WO2024066224A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2024066224A1
WO2024066224A1 PCT/CN2023/081530 CN2023081530W WO2024066224A1 WO 2024066224 A1 WO2024066224 A1 WO 2024066224A1 CN 2023081530 W CN2023081530 W CN 2023081530W WO 2024066224 A1 WO2024066224 A1 WO 2024066224A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
lens
photodetector
emitting chip
Prior art date
Application number
PCT/CN2023/081530
Other languages
English (en)
French (fr)
Inventor
郑龙
杨思更
刘璐
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222568035.8U external-priority patent/CN218350559U/zh
Priority claimed from CN202211186007.8A external-priority patent/CN117826335A/zh
Priority claimed from CN202222570121.2U external-priority patent/CN218350561U/zh
Priority claimed from CN202222570116.1U external-priority patent/CN218350560U/zh
Priority claimed from CN202222568024.XU external-priority patent/CN218675388U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2024066224A1 publication Critical patent/WO2024066224A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an optical module.
  • optical communication technology optical modules are one of the key components in optical communication equipment, and with the development of optical communication technology, the transmission rate of optical modules continues to increase.
  • the optical module includes a transmitter and a receiver.
  • the transmitter converts the electrical signal into an optical signal and transmits the optical signal through an optical fiber.
  • the optical power of the optical signal affects the stability of optical communication. If the optical power is too low or too high, the optical communication signal will be abnormal. In order to avoid the influence of optical power on the signal, the optical module needs to monitor the optical power of the transmitter and adjust the optical power in time.
  • the present disclosure provides an optical module, including: a circuit board and a light emitting component.
  • the light emitting component includes: a third substrate, a light emitting chip and a lens.
  • One end of the third substrate is electrically connected to the circuit board.
  • the light emitting chip is arranged above the third substrate, and the lens is located on the light output path of the light emitting chip.
  • the side of the lens facing the light emitting chip is a convex surface; a reflective film is arranged on the convex surface of the first lens, and the reflective film reflects part of the signal light.
  • a photodetector is arranged between the lens and the light emitting chip, and the photodetector is configured to receive the reflected signal light.
  • the lower surface of the reflective film is higher than the central axis of the lens; or the upper surface of the reflective film is lower than the central axis of the lens.
  • the present disclosure provides another optical module, including: a circuit board and a light emitting component.
  • the light emitting component includes: a third substrate, a light emitting chip and a lens. One end of the third substrate is electrically connected to the circuit board.
  • the light emitting chip is arranged above the third substrate, and the lens is located on the light output path of the light emitting chip.
  • the side of the lens facing the light emitting chip is a convex surface.
  • the photodetector is arranged between the lens and the light emitting chip, and the photodetector is configured to receive part of the signal light.
  • FIG1 is a partial architecture diagram of an optical communication system provided according to some embodiments of the present disclosure.
  • FIG2 is a partial structural diagram of a host computer provided according to some embodiments of the present disclosure.
  • FIG3 is a structural diagram of an optical module provided according to some embodiments of the present disclosure.
  • FIG4 is an exploded view of an optical module provided according to some embodiments of the present disclosure.
  • FIG5 is a schematic diagram of a connection structure between a light emitting component and a circuit board according to some embodiments of the present disclosure
  • FIG6 is a schematic diagram of a structure in which a light emitting component and a circuit board are separated according to some embodiments of the present disclosure
  • FIG7 is a schematic cross-sectional view of a light emitting component according to some embodiments of the present disclosure.
  • FIG8 is a schematic diagram of a disassembled partial structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG9 is a schematic diagram of a partial cross-sectional structure of a light emitting component according to some embodiments of the present disclosure.
  • FIG10 is a schematic diagram of a local optical path of a light emitting component according to some embodiments of the present disclosure.
  • FIG11 is a second schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG12 is a second schematic diagram of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG13 is a third schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG14 is a third schematic diagram of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG15 is a fourth schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG16 is a fourth schematic diagram of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG17 is a schematic diagram 5 of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG18 is a fifth schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG19 is a sixth schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG20 is a sixth schematic diagram of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG21 is a schematic diagram of a partial cross-sectional structure of a light emitting component according to some embodiments of the present disclosure.
  • FIG22 is a seventh schematic diagram of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG23 is a schematic diagram eight of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG24 is a schematic diagram eight of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG25 is a schematic diagram of a partial cross-sectional structure of a light emitting component according to some embodiments of the present disclosure.
  • FIG26 is a ninth schematic diagram of a local optical path of a light emitting component according to some embodiments of the present disclosure.
  • FIG27 is a schematic diagram of a partial cross-sectional structure of a light emitting component according to some embodiments of the present disclosure.
  • FIG28 is a schematic diagram of a local optical path of a light emitting component according to some embodiments of the present disclosure.
  • FIG29 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG30 is a schematic diagram 11 of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG31 is a schematic diagram 12 of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG32 is a schematic diagram 12 of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG33 is a schematic diagram thirteen of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG34 is a thirteenth schematic diagram of a local optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • the term “connected” may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • coupled may be used to indicate that two or more
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism may be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity may also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality may be, for example, that the difference between the two equals is less than or equal to 5% of either one.
  • Optical communication technology establishes information transmission between information processing devices.
  • Optical communication technology loads information onto light and uses the propagation of light to achieve information transmission.
  • Light loaded with information is an optical signal.
  • optical signals propagate in information transmission equipment, they can reduce the loss of optical power and achieve high-speed, long-distance, and low-cost information transmission.
  • Information that can be processed by information processing equipment exists in the form of electrical signals.
  • Optical network terminals/gateways, routers, switches, mobile phones, computers, servers, tablets, and televisions are common information processing devices, and optical fibers and optical waveguides are common information transmission equipment.
  • optical modules The mutual conversion of optical signals and electrical signals between information processing equipment and information transmission equipment is realized through optical modules.
  • an optical fiber is connected to the optical signal input end and/or the optical signal output end of the optical module, and an optical network terminal is connected to the electrical signal input end and/or the electrical signal output end of the optical module;
  • the first optical signal from the optical fiber is transmitted into the optical module, the optical module converts the first optical signal into a first electrical signal, and the optical module transmits the first electrical signal into the optical network terminal;
  • the second electrical signal from the optical network terminal is transmitted into the optical module, the optical module converts the second electrical signal into a second optical signal, and the optical module transmits the second optical signal into the optical fiber.
  • information processing devices can be connected to each other through an electrical signal network, at least one type of information processing device needs to be directly connected to the optical module, and it is not necessary for all types of information processing devices to be directly connected to the optical module.
  • the information processing device directly connected to the optical module is called the host computer of the optical module.
  • FIG1 is a partial architecture diagram of an optical communication system provided according to some embodiments of the present disclosure. As shown in FIG1 , the optical communication system partially presents a remote information processing device 1000 , a local information processing device 2000 , a host computer 100 , an optical module 200 , an optical fiber 101 , and a network cable 103 .
  • One end of the optical fiber 101 extends toward the remote information processing device 1000, and the other end is connected to the optical interface of the optical module 200.
  • the optical signal can be totally reflected in the optical fiber 101, and the propagation of the optical signal in the direction of total reflection can almost maintain the original optical power.
  • the optical signal is totally reflected multiple times in the optical fiber 101, and the optical signal from the remote information processing device 1000 is transmitted to the optical module 200, or the light from the optical module 200 is transmitted to the remote information processing device 1000.
  • the processing device 1000 propagates in all directions, achieving long-distance and low-power information transmission.
  • the number of optical fibers 101 may be one or more (two or more); the optical fiber 101 and the optical module 200 may be connected in a pluggable movable manner or in a fixed manner.
  • the host computer 100 has an optical module interface 102, which is configured to access the optical module 200, so that the host computer 100 establishes a unidirectional/bidirectional electrical signal connection with the optical module 200; the host computer 100 is configured to provide data signals to the optical module 200, or receive data signals from the optical module 200, or monitor and control the working status of the optical module 200.
  • the host computer 100 has an external electrical interface, such as a Universal Serial Bus (USB) interface and a network cable interface 104, which can be connected to an electrical signal network.
  • the network cable interface 104 is configured to connect to the network cable 103, so that the host computer 100 and the network cable 103 establish a unidirectional/bidirectional electrical signal connection.
  • Optical Network Unit (ONU), Optical Line Terminal (OLT), Optical Network Equipment (ONT) and data center servers are common host computers.
  • ONT Optical Network Unit
  • ONT Optical Line Terminal
  • ONT Optical Network Equipment
  • data center servers are common host computers.
  • the network cable 103 establishes an electrical signal connection between the local information processing device 2000 and the host computer 100 .
  • the third electrical signal emitted by the local information processing device 2000 is transmitted to the host computer 100 through the network cable 103.
  • the host computer 100 generates a second electrical signal based on the third electrical signal.
  • the second electrical signal from the host computer 100 is transmitted to the optical module 200.
  • the optical module 200 converts the second electrical signal into a second optical signal.
  • the optical module 200 transmits the second optical signal into the optical fiber 101.
  • the second optical signal is transmitted to the remote information processing device 1000 in the optical fiber 101.
  • a first optical signal from the direction of a remote information processing device 1000 propagates through the optical fiber 101, the first optical signal from the optical fiber 101 is transmitted into the optical module 200, the optical module 200 converts the first optical signal into a first electrical signal, the optical module 200 transmits the first electrical signal into the host computer 100, the host computer 100 generates a fourth electrical signal based on the first electrical signal, and the host computer 100 transmits the fourth electrical signal to the local information processing device 2000.
  • the optical module is a tool for realizing the mutual conversion between optical signals and electrical signals. During the conversion process between optical signals and electrical signals, the information does not change, but the encoding and decoding method of the information can change.
  • FIG2 is a partial structural diagram of a host computer provided according to some embodiments of the present disclosure.
  • the host computer 100 also includes a PCB circuit board 105 arranged in the housing, a cage 106 arranged on the surface of the PCB circuit board 105, a heat sink 107 arranged on the cage 106, and an electrical connector (not shown in the figure) arranged inside the cage 106, and the heat sink 107 has a protruding structure that increases the heat dissipation area, and the fin-shaped structure is a common protruding structure.
  • the optical module 200 is inserted into the cage 106 of the host computer 100, and the cage 106 fixes the optical module 200.
  • the heat generated by the optical module 200 is transferred to the cage 106 and then diffused through the heat sink 107.
  • the electrical interface of the optical module 200 is connected to the electrical connector inside the cage 106.
  • FIG3 is a structural diagram of an optical module provided according to some embodiments of the present disclosure
  • FIG4 is an exploded diagram of an optical module provided according to some embodiments of the present disclosure.
  • the optical module 200 includes a shell, a circuit board 300 disposed in the shell, a light emitting component 400, and a light receiving component.
  • the present disclosure is not limited thereto, and in some embodiments, the optical module 200 includes one of the light emitting component 400 and the light receiving component.
  • the housing comprises an upper housing 201 and a lower housing 202 .
  • the upper housing 201 covers the lower housing 202 to form the housing having two openings 204 and 205 .
  • the outer contour of the housing is generally a square body.
  • the lower shell 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and arranged perpendicular to the bottom plate 2021; the upper shell 201 includes a cover plate 2011, and the cover plate 2011 covers the two lower side plates 2022 of the lower shell 202 to form the above-mentioned shell.
  • the lower shell 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and vertically arranged with the bottom plate 2021;
  • the upper shell 201 includes a cover plate 2011 and two upper side plates located on both sides of the cover plate 2011 and vertically arranged with the cover plate 2011, and the two upper side plates are combined with the two lower side plates 2022 to realize that the upper shell 201 covers the lower shell 202.
  • the direction of the connection line between the first opening 204 and the second opening 205 may be consistent with the length direction of the optical module 200, or may be inconsistent with the length direction of the optical module 200.
  • the first opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the second opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the first opening 204 is located at the end of the optical module 200
  • the second opening 205 is located at the side of the optical module 200.
  • the first opening 204 is an electrical interface, and the gold finger of the circuit board 300 extends from the electrical interface and is inserted into the electrical connector of the host computer;
  • the second opening 205 is an optical port, which is configured to access the optical fiber 101 so that the optical fiber 101 is connected to the optical emitting component 400 and/or the optical receiving component in the optical module 200.
  • the assembly method of combining the upper shell 201 and the lower shell 202 is adopted, so that the components such as the circuit board 300, the light emitting component 400, and the light receiving component can be easily installed in the above shell, and the upper shell 201 and the lower shell 202 can encapsulate and protect the shapes of these components.
  • the components such as the circuit board 300, the light emitting component 400 and the light receiving component, it is convenient to deploy the positioning components, heat dissipation components, and electromagnetic shielding components of these devices, which is conducive to the automated production.
  • the upper shell 201 and the lower shell 202 are made of metal materials to facilitate electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located outside its housing.
  • the unlocking component 203 is configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer.
  • the unlocking component 203 is located on the outside of the two lower side plates 2022 of the lower housing 202, and the unlocking component 203 includes a snap-fit component that matches the cage 106 of the host computer.
  • the snap-fit component of the unlocking component 203 fixes the optical module 200 in the cage 106;
  • the snap-fit component of the unlocking component 203 moves accordingly, thereby changing the connection relationship between the snap-fit component and the host computer, so as to release the snap-fit fixed connection between the optical module 200 and the host computer, so that the optical module 200 can be pulled out of the cage 106.
  • the circuit board 300 includes circuit traces, electronic components and chips, etc.
  • the electronic components and chips are connected together according to the circuit design through the circuit traces to realize the functions of power supply, electrical signal transmission and grounding.
  • the electronic components may include capacitors, resistors, triodes, metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET), etc.
  • the chips may include microcontroller units (Microcontroller Unit, MCU), laser driver chips, transimpedance amplifiers (Transimpedance Amplifier, TIA), limiting amplifiers (limiting amplifiers), clock and data recovery chips (Clock and Data Recovery, CDR), power management chips, and digital signal processing (Digital Signal Processing, DSP) chips.
  • MCU Microcontroller Unit
  • TIA Transimpedance Amplifier
  • limiting amplifiers limiting amplifiers
  • clock and data recovery chips Chip and Data Recovery, CDR
  • power management chips and digital signal processing (Digital Signal Processing, DSP) chips.
  • DSP Digital Signal Processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the load-bearing function. For example, the rigid circuit board can stably carry the above-mentioned electronic components and chips; the rigid circuit board is also easy to insert into the electrical connector in the upper computer cage.
  • the circuit board 300 also includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106, and the gold finger 301 is connected to the electrical connector in the cage 106.
  • the gold finger can be set only on the surface of one side of the circuit board 300 (for example, the upper surface shown in FIG. 4), or on the surfaces of the upper and lower sides of the circuit board 300 to provide more pins.
  • the gold finger is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards to supplement rigid circuit boards.
  • the light emitting component 400 and/or the light receiving component are located on a side of the circuit board 300 away from the gold finger; in some embodiments, the light emitting component 400 and the light receiving component are physically separated from the circuit board 300, and then electrically connected to the circuit board 300 through corresponding flexible circuit boards or electrical connectors; in some embodiments, the light emitting component and/or the light receiving component can be directly set on the circuit board 300, can be set on the surface of the circuit board, and can also be set on the side of the circuit board.
  • an optical fiber adapter 500 is provided at one end of the light emitting component, and is configured to connect the light emitting component and the external optical fiber.
  • FIG5 is a schematic diagram of a structure in which an optical emission component is connected to a circuit board according to some embodiments of the present disclosure
  • FIG6 is a schematic diagram of a structure in which an optical emission component is separated from a circuit board according to some embodiments of the present disclosure.
  • a circuit board 300 is provided with an emission through hole 310, an emission shell 410 is embedded in the interior of the emission through hole 310, and a driving pin is provided on one side of the circuit board adjacent to the emission through hole, and the circuit board is connected to the optical emission chip 430 and the semiconductor refrigerator by bonding.
  • An optical fiber adapter 500 is provided at one end of the emission shell 410, and the signal light emitted by the optical emission chip 430 is coupled to the optical fiber adapter 500 after passing through the first lens 420, and is transmitted to the outside through the optical fiber adapter 500.
  • FIG7 is a schematic diagram of a cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure
  • FIG8 is a schematic diagram of a disassembled partial structure of a light emitting component provided according to some embodiments of the present disclosure.
  • a first metal ceramic substrate 441 is provided above the emitting base 413
  • a semiconductor refrigerator 440 is provided above the first metal ceramic substrate 441.
  • the first metal ceramic substrate 441 is provided with a refrigeration drive circuit, which is wired to the circuit board, and the refrigeration drive circuit drives the semiconductor refrigerator 440 to adjust the temperature of the light emitting component.
  • a second ceramic substrate 442 is disposed above the semiconductor refrigerator 440, a first lens 420 and a third metal ceramic substrate 443 are disposed above the second ceramic substrate 442, the first lens 420 is disposed between the third metal ceramic substrate 443 and the optical fiber ferrule 510, and a light emitting chip 430 is disposed above the third metal ceramic substrate 443.
  • the light emitting chip 430 emits signal light toward the optical fiber adapter 500, and the signal light at this time is divergent light.
  • the signal light forms convergent light after passing through the first lens 420, and the light spot of the convergent light is located at the end face of the optical fiber ferrule 510, and is transmitted to the external optical fiber through the optical fiber adapter.
  • the photodetector 450 is configured to detect the intensity of the signal light emitted by the light emitting chip 430.
  • the photodetector 450 is electrically connected to the MCU, and the MCU adjusts the power supply to the light emitting chip 430 by receiving the intensity of the signal light to ensure signal transmission efficiency.
  • FIG9 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG10 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third substrate (for example, a third ceramic substrate), wherein the third ceramic substrate may be a third metal ceramic substrate 443; and a light emitting chip 430 located on the upper surface of the third metal ceramic substrate 443, and the first lens 420 is arranged on the light emitting optical path of the light emitting chip 430.
  • a reflective film 4201 is partially arranged on the lower surface of the first convex surface of the first lens 420 facing the light emitting chip 430, and the reflective film 4201 reflects part of the signal light.
  • a photodetector 450 is arranged between the first lens 420 and the optical emission chip 430 to convert the intensity of the signal light into an electrical signal, and send the electrical signal to the MCU. After receiving the electrical signal, the MCU calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the optical emission chip 430 to adjust the output optical power.
  • the photodetector 450 is disposed between the first lens 420 and the light emitting chip 430, and is located on the side wall of the third metal ceramic substrate 443.
  • the photosensitive surface of the photodetector 450 is disposed toward the first lens 420, and the photodetector 450 receives the signal light reflected by the reflective film 4201 and detects the signal light.
  • the reflective film 4201 is located below the center of the first lens 420 , that is, the upper edge of the reflective film 4201 is lower than the center of the first lens 420 , and the reflected signal light is directed toward the bottom of the optical module.
  • the third substrate may be a third ceramic substrate and also a third metal-ceramic substrate.
  • the fifth substrate may be a fifth ceramic substrate and also a fifth metal-ceramic substrate.
  • the first lens 420 is a focusing lens, which converges the signal light emitted by the light emitting chip 430 into a light spot.
  • the optical fiber adapter 500 is located on the light emitting side of the first lens 420, and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the light emitting chip 430 is divergent light, part of which is reflected by the reflective film 4201 and received by the photosensitive surface of the photodetector 450, and the other part of the signal light is converged to the transmitting optical fiber through the first lens 420 and transmitted through the transmitting optical fiber.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chips 430 and 450 .
  • the vertical distance H between the upper surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 200 to 450 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.5 to 1.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the size of the light received by the photodetector 450 will be affected, affecting the light efficiency monitoring effect.
  • the upper surface of the photodetector 450 is lower than the optical axis position of the light emitting chip 430 .
  • the photodetector 450 receives a portion of the signal light reflected by the reflective film 4201 of the first lens 420 , and converts the intensity of the signal light into an electrical signal.
  • the horizontal distance L2 between the center of the first lens 420 and the light outlet of the light emitting chip 430 is 2.5 to 5.5 mm. If the horizontal distance between the center of the first lens 420 and the light outlet of the light emitting chip 430 is too large or too small, the signal light will be affected. The coupling efficiency of the signal light.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic metal substrate and the fourth metal ceramic substrate, and the circuits are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 and the first lens 420 are in a straight line.
  • the embodiment disclosed herein provides a light emitting component, comprising: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, the first lens 420 is disposed on the light emitting path of the light emitting chip 430, and a reflective film 4201 is disposed on the lower surface of the convex mirror facing the light emitting chip 430 to reflect part of the signal light to the photodetector 450.
  • the photodetector 450 is disposed on the side wall of the third metal ceramic substrate 443, and its photosensitive surface faces the first lens 420, and is configured to detect the signal light reflected by the reflective film 4201.
  • the first lens 420 is a focusing lens, which receives the signal light emitted by the light emitting chip 430 and converges the signal light into a light spot.
  • the optical fiber adapter 500 is located on the light emitting side of the first lens 420, and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450 , and the other part of the signal light is converged to the optical fiber adapter 500 through the first lens 420 and transmitted out through the optical fiber adapter 500 .
  • FIG11 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG12 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a second lens 421 is disposed on the light emitting optical path of the light emitting chip 430.
  • the third lens 422 is disposed between the second lens 421 and the optical fiber adapter 500.
  • a photodetector 450 is provided between the second lens 421 and the optical emission chip 430.
  • the photodetector 450 converts the intensity of the signal light into an electrical signal and sends the electrical signal to the MCU.
  • the MCU calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the optical emission chip 430 to adjust the output optical power.
  • a reflective film 4201 is provided on the lower surface of the convex mirror of the second lens 421 facing the light emitting chip 430 , and is configured to reflect part of the signal light to the photodetector 450 .
  • the photodetector 450 is disposed between the second lens 421 and the light emitting chip 430, and is located on the side wall of the third metal ceramic substrate 443.
  • the photosensitive surface of the photodetector 450 faces the second lens 421, and is configured to receive the signal light reflected by the second lens 421 and detect the signal light.
  • the reflective film 4201 is located below the center of the second lens 421 , that is, the upper edge of the reflective film 4201 is lower than the center of the second lens 421 .
  • the reflected signal light is directed toward the bottom of the optical module and is received by the photodetector 450 .
  • the second lens 421 is a collimating lens, which converts the signal light into collimated signal light after receiving the signal light emitted by the optical transmitting chip 430.
  • the third lens 422 is disposed between the second lens 421 and the optical fiber adapter 500, and converts the collimated signal light into convergent signal light.
  • the optical fiber adapter 500 is located at the light-emitting side of the third lens 422, and receives the signal light converged by the third lens 422.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the other part of the signal light is collimated by the second lens 421, and then converged to the optical fiber adapter 500 through the third lens 422, and transmitted through the emission optical fiber of the optical fiber adapter 500.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 200 to 450 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.5 to 1.5 mm.
  • the vertical distance between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 200 to 450 ⁇ m. If the vertical distance between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is too large, the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450. If the vertical distance between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is too small, the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.5-1.5 mm. If the horizontal distance between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is too large, the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450. If the horizontal distance between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is too small, the size of the light received by the photodetector 450 will be affected, affecting the light efficiency monitoring effect.
  • the horizontal distance L2 between the center of the second lens 421 and the light outlet of the light emitting chip 430 is 2.5 to 5.5 mm. If the horizontal distance between the center of the second lens 421 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected. The horizontal distance between the center of the second lens 421 and the light outlet of the light emitting chip 430 is the focal length of the second lens 421.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic metal substrate and the fourth metal ceramic substrate, and the circuits are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 , the second lens 421 , and the third lens 422 are on a straight line.
  • the embodiment of the present disclosure provides a light emitting component, including: a third metal ceramic substrate 443 and a light emitting chip 430 arranged on the upper surface of the third metal ceramic substrate 443, a second lens 421 is arranged on the light emitting optical path of the light emitting chip 430, and a reflective film 4201 is arranged on the lower side of the second lens 421 facing the light emitting chip 430.
  • a photodetector 450 is arranged on the side wall of the third metal ceramic substrate 443. The photosensitive surface of the photodetector 450 faces the second lens 421, and the photodetector 450 receives the signal light reflected by the reflective film 4201 and detects the part of the signal light.
  • the second lens 421 is a collimating lens, which receives the signal light emitted by the light emitting chip 430 and converts the signal light into parallel signal light.
  • the parallel signal light forms a convergent signal light after passing through the third lens 422, and the optical fiber adapter 500 is located on the light emitting side of the third lens 422, and is configured to receive the signal light after the third lens 422 converges.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is reflected by the reflective film 4201 of the second lens 421 and received by the photosensitive surface of the photodetector 450, and the other part of the signal light passes through the second lens 421, the third lens 422 and the optical fiber adapter 500, and is transmitted out through the optical fiber adapter 500.
  • FIG13 is a schematic diagram of a partial cross-sectional structure of a light emitting component according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a first lens 420 is disposed on the light emitting optical path of the light emitting chip 430.
  • a reflective film 4201 is disposed on the lower surface of the first convex surface of the first lens 420 facing the light emitting chip 430, and the reflective film 4201 reflects the signal light irradiated on the reflective film.
  • a photodetector 450 is provided between the first lens 420 and the optical emission chip 430.
  • the photodetector 450 converts the intensity of the signal light into an electrical signal and sends the electrical signal to the MCU.
  • the MCU calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the optical emission chip 430 to adjust the output optical power.
  • the photodetector 450 is disposed between the first lens 420 and the light emitting chip 430, and the photosensitive surface of the photodetector 450 faces upward.
  • the photodetector 450 receives the signal light reflected by the first lens 420, detects the signal light, and converts the intensity of the signal light into an electrical signal.
  • the upper surface of the photodetector 450 is lower than the central axis of the light emitting chip 430.
  • the photodetector 450 is disposed on the upper surface of the carrier substrate, and the upper surface of the carrier substrate is lower than the upper surface of the third metal ceramic substrate 443, which facilitates the installation and commissioning of the photodetector 450.
  • the carrier substrate 446 can be an integrated structure with the third metal ceramic substrate 443, or a split structure.
  • the reflective film 4201 is located below the center of the first lens 420 , that is, the upper edge of the reflective film 4201 is lower than the center of the first lens 420 , and the reflected signal light is directed toward the bottom of the optical module.
  • the first lens 420 is a focusing lens, which receives the signal light emitted by the optical emission chip 430 and converges the signal light into a light spot.
  • the optical fiber adapter is located on the light-emitting side of the first lens 420 and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is reflected by the reflective film 4201 and received by the photosensitive surface of the photodetector 450, and the other part of the signal light is converged to the optical fiber adapter through the first lens 420 and transmitted through the optical fiber adapter.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the upper surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 300 to 650 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.7 to 2.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the size of the light received by the photodetector 450 will be affected, affecting the light efficiency monitoring effect.
  • the upper surface of the photodetector 450 is lower than the optical axis position of the light emitting chip 430 , and is configured to receive part of the signal light reflected back by the reflective film 4201 of the first lens 420 , and perform photoelectric conversion.
  • the horizontal distance L2 between the center of the first lens 420 and the light outlet of the light emitting chip 430 is 2.5 to 6.5 mm. If the horizontal distance between the center of the first lens 420 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic metal substrate and the fourth metal ceramic substrate, and are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 and the first lens 420 are in a straight line.
  • the embodiment of the present disclosure provides a light emitting component, including: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, the first lens 420 is disposed on the light emitting path of the light emitting chip 430, and a reflective film 4201 is disposed on the lower surface of the convex mirror facing the light emitting chip 430 to reflect part of the signal light to the photodetector 450.
  • the photodetector 450 is disposed on the side wall of the third metal ceramic substrate 443, and its photosensitive surface is disposed upward, and is configured to detect the signal light reflected by the reflective film 4201.
  • the first lens 420 is a focusing lens, which receives the signal light emitted by the light emitting chip 430 and converges the signal light into a light spot, and the optical fiber adapter is located on the light emitting side of the first lens 420, and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450 , and the other part of the signal light is converged to the optical fiber adapter through the first lens 420 and transmitted out through the optical fiber adapter.
  • FIG15 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG16 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a second lens 421 is disposed on the light emitting optical path of the light emitting chip 430.
  • a reflective film 4201 is provided on the lower surface of the convex surface of the second lens 421 facing the light emitting chip 430 to reflect part of the signal light. After the other part of the signal light is converted into parallel light by the second lens 421, it is converged to the optical fiber adapter 500 by the third lens 422.
  • a photodetector 450 is arranged between the second lens 421 and the optical emission chip 430 to convert the intensity of the signal light into an electrical signal, and send the electrical signal to the MCU. After receiving the electrical signal, the MCU calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the optical emission chip 430 to adjust the output optical power.
  • the photodetector 450 is disposed between the second lens 421 and the light emitting chip 430, and the photosensitive surface of the photodetector 450 faces upward, and is configured to receive and detect the signal light reflected by the second lens 421.
  • the upper surface of the photodetector 450 is lower than the central axis of the light emitting chip 430.
  • the photodetector 450 is disposed on the upper surface of the carrier substrate, which is lower than the upper surface of the third metal ceramic substrate 443, so as to facilitate the installation and commissioning of the photodetector 450.
  • the carrier substrate 446 can be an integral structure with the third metal ceramic substrate 443, or a separate structure.
  • the reflective film 4201 is located below the center of the second lens 421 , that is, the upper edge of the reflective film 4201 is lower than the center of the second lens 421 , and the reflected signal light is directed toward the bottom of the optical module.
  • the second lens 421 is a collimating lens.
  • the second lens 421 converts the signal light emitted by the light emitting chip 430 into a parallel light beam, which is then converged into a light spot by the converging effect of the third lens 422.
  • the optical fiber adapter 500 is located on the light emitting side of the third lens 422 and is configured to receive the signal light after the third lens 422 converges.
  • the signal light emitted by the light emitting chip 430 is a divergent light, which is partially reflected by the reflective film 4201 and then reflected by the photosensitive surface of the photodetector 450. The other part of the signal light is received, and the other part of the signal light is converged to the optical fiber adapter through the second lens 421 and the third lens 422, and is transmitted through the optical fiber adapter 500.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the upper surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 300 to 650 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.7 to 2.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450. If the vertical distance between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is too small, or the horizontal distance between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is too small, the detection accuracy of the photodetector 450 will be affected.
  • the upper surface of the photodetector 450 is lower than the central optical axis of the light emitting chip 430 .
  • the photodetector 450 receives the signal light reflected by the reflective film 4201 of the second lens 421 and converts the intensity of the signal light into an electrical signal.
  • the horizontal distance L2 between the center of the second lens 421 and the light outlet of the light emitting chip 430 is 2.5 to 6.5 mm. If the horizontal distance between the center of the second lens 421 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic metal substrate and the fourth metal ceramic substrate, and are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 and the second lens 421 are on a straight line.
  • the embodiment of the present invention provides a light emitting component, including: a third metal ceramic substrate 443 and a light emitting chip 430 arranged on the upper surface of the third metal ceramic substrate 443, the first lens 420 is arranged on the light emitting light path of the light emitting chip 430, and the lower surface of the convex mirror facing the light emitting chip 430 is provided with a reflective film 4201 to reflect part of the signal light to the photodetector 450.
  • the photodetector 450 is arranged on the side wall of the third metal ceramic substrate 443, and its photosensitive surface faces the second lens 421.
  • the photodetector 450 receives the signal light reflected by the reflective film 4201 and detects the intensity of the signal light.
  • the second lens 421 is a collimating lens, which converts the signal light into a parallel light beam after receiving the signal light emitted by the light emitting chip 430.
  • the third lens 422 is located between the second lens 421 and the optical fiber adapter, and the third lens 422 converts the parallel light beam into a converging light beam.
  • the optical fiber adapter is located on the light-emitting side of the third lens 422, and is configured to receive the signal light converged by the third lens 422.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the other part of the signal light passes through the second lens 421 and the third lens 422 to the optical fiber adapter, and is transmitted out through the optical fiber adapter.
  • FIG17 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG18 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a first lens 420 is disposed on the light emitting optical path of the light emitting chip 430.
  • a reflective film 4201 is disposed on the upper surface of the first convex surface of the first lens 420 facing the light emitting chip 430 to reflect part of the signal light.
  • a photodetector 450 is arranged between the first lens 420 and the optical emission chip 430 to convert the intensity of the signal light into an electrical signal, and send the electrical signal to the MCU. After receiving the electrical signal, the MCU calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the optical emission chip 430 to adjust the output optical power.
  • the photodetector 450 is disposed between the first lens 420 and the light emitting chip 430.
  • a fifth metal-ceramic substrate 445 is disposed above the first lens 420 and is configured to carry the photodetector 450.
  • the photodetector 450 is disposed on the side wall of the fifth metal-ceramic substrate 445, and the photosensitive surface of the photodetector 450 faces the first lens 420, receives the signal light reflected by the first lens 420, and detects the signal light.
  • the fifth metal ceramic substrate 445 is provided with a bearing portion 4451, and the bearing portion 4451 protrudes from the lower surface of the fifth metal ceramic substrate 445.
  • the photodetector 450 is located on one side of the bearing portion, and the photosensitive surface of the photodetector 450 faces the first lens 420.
  • the photodetector 450 is configured to receive the signal light reflected by the first lens 420 and detect the signal light.
  • the reflective film 4201 is located above the center of the first lens 420 , that is, the lower edge of the reflective film 4201 is higher than the center of the first lens 420 , and the signal light reflected by the reflective film 4201 is directed toward the upper right side of the optical module.
  • the first lens 420 is a focusing lens, which receives the signal light emitted by the optical emission chip 430 and converges the signal light into a light spot.
  • the optical fiber adapter 500 is located on the light-emitting side of the first lens 420 and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is reflected by the reflective film 4201 and received by the photosensitive surface of the photodetector 450, and the other part of the signal light is converged to the optical fiber adapter through the first lens 420 and transmitted through the optical fiber adapter 500.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the upper surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 150 to 450 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.2 to 1.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the size of the light received by the photodetector 450 will be affected, affecting the light efficiency monitoring effect.
  • the upper surface of the photodetector 450 is lower than the optical axis position of the light emitting chip 430 , and is configured to receive part of the signal light reflected back by the reflective film 4201 of the first lens 420 , and perform photoelectric conversion.
  • the horizontal distance L2 between the center of the first lens 420 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the first lens 420 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the light emitting chip 430 and the circuit of the photodetector 450 are arranged on the third ceramic metal substrate and the fourth metal ceramic substrate.
  • the surface of the ceramic substrate is connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter 500, the light emitting chip 430 and the first lens 420 are in a straight line.
  • the embodiment of the present disclosure provides a light emitting component, including: a third metal ceramic substrate 443 and a light emitting chip 430 arranged on the upper surface of the third metal ceramic substrate 443, the first lens 420 is arranged on the light emitting light path of the light emitting chip 430, and a reflective film 4201 is arranged on the upper surface of the convex mirror facing the light emitting chip 430 to reflect part of the signal light to the photodetector 450.
  • the photodetector 450 is arranged on the side wall of the fifth substrate (for example, the fifth metal ceramic substrate 445) above the first lens 420, and its photosensitive surface faces the first lens 420, and is configured to detect the signal light reflected by the reflective film 4201.
  • the first lens 420 is a focusing lens, which receives the signal light emitted by the light emitting chip 430 and converges the signal light into a light spot.
  • the optical fiber adapter is located on the light emitting side of the first lens 420 and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450 , and the other part of the signal light is converged to the optical fiber adapter through the first lens 420 and transmitted out through the optical fiber adapter.
  • the first lens 420 can also be replaced by a combination of a second lens 421 and a third lens 422, wherein the second lens 421 is a collimating lens and the third lens 422 is a converging lens.
  • the reflective film 4201 is arranged on the side of the second lens 421 facing the photodetector 450 and is located above the optical axis. After the signal light is reflected by the reflective film 4201, it is transmitted to the upper side of the optical module and projected onto the photosensitive surface of the photodetector 450. As shown in Figures 19 and 20.
  • Figure 19 is a schematic diagram of a partial cross-sectional structure of a light emitting component of the present disclosure.
  • Figure 20 is a schematic diagram of a partial optical path of a light emitting component provided by the embodiment of the present disclosure.
  • the vertical distance H between the upper surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 150 to 450 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.2 to 1.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450. If the vertical distance between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is too small, or the horizontal distance between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is too small, the amount of light received by the photodetector 450 will be affected, affecting the light efficiency monitoring effect.
  • the upper surface of the photodetector 450 is lower than the optical axis position of the light emitting chip 430 .
  • the photodetector 450 receives part of the signal light reflected back by the reflective film 4201 of the first lens 420 , and performs photoelectric conversion.
  • the horizontal distance L2 between the center of the second lens 421 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the second lens 421 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • FIG21 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG22 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a first lens 420 is disposed on the light emitting optical path of the light emitting chip 430.
  • a reflective film 4201 is disposed on the upper surface of the first convex surface of the first lens 420 facing the light emitting chip 430 to reflect part of the signal light.
  • a photodetector 450 is arranged between the first lens 420 and the optical emission chip 430 to convert the intensity of the signal light into an electrical signal, and send the electrical signal to the MCU. After receiving the electrical signal, the MCU calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the optical emission chip 430 to adjust the output optical power.
  • the photodetector 450 is disposed between the first lens 420 and the light emitting chip 430.
  • a fifth metal-ceramic substrate 445 is disposed above the first lens 420 and is configured to carry the photodetector 450.
  • the photodetector 450 is disposed on the lower surface of the fifth metal-ceramic substrate 445, and the photosensitive surface of the photodetector 450 faces downward, and is configured to receive the signal light reflected by the reflective film 4201 of the first lens 420, and detect the signal light.
  • the fifth metal ceramic substrate 445 is provided with a bearing portion 4451, which protrudes from the lower surface of the fifth metal ceramic substrate 445, and the photosensitive surface of the photodetector 450 faces the lower housing.
  • the photodetector 450 is configured to receive the signal light reflected by the first lens 420 and detect the signal light.
  • the reflective film 4201 is located above the center of the first lens 420 , that is, the lower edge of the reflective film 4201 is higher than the center of the first lens 420 , and the reflected signal light is directed obliquely upwards toward the optical module.
  • the first lens 420 is a focusing lens, which receives the signal light emitted by the optical emission chip 430 and converges the signal light into a light spot.
  • the optical fiber adapter 500 is located on the light-emitting side of the first lens 420 and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is reflected by the reflective film 4201 and received by the photosensitive surface of the photodetector 450, and the other part of the signal light is converged to the optical fiber adapter through the first lens 420 and transmitted through the optical fiber adapter.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the upper surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 300 to 650 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.7 to 2.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the size of the light received by the photodetector 450 will be affected, affecting the light efficiency monitoring effect.
  • the upper surface of the photodetector 450 is disposed below the optical axis position of the light emitting chip 430 , and is configured to receive a portion of the signal light reflected back by the reflective film 4201 of the first lens 420 , and perform photoelectric conversion.
  • the horizontal distance L2 between the center of the first lens 420 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the first lens 420 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic metal substrate and the fourth metal ceramic substrate, and are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter 500, the light emitting chip 430 and the first lens 420 are in a straight line.
  • the embodiment of the present disclosure provides a light emitting component, including: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443.
  • the first lens 420 is disposed on the light emitting path of the light emitting chip 430, and a reflective film 4201 is disposed on the upper surface of the convex mirror of the first lens 420 facing the light emitting chip 430, and the reflective film 4201 reflects part of the signal light to the photodetector 450.
  • the photodetector 450 is disposed on the lower surface of the fifth metal ceramic substrate 445 above the first lens 420, with its photosensitive surface facing the bottom of the optical module, and is configured to detect the signal light reflected by the reflective film 4201.
  • the first lens 420 is a focusing lens, which converges the signal light into a light spot after receiving the signal light emitted by the optical emission chip 430.
  • the optical fiber adapter is located on the light emitting side of the first lens 420, and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the other part of the signal light is converged to the optical fiber adapter through the first lens 420 and transmitted through the optical fiber adapter.
  • the first lens 420 can also be replaced by a second lens 421 and a third lens 422, wherein the second lens 421 is a collimating lens and the third lens 422 is a converging lens.
  • the reflective film 4201 is arranged on the side of the second lens 421 facing the photodetector 450 and is located above the optical axis. After the signal light is reflected by the reflective film 4201, it is transmitted obliquely upward of the optical module and projected onto the photosensitive surface of the photodetector 450.
  • Figure 23 is a schematic diagram of a partial cross-sectional structure of a light emitting component of an example of the present disclosure.
  • Figure 24 is a schematic diagram of a partial optical path of a light emitting component provided by an embodiment of the present disclosure.
  • the vertical distance H between the upper surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 300 to 650 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.7 to 2.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450. If the vertical distance between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is too small, or the horizontal distance between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is too small, the amount of light received by the photodetector 450 will be affected, affecting the light efficiency monitoring effect.
  • the upper surface of the photodetector 450 is lower than the optical axis position of the light emitting chip 430 , and is configured to receive part of the signal light reflected back by the reflective film 4201 of the first lens 420 , and perform photoelectric conversion.
  • the horizontal distance L2 between the center of the second lens 421 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the second lens 421 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the projection of the light emitting chip 430 on the lower housing, the projection of the lens on the lower housing, and the projection of the photodetector 450 on the lower housing may be arranged on the same straight line.
  • the projection of the photodetector 450 on the lower housing may also be located on one side of the line connecting the projections of the light emitting chip 430 and the lens on the lower housing, and the distance between the projection of the photodetector 450 on the lower housing and the first lower side plate may be greater than the distance between the light emitting chip 430 and the first lower side plate; or the distance between the projection of the photodetector 450 on the lower housing and the first lower side plate may be less than the distance between the light emitting chip 430 and the first lower side plate.
  • the specific distance between the photodetector 450 and the first lower side plate is determined by the reflection direction of the reflection film 4201.
  • the photodetector 450 in order to monitor the accuracy of optical power, can receive 5% to 8% of the optical power of the light emitted from the light emitting chip 430, and the vertical distance between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430, the horizontal distance between the right end of the photodetector 450 and the light outlet of the light emitting chip 430, and the horizontal distance between the center of the lens and the light outlet of the light emitting chip 430 can be set according to the light emission parameters of the light emitting chip 430.
  • the light emission parameters include light intensity, focal length, etc.
  • the central axes of the optical fiber adapter 500 , the light emitting chip 430 , the second lens 421 , and the third lens 422 are on a straight line.
  • FIG. 25 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG. 26 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third substrate (such as a third metal ceramic substrate 443) and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a first lens 420 is disposed on the light emitting optical path of the light emitting chip 430.
  • a photodetector 450 is disposed between the first lens 420 and the light emitting chip 430, and the photodetector 450 converts the optical signal into an electrical signal and sends the electrical signal to the MCU.
  • the MCU chip calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the light emitting chip 430 to adjust the optical power.
  • the photodetector 450 is disposed between the first lens 420 and the light emitting chip 430, and is located on the upper surface of the third metal ceramic substrate 443.
  • the photosensitive surface of the photodetector 450 faces upward, and the photodetector 450 receives part of the signal light emitted by the light emitting chip 430 and detects the part of the signal light.
  • the first lens 420 is a focusing lens, which receives the signal light emitted by the light emitting chip 430 and converges the signal light into a light spot.
  • the transmitting optical fiber is located on the light emitting side of the first lens 420, and receives the signal light converged by the first lens 420.
  • the signal light emitted by the light emitting chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the rest of the signal light is converged to the transmitting optical fiber through the first lens 420 and transmitted through the transmitting optical fiber.
  • a fourth substrate (eg, fourth metal-ceramic substrate 444 ) is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 100 to 150 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.2 to 1.2 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the photodetector 450 will block too much signal light emitted from the light outlet of the light emitting chip 430, resulting in a small received light power of the transmitting optical fiber, affecting the coupling efficiency.
  • the right end of the photodetector 450 faces the light outlet of the light emitting chip 430 .
  • the horizontal distance L2 between the center of the first lens 420 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the first lens 420 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic metal substrate and the fourth metal ceramic substrate, and the circuits of the light emitting chip 430 and the photodetector 450 are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 and the first lens 420 are in a straight line.
  • the embodiment of the present disclosure provides a light emitting component, including: a third metal ceramic substrate 443 and a light emitting chip 430 arranged on the upper surface of the third metal ceramic substrate 443, and the first lens 420 is arranged on the light emitting light path of the light emitting chip 430.
  • the photodetector 450 is arranged on the upper surface of the third metal ceramic substrate 443.
  • the photosensitive surface of the photodetector 450 faces upward, and is configured to receive part of the signal light emitted by the light emitting chip 430 and detect the part of the signal light.
  • the first lens 420 is a focusing lens, which converges the signal light into a light spot after receiving the signal light emitted by the light emitting chip 430.
  • the transmitting optical fiber is located on the light emitting side of the first lens 420, and is configured to receive the signal light after convergence by the first lens 420.
  • the signal light emitted by the light emitting chip 430 is a divergent light, part of the signal light is received by the photosensitive surface of the photodetector 450, and the other signal light is converged to the transmitting optical fiber through the first lens 420 and transmitted through the transmitting optical fiber.
  • FIG27 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG28 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a second lens 421 is disposed on the light emitting optical path of the light emitting chip 430.
  • the third lens 422 is disposed between the second lens 421 and the optical fiber adapter 500.
  • a photodetector 450 is arranged between the second lens 421 and the optical emission chip 430 to convert the intensity of the signal light into an electrical signal, and send the electrical signal to the MCU.
  • the MCU chip calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the optical emission chip 430 to adjust the output optical power.
  • the photodetector 450 is disposed between the second lens 421 and the light emitting chip 430, and the photodetector 450 is located on the upper surface of the third metal ceramic substrate 443.
  • the photosensitive surface of the photodetector 450 faces upward, receives part of the signal light emitted by the light emitting chip 430, and detects the part of the signal light.
  • the second lens 421 is a collimating lens, which converts the signal light into collimated signal light after receiving the signal light emitted by the optical transmitting chip 430.
  • the third lens 422 is disposed between the second lens 421 and the optical fiber adapter 500, and converts the collimated signal light into convergent signal light.
  • the optical fiber adapter 500 is located on the light-emitting side of the third lens 422, and receives the signal light converged by the third lens 422.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the rest of the signal light is collimated by the second lens 421, and then converged to the optical fiber adapter 500 through the third lens 422, and transmitted through the emission optical fiber of the optical fiber adapter 500.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 100 to 150 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.2 to 1.2 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the photodetector 450 will block too much signal light emitted from the light outlet of the light emitting chip 430, resulting in a small received light power of the optical fiber adapter and affecting the coupling efficiency.
  • the horizontal distance L2 between the center of the second lens 421 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the second lens 421 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic-metal substrate and the fourth metal-ceramic substrate, and are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 , the second lens 421 , and the third lens 422 are on a straight line.
  • the embodiment of the present disclosure provides a light emitting component, including: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a second lens 421 is disposed on the light emitting optical path of the light emitting chip 430.
  • the photodetector 450 is disposed on the upper surface of the third metal ceramic substrate 443.
  • the photosensitive surface of the photodetector 450 faces upward, and is configured to receive part of the signal light emitted by the light emitting chip 430 and detect the part of the signal light.
  • the second lens 421 is a collimating lens, which converts the signal light into parallel signal light after receiving the signal light emitted by the light emitting chip 430.
  • the parallel signal light forms a convergent signal light after passing through the third lens 422.
  • the optical fiber adapter is located on the light emitting side of the third lens 422, and the optical fiber adapter is configured to receive the signal light after the third lens 422 converges.
  • the signal light emitted by the light emitting chip 430 is a divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the other signal light is emitted into the optical fiber after passing through the second lens 421 and the third lens 422, and is transmitted through the optical fiber adapter.
  • FIG29 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG30 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a first lens 420 is disposed on the light emitting optical path of the light emitting chip 430.
  • a photodetector 450 is disposed between the first lens 420 and the light emitting chip 430, and the intensity of the signal light is converted into an electrical signal, and the electrical signal is sent to the MCU.
  • the MCU chip calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the light emitting chip 430 to adjust the optical power.
  • the photodetector 450 is disposed between the first lens 420 and the light emitting chip 430.
  • a fifth substrate is disposed on the upper surface of the first lens 420, one end of the fifth substrate protrudes downward to form a bearing portion, and the photodetector 450 is disposed on the bearing portion.
  • the photosensitive surface of the photodetector 450 faces the light outlet direction of the light emitting chip 430.
  • the photodetector 450 receives part of the signal light emitted by the light emitting chip 430 and detects the part of the signal light.
  • the first lens 420 is a focusing lens, which receives the signal light emitted by the optical transmitter chip 430 and converges the signal light into a light spot.
  • 500 is located on the light-emitting side of the first lens 420, and the signal light converged by the first lens 420 is transmitted through the optical fiber adapter 500.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the rest of the signal light is converged to the optical fiber adapter through the first lens 420 and transmitted through the optical fiber adapter.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H2 between the lower end of the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 200 to 150 ⁇ m
  • the horizontal distance L1 between the photosensitive surface of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.2 to 1.2 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the photodetector 450 will block too much signal light emitted from the light outlet of the light emitting chip 430, resulting in a small received light power of the transmitting optical fiber, affecting the coupling efficiency.
  • the horizontal distance L2 between the center of the first lens 420 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the first lens 420 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the circuit of the light emitting chip 430 is disposed on the surface of the third ceramic metal substrate and the fourth metal ceramic substrate, and is connected to the circuit board through wire bonding.
  • the circuit of the photodetector 450 is disposed on the surface of the fifth substrate, and is connected to the circuit board through wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 and the first lens 420 are in a straight line.
  • the embodiment disclosed herein provides a light emitting component, comprising: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and the first lens 420 is disposed on the light emitting path of the light emitting chip 430.
  • a fifth substrate is disposed above the first lens 420, and a photodetector 450 is disposed on its side wall, which is configured to receive part of the signal light emitted by the light emitting chip 430 and detect the part of the signal light.
  • the first lens 420 is a focusing lens, which, after receiving the signal light emitted by the light emitting chip 430, converges the signal light into a light spot, and the optical fiber adapter is located on the light emitting side of the first lens 420, and the optical fiber adapter receives the signal light converged by the first lens 420.
  • the signal light emitted by the light emitting chip 430 is a divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the other signal light is converged to the optical fiber adapter through the first lens 420 and transmitted through the optical fiber adapter.
  • FIG31 is a schematic diagram of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG32 is a schematic diagram of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and a first lens 420 is disposed on the light emitting optical path of the light emitting chip 430.
  • a photodetector 450 is disposed between the first lens 420 and the light emitting chip 430, and the intensity of the signal light is converted into an electrical signal, and the electrical signal is sent to the MCU.
  • the MCU chip calculates the current optical power according to the electrical signal, compares the current optical power with the preset optical power threshold, and adjusts the power supply voltage of the light emitting chip 430 to adjust the optical power.
  • the photodetector 450 is disposed between the first lens 420 and the light emitting chip 430.
  • a fifth substrate is disposed on the upper surface of the first lens 420, one end of the fifth substrate protrudes downward to form a bearing portion, and the photodetector 450 is disposed on the bearing portion.
  • the photosensitive surface of the photodetector 450 faces downward, and the photodetector 450 receives a portion of the signal light emitted by the light emitting chip 430 and detects the portion of the signal light.
  • the first lens 420 is a focusing lens, which converges the signal light emitted by the optical emission chip 430 into a light spot
  • the optical fiber adapter is located on the light-emitting side of the first lens 420, and is configured to receive the signal light converged by the first lens 420.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the rest of the signal light is converged to the optical fiber adapter through the first lens 420 and transmitted through the optical fiber adapter.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 100 to 150 ⁇ m
  • the horizontal distance L1 between the left end of the photosensitive surface of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.2 to 1.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the photodetector 450 will block too much signal light emitted from the light outlet of the light emitting chip 430, resulting in a small received light power of the transmitting optical fiber, affecting the coupling efficiency.
  • the horizontal distance L2 between the center of the first lens 420 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the first lens 420 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic-metal substrate and the fourth metal-ceramic substrate, and are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 and the first lens 420 are in a straight line.
  • the embodiment disclosed herein provides a light emitting component, comprising: a third metal ceramic substrate 443 and a light emitting chip 430 disposed on the upper surface of the third metal ceramic substrate 443, and the first lens 420 is disposed on the light emitting path of the light emitting chip 430.
  • a fifth substrate is disposed above the first lens 420, and a photodetector 450 is disposed on the lower surface of the fifth substrate. The photodetector 450 receives part of the signal light emitted by the light emitting chip 430 and detects the part of the signal light.
  • the first lens 420 is a focusing lens, which converges the signal light emitted by the light emitting chip 430 into a light spot.
  • the optical fiber adapter is located on the light emitting side of the first lens 420, and the optical fiber adapter receives the signal light converged by the first lens 420.
  • the signal light emitted by the light emitting chip 430 is a divergent light, part of the signal light is received by the photosensitive surface of the photodetector 450, and the other signal light is converged to the optical fiber adapter through the first lens 420 and transmitted through the optical fiber adapter.
  • the first lens 420 can also be arranged to separate the second lens 421 and the third lens 422, wherein the second lens 421 is a collimating lens, the third lens 422 is a converging lens, and the photodetector 450 is arranged between the first lens 420 and the light emitting chip 430.
  • a fifth substrate is disposed on the surface, one end of the fifth substrate protrudes downward to form a bearing portion, and the photodetector 450 is disposed on the bearing portion.
  • the vertical distance H between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 100 to 150 ⁇ m
  • the horizontal distance L1 between the left end of the photosensitive surface of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.2 to 1.5 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the photodetector 450 will block too much signal light emitted from the light outlet of the light emitting chip 430, resulting in a small received light power of the transmitting optical fiber, affecting the coupling efficiency.
  • the horizontal distance L2 between the center of the first lens 420 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the first lens 420 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • FIG33 is a schematic diagram thirteen of a partial cross-sectional structure of a light emitting component provided according to some embodiments of the present disclosure.
  • FIG34 is a schematic diagram thirteen of a partial optical path of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component provided by the present disclosure includes: a third metal ceramic substrate 443 and a light emitting chip 430 arranged on the upper surface of the third metal ceramic substrate 443, and a second lens 421 is arranged on the light emitting optical path of the light emitting chip 430 to convert the signal light emitted by the light emitting chip 430 into parallel light.
  • the third lens 422 is arranged on the light emitting side of the second lens 421 to converge the signal light to the optical fiber adapter 500.
  • a photodetector 450 is arranged between the second lens 421 and the light emitting chip 430 to convert the intensity of the signal light into an electrical signal, and send the electrical signal to the MCU.
  • the MCU calculates the current optical power according to the electrical signal, compares the current optical power with a preset optical power threshold, and adjusts the supply voltage of the optical transmitting chip 430 to adjust the output optical power.
  • the photodetector 450 is disposed between the second lens 421 and the light emitting chip 430.
  • a fifth substrate is disposed on the upper surface of the second lens 421, one end of the fifth substrate protrudes downward to form a bearing portion, and the photodetector 450 is disposed on the bearing portion.
  • the photosensitive surface of the photodetector 450 faces the light outlet direction of the light emitting chip 430 , and is configured to receive part of the signal light emitted by the light emitting chip 430 and detect the part of the signal light.
  • the second lens 421 is a collimating lens, which converts the signal light into collimated signal light after receiving the signal light emitted by the optical transmitting chip 430.
  • the third lens 422 is disposed between the second lens 421 and the optical fiber adapter 500, and converts the collimated signal light into convergent signal light.
  • the optical fiber adapter 500 is located on the light-emitting side of the third lens 422, and is configured to receive the signal light converged by the third lens 422.
  • the signal light emitted by the optical emission chip 430 is divergent light, part of which is received by the photosensitive surface of the photodetector 450, and the rest of the signal light is collimated by the second lens 421, and then converged to the optical fiber adapter 500 through the third lens 422, and transmitted through the emission optical fiber of the optical fiber adapter 500.
  • a fourth metal-ceramic substrate 444 is disposed between the third metal-ceramic substrate 443 and the light-emitting chip 430 to adjust the height difference between the light-emitting chip 430 and the photodetector 450 .
  • the vertical distance H between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430 is 100 to 150 ⁇ m
  • the horizontal distance L1 between the right end of the photodetector 450 and the light outlet of the light emitting chip 430 is 0.2 to 1.2 mm.
  • the photodetector 450 will receive less light, affecting the detection accuracy of the photodetector 450.
  • the photodetector 450 will block too much signal light emitted from the light outlet of the light emitting chip 430, resulting in a small received light power of the transmitting optical fiber, affecting the coupling efficiency.
  • the horizontal distance L2 between the center of the second lens 421 and the light outlet of the light emitting chip 430 is 2.5-5.5 mm. If the horizontal distance between the center of the second lens 421 and the light outlet of the light emitting chip 430 is too large or too small, the coupling efficiency of the signal light will be affected.
  • the circuits of the light emitting chip 430 and the photodetector 450 are disposed on the surfaces of the third ceramic metal substrate and the fourth metal ceramic substrate, and are connected to the circuit board by wire bonding.
  • the central axes of the optical fiber adapter, the light emitting chip 430 , the second lens 421 , and the third lens 422 are on a straight line.
  • the projections of the light emitting chip 430, the lens, and the photodetector on the lower housing may be arranged on the same straight line.
  • the projection of the photodetector on the lower housing may also be located on one side of the line connecting the projections of the light emitting chip 430 and the lens on the lower housing, and the distance between the projection of the photodetector on the lower housing and the first lower side plate may be greater than the distance between the light emitting chip 430 and the first lower side plate, or the distance between the projection of the photodetector on the lower housing and the first lower side plate may be greater than the distance between the light emitting chip 430 and the first lower side plate, and the specific distance between the photodetector and the first lower side plate is determined by the reflection direction of the reflective film on the lens.
  • the photodetector 450 in order to monitor the optical power accurately, can receive 5% to 8% of the optical power of the light emitted from the light emitting chip 430, and the vertical distance between the photosensitive surface of the photodetector 450 and the optical axis of the light emitting chip 430, the horizontal distance between the right end of the photodetector 450 and the light outlet of the light emitting chip 430, and the horizontal distance between the center of the lens and the light outlet of the light emitting chip 430 can be set according to the light emission parameters of the light emitting chip 430.
  • the light emission parameters include light intensity, focal length, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本公开提供了一种光模块,包括:电路板和光发射部件。其中,光发射部件包括:第三基板、光发射芯片和第一透镜。第三基板的一端与电路板电连接。光发射芯片设置于第三基板上方,第一透镜位于光发射芯片的出光光路上。第一透镜朝向光发射芯片的一侧为一凸面;反射膜设置于第一透镜的凸面上,反射膜对部分信号光进行反射。光电探测器设置于第一透镜与光发射芯片之间,光电探测器被配置为接收反射后的信号光。反射膜的下表面高于第一透镜的中心轴;或反射膜的上表面低于第一透镜的中心轴。

Description

光模块
本申请要求在2022年09月27日提交中国专利局、申请号202211186007.8的优先权;在2022年09月27日提交中国专利局、申请号202222570121.2的优先权;在2022年09月27日提交中国专利局、申请号202222568024.X的优先权;在2022年09月27日提交中国专利局、申请号202222568035.8的优先权;在2022年09月27日提交中国专利局、申请号202222570116.1的优先权;在其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式的发展,光通信技术的进步变的愈加重要。在光通信技术中,光模块是光通信设备中的关键器件之一,并且随着光通信技术发展的需求,光模块的传输速率不断提高。
光模块包括发射端和接收端,其中发射端将电信号转换为光信号,并通过光纤将光信号传输出去。该光信号的光功率影响光通信的稳定性,如果光功率过低或过高将导致光通信的信号异常。为了避免光功率对信号产生影响,光模块需要对发射端的光功率进行监测,并及时调整光功率。
发明内容
一方面,本公开提供了一种光模块,包括:电路板和光发射部件。其中,光发射部件包括:第三基板、光发射芯片和透镜。第三基板的一端与电路板电连接。光发射芯片设置于第三基板上方,透镜位于光发射芯片的出光光路上。透镜朝向光发射芯片的一侧为一凸面;反射膜设置于第一透镜的凸面上,反射膜对部分信号光进行反射。光电探测器设置于透镜与光发射芯片之间,光电探测器被配置为接收反射后的信号光。反射膜的下表面高于透镜的中心轴;或反射膜的上表面低于透镜的中心轴。
另一方面,本公开提供了另一种光模块,包括:电路板和光发射部件。其中,光发射部件包括:第三基板、光发射芯片和透镜。第三基板的一端与电路板电连接。光发射芯片设置于第三基板上方,透镜位于光发射芯片的出光光路上。透镜朝向光发射芯片的一侧为一凸面。光电探测器设置于透镜与光发射芯片之间,光电探测器被配置为接收部分信号光。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并不对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例提供的一种光通信系统局部架构图;
图2为根据本公开一些实施例提供的一种上位机的局部结构图;
图3为根据本公开一些实施例提供的一种光模块的结构图;
图4为根据本公开一些实施例提供的一种光模块的分解图;
图5为根据本公开一些实施例提供的一种光发射部件与电路板连接结构示意图;
图6为根据本公开一些实施例提供的一种光发射部件与电路板拆分的结构示意图;
图7为根据本公开一些实施例提供的一种光发射部件的剖面结构示意图;
图8为根据本公开一些实施例提供的一种光发射部件的拆分局部结构示意图;
图9为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图一;
图10为根据本公开一些实施例提供的一种光发射部件局部光路示意图一;
图11为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图二;
图12为根据本公开一些实施例提供的一种光发射部件局部光路示意图二;
图13为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图三;
图14为根据本公开一些实施例提供的一种光发射部件局部光路示意图三;
图15为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图四;
图16为根据本公开一些实施例提供的一种光发射部件局部光路示意图四;
图17为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图五;
图18为根据本公开一些实施例提供的一种光发射部件局部光路示意图五;
图19为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图六;
图20为根据本公开一些实施例提供的一种光发射部件局部光路示意图六;
图21为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图七;
图22为根据本公开一些实施例提供的一种光发射部件局部光路示意图七;
图23为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图八;
图24为根据本公开一些实施例提供的一种光发射部件局部光路示意图八;
图25为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图九;
图26为根据本公开一些实施例提供的一种光发射部件局部光路示意图九;
图27为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图十;
图28为根据本公开一些实施例提供的一种光发射部件局部光路示意图十;
图29为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图十一;
图30为根据本公开一些实施例提供的一种光发射部件局部光路示意图十一;
图31为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图十二;
图32为根据本公开一些实施例提供的一种光发射部件局部光路示意图十二;
图33为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图十三;
图34为根据本公开一些实施例提供的一种光发射部件局部光路示意图十三。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况、以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信技术在信息处理设备之间建立信息传递,光通信技术将信息加载到光上,利用光的传播实现信息的传递,加载有信息的光就是光信号。光信号在信息传输设备中传播,可以减少光功率的损耗,实现高速度、远距离、低成本的信息传递。信息处理设备能够处理的信息以电信号的形态存在,光网络终端/网关、路由器、交换机、手机、计算机、服务器、平板电脑、电视机是常见的信息处理设备,光纤及光波导是常见的信息传输设备。
信息处理设备与信息传输设备之间的光信号、电信号相互转换,是通过光模块实现的。例如,在光模块的光信号输入端和/或光信号输出端连接有光纤,在光模块的电信号输入端和/或电信号输出端连接有光网络终端;来自光纤的第一光信号传输进光模块,光模块将第一光信号转换为第一电信号,光模块将第一电信号传输进光网络终端;来自光网络终端的第二电信号传输进光模块,光模块将第二电信号转换为第二光信号,光模块将第二光信号传输进光纤。由于信息处理设备之间可以通过电信号网络相互连接,所以至少需要一类信息处理设备直接与光模块连接,并不需要所有类型的信息处理设备均直接与光模块连接,直接连接光模块的信息处理设备被称为光模块的上位机。
图1为根据本公开一些实施例提供的一种光通信系统局部架构图。如图1所示,光通信系统的局部呈现为远端信息处理设备1000、本地信息处理设备2000、上位机100、光模块200、光纤101以及网线103。
光纤101的一端向远端信息处理设备1000方向延伸,另一端接入光模块200的光接口。光信号可以在光纤101中发生全反射,光信号在全反射方向上的传播几乎可以维持原有光功率。光信号在光纤101中发生多次的全反射,将来自远端信息处理设备1000方向的光信号传输进光模块200中,或将来自光模块200的光向远端信息 处理设备1000方向传播,实现远距离、功率损耗低的信息传递。
光纤101的数量可以是一根,也可以是多根(两根及以上);光纤101与光模块200采用可插拔式的活动连接,也可采用固定连接。
上位机100具有光模块接口102,光模块接口102被配置为接入光模块200,从而使得上位机100与光模块200建立单向/双向的电信号连接;上位机100被配置为向光模块200提供数据信号,或从光模块200接收数据信号,或对光模块200的工作状态进行监测、控制。
上位机100具有对外电接口,如通用串行总线接口(Universal Serial Bus,USB)、网线接口104,对外电接口可以接入电信号网络。示例地,网线接口104被配置为接入网线103,从而使得上位机100与网线103建立单向/双向的电信号连接。
光网络终端(Optical Network Unit,ONU)、光线路终端(Optical Line Terminal,OLT)、光网络设备(Optical Network Terminal,ONT)及数据中心服务器为常见的上位机。
网线103的一端连接本地信息处理设备2000,另一端连接上位机100,网线103在本地信息处理设备2000与上位机100之间建立电信号连接。
示例地,本地信息处理设备2000发出的第三电信号通过网线103传入上位机100,上位机100基于第三电信号生成第二电信号,来自上位机100的第二电信号传输进光模块200,光模块200将第二电信号转换为第二光信号,光模块200将第二光信号传输进光纤101,第二光信号在光纤101中传向远端信息处理设备1000。
示例地,来自远端信息处理设备1000方向的第一光信号通过光纤101传播,来自光纤101的第一光信号传输进光模块200,光模块200将第一光信号转换为第一电信号,光模块200将第一电信号传输进上位机100,上位机100基于第一电信号生成第四电信号,上位机100将第四电信号传入本地信息处理设备2000。
光模块是实现光信号与电信号相互转换的工具,在上述光信号与电信号的转换过程中,信息并未发生变化,信息的编解码方式可以发生变化。
图2为根据本公开一些实施例提供的的一种上位机的局部结构图。为了清楚地显示光模块200与上位机100的连接关系,图2仅示出了上位机100与光模块200相关的结构。如图2所示,上位机100还包括设置于壳体内的PCB电路板105、设置在PCB电路板105的表面的笼子106、设置于笼子106上的散热器107、以及设置于笼子106内部的电连接器(图中未示出),散热器107具有增大散热面积的凸起结构,翅片状结构是常见的凸起结构。
光模块200插入上位机100的笼子106中,由笼子106固定光模块200。光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电接口与笼子106内部的电连接器连接。
图3为根据本公开一些实施例提供的一种光模块的结构图,图4为根据本公开一些实施例提供的一种光模块的分解图。如图3和图4所示,光模块200包括壳体(shell)、设置于壳体内的电路板300、光发射部件400和光接收部件。但本公开并不局限于此,在一些实施例中,光模块200包括光发射部件400和光接收部件之一。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
如第一开口204和第二开口205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,第一开口204位于光模块200的端部(图3的右端),第二开口205也位于光模块200的端部(图3的左端)。或者,第一开口204位于光模块200的端部,而第二开口205则位于光模块200的侧部。第一开口204为电接口,电路板300的金手指从电接口伸出,插入上位机的电连接器中;第二开口205为光口,被配置为接入光纤101,以使光纤101连接光模块200中的光发射部件400和/或光接收部件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射部件400、光接收部件等组件安装到上述壳体中,由上壳体201、下壳体202可以对这些组件形状封装保护。此外,在装配电路板300、光发射部件400与光接收部件等组件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203。解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
例如,解锁部件203位于下壳体202的两个下侧板2022的外侧,解锁部件203包括与上位机的笼子106匹配的卡合部件。当光模块200插入笼子106里时,由解锁部件203的卡合部件将光模块200固定在笼子106里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合固定连接,从而可以将光模块200从笼子106里抽出。
电路板300包括电路走线、电子元件及芯片等,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、跨阻放大器(Transimpedance Amplifier,TIA)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载上述电子元件和芯片;硬性电路板还便于插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以提供更多的引脚。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板,柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
光发射部件400和/或光接收部件位于电路板300的远离金手指的一侧;在一些实施例中,光发射部件400及光接收部件分别与电路板300物理分离,然后分别通过相应的柔性电路板或电连接件与电路板300电连接;在一些实施例中,光发射部件和/或光接收部件可以直接设置在电路板300上,可以设置在电路板的表面,也可以设置在电路板的侧边。
为了实现光发射部件与外部光纤之间的连接,在光发射部件的一端设有光纤适配器500,被配置为连接光发射部件和外部光纤。
图5为根据本公开一些实施例提供的一种光发射部件与电路板连接结构示意图,图6为根据本公开一些实施例提供的一种光发射部件与电路板拆分的结构示意图。如图5和图6所示,在本公开的一些实施例中,电路板300设有发射通孔310,发射壳体410嵌入发射通孔310的内部,且电路板邻近发射通孔的一侧设有驱动引脚,电路板通过打线与光发射芯片430、半导体制冷器连接。发射壳体410的一端设置光纤适配器500,光发射芯片430发出的信号光经第一透镜420后耦合至光纤适配器500内,经光纤适配器500传递至外部。
图7为根据本公开一些实施例提供的一种光发射部件的剖面结构示意图,图8为根据本公开一些实施例提供的一种光发射部件的拆分局部结构示意图。参照图7和图8所示,发射底座413的上方设有第一金属陶瓷基板441,第一金属陶瓷基板441的上方设有半导体制冷器440。第一金属陶瓷基板441设有制冷驱动电路,制冷驱动电路与电路板打线连接,制冷驱动电路驱动半导体制冷器440,对光发射部件进行温度调节。
半导体制冷器440的上方设有第二陶瓷基板442,第二陶瓷基板442的上方设有第一透镜420、第三金属陶瓷基板443,第一透镜420设置于第三金属陶瓷基板443与光纤插芯510之间,第三金属陶瓷基板443的上方设有光发射芯片430。光发射芯片430朝向光纤适配器500向出射信号光,此时的信号光为发散光.该信号光经第一透镜420后形成会聚光,会聚光的光斑位于光纤插芯510的端面处,经过光纤适配器传递至外部光纤。
在光模块中,光电探测器450被配置为探测光发射芯片430发出的信号光的强度。光电探测器450与MCU电连接,MCU通过接收信号光的强度,调节对光发射芯片430的供电大小,以保证信号传输效率。
图9为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图一。图10为根据本公开一些实施例提供的一种光发射部件局部光路示意图一。如图9和图10所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三基板(例如第三陶瓷基板),其中第三陶瓷基板可以是第三金属陶瓷基板443;和位于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。在第一透镜420朝向光发射芯片430的第一凸面的下表面局部设置反射膜4201,反射膜4201对部分信号光进行反射。
为了对光发射芯片430发出的信号光的光功率进行监测,在第一透镜420与光发射芯片430之间设置光电探测器450,将信号光的强度转换为电信号,并将电信号发送至MCU。MCU接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第一透镜420与光发射芯片430之间,位于第三金属陶瓷基板443的侧壁。光电探测器450的光敏面朝向第一透镜420设置,光电探测器450接收经反射膜4201反射的信号光,并对该信号光进行探测。
反射膜4201位于第一透镜420中心的下方,即反射膜4201的上边缘低于第一透镜420的中心,反射后的信号光朝向光模块的下方。
在本公开的一些实施例中,第三基板可以是第三陶瓷基板,也是第三金属陶瓷基板。第五基板可以是第五陶瓷基板,也是第五金属陶瓷基板。
第一透镜420为聚焦透镜,将光发射芯片430发出的信号光会聚成一个光斑,光纤适配器500位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被反射膜4201反射后由光电探测器450的光敏面接收,另一部分信号光经第一透镜420会聚至发射光纤,经发射光纤传递出去。
在本公开的一些示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的上表面与光发射芯片430的光轴的垂直距离H为200~450μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.5~1.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,都将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,影响光电探测器450接收到的光的大小,影响光效率监测效果。
光电探测器450的上表面低于光发射芯片430的光轴位置,光电探测器450接收由第一透镜420的反射膜4201反射回的部分信号光,并将该信号光的强度转换为电信号。
在本实施例中,为了第一透镜420对信号光的会聚作用,第一透镜420的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第一透镜420的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信 号光的耦合效率。
在本公开实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,该电路与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开示例中,光纤适配器、光发射芯片430和第一透镜420的中心轴在一条直线上。本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上,其朝向光发射芯片430的凸镜的下表面设置反射膜4201,将部分信号光反射至光电探测器450。光电探测器450设置于第三金属陶瓷基板443的侧壁,其光敏面朝向第一透镜420,被配置为反射膜4201反射的信号光,对该信号光进行探测。第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑。光纤适配器500位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,另一部分信号光经第一透镜420会聚至光纤适配器500,经光纤适配器500传递出去。
图11为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图二。图12为根据本公开一些实施例提供的一种光发射部件局部光路示意图二。如图11和图12中所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第二透镜421设置于光发射芯片430的出光光路上。第三透镜422设置于第二透镜421与光纤适配器500之间。
为了对光发射芯片430发出的信号光的光功率进行监测,在第二透镜421与光发射芯片430之间设置光电探测器450。光电探测器450将信号光的强度转换为电信号,并将该电信号发送至MCU。MCU接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
第二透镜421朝向光发射芯片430的凸镜的下表面设有反射膜4201,被配置为将部分信号光反射至光电探测器450。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第二透镜421与光发射芯片430之间,位于第三金属陶瓷基板443的侧壁。光电探测器450的光敏面朝向第二透镜421,被配置为接收经第二透镜421反射的信号光,对该信号光进行探测。
反射膜4201位于第二透镜421中心的下方,即反射膜4201的上边缘低于第二透镜421的中心,反射后的信号光朝向光模块的下方,由光电探测器450接收。
第二透镜421为准直透镜,接收光发射芯片430发出的信号光后,将信号光转换为准直信号光。第三透镜422设置于第二透镜421与光纤适配器500之间,第三透镜422为将准直信号光转换为会聚信号光。
光纤适配器500位于第三透镜422的出光一侧,接收第三透镜422会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,另一部分信号光经第二透镜421准之后,再经过第三透镜422会聚至光纤适配器500,经光纤适配器500的发射光纤传递出去。
在本公开示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面与光发射芯片430的光轴的垂直距离H为200~450μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.5~1.5mm。
光电探测器450的光敏面与光发射芯片430的光轴的垂直距离为200~450μm,如果光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,也将使得光电探测器450接收到的光较少,影响光电探测器450的探测准确率。
光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.5~1.5mm,光电探测器450的右端与光发射芯片430的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的右端与光发射芯片430的出光口的水平距离过小,影响光电探测器450接收到的光的大小,影响光效率监测效果。
第二透镜421的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第二透镜421的中心与光发射芯片430的出光口的水平距离过大或过小,都将影响信号光的耦合效率。第二透镜421的中心与光发射芯片430的出光口的水平距离为第二透镜421的焦距。
在本公开实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,该电路与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开示例中,光纤适配器、光发射芯片430、第二透镜421和第三透镜422的中心轴在一条直线上。
本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第二透镜421设置于光发射芯片430的出光光路上,第二透镜421朝向光发射芯片430的一侧的下侧方设置反射膜4201。光电探测器450设置于第三金属陶瓷基板443的侧壁。光电探测器450的光敏面朝向第二透镜421,光电探测器450接收由反射膜4201反射的信号光,并对该部分信号光进行探测。第二透镜421为准直透镜,接收光发射芯片430发出的信号光后,将信号光转换为平行信号光。该平行信号光经过第三透镜422后形成会聚信号光,光纤适配器500位于第三透镜422的出光一侧,被配置为接收第三透镜422会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被第二透镜421的反射膜4201反射后,由光电探测器450的光敏面接收,另一部分信号光经第二透镜421、第三透镜422后光纤适配器500,经光纤适配器500传递出去。
图13为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图三。图14为根据本公开一些实施 例提供的一种光发射部件局部光路示意图四。如图13和图14中所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。在第一透镜420朝向光发射芯片430的第一凸面的下表面,设置反射膜4201,反射膜4201对照射于反射膜上的信号光进行反射。
为了对光发射芯片430发出的信号光的光功率进行监测,在第一透镜420与光发射芯片430之间设置光电探测器450。光电探测器450将信号光的强度转换为电信号,并将电信号发送至MCU。MCU接收电信号后,根据该电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压,以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第一透镜420与光发射芯片430之间,光电探测器450的光敏面朝向上方。光电探测器450接收经第一透镜420反射的信号光,并对该信号光进行探测,将信号光的强度转换为电信号。在本示例中,光电探测器450的上表面低于光发射芯片430的中心轴。
光电探测器450设置于承载基板的上表面,承载基板的上表面高度低于第三金属陶瓷基板443的上表面,便于光电探测器450的安装调试。承载基板446可以与第三金属陶瓷基板443是一体式结构,也可以是分体式结构。
反射膜4201位于第一透镜420中心的下方,即反射膜4201的上边缘低于第一透镜420的中心,反射后的信号光朝向光模块的下方。
第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑。光纤适配器位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被反射膜4201反射后由光电探测器450的光敏面接收,另一部分信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
在本公开示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的上表面与光发射芯片430的光轴的垂直距离H为300~650μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.7~2.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,都将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,影响光电探测器450接收到的光的大小,影响光效率监测效果。
光电探测器450的上表面低于光发射芯片430的光轴位置,被配置为接收第一透镜420的反射膜4201反射回的部分信号光,进行光电转换。
在本实施例中,为实现第一透镜420对信号光的会聚作用,第一透镜420的中心与光发射芯片430的出光口的水平距离L2为2.5~6.5mm。第一透镜420的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,与电路板通过打线进行连接。
在本公开的一些示例中,光纤适配器、光发射芯片430和第一透镜420的中心轴在一条直线上。本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上,其朝向光发射芯片430的凸镜的下表面设置反射膜4201,将部分信号光反射至光电探测器450。光电探测器450设置于第三金属陶瓷基板443的侧壁,其光敏面朝向上方设置,被配置为反射膜4201反射的信号光,对该信号光进行探测。第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑,光纤适配器位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,另一部分信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
图15为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图四。图16为根据本公开一些实施例提供的一种光发射部件局部光路示意图四。如图15和图16中所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第二透镜421设置于光发射芯片430的出光光路上。在第二透镜421朝向光发射芯片430的凸面的下表面,设有反射膜4201,对部分信号光进行反射。另一部分信号光经第二透镜421转换为平行光后,经第三透镜422会聚至光纤适配器500。
为了对光发射芯片430发出的信号光的光功率进行监测,在第二透镜421与光发射芯片430之间设置光电探测器450,将信号光的强度转换为电信号,并将电信号发送至MCU。MCU接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第二透镜421与光发射芯片430之间,光电探测器450的光敏面朝向上方,被配置为接收经第二透镜421反射的信号光,对该信号光进行探测。在本示例中,光电探测器450的上表面低于光发射芯片430的中心轴。
光电探测器450设置于承载基板的上表面,承载基板的上表面低于第三金属陶瓷基板443的上表面,便于光电探测器450的安装调试。承载基板446可以与第三金属陶瓷基板443是一体式结构,也可以是分体式结构。
反射膜4201位于第二透镜421中心的下方,即反射膜4201的上边缘低于第二透镜421的中心,反射后的信号光朝向光模块的下方。
第二透镜421为准直透镜,第二透镜421将光发射芯片430发出的信号光转换为平行光束,再经第三透镜422的会聚作用汇聚为一个光斑。光纤适配器500位于第三透镜422的出光一侧,被配置为接收第三透镜422会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被反射膜4201反射后由光电探测器450的光敏面 接收,另一部分信号光经第二透镜421、第三透镜422会聚至光纤适配器,经光纤适配器500传递出去。
在本公开示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的上表面与光发射芯片430的光轴的垂直距离H为300~650μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.7~2.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或450的右端与光发射芯片430的出光口的水平距离过小,影响光电探测器450的探测准确率。
光电探测器450的上表面低于光发射芯片430的中心光轴位置,光电探测器450接收第二透镜421的反射膜4201反射回的信号光,并将该信号光的强度转换为电信号。
在本实施例中,为实现第二透镜421对信号光的会聚作用,第二透镜421的中心与光发射芯片430的出光口的水平距离L2为2.5~6.5mm。第二透镜421的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开示例中,光纤适配器、光发射芯片430和第二透镜421的中心轴在一条直线上。本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上,其朝向光发射芯片430的凸镜的下表面设置反射膜4201,将部分信号光反射至光电探测器450。光电探测器450设置于第三金属陶瓷基板443的侧壁,其光敏面朝向第二透镜421。光电探测器450接收反射膜4201反射的信号光,对该信号光的强度进行探测。第二透镜421为准直透镜,接收光发射芯片430发出的信号光后,将信号光转换为平行光束。第三透镜422位于第二透镜421与光纤适配器之间,第三透镜422将平行光束转换为会聚光束。光纤适配器位于第三透镜422的出光一侧,被配置为接收第三透镜422会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,另一部分信号光经第二透镜421、第三透镜422至光纤适配器,经光纤适配器传递出去。
图17为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图五。图18为根据本公开一些实施例提供的一种光发射部件局部光路示意图五。如图17和图18中所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。在第一透镜420朝向光发射芯片430的第一凸面的上表面,设置反射膜4201,对部分信号光进行反射。
为了对光发射芯片430发出的信号光的光功率进行监测,在第一透镜420与光发射芯片430之间设置光电探测器450,将信号光的强度转换为电信号,并将电信号发送至MCU。MCU接收到电信号后,根据该电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第一透镜420与光发射芯片430之间。第一透镜420的上方设置第五金属陶瓷基板445,被配置为承载光电探测器450。光电探测器450设置于第五金属陶瓷基板445的侧壁,光电探测器450的光敏面朝向第一透镜420,接收经第一透镜420反射的信号光,并对该信号光进行探测。
第五金属陶瓷基板445设有承载部4451,承载部4451凸出于第五金属陶瓷基板445的下表面。光电探测器450位于承载部的一侧,光电探测器450的光敏面朝向第一透镜420。光电探测器450被配置为接收经第一透镜420反射的信号光,并对该信号光进行探测。
反射膜4201位于第一透镜420中心的上方,即反射膜4201的下边缘高于第一透镜420的中心,经反射膜4201反射后的信号光朝向光模块的右斜上方。
第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑,光纤适配器500位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被反射膜4201反射后由光电探测器450的光敏面接收,另一部分信号光经第一透镜420会聚至光纤适配器,经光纤适配器500传递出去。
在本公开示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的上表面与光发射芯片430的光轴的垂直距离H为150~450μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.2~1.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,影响光电探测器450接收到的光的大小,影响光效率监测效果。
光电探测器450的上表面低于光发射芯片430的光轴位置,被配置为接收第一透镜420的反射膜4201反射回的部分信号光,进行光电转换。
在本实施例中,为实现第一透镜420对信号光的会聚作用,第一透镜420的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第一透镜420的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开的一些实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶 瓷基板的表面,与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开的一些示例中,光纤适配器500、光发射芯片430和第一透镜420的中心轴在一条直线上。本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上,其朝向光发射芯片430的凸镜的上表面设置反射膜4201,将部分信号光反射至光电探测器450。光电探测器450设置于第一透镜420上方的第五基板(例如第五金属陶瓷基板445)的侧壁,其光敏面朝向第一透镜420,被配置为反射膜4201反射的信号光,对该信号光进行探测。第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑,光纤适配器位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,另一部分信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
在本公开实施例的基础上,还可以利用第二透镜421与第三透镜422的组合对第一透镜420进行替代,其中,第二透镜421为准直透镜,第三透镜422为会聚透镜。反射膜4201设置于第二透镜421朝向光电探测器450的一侧,且位于光轴的上方。信号光经反射膜4201反射后向光模块的斜上方传递,投射至光电探测器450的光敏面。如图19和图20所示。图19为本公开示例的一种光发射部件局部剖面结构示意图六。图20为本公开实施例提供的一种光发射部件局部光路示意图六。其中:为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的上表面与光发射芯片430的光轴的垂直距离H为150~450μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.2~1.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,影响光电探测器450接收到的光的大小,影响光效率监测效果。
光电探测器450的上表面低于光发射芯片430的光轴位置,光电探测器450接收第一透镜420的反射膜4201反射回的部分信号光,进行光电转换。
在本实施例中,第二透镜421的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第二透镜421的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
图21为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图七。图22为根据本公开一些实施例提供的一种光发射部件局部光路示意图七。如图21和图22中所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。在第一透镜420朝向光发射芯片430的第一凸面的上表面,设置反射膜4201,对部分信号光进行反射。
为了对光发射芯片430发出的信号光的光功率进行监测,在第一透镜420与光发射芯片430之间设置光电探测器450,将信号光的强度转换为电信号,并将电信号发送至MCU。MCU接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第一透镜420与光发射芯片430之间。第一透镜420的上方设置第五金属陶瓷基板445,被配置为承载光电探测器450。光电探测器450设置于第五金属陶瓷基板445的下表面,光电探测器450的光敏面朝向下方,被配置为接收经第一透镜420的反射膜4201反射的信号光,对该信号光进行探测。
第五金属陶瓷基板445设有承载部4451,承载部4451凸出于第五金属陶瓷基板445的下表面,光电探测器450的光敏面朝向下壳体方向。光电探测器450被配置为接收经第一透镜420反射的信号光,并对该信号光进行探测。
反射膜4201位于第一透镜420中心的上方,即反射膜4201的下边缘高于第一透镜420的中心,反射后的信号光朝向光模块的斜上方。
第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑,光纤适配器500位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被反射膜4201反射后由光电探测器450的光敏面接收,另一部分信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
在本公开示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的上表面与光发射芯片430的光轴的垂直距离H为300~650μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.7~2.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,影响光电探测器450接收到的光的大小,影响光效率监测效果。
光电探测器450的上表面低于光发射芯片430的光轴位置设置,被配置为接收第一透镜420的反射膜4201反射回的部分信号光,进行光电转换。
为实现第一透镜420对信号光的会聚作用,第一透镜420的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第一透镜420的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开的一些示例中,光纤适配器500、光发射芯片430和第一透镜420的中心轴在一条直线上。本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430。第一透镜420设置于光发射芯片430的出光光路上,第一透镜420朝向光发射芯片430的凸镜的上表面设置反射膜4201,反射膜4201将部分信号光反射至光电探测器450。
光电探测器450设置于第一透镜420上方的第五金属陶瓷基板445的下表面,其光敏面朝向光模块的下方,被配置为反射膜4201反射的信号光,对该信号光进行探测。第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑,光纤适配器位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,另一部分信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
在本实施例的基础上,还可以利用第二透镜421与第三透镜422对第一透镜420进行替代,其中,第二透镜421为准直透镜,第三透镜422为会聚透镜。反射膜4201设置于第二透镜421朝向光电探测器450的一侧,且位于光轴的上方。信号光经反射膜4201反射后向光模块的斜上方传递,投射至光电探测器450的光敏面。如图23和图24所示。图23为本公开示例的一种光发射部件局部剖面结构示意图八。图24为本公开实施例提供的一种光发射部件局部光路示意图八。其中:为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的上表面与光发射芯片430的光轴的垂直距离H为300~650μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.7~2.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,影响光电探测器450接收到的光的大小,影响光效率监测效果。
光电探测器450的上表面低于光发射芯片430的光轴位置,被配置为接收第一透镜420的反射膜4201反射回的部分信号光,进行光电转换。
第二透镜421的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第二透镜421的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开的一些实施例中,光发射芯片430在下壳体的投影、透镜在下壳体的投影以及光电探测器450在下壳体的投影可设置于同一直线上。光电探测器450在下壳体的投影也可位于光发射芯片430、透镜在下壳体的投影的连线的一侧,光电探测器450在下壳体的投影与第一下侧板距离大于光发射芯片430与第一下侧板距离;也可光电探测器450在下壳体的投影与第一下侧板距离小于光发射芯片430与第一下侧板距离。光电探测器450与第一下侧板的具体的距离大小,由反射膜4201的反射方向确定。
在本公开的一些示例中,为了对光功率的监测的准确性,光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面与光发射芯片430的光轴的垂直距离、光电探测器450的右端与光发射芯片430的出光口的水平距离、透镜的中心与光发射芯片430的出光口的水平距离可根据光发射芯片430的出光参数进行设置。出光参数包括光强度、焦距等。
为了提高光的耦合效率,在本公开的示例中,光纤适配器500、光发射芯片430、第二透镜421和第三透镜422的中心轴在一条直线上。
图25为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图九。图26为根据本公开一些实施例提供的一种光发射部件局部光路示意图九。如图25和图26所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三基板(如,第三金属陶瓷基板443)和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。为了对光发射芯片430发出的信号光的光功率进行监测,在第一透镜420与光发射芯片430之间设置光电探测器450,光电探测器450将光信号转换为电信号,并将电信号发送至MCU。MCU芯片接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第一透镜420与光发射芯片430之间,位于第三金属陶瓷基板443的上表面。光电探测器450的光敏面朝向上方,光电探测器450接收光发射芯片430发出的部分信号光,并对该部分信号光进行探测。
第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑。发射光纤位于第一透镜420的出光一侧,接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,其他信号光经第一透镜420会聚至发射光纤,经发射光纤传递出去。
在本公开的一些示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四基板(如,第四金属陶瓷基板444),以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面与光发射芯片430的光轴的垂直距离H为100~150μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.2~1.2mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,将导致光电探测器450对光发射芯片430的出光口发射的信号光的遮挡过多,导致发射光纤的接收光功率较小,影响耦合效率。
光电探测器450的右端朝向光发射芯片430的出光口。
为实现第一透镜420对信号光的会聚作用,第一透镜420的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第一透镜420的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开的一些实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,光发射芯片430和光电探测器450的电路与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开示例中,光纤适配器、光发射芯片430和第一透镜420的中心轴在一条直线上。本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。光电探测器450设置于第三金属陶瓷基板443的上表面。光电探测器450的光敏面朝向上方,被配置为接收光发射芯片430发出的部分信号光,对该部分信号光进行探测。第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑,发射光纤位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分信号光被光电探测器450的光敏面接收,其他信号光经第一透镜420会聚至发射光纤,经发射光纤传递出去。
图27为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图十。图28为根据本公开一些实施例提供的一种光发射部件局部光路示意图十。如图27和图28所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第二透镜421设置于光发射芯片430的出光光路上。第三透镜422设置于第二透镜421与光纤适配器500之间。
为了对光发射芯片430发出的信号光的光功率进行监测,在第二透镜421与光发射芯片430之间设置光电探测器450,将信号光的强度转换为电信号,并将电信号发送至MCU。MCU芯片接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第二透镜421与光发射芯片430之间,光电探测器450位于第三金属陶瓷基板443的上表面。光电探测器450的光敏面朝向上方,接收光发射芯片430发出的部分信号光,并对该部分信号光进行探测。
第二透镜421为准直透镜,接收光发射芯片430发出的信号光后,将信号光转换为准直信号光。第三透镜422设置于第二透镜421与光纤适配器500之间,第三透镜422将准直信号光转换为会聚信号光。
光纤适配器500位于第三透镜422的出光一侧,接收第三透镜422会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,其他信号光经第二透镜421准直之后,再经过第三透镜422会聚至光纤适配器500,经光纤适配器500的发射光纤传递出去。
在本公开示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面与光发射芯片430的光轴的垂直距离H为100~150μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.2~1.2mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,将导致光电探测器450对光发射芯片430的出光口发射的信号光的遮挡过多,导致光纤适配器的接收光功率较小,影响耦合效率。
第二透镜421的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第二透镜421的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开的一些实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开示例中,光纤适配器、光发射芯片430、第二透镜421和第三透镜422的中心轴在一条直线上。
本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第二透镜421设置于光发射芯片430的出光光路上。光电探测器450设置于第三金属陶瓷基板443的上表面。光电探测器450的光敏面朝向上方,被配置为接收光发射芯片430发出的部分信号光,并对该部分信号光进行探测。第二透镜421为准直透镜,接收光发射芯片430发出的信号光后,将信号光转换为平行信号光。该平行信号光经过第三透镜422后形成会聚信号光。光纤适配器位于第三透镜422的出光一侧,光纤适配器被配置为接收第三透镜422会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,其他信号光经第二透镜421、第三透镜422后发射光纤,经光纤适配器传递出去。
图29为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图十一。图30为根据本公开一些实施例提供的一种光发射部件局部光路示意图十一。如图29和图30所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。为了对光发射芯片430发出的信号光的光功率进行监测,在第一透镜420与光发射芯片430之间设置光电探测器450,将信号光的强度转换为电信号,并将电信号发送至MCU。MCU芯片接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第一透镜420与光发射芯片430之间。在第一透镜420的上表面设置第五基板,第五基板的一端向下方凸起形成承载部,光电探测器450设置于承载部。
如图30中所示,光电探测器450的光敏面朝向光发射芯片430的出光口方向。光电探测器450接收光发射芯片430发出的部分信号光,并对该部分信号光进行探测。
第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑,光纤适配器 500位于第一透镜420的出光一侧,第一透镜420会聚后的信号光经光纤适配器500传递出去。光发射芯片430发出的信号光为发散光,部分信号光被光电探测器450的光敏面接收,其他信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
在本公开的一些示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面下端与光发射芯片430的光轴的垂直距离H2为200~150μm,光电探测器450的光敏面与光发射芯片430的出光口的水平距离L1为0.2~1.2mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,都将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,都将导致光电探测器450对光发射芯片430的出光口发射的信号光的遮挡过多,导致发射光纤的接收光功率较小,影响耦合效率。
为了第一透镜420对信号光的会聚作用,第一透镜420的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第一透镜420的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开的一些实施例中,光发射芯片430的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,与电路板通过打线进行连接。和光电探测器450的电路设置于第五基板表面,与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开示例中,光纤适配器、光发射芯片430和第一透镜420的中心轴在一条直线上。本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。第一透镜420的上方设置第五基板,其侧壁设有光电探测器450,被配置为接收光发射芯片430发出的部分信号光,对该部分信号光进行探测。第一透镜420为聚焦透镜,接收光发射芯片430发出的信号光后,将信号光会聚成一个光斑,光纤适配器位于第一透镜420的出光一侧,光纤适配器接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,其他信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
图31为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图十二。图32为根据本公开一些实施例提供的一种光发射部件局部光路示意图十二。如图31和图32所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。为了对光发射芯片430发出的信号光的光功率进行监测,在第一透镜420与光发射芯片430之间设置光电探测器450,将信号光的强度转换为电信号,并将电信号发送至MCU。MCU芯片接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第一透镜420与光发射芯片430之间。在第一透镜420的上表面设置第五基板,第五基板的一端向下方凸起形成承载部,光电探测器450设置于承载部。
如图31中所示,光电探测器450的光敏面朝向下方,光电探测器450接收光发射芯片430发出的部分信号光,并对该部分信号光进行探测。
第一透镜420为聚焦透镜,将光发射芯片430发出的信号光会聚成一个光斑,光纤适配器位于第一透镜420的出光一侧,被配置为接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,其他信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
在本公开示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面与光发射芯片430的光轴的垂直距离H为100~150μm,光电探测器450的光敏面左端与光发射芯片430的出光口的水平距离L1为0.2~1.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,都将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,都将导致光电探测器450对光发射芯片430的出光口发射的信号光的遮挡过多,导致发射光纤的接收光功率较小,影响耦合效率。
为了第一透镜420对信号光的会聚作用,第一透镜420的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第一透镜420的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开的一些实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开示例中,光纤适配器、光发射芯片430和第一透镜420的中心轴在一条直线上。本公开实施例提供了一种光发射部件,包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第一透镜420设置于光发射芯片430的出光光路上。第一透镜420的上方设置第五基板,光电探测器450设置于第五基板的下表面。光电探测器450接收光发射芯片430发出的部分信号光,对该部分信号光进行探测。第一透镜420为聚焦透镜,将光发射芯片430发出的信号光会聚成一个光斑。光纤适配器位于第一透镜420的出光一侧,光纤适配器接收第一透镜420会聚后的信号光。光发射芯片430发出的信号光为发散光,部分信号光被光电探测器450的光敏面接收,其他信号光经第一透镜420会聚至光纤适配器,经光纤适配器传递出去。
在本实施例中,第一透镜420还可设置于分离第二透镜421和第三透镜422,其中第二透镜421为准直透镜,第三透镜422为会聚透镜,光电探测器450设置于第一透镜420与光发射芯片430之间。在第二透镜421的上表 面设置第五基板,第五基板的一端向下方凸起形成承载部,光电探测器450设置于承载部。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面与光发射芯片430的光轴的垂直距离H为100~150μm,光电探测器450的光敏面左端与光发射芯片430的出光口的水平距离L1为0.2~1.5mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,将导致光电探测器450对光发射芯片430的出光口发射的信号光的遮挡过多,导致发射光纤的接收光功率较小,影响耦合效率。
第一透镜420的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第一透镜420的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
图33为根据本公开一些实施例提供的一种光发射部件局部剖面结构示意图十三。图34为根据本公开一些实施例提供的一种光发射部件局部光路示意图十三。如图33和图34中所示,为了实现光电探测器450对光发射芯片430发出的信号光的强度的探测,本公开提供的光发射部件包括:第三金属陶瓷基板443和设置于第三金属陶瓷基板443上表面的光发射芯片430,第二透镜421设置于光发射芯片430的出光光路上,将光发射芯片430发出的信号光转换为平行光。第三透镜422设置于第二透镜421的出光一侧,将信号光会聚至光纤适配器500。为了对光发射芯片430发出的信号光的光功率进行监测,在第二透镜421与光发射芯片430之间设置光电探测器450,将信号光的强度转换为电信号,并将电信号发送至MCU。MCU接收电信号后根据电信号计算当前光功率,根据当前光功率与预设光功率阈值进行比对,调节光发射芯片430的供电电压以实现对出光功率的调节。
为了对光发射芯片430的出光光功率的准确监测,光电探测器450设置于第二透镜421与光发射芯片430之间。在第二透镜421的上表面设置第五基板,第五基板的一端向下方凸起形成承载部,光电探测器450设置于承载部。
如图33中所示,光电探测器450的光敏面朝向光发射芯片430的出光口方向,被配置为接收光发射芯片430发出的部分信号光,对该部分信号光进行探测。
第二透镜421为准直透镜,接收光发射芯片430发出的信号光后,将信号光转换为准直信号光。第三透镜422设置于第二透镜421与光纤适配器500之间,第三透镜422为将准直信号光转换为会聚信号光。
光纤适配器500位于第三透镜422的出光一侧,被配置为接收第三透镜422会聚后的信号光。光发射芯片430发出的信号光为发散光,部分被光电探测器450的光敏面接收,其他信号光经第二透镜421准之后,再经过第三透镜422会聚至光纤适配器500,经光纤适配器500的发射光纤传递出去。
在本公开示例中,第三金属陶瓷基板443和光发射芯片430之间设有第四金属陶瓷基板444,以调节光发射芯片430与光电探测器450之间的高度差。
为保证光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面与光发射芯片430的光轴的垂直距离H为100~150μm,光电探测器450的右端与光发射芯片430的出光口的水平距离L1为0.2~1.2mm。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过大,或光电探测器450的右端与光发射芯片430的出光口的水平距离过大,都将导致光电探测器450接收到的光较少,影响光电探测器450的探测准确率。光电探测器450的光敏面与光发射芯片430的光轴的垂直距离过小,或光电探测器450的右端与光发射芯片430的出光口的水平距离过小,都将导致光电探测器450对光发射芯片430的出光口发射的信号光的遮挡过多,导致发射光纤的接收光功率较小,影响耦合效率。
第二透镜421的中心与光发射芯片430的出光口的水平距离L2为2.5~5.5mm。第二透镜421的中心与光发射芯片430的出光口的水平距离过大或过小,将影响信号光的耦合效率。
在本公开实施例中,光发射芯片430和光电探测器450的电路设置于第三陶瓷金属基板与第四金属陶瓷基板的表面,与电路板通过打线进行连接。
为了提高光的耦合效率,在本公开示例中,光纤适配器、光发射芯片430、第二透镜421和第三透镜422的中心轴在一条直线上。
在本公开的一些实施例中,光发射芯片430、透镜以及光电探测器在下壳体的投影可设置于同一直线上。光电探测器在下壳体的投影也可位于光发射芯片430、透镜在下壳体的投影的连线的一侧,光电探测器在下壳体的投影与第一下侧板距离大于光发射芯片430与第一下侧板距离,也可光电探测器在下壳体的投影与第一下侧板距离大于光发射芯片430与第一下侧板距离,光电探测器与第一下侧板的具体的距离大小,由透镜上反射膜的反射方向确定。
在本公开中,为了对光功率的监测的准确性,光电探测器450能够接收光发射芯片430前出光光功率的5%~8%,光电探测器450的光敏面与光发射芯片430的光轴的垂直距离、光电探测器450的右端与光发射芯片430的出光口的水平距离、透镜的中心与光发射芯片430的出光口的水平距离可根据光发射芯片430的出光参数进行设置。出光参数包括光强度、焦距等。
由于以上实施方式均是在其他方式之上引用结合进行说明,不同实施例之间均具有相同的部分,本说明书中各个实施例之间相同、相似的部分互相参见即可。在此不再详细阐述。
需要说明的是,在本说明书中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或暗示这些实体或操作之间存在任何这种实际的关系或顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的电路结构、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种电路结构、物品或者设备所固有的要素。在没有更多限制的情况下,有语句“包括一个……”限定的要素,并不排除在包括所述要素的电路结构、物品或者设备中还存在另外的相同要素。

Claims (31)

  1. 一种光模块,包括:
    电路板;以及
    光发射部件,与所述电路板电连接,
    其中,所述光发射部件包括:
    第三基板,所述第三基板的一端与所述电路板电连接;
    光发射芯片,设置于所述第三基板上方,所述光发射芯片被配置为发射信号光;
    第一透镜,设置于所述光发射芯片的出光光路上,其中,所述第一透镜朝向所述光发射芯片的一侧为一凸面,所述凸面上设有反射膜,所述反射膜对部分所述信号光进行反射;
    第五基板,位于所述第一透镜的上方,其中,所述第五基板具有承载部,所述承载部凸出于所述第五基板的下表面;以及
    光电探测器,设置于所述承载部的侧壁,所述光电探测器的光敏面朝向所述第一透镜,所述光电探测器被配置为接收反射后的信号光,
    其中,所述反射膜的下表面高于所述透镜的中心轴。
  2. 根据权利要求1所述的光模块,其中,
    所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的距离大于或等于150μm,且所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的距离小于或等于450μm;
    所述光电探测器的光敏面与所述光发射芯片的出光口的水平距离为0.2mm~1.5mm;以及
    所述光电探测器的光敏面与所述第一透镜的中心的水平距离为2.5mm~5.5mm。
  3. 一种光模块,包括:
    电路板;以及
    光发射部件,与所述电路板电连接,
    其中,所述光发射部件包括:
    第三基板,所述第三基板的一端与所述电路板电连接;
    光发射芯片,设置于所述第三基板上方,所述光发射芯片被配置为发射信号光;
    第一透镜,设置于所述光发射芯片的出光光路上,其中,所述第一透镜朝向所述光发射芯片的一侧为一凸面,所述凸面上设有反射膜,所述反射膜对部分所述信号光进行反射;
    第五基板,位于所述第一透镜的上方,其中,所述第五基板具有承载部,所述承载部凸出于所述第五基板的下表面;以及
    光电探测器,设置于所述承载部的下表面,所述光电探测器的光敏面朝向所述光模块的下方,所述光电探测器被配置为接收反射后的信号光;
    其中,所述反射膜的下表面高于所述透镜的中心轴。
  4. 根据权利要求3所述的光模块,其中,所述光电探测器的下表面与所述光发射芯片的出光中心轴之间的垂直距离大于或等于300μm,且所述光电探测器的下表面与所述光发射芯片的出光中心轴之间的垂直距离小于或等于650μm。
  5. 根据权利要求4所述的光模块,其中,所述光电探测器邻近所述光发射芯片的一侧,与所述光发射芯片的出光口的水平距离为0.7mm~2.5mm;以及所述光发射芯片的出光口与所述第一透镜的中心的水平距离为2.5mm~5.5mm。
  6. 一种光模块,包括:
    电路板;以及
    光发射部件,与所述电路板电连接,
    其中,所述光发射部件包括:
    第三基板,所述第三基板的一端与所述电路板电连接;
    光发射芯片,设置于所述第三基板上方,所述光发射芯片被配置为发射信号光;
    第一透镜,设置于所述光发射芯片的出光光路上,其中,所述第一透镜朝向所述光发射芯片的一侧为一凸面,所述凸面上设有反射膜,所述反射膜对部分所述信号光进行反射;以及
    光电探测器,设置于所述第三基板的侧壁,所述光电探测器的光敏面朝向所述所述第一透镜,所述光电探测器被配置为接收反射后的信号光,
    其中,所述反射膜的上表面低于所述透镜的中心轴。
  7. 根据权利要求6所述的光模块,一种光模块,包括:
    电路板;以及
    光发射部件,与所述电路板电连接,
    其中,所述光发射部件包括:
    第三基板,所述第三基板的一端与所述电路板电连接;
    光发射芯片,设置于所述第三基板上方,所述光发射芯片被配置为发射信号光;
    第一透镜,设置于所述光发射芯片的出光光路上,其中,所述第一透镜朝向所述光发射芯片的一侧为一凸面,所述凸面上设有反射膜,所述反射膜对部分所述信号光进行反射;
    承载基板,所述承载基板位于所述第三陶瓷基板的一侧,且所述承载基板的上表面低于所述第三陶瓷基板的上表面;以及
    光电探测器,设置于所述承载基板的上表面,所述光电探测器的光敏面朝向所述所述第一透镜,所述光电探测器被配置为接收反射后的信号光,
    其中,所述反射膜的上表面低于所述透镜的中心轴。
  8. 根据权利要求7所述的光模块,其中,所述承载基板与所述第三基板为一体结构。
  9. 一种光模块,包括:
    电路板;以及
    光发射部件,与所述电路板电连接,
    其中,所述光发射部件包括:
    第三基板,所述第三基板的一端与所述电路板电连接;
    光发射芯片,设置于所述第三基板上方,所述光发射芯片被配置为发射信号光;
    第二透镜,设置于所述光发射芯片的出光光路上,并且被配置为将所述信号光转换为平行光,其中,所述第一透镜朝向所述光发射芯片的一侧为一凸面,所述凸面上设有反射膜,所述反射膜对部分所述信号光进行反射;
    第三透镜,设置于所述第二透镜的出光光路上,并且被配置为将所述信号光由平行光转换为会聚光;
    第五基板,位于所述第二透镜的上方,其中,所述第五基板具有承载部,所述承载部凸出于所述第五基板的下表面;以及
    光电探测器,设置于所述承载部的侧壁,所述光电探测器的光敏面朝向所述第二透镜,所述光电探测器被配置为接收反射后的信号光;
    其中,所述反射膜的下表面高于所述透镜的中心轴。
  10. 根据权利要求9所述的光模块,其中,所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离为大于或等于200μm,且小于或等于450μm;以及所述光电探测器的光敏面与所述光发射芯片的出光口的水平距离为0.2mm~1.5mm。
  11. 一种光模块,包括:
    电路板;以及
    光发射部件,与所述电路板电连接,
    其中,所述光发射部件包括:
    第三基板,所述第三基板的一端与所述电路板电连接;
    光发射芯片,设置于所述第三基板上方,所述光发射芯片被配置为发射信号光;
    第二透镜,设置于所述光发射芯片的出光光路上,并且被配置为将所述信号光转换为平行光,其中,所述第一透镜朝向所述光发射芯片的一侧为一凸面,所述凸面上设有反射膜,所述反射膜对部分所述信号光进行反射;
    第三透镜,设置于所述第二透镜的出光光路上,并且被配置为将所述信号光由平行光转换为会聚光;以及
    光电探测器,设置于所述第三基板的侧壁的侧壁,所述光电探测器的光敏面朝向所述第二透镜,所述光电探测器被配置为接收反射后的信号光;
    其中,所述反射膜的上表面低于所述透镜的中心轴。
  12. 根据权利要求11所述的光模块,其中,
    所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离大于或等于200μm,且所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离小于或等于450μm;以及
    所述光电探测器位于邻近所述光发射芯片的一侧,并且所述光电探测器与所述光发射芯片的出光口的水平距离为0.5mm~1.5mm。
  13. 一种光模块,包括:
    电路板;以及
    光发射部件,与所述电路板电连接,
    所述光发射部件包括:
    第三基板,一端与所述电路板电连接;
    光发射芯片,设置于所述第三基板上方,所述光发射芯片被配置为发射信号光;
    透镜,设置于所述光发射芯片的出光光路上;
    光电探测器,位于所述透镜与所述光发射芯片之间,其中,所述光电探测器被配置为接收所述光发射芯片的部分信号光,并将所述部分信号光转换为电信号。
  14. 根据权利要求13所述的光模块,其中,所述透镜为第一透镜,所述第一透镜被配置为将所述信号光转换为会聚光;
    所述光电探测器设置于所述第三基板的上方;
    所述光电探测器的光敏面朝向上方设置,所述光电探测器的上表面低于所述光发射芯片的出光中心轴。
  15. 根据权利要求14所述的光模块,其中,所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离大于或等于100μm,且所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离小于或等于150μm。
  16. 根据权利要求13所述的光模块,其中,所述光电探测器邻近所述光发射芯片的一侧,与所述光发射芯片的出光口的水平距离为0.2mm~1.2mm。
  17. 根据权利要求16所述的光模块,其中,所述光电探测器邻近所述光发射芯片的一侧,与所述第一透镜的中心的水平距离为2.5mm~5.5mm。
  18. 根据权利要求13-17任一项所述的光模块,还包括:光纤适配器,设置于所述第一透镜的出光一侧,用于接收透过所述第一透镜的信号光。
  19. 根据权利要求13所述的光模块,还包括:第五基板,
    其中,所述透镜为第一透镜;
    所述第五基板设置于所述第一透镜的上方,其下表面向下方凸起形成承载部;
    所述光电探测器设置于所述承载部的侧壁;所述光电探测器的光敏面朝向所述光发射芯片的出光口设置;以及
    所述光电探测器的下表面高于所述光发射芯片的出光中心轴设置。
  20. 根据权利要求19所述的光模块,其中,所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离大于或等于200μm,且所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离小于或等于500μm。
  21. 根据权利要求19或20所述的光模块,其中,所述光电探测器邻近所述光发射芯片的一侧,所述光电探测器与所述光发射芯片的出光口的水平距离为0.2mm~1.5mm。
  22. 根据权利要求19所述的光模块,其中,所述光电探测器邻近所述光发射芯片的一侧,所述光电探测器与所述第一透镜的中心的水平距离为2.5mm~5.5mm。
  23. 根据权利要求19所述的光模块,还包括:光纤适配器,设置于所述第一透镜的出光一侧,所述光纤适配器被配置为接收透过所述第一透镜的信号光。
  24. 根据权利要求13所述的光模块,其中,所述透镜包括:第二透镜和第三透镜,
    其中,所述第二透镜设置于所述光发射芯片的出光光路上,所述第二透镜被配置为将所述信号光转换为平行光;
    所述第三透镜设置于所述第二透镜的出光光路上,所述第三透镜被配置为将所述信号光由平行光转换为会聚光;
    其中,所述光电探测器设置于所述第三基板的上方,所述光电探测器位于所述第二透镜与所述光发射芯片之间,接收所述光发射芯片的部分信号光,并将所述部分信号光转换为电信号;以及
    所述光电探测器的光敏面朝向上方设置,所述光电探测器的上表面低于所述光发射芯片的出光中心轴。
  25. 根据权利要求24所述的光模块,其中,所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离大于或等于100μm,且所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离小于或等于150μm。
  26. 根据权利要求24或25所述的光模块,其中,所述光电探测器邻近所述光发射芯片的一侧,所述光电探测器与所述光发射芯片的出光口的水平距离为0.2mm~1.2mm。
  27. 根据权利要求24-26中任一项所述的光模块,其中,所述光电探测器邻近所述光发射芯片的一侧,所述光电探测器与所述第二透镜的中心的水平距离为2.5mm~5.5mm。
  28. 根据权利要求24所述的光模块,还包括:光纤适配器,设置于所述第三透镜的出光一侧,所述光纤适配器被配置为接收所述第三透镜的信号光。
  29. 根据权利要求13所述的光模块,还包括:第五基板,
    其中,所述透镜包括:第二透镜和第三透镜,
    所述第二透镜设置于所述光发射芯片的出光光路上,所述第二透镜被配置为所述信号光转换为平行光;
    所述第三透镜设置于所述第二透镜的出光光路上,所述第三透镜被配置为将所述信号光由平行光转换为会聚光;
    其中,所述第五基板设置于所述第二透镜的上方,所述第五基板的下表面向下方凸起形成承载部;
    所述光电探测器设置于所述承载部的下表面,所述光电探测器被配置为接收所述光发射芯片的部分信号光,并将所述部分信号光转换为电信号;以及
    所述光电探测器的光敏面朝向下方设置,所述光电探测器的下表面高于所述光发射芯片的出光中心轴。
  30. 根据权利要求29所述的光模块,其中,所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离为大于或等于100μm;
    所述光电探测器的上表面与所述光发射芯片的出光中心轴之间的垂直距离小于或等于150μm;
    所述光电探测器邻近所述光发射芯片的一侧,所述光电探测器与所述光发射芯片的出光口的水平距离为0.2mm~1.2mm;以及
    所述光电探测器与所述第二透镜的中心的水平距离为2.5mm~5.5mm。
  31. 根据权利要求29所述的光模块,还包括:光纤适配器,设置于所述第三透镜的出光一侧,所述光纤适配器被配置为接收透过所述第三透镜的信号光。
PCT/CN2023/081530 2022-09-27 2023-03-15 光模块 WO2024066224A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202222568024.X 2022-09-27
CN202211186007.8 2022-09-27
CN202222568035.8 2022-09-27
CN202222570121.2 2022-09-27
CN202222568035.8U CN218350559U (zh) 2022-09-27 2022-09-27 一种光模块
CN202211186007.8A CN117826335A (zh) 2022-09-27 2022-09-27 一种光模块
CN202222570116.1 2022-09-27
CN202222570121.2U CN218350561U (zh) 2022-09-27 2022-09-27 一种光模块
CN202222570116.1U CN218350560U (zh) 2022-09-27 2022-09-27 一种光模块
CN202222568024.XU CN218675388U (zh) 2022-09-27 2022-09-27 一种光模块

Publications (1)

Publication Number Publication Date
WO2024066224A1 true WO2024066224A1 (zh) 2024-04-04

Family

ID=90475786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081530 WO2024066224A1 (zh) 2022-09-27 2023-03-15 光模块

Country Status (1)

Country Link
WO (1) WO2024066224A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003818A1 (en) * 2000-02-01 2002-01-10 The Furukawa Electric Co., Ltd. Laser diode module
CN107112719A (zh) * 2014-11-13 2017-08-29 住友电气工业株式会社 光学模块
CN107861197A (zh) * 2017-10-31 2018-03-30 深圳市易飞扬通信技术有限公司 光发射组件、封装工艺及光模块
CN208923548U (zh) * 2018-12-03 2019-05-31 江苏欧密格光电科技股份有限公司 一种含有安全监测功能的红外激光投射器件
CN112835153A (zh) * 2019-11-25 2021-05-25 讯芯电子科技(中山)有限公司 光通讯模块
CN113131330A (zh) * 2021-03-31 2021-07-16 杭州耀芯科技有限公司 一种激光器发光功率监测系统、监测方法及其准直透镜
CN218350559U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350560U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350561U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003818A1 (en) * 2000-02-01 2002-01-10 The Furukawa Electric Co., Ltd. Laser diode module
CN107112719A (zh) * 2014-11-13 2017-08-29 住友电气工业株式会社 光学模块
CN107861197A (zh) * 2017-10-31 2018-03-30 深圳市易飞扬通信技术有限公司 光发射组件、封装工艺及光模块
CN208923548U (zh) * 2018-12-03 2019-05-31 江苏欧密格光电科技股份有限公司 一种含有安全监测功能的红外激光投射器件
CN112835153A (zh) * 2019-11-25 2021-05-25 讯芯电子科技(中山)有限公司 光通讯模块
CN113131330A (zh) * 2021-03-31 2021-07-16 杭州耀芯科技有限公司 一种激光器发光功率监测系统、监测方法及其准直透镜
CN218350559U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350560U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350561U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN218350559U (zh) 一种光模块
CN218350561U (zh) 一种光模块
CN218350560U (zh) 一种光模块
CN111458816A (zh) 一种光模块
WO2022111034A1 (zh) 一种光模块
US20220019035A1 (en) Optical module
WO2020108294A1 (zh) 光模块
CN212083739U (zh) 一种光模块
WO2024066224A1 (zh) 光模块
US20230194802A1 (en) Optical module
US20230418006A1 (en) Optical module
US20230421262A1 (en) Optical module
WO2023109210A1 (zh) 光模块
WO2023035711A1 (zh) 光模块
WO2022267805A1 (zh) 光模块
US11927817B2 (en) Optical module
CN218675388U (zh) 一种光模块
CN219574440U (zh) 一种光模块
CN219625756U (zh) 一种光模块
WO2022206169A1 (zh) 光模块
WO2024093070A1 (zh) 光模块
WO2022199255A1 (zh) 光模块
WO2023241378A1 (zh) 光模块
WO2024066202A1 (zh) 光模块
CN219552714U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869485

Country of ref document: EP

Kind code of ref document: A1