
所述控制器用于执行第一方面任一项所述的方法,以调节所述喷头向所述待散热器件喷射液态冷却介质的流量。
上述技术方案中,可以通过控制器调节喷头流量,以实现调节密闭腔体内液面高度的目的。
一种可能的实现方式中,所述计算节点还包括压力传感器,所述压力传感器设置在所述密闭腔内,所述压力传感器用于采集所述密闭腔的压力,并向所述控制器发送所述密闭腔的压力。
上述技术方案中,可以通过压力传感器测量密闭腔内的压力,以实现监测密闭腔内压力的目的。
第三方面,本申请实施例提供一种流量控制装置,该流量控制装置可以应用于计算节点,所述计算节点包括壳体、待散热器件和喷头,所述待散热器件和所述喷头位于所述壳体的密闭腔内;所述流量控制装置包括获取模块和调节模块,其中,
所述获取模块用于,获取所述计算节点的节点参数,所述节点参数包括如下至少一种:处理器的处理器参数和所述密闭腔的压力信息,所述待散热器件包括所述处理器;
所述调节模块用于,根据所述节点参数,调节所述喷头向所述待散热器件喷射液态冷却介质的流量。
上述技术方案可以根据节点参数,调节喷头向待散热器件喷射液态冷却介质的流量,以实现调节计算节点内液面高度的目的,使得计算节点的散热效果较好。
在一种可能的实施方式中,所述调节模块具体用于,
根据所述处理器参数,控制所述喷头的流量增大或者不变;或者,
根据所述密闭腔的压力信息,控制所述喷头的流量减小或者不变。
上述技术方案可以根据处理器参数/密闭腔的压力信息,调节喷头流量,使得喷头流量的控制精度较高。
在一种可能的实施方式中,所述处理器参数包括所述处理器的温度;所述调节模块具体用于,
若所述处理器的温度大于或等于第一预设温度,则控制所述喷头的流量增大;或者,
若所述处理器的温度小于所述第一预设温度,则控制所述喷头的流量不变。
上述技术方案可以根据处理器的温度是否超过第一预设温度,控制喷头流量增大或不变,使得计算节点内冷却介质的液面高度控制精度较高。
在一种可能的实施方式中,所述处理器参数包括所述处理器的温度、所述处理器的温度增大速率和所述处理器的第一功率增大速率;所述调节模块具体用于,
在所述温度增大速率小于或等于第一阈值时,控制所述喷头的流量不变;或者,
在所述温度增大速率大于所述第一阈值时,根据所述第一功率增大速率和所述处理器的温度,控制所述喷头的流量增大或者不变。
上述技术方案可以根据处理器的温度增大速率,调节喷头流量,使得喷头流量的控制精度较高。
在一种可能的实施方式中,所述调节模块具体用于,
在所述第一功率增大速率小于或等于第二阈值时,控制所述喷头的流量增大;或者,
在所述第一功率增大速率大于所述第二阈值时,若所述处理器的温度大于或等于第二预设温度,则控制所述喷头的流量增大,若所述处理器的温度小于所述第二预设温度,则控制所述喷头的流量不变。
上述技术方案可以根据处理器的温度、处理器的温度增大速率和第一功率增大速率,调节喷头向待散热器件喷射液态冷却介质的流量,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
在一种可能的实施方式中,所述压力信息包括所述密闭腔的压力;所述调节模块具体用于,
若所述密闭腔的压力大于或等于第一预设压力,则控制所述喷头的流量减小;或者,
若所述密闭腔的压力小于所述第一预设压力,则控制所述喷头的流量不变。
上述技术方案可以根据密闭腔的压力是否大于或等于第一预设压力,控制喷头流量减小或不变,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
在一种可能的实施方式中,所述压力信息包括所述密闭腔的压力和所述密闭腔的压力增大速率;所述调节模块具体用于,
在所述压力增大速率小于或等于第三阈值时,控制所述喷头的流量不变;或者,
在所述压力增大速率大于所述第三阈值时,根据所述计算节点的第二功率增大速率和所述密闭腔的压力,控制所述喷头的流量减小或者不变。
上述技术方案可以根据密闭腔的压力增大速率,调节喷头流量,使得喷头流量的控制精度较高。
在一种可能的实施方式中,所述调节模块具体用于,
在所述第二功率增大速率小于或等于第四阈值时,控制所述喷头的流量减小;或者,
在所述第二功率增大速率大于所述第四阈值时,若所述密闭腔的压力大于或等于第二预设压力,则控制所述喷头的流量减小,若所述密闭腔的压力小于所述第二预设压力,则控制所述喷头的流量不变。
上述技术方案可以根据密闭腔的压力增大速率、密闭腔的压力和第二功率增大速率,调节喷头向待散热器件喷射液态冷却介质的流量,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
第四方面,本申请实施例提供一种流量控制设备,包括处理器,以及与所述处理器通
信连接的存储器;
所述存储器存储有计算机程序;
所述处理器执行所述计算机程序,以实现如第一方面中任一项所述的方法。
上述技术方案可以根据节点参数,调节喷头向待散热器件喷射液态冷却介质的流量,以实现调节计算节点内液面高度的目的,使得计算节点的散热效果较好。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被计算机执行时实现如第一方面中任一项所述的方法。
上述技术方案可以根据节点参数,调节喷头向待散热器件喷射液态冷却介质的流量,以实现调节计算节点内液面高度的目的,使得计算节点的散热效果较好。
第六方面,本申请实施例提供一种计算机程序产品,包括计算机程序,所述计算机程序被计算机执行时实现如第一方面中任一项所述的方法。
上述技术方案可以根据节点参数,调节喷头向待散热器件喷射液态冷却介质的流量,以实现调节计算节点内液面高度的目的,使得计算节点的散热效果较好。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种流量控制系统架构示意图;
图2为一种喷头流量控制方法示意图;
图3A为本申请实施例提供的一种流量控制方法示意图;
图3B为本申请实施例提供的另一种流量控制方法示意图;
图4为本申请实施例提供的一种流量控制方法的流程示意图;
图5为本申请实施例提供的一种根据处理器参数调节喷头流量的方法流程示意图;
图6为本申请实施例提供的另一种根据处理器参数调节喷头流量的方法流程示意图;
图7为本申请实施例提供的一种根据密闭腔的压力信息调节喷头流量的方法流程示意图;
图8为本申请实施例提供的另一种根据密闭腔的压力信息调节喷头流量的方法流程示意图;
图9为本申请实施例提供的一种流量控制装置的结构示意图;
图10为本申请提供的流量控制设备的硬件结构示意图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权
利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
本申请涉及两相散热技术,为便于本申请实施例的理解,首先对两相散热技术进行详细说明。
两相散热:指液态的冷却介质吸收电子元器件产生的热量,并发生气化,从而将电子元器件产生的热量带走;气态的冷却介质被其他设备冷凝重新变成液态的冷却介质,以继续对电子元器件进行降温的制冷技术。
为便于理解,下面结合图1,对本申请实施例涉及的流量控制系统架构进行说明。
图1为本申请实施例提供的一种流量控制系统架构示意图。请参见图1,包括计算节点100。计算节点100中包括待散热器件101和喷头102。
计算节点100可以为数据中心中设置的服务器、服务器集群等。计算节点100中可以设置一个或多个电子元器件。电子元器件工作时会产生热量。
待散热器件101可以为计算节点100中的发热器件。例如,待散热器件101可以为中央处理器(central processing unit,CPU)、图形处理器(graphics processing unit,GPU)电路板和内存等。
喷头102用于向待散热器件101喷射冷却介质,以使待散热器件101可以浸入冷却介质中。应该理解的是,喷头102的数量可以为一个或多个,对此本申请实施例不做限定。
上述流量控制系统中,计算节点100具有密闭腔体,密闭腔体可以用于容纳待散热器件101、喷头102和冷却介质等。计算节点100的腔体壁上设有进液口和出气口。进液口用于供液态的冷却介质进入计算节点100,且进液口与喷头102相连接。喷头102可以向处理器喷射液态的冷却介质。液态的冷却介质可以吸收待散热器件101产生的热量,并发生气化。气化后的冷却介质可以从计算节点100的出气口导出。
需要说明的是,本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本申请实施例示意的计算节点的结构并不构成对计算节点的具体限定。计算节点可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
上述流量控制系统中,可以通过控制喷头102的流量大小,使得计算节点100中的液面维持在适当的高度,实现对计算节点100进行降温的目的。例如,液面可以低于待散热器件101在竖直方向上的高度,或者,液面可以高于待散热器件101在竖直方向上的高度。本申请实施例对液面高度不做限定,液面高度可以满足计算节点100的散热需求即可。
下面,结合图2,示例性的示出一种喷头流量控制方法。
图2为一种喷头流量控制方法示意图。如图2所示,计算节点200包括处理器201、挡板202、液位传感器203和液位传感器204。
液位传感器203和液位传感器204设置在靠近挡板202的计算节点200的侧壁上。液
位传感器203和液位传感器204可以用于检测计算节点200内的液位高度,以使计算节点200可以根据液位高度调节喷头的流量大小。例如,若液位高度高于液位传感器203设置的位置,则计算节点200控制喷头流量减小;若液位高度低于液位传感器204设置的位置,则计算节点200控制喷头流量增大。
然而,计算节点200内液面容易波动,液面频繁波动时,液位传感器203和/或液位传感器204难以确定计算节点200内液位的高度,使得计算节点200无法准确控制喷头的流量大小,导致计算节点内部的制冷效果较差。
有鉴于此,本申请实施例提供了一种流量控制方法。下面,结合图3A-图3B,对本申请实施例提供的流量控制方法进行说明。
图3A为本申请实施例提供的一种流量控制方法示意图。请参见图3A,计算节点300包括控制器301、处理器302、压力传感器303和流量调节阀304。
处理器302可以为计算节点中发热量较大的待散热器件。
控制器301可以为计算节点300中非业务模块的管理模块。例如,控制器301可以为计算节点300外部的主板管理控制器(Baseboard Management Controller,BMC)、计算节点300外部的监控管理设备、处理器外的管理芯片中的管理系统或计算节点300系统管理模块(system management mode,SMM)等。本申请实施例对控制器301的具体形式并不限定,以上仅为示例性说明。在下述实施例中,以控制器301为BMC为例进行说明。
控制器301可以监测处理器302的温度、处理器302的功率和计算节点300的功率。压力传感器303可以测量计算节点300的密闭腔体内的压力。控制器301可以与压力传感器303连接(通信),以通过压力传感器303监测计算节点300的密闭腔体内的压力。控制器301还可以根据处理器302的温度、处理器302的功率、计算节点300的功率和密闭腔体内的压力调节流量调节阀304的开度大小。
图3B为本申请实施例提供的另一种流量控制方法示意图。请参见图3B,在图3A的基础上,计算节点300还可以包括喷头305。
流量调节阀304可以与喷头305连接,并可以用于调节305喷射流量的大小。处理器302可以浸入喷头305喷射的冷却介质中。压力传感器303设置在液面上方,使得液面的波动不会影响压力传感器303的测量结果。例如,压力传感器303可以设置在计算节点300中密闭腔体的上盖位置。
通过图3A-图3B所示的方法,控制器301可以根据处理器302的温度、处理器302的功率、计算节点300的功率和密闭腔体内的压力调节流量调节阀304的开度大小,进而调节喷头305喷射流量的大小,以实现调节计算节点300内液面高度的目的,使得计算节点300的制冷效果较好。
下面以具体的实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图4为本申请实施例提供的一种流量控制方法的流程示意图。请参见图4,该方法可以包括:
S401、获取计算节点的节点参数。
本实施例的执行主体可以为控制器,或者控制器中的流量控制设备。可选的,流量控制设备可以通过软件实现,也可以通过软件和硬件的结合实现。
计算节点包括壳体、待散热器件和喷头,待散热器件和喷头位于壳体的密闭腔内。
计算节点可以为,工作时会产生热量的电子设备。例如,计算节点可以为服务器。
待散热器件可以为计算节点中的发热器件。例如,待散热器件可以为计算节点中的电路板、CPU、GPU、内存等。
喷头可以用于向待散热器件喷射冷却介质,以实现对待散热器件进行降温的目的。例如,冷却介质可以为氟化液。
节点参数包括如下至少一种:处理器的处理器参数和密闭腔的压力信息,待散热器件包括处理器。
处理器可以为计算节点中发热量较大的器件。例如,处理器可以为CPU。
处理器参数可以为处理器运行过程中的状态数据。例如,处理器参数可以为处理器的温度等。
密闭腔的压力信息可以为,用于容纳待散热器件和喷头的密闭腔内的压力等。
本实施例中,控制器可以直接或间接获取节点参数。例如,控制器可以直接监测、并获取节点的运行状态数据;或者,控制器也可以从其他监测设备获取节点参数。例如,其他监测设备可以为温度传感器、压力传感器等。
S402、根据节点参数,调节喷头向待散热器件喷射液态冷却介质的流量。
应该理解的是,喷头的流量和/或密闭腔体内的液面高度可以影响计算节点的散热效果。例如,喷头的流量较小时可能会导致液面高度过低,散热效果较差;液面高度过高时可能会导致冷却介质充满密闭腔体,散热效果差。
本实施例中,可以根据处理器参数,控制喷头的流量增大或者不变;或者,根据密闭腔的压力信息,控制喷头的流量减小或者不变。
需要说明的是,在图5-图6所示的实施例中对根据处理器参数,控制喷头的流量增大或者不变的方法进行了详细说明、在图7-图8所示的实施例中对根据密闭腔的压力信息,控制喷头的流量减小或者不变的方法进行了详细说明,此处不再进行赘述。
本实施例提供的流量控制方法中,可以获取计算节点的节点参数,并根据节点参数,调节喷头向待散热器件喷射液态冷却介质的流量,以实现调节计算节点内液面高度的目的,使得计算节点的散热效果较好。
在图4实施例的基础上,处理器参数不同时,控制喷头的流量增大或者不变的方法也不同,可以包括如下两种情况:
情况1、处理器参数包括处理器的温度。
处理器的温度可以为,处理器的当前工作温度。
应该理解的是,控制器可以监测并获取处理器的工作温度。
情况2、处理器参数包括处理器的温度、处理器的温度增大速率和处理器的第一功率增大速率。
处理器的温度增大速率可以为,当前时刻之前的某一时刻与当前时刻之间的第一时段内处理器温度的增大速率。第一时段的长度可以根据实际需求设置,本申请对此不做限定。
应该理解的是,控制器可以根据处理器的工作温度计算得到处理器的温度增大速率。
第一功率增大速率可以为,当前时刻之前的某一时刻与当前时刻之间的第二时段内处理器功率的增大速率。第二时段可以与第一时段相同,或者,第二时段可以与第一时段不
相同。第二时段的长度可以根据实际需求设置,本申请对此不做限定。
应该理解的是,控制器可以监测处理器的功率,并可以根据处理器的功率计算得到第一功率增大速率。
下面,结合图5-图6,对上述两种情况下,根据处理器参数,控制喷头的流量增大或者不变的方法进行说明。
下面结合图5,对上述情况1进行说明。图5为本申请实施例提供的一种根据处理器参数调节喷头流量的方法流程示意图。请参见图5,该方法可以包括:
S501、判断处理器的温度是否大于或等于第一预设温度。
若是,执行S502;
若否,执行S503。
第一预设温度可以为处理器的警戒温度。警戒温度可以为低于处理器最高工作温度的温度。
可以根据实际需求,设置多个等级的警戒温度。例如,可以设置低于处理器最高温度10℃的温度为严重警戒温度、设置低于处理器最高温度15℃的温度为一般警戒温度。
示例性的,假设处理器的最高工作温度为100℃,则处理器的警戒温度可以如表1所示:
表1
需要说明的是,可以根据实际散热需求,将本实施例中的第一预设温度设置为上述任一等级的警戒温度。
S502、控制喷头的流量增大。
若处理器温度大于或等于第一预设温度,则当前的喷头流量可能不满足处理器的散热需求,则需要控制喷头的流量增大。
S503、控制喷头的流量不变。
若处理器的温度小于第一预设温度,即处理器当前的温度满足工作要求,则可以控制喷头当前喷射冷却介质的速度不变。
本实施例提供的根据处理器参数调节喷头流量的方法中,可以根据处理器的温度是否超过第一预设温度,控制喷头流量增大或不变,使得计算节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
下面结合图6,对上述情况2进行说明。图6为本申请实施例提供的另一种根据处理器参数调节喷头流量的方法流程示意图。请参见图6,该方法可以包括:
S601、判断温度增大速率是否小于或等于第一阈值。
若是,控制喷头的流量不变;
若否,执行S602。
第一阈值可以为,根据计算节点的散热需求设置的、处理器的温度增大速率的报警值。
需要说明的是,处理器的温度增大速率大于第一阈值时,当前的散热策略存在不满足计算节点散热需求的可能性,即可能需要调节喷头的流量。例如,第一阈值可以为3℃/min。其中,散热策略可以为喷头喷射冷却介质的流量的大小。
S602、判断第一功率增大速率是否小于或等于第二阈值。
若是,控制喷头的流量增大;
若否,执行S603。
第二阈值可以为,根据计算节点的散热需求设置的、处理器的功率增大速率的报警值。
在S601的基础上,若第一功率增大速率小于或等于第二阈值,则当前的散热策略不满足计算节点的散热需求,需要控制喷头的流量增大;若第一功率增大速率大于第二阈值,则当前的散热策略存在不满足计算节点制冷需求的可能性,计算节点可能需要调节喷头的流量。例如,第二阈值可以为10W/min。
需要说明的是,若温度增大速率大于第一阈值,且第一功率增大速率小于或等于第二阈值,则可能由于密闭腔内的液面高度不足导致处理器的温度增大,因而需要控制喷头的流量增大。
示例性的,假设第一阈值为3℃/min、第二阈值为10W/min,则温度增大速率大于3℃/min、且第一功率增大速率小于或等于10W/min时,需要控制喷头的流量增大。
S603、判断处理器的温度是否大于或等于第二预设温度。
若是,控制喷头的流量增大;
若否,控制喷头的流量不变。
第二预设温度可以为处理器的警戒温度。第二预设温度可以与第一预设温度相同,或者,第二预设温度也可以与第一预设温度不相同。
在S601和S602的基础上,若处理器的温度大于或等于第二预设温度,则当前的散热策略不满足计算节点的散热需求,需要增大喷头的流量。
需要说明的是,若温度增大速率大于第一阈值、第一功率增大速率大于第二阈值、且处理器的温度大于或等于第二预设温度,则当前喷头的流量过小,不满足处理器的散热需求,因而需要控制喷头的流量增大。
示例性的,假设第一阈值为3℃/min、第二阈值为10W/min、第二预设温度为90℃,则温度增大速率大于3℃/min、第一功率增大速率大于10W/min、且处理器的温度大于或等于90℃时,需要控制喷头的流量增大。
本实施例提供的根据处理器参数调节喷头流量的方法中,可以根据处理器的温度、处理器的温度增大速率和第一功率增大速率,调节喷头向待散热器件喷射液态冷却介质的流量,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
在上述任一实施例的基础上,密闭腔的压力信息不同时,控制喷头的流量减小或者不变的方法也不同,可以包括如下两种情况:
情况1、密闭腔的压力信息包括密闭腔的压力。
密闭腔的压力可以为,控制器通过密闭腔内的压力传感器监测的、密闭腔内的当前压力。
情况2、密闭腔的压力信息包括密闭腔的压力和密闭腔的压力增大速率。
密闭腔的压力增大速率可以为,当前时刻之前的某一时刻与当前时刻之间的第三时段
内、密闭腔内压力增大的速率。第三时段可以与第一时段/第二时段相同,或者,第三时段可以与第一时段/第二时段不相同。第三时段的长度可以根据实际需求设置,本申请对此不做限定。
应该理解的是,控制器可以监测密闭腔的压力,并可以根据密闭腔的压力计算得到密闭腔的压力增大速率。
下面,结合图7-图8,对上述两种情况下,根据密闭腔的压力信息,控制喷头的流量增大或者不变的方法进行说明。
下面结合图7,对上述情况1进行说明。图7为本申请实施例提供的一种根据密闭腔的压力信息调节喷头流量的方法流程示意图。请参见图7,该方法可以包括:
S701、判断密闭腔的压力是否大于或等于第一预设压力。
若是,执行S702;
若否,执行S703。
第一预设压力可以为计算节点密闭腔的警戒压力。警戒压力可以为,低于密闭腔内最高工作压力的压力。
具体实施过程中,可以根据实际需求,设置多个等级的警戒压力。例如,可以设置低于密闭腔的最高工作压力4kpa的压力为严重警戒压力、设置低于密闭腔的最高工作压力5kpa的压力为一般警戒压力。
示例性的,假设密闭腔的最高工作压力为15kpa,则密闭腔的警戒压力可以如表2所示:
表2
需要说明的是,可以根据计算节点的散热需求,将本实施例中的第一预设压力设置为上述任一等级的警戒压力。
S702、控制喷头的流量减小。
若密闭腔的压力大于或等于第一预设压力,则当前密闭腔内的液面高度可能过高,则需要控制喷头的流量减小。
S703、控制喷头的流量不变。
若密闭腔的压力小于第一预设压力,则当前密闭腔内的液面高度可以满足散热需求,可以控制喷头的流量不变。
本实施例提供的根据密闭腔的压力信息调节喷头流量的方法中,可以根据密闭腔的压力是否大于或等于第一预设压力,控制喷头流量减小或不变,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
下面结合图8,对上述情况2进行说明。图8为本申请实施例提供的另一种根据密闭腔的压力信息调节喷头流量的方法流程示意图。请参见图8,该方法可以包括:
S801、判断压力增大速率是否小于或等于第三阈值。
若是,控制喷头的流量不变;
若否,执行S802。
第三阈值可以为,根据计算节点的散热需求设置的、密闭腔内的压力增大速率的报警值。
需要说明的是,压力增大速率大于第三阈值时,当前的散热策略存在不满足计算节点散热需求的可能性,即可能需要调节喷头的流量。例如,第三阈值可以为3kpa/min。其中,散热策略可以为喷头喷射冷却介质的流量的大小。
S802、判断计算节点的第二功率增大速率是否小于或等于第四阈值。
若是,控制喷头的流量减小;
若否,执行S803。
第二功率增大速率可以为,当前时刻之前的某一时刻与当前时刻之间的第四时段内、计算节点的功率增大速率。第四时段可以与第一时段/第二时段/第三时段相同,或者,第四时段可以与第一时段/第二时段/第三时段不相同。第四时段的长度可以根据实际需求设置,本申请对此不做限定。
应该理解的是,控制器可以监测计算节点的功率、且可以根据计算节点的功率计算第二功率增大速率。
第四阈值可以为,根据计算节点的散热需求设置的、计算节点的功率增大速率的报警值。
在S801的基础上,若第二功率增大速率小于或等于第四阈值,则当前的散热策略不满足计算节点的散热需求,需要控制喷头的流量减小。例如,第四阈值可以为100W/min。
需要说明的是,若压力增大速率大于第三阈值,且第二功率增大速率小于或等于第四阈值,则可能由于密闭腔内的液面过高导致密闭腔的压力增大,因而需要控制喷头的流量减小。
示例性的,假设第三阈值为3kpa/min、第四阈值为100W/min,则压力增大速率大于3kpa/min、且第二功率增大速率小于或等于100W/min时,需要控制喷头的流量减小。
S803、判断密闭腔的压力是否大于或等于第二预设压力。
若是,控制喷头的流量减小;
若否,控制喷头的流量不变。
第二预设压力可以为密闭腔的警戒压力。第二预设压力可以与第一预设压力相同,或者,第二预设压力也可以与第一预设压力不相同。
在S801和S802的基础上,若密闭腔的压力大于或等于第二预设压力,则当前的散热策略不满足计算节点的散热需求,需要控制喷头的流量减小。
需要说明的是,若压力增大速率大于第三阈值、第二功率增大速率大于第四阈值,且密闭腔的压力大于或等于第二预设压力,则密闭腔内液面的沸腾高度较高,因而需要控制喷头的流量减小。
示例性的,假设第三阈值为3kpa/min、第四阈值为100W/min、第二预设压力为10kpa,则压力增大速率大于3kpa/min、第二功率增大速率大于100W/min,且密闭腔的压力大于或等于3kpa/min时,需要控制喷头的流量减小。
本实施例提供的根据密闭腔的压力信息调节喷头流量的方法中,可以根据密闭腔的压
力增大速率、密闭腔的压力和第二功率增大速率,调节喷头向待散热器件喷射液态冷却介质的流量,使得节点内冷却介质的液面高度控制精度较高,计算节点的散热效果较好。
图9为本申请实施例提供的一种流量控制装置的结构示意图。请参见图9,该流量控制装置10可以应用于计算节点,所述计算节点包括壳体、待散热器件和喷头,所述待散热器件和所述喷头位于所述壳体的密闭腔内;所述流量控制装置10包括获取模块11和调节模块12,其中,
所述获取模块11用于,获取所述计算节点的节点参数,所述节点参数包括如下至少一种:处理器的处理器参数和所述密闭腔的压力信息,所述待散热器件包括所述处理器;
所述调节模块12用于,根据所述节点参数,调节所述喷头向所述待散热器件喷射液态冷却介质的流量。
本实施例提供的流量控制装置,可用于执行上述任意方法实施例所示的技术方案,其实现原理和技术效果类似,此处不作赘述。
在一种可能的实施方式中,所述调节模块12具体用于,
根据所述处理器参数,控制所述喷头的流量增大或者不变;或者,
根据所述密闭腔的压力信息,控制所述喷头的流量减小或者不变。
在一种可能的实施方式中,所述处理器参数包括所述处理器的温度;所述调节模块12具体用于,
若所述处理器的温度大于或等于第一预设温度,则控制所述喷头的流量增大;或者,
若所述处理器的温度小于所述第一预设温度,则控制所述喷头的流量不变。
在一种可能的实施方式中,所述处理器参数包括所述处理器的温度、所述处理器的温度增大速率和所述处理器的第一功率增大速率;所述调节模块12具体用于,
在所述温度增大速率小于或等于第一阈值时,控制所述喷头的流量不变;或者,
在所述温度增大速率大于所述第一阈值时,根据所述第一功率增大速率和所述处理器的温度,控制所述喷头的流量增大或者不变。
在一种可能的实施方式中,所述调节模块12具体用于,
在所述第一功率增大速率小于或等于第二阈值时,控制所述喷头的流量增大;或者,
在所述第一功率增大速率大于所述第二阈值时,若所述处理器的温度大于或等于第二预设温度,则控制所述喷头的流量增大,若所述处理器的温度小于所述第二预设温度,则控制所述喷头的流量不变。
在一种可能的实施方式中,所述压力信息包括所述密闭腔的压力;所述调节模块12具体用于,
若所述密闭腔的压力大于或等于第一预设压力,则控制所述喷头的流量减小;或者,
若所述密闭腔的压力小于所述第一预设压力,则控制所述喷头的流量不变。
在一种可能的实施方式中,所述压力信息包括所述密闭腔的压力和所述密闭腔的压力增大速率;所述调节模块12具体用于,
在所述压力增大速率小于或等于第三阈值时,控制所述喷头的流量不变;或者,
在所述压力增大速率大于所述第三阈值时,根据所述计算节点的第二功率增大速率和所述密闭腔的压力,控制所述喷头的流量减小或者不变。
在一种可能的实施方式中,所述调节模块12具体用于,
在所述第二功率增大速率小于或等于第四阈值时,控制所述喷头的流量减小;或者,
在所述第二功率增大速率大于所述第四阈值时,若所述密闭腔的压力大于或等于第二预设压力,则控制所述喷头的流量减小,若所述密闭腔的压力小于所述第二预设压力,则控制所述喷头的流量不变。
本实施例提供的流量控制装置,可用于执行上述任意方法实施例所示的技术方案,其实现原理和技术效果类似,此处不作赘述。
图10为本申请提供的流量控制设备的硬件结构示意图。请参见图10,该流量控制设备20可以包括:处理器21和存储器22,其中,处理器21和存储器22可以通信;示例性的,处理器21和存储器22通过通信总线23通信,所述存储器22用于存储程序指令,所述处理器21用于调用存储器中的程序指令执行上述任意方法实施例所示的流量控制方法。
可选的,流量控制设备20还可以包括通信接口,通信接口可以包括发送器和/或接收器。
可选的,上述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被计算机执行时,实现如上任一方法实施例执行的流量控制方法,其实现原理和技术效果类似,此处不作赘述。
本申请实施例还提供一种计算机程序产品,包括计算机程序,所述计算机程序被计算机执行时实现如上任一方法实施例执行的流量控制方法,其实现原理和技术效果类似,此处不作赘述。
本申请实施例还提供一种计算节点,包括壳体、待散热器件、喷头和控制器,所述待散热器件和所述喷头位于所述壳体的密闭腔内,其中,
所述控制器用于上述方法实施例中任一项所述的方法,以调节所述喷头向所述待散热器件喷射液态冷却介质的流量。
可选的,所述计算节点还包括压力传感器,所述压力传感器设置在所述密闭腔内,所述压力传感器用于采集所述密闭腔的压力,并向所述控制器发送所述密闭腔的压力。
本实施例提供的计算节点,可用于执行上述任意方法实施例所示的技术方案,其实现原理和技术效果,此处不再赘述。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些
计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程终端设备的处理单元以产生一个机器,使得通过计算机或其他可编程终端设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程终端设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
Claims (10)
- 一种流量控制方法,其特征在于,应用于计算节点,所述计算节点包括壳体、待散热器件和喷头,所述待散热器件和所述喷头位于所述壳体的密闭腔内;所述方法包括:获取所述计算节点的节点参数,所述节点参数包括如下至少一种:处理器的处理器参数和所述密闭腔的压力信息,所述待散热器件包括所述处理器;根据所述节点参数,调节所述喷头向所述待散热器件喷射液态冷却介质的流量。
- 根据权利要求1所述的方法,其特征在于,所述根据所述节点参数,调节所述喷头向所述待散热器件喷射液态冷却介质的流量,包括:根据所述处理器参数,控制所述喷头的流量增大或者不变;或者,根据所述密闭腔的压力信息,控制所述喷头的流量减小或者不变。
- 根据权利要求2所述的方法,其特征在于,所述处理器参数包括所述处理器的温度;所述根据所述处理器参数,控制所述喷头的流量增大或者不变,包括:若所述处理器的温度大于或等于第一预设温度,则控制所述喷头的流量增大;或者,若所述处理器的温度小于所述第一预设温度,则控制所述喷头的流量不变。
- 根据权利要求2所述的方法,其特征在于,所述处理器参数包括所述处理器的温度、所述处理器的温度增大速率和所述处理器的第一功率增大速率;所述根据所述处理器参数,控制所述喷头的流量增大或者不变,包括:在所述温度增大速率小于或等于第一阈值时,控制所述喷头的流量不变;或者,在所述温度增大速率大于所述第一阈值时,根据所述第一功率增大速率和所述处理器的温度,控制所述喷头的流量增大或者不变。
- 根据权利要求4所述的方法,其特征在于,所述根据所述第一功率增大速率和所述处理器的温度,控制所述喷头的流量增大或者不变,包括:在所述第一功率增大速率小于或等于第二阈值时,控制所述喷头的流量增大;或者,在所述第一功率增大速率大于所述第二阈值时,若所述处理器的温度大于或等于第二预设温度,则控制所述喷头的流量增大,若所述处理器的温度小于所述第二预设温度,则控制所述喷头的流量不变。
- 根据权利要求2-4任一项所述的方法,其特征在于,所述密闭腔的压力信息包括所述密闭腔的压力;所述根据所述密闭腔的压力信息,控制所述喷头的流量减小或者不变,包括:若所述密闭腔的压力大于或等于第一预设压力,则控制所述喷头的流量减小;或者,若所述密闭腔的压力小于所述第一预设压力,则控制所述喷头的流量不变。
- 根据权利要求2-4任一项所述的方法,其特征在于,所述密闭腔的压力信息包括所述密闭腔的压力和所述密闭腔的压力增大速率;根据所述密闭腔的压力信息,控制所述喷头的流量减小或者不变,包括:在所述压力增大速率小于或等于第三阈值时,控制所述喷头的流量不变;或者,在所述压力增大速率大于所述第三阈值时,根据所述计算节点的第二功率增大速率和所述密闭腔的压力,控制所述喷头的流量减小或者不变。
- 根据权利要求7所述的方法,其特征在于,所述根据所述第二功率增大速率和所 述密闭腔的压力,控制所述喷头的流量增大或者不变,包括:在所述第二功率增大速率小于或等于第四阈值时,控制所述喷头的流量减小;或者,在所述第二功率增大速率大于所述第四阈值时,若所述密闭腔的压力大于或等于第二预设压力,则控制所述喷头的流量减小,若所述密闭腔的压力小于所述第二预设压力,则控制所述喷头的流量不变。
- 一种计算节点,其特征在于,包括壳体、待散热器件、喷头和控制器,所述待散热器件和所述喷头位于所述壳体的密闭腔内,其中,所述控制器用于执行权利要求1-8任一项所述的方法,以调节所述喷头向所述待散热器件喷射液态冷却介质的流量。
- 根据权利要求9所述的计算节点,其特征在于,所述计算节点还包括压力传感器,所述压力传感器设置在所述密闭腔内,所述压力传感器用于采集所述密闭腔的压力,并向所述控制器发送所述密闭腔的压力。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211175094.7A CN117806396A (zh) | 2022-09-26 | 2022-09-26 | 流量控制方法及计算节点 |
CN202211175094.7 | 2022-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024066441A1 true WO2024066441A1 (zh) | 2024-04-04 |
Family
ID=90420462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/097951 WO2024066441A1 (zh) | 2022-09-26 | 2023-06-02 | 流量控制方法及计算节点 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117806396A (zh) |
WO (1) | WO2024066441A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110132579A1 (en) * | 2008-08-11 | 2011-06-09 | Green Revolution Cooling, Inc. | Liquid Submerged, Horizontal Computer Server Rack and Systems and Method of Cooling such a Server Rack |
US20130264046A1 (en) * | 2012-04-04 | 2013-10-10 | International Business Machines Corporation | Coolant and ambient temperature control for chillerless liquid cooled data centers |
CN111885904A (zh) * | 2020-09-10 | 2020-11-03 | 浪潮商用机器有限公司 | 数据中心机柜散热系统及数据中心室 |
CN112702886A (zh) * | 2019-10-22 | 2021-04-23 | 华为技术有限公司 | 一种液冷散热系统、散热控制方法及控制芯片 |
CN113115563A (zh) * | 2021-03-30 | 2021-07-13 | 山东英信计算机技术有限公司 | 一种液冷板管路流量分配装置及控制方法 |
CN114144016A (zh) * | 2020-09-03 | 2022-03-04 | 中国联合网络通信集团有限公司 | 一种机柜冷却系统及其控制方法 |
CN114901037A (zh) * | 2022-04-29 | 2022-08-12 | 苏州浪潮智能科技有限公司 | 浸没式液冷装置及其液冷方法 |
-
2022
- 2022-09-26 CN CN202211175094.7A patent/CN117806396A/zh active Pending
-
2023
- 2023-06-02 WO PCT/CN2023/097951 patent/WO2024066441A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110132579A1 (en) * | 2008-08-11 | 2011-06-09 | Green Revolution Cooling, Inc. | Liquid Submerged, Horizontal Computer Server Rack and Systems and Method of Cooling such a Server Rack |
US20130264046A1 (en) * | 2012-04-04 | 2013-10-10 | International Business Machines Corporation | Coolant and ambient temperature control for chillerless liquid cooled data centers |
CN112702886A (zh) * | 2019-10-22 | 2021-04-23 | 华为技术有限公司 | 一种液冷散热系统、散热控制方法及控制芯片 |
CN114144016A (zh) * | 2020-09-03 | 2022-03-04 | 中国联合网络通信集团有限公司 | 一种机柜冷却系统及其控制方法 |
CN111885904A (zh) * | 2020-09-10 | 2020-11-03 | 浪潮商用机器有限公司 | 数据中心机柜散热系统及数据中心室 |
CN113115563A (zh) * | 2021-03-30 | 2021-07-13 | 山东英信计算机技术有限公司 | 一种液冷板管路流量分配装置及控制方法 |
CN114901037A (zh) * | 2022-04-29 | 2022-08-12 | 苏州浪潮智能科技有限公司 | 浸没式液冷装置及其液冷方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117806396A (zh) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10925190B2 (en) | Leak detection and response system for liquid cooling of electronic racks of a data center | |
CN112635869B (zh) | 用于冷却电池热管理中的功率的优化控制逻辑 | |
JP6417672B2 (ja) | データセンタ、データセンタの制御方法及び制御プログラム | |
TWI430077B (zh) | 用於電腦系統的風扇控制系統與方法 | |
TWI394033B (zh) | 用於不同高度之電腦系統的風扇控制系統與方法 | |
JP5975105B2 (ja) | 温度管理システム | |
WO2014068767A1 (ja) | モジュール型データセンタとその制御方法 | |
US20040141542A1 (en) | Agent based control method and system for energy management | |
US10893628B2 (en) | Circuit board cooling | |
US11604501B2 (en) | Method and system for temperature-aware power redistribution in a multi-port power sourcing device | |
JP6458649B2 (ja) | 冷却装置、冷却方法及び情報処理システム | |
CN109373501A (zh) | 一种电子膨胀阀的控制方法、装置及多联机系统 | |
CN114264057B (zh) | 空调的控制方法、装置、设备及计算机可读存储介质 | |
US20200159442A1 (en) | Memory controller and flash memory system having the same | |
WO2022000880A1 (zh) | 头戴设备及其散热方法和计算机可读存储介质 | |
WO2024066441A1 (zh) | 流量控制方法及计算节点 | |
CN114151373A (zh) | 服务器风扇转速调控方法、系统、终端及存储介质 | |
US20220361376A1 (en) | Modular cooling units and advanced distribution hardware for racks | |
CN117519443A (zh) | 浸没式液冷系统及其冷却液流量控制方法、设备和介质 | |
US10976788B2 (en) | Method of cooling computer equipment | |
US11711908B1 (en) | System and method for servicing and controlling a leak segregation and detection system of an electronics rack | |
US20220418167A1 (en) | Rack architecture for multiple mixed thermal systems | |
WO2022052583A1 (zh) | 一种散热控制方法、装置以及设备 | |
JP4788097B2 (ja) | 燃料電池システム | |
CN115126711A (zh) | 风扇转速的调控方法、装置、电子设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23869694 Country of ref document: EP Kind code of ref document: A1 |