WO2024066193A1 - 高导电性普鲁士蓝类正极材料的制备方法及其应用 - Google Patents

高导电性普鲁士蓝类正极材料的制备方法及其应用 Download PDF

Info

Publication number
WO2024066193A1
WO2024066193A1 PCT/CN2023/078475 CN2023078475W WO2024066193A1 WO 2024066193 A1 WO2024066193 A1 WO 2024066193A1 CN 2023078475 W CN2023078475 W CN 2023078475W WO 2024066193 A1 WO2024066193 A1 WO 2024066193A1
Authority
WO
WIPO (PCT)
Prior art keywords
prussian blue
positive electrode
electrode material
preparation
blue positive
Prior art date
Application number
PCT/CN2023/078475
Other languages
English (en)
French (fr)
Inventor
余海军
李爱霞
谢英豪
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024066193A1 publication Critical patent/WO2024066193A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of positive electrode materials for sodium ion batteries, and in particular relates to a preparation method and application of a highly conductive Prussian blue positive electrode material.
  • Secondary batteries also known as rechargeable batteries, are batteries that can be repeatedly charged and discharged and used multiple times.
  • the main secondary battery technologies currently include lead-acid batteries, nickel-chromium batteries, nickel-metal hydride batteries, and lithium-ion batteries.
  • Lithium-ion batteries are widely used in the field of energy storage due to their high energy density and long life.
  • Sodium is located just below lithium in the periodic table and has the closest chemical properties to metallic lithium. It is also abundant in the earth's crust, thousands of times more abundant than lithium, so sodium-ion batteries are expected to become a new generation of high-performance, low-cost energy storage technology.
  • Sodium-ion batteries include transition metal oxide systems, Prussian systems, and polyanion systems. Among them, the Prussian system has obvious economic and safety advantages and has great application value, but there are still some technical problems that need to be solved.
  • the preparation methods of Prussian-type sodium-ion battery positive electrode materials mainly include: coprecipitation method, hydrothermal method and mechanical mixing method, etc.
  • coprecipitation method and hydrothermal method because the ksp of Na 2 M1[M2(CN) 6 ] is small, precipitation is rapid, and a large amount of Prussian-type positive electrode materials containing [M2(CN) 6 ] vacancy defects are easily produced.
  • the vacancy sites of M2 exposed at the vacancy are easy to combine with water in the reaction system to form coordinated water, and the coordinated water can further combine with crystal water to occupy the storage site of sodium ions, resulting in a decrease in specific capacity.
  • Patent CN109065883B discloses a modification method of Prussian blue and its analogs, wherein organic matter is used to modify the surface of dehydrated Prussian blue and its analogs, so that organic molecules occupy the position of crystal water, and while improving the sodium storage electrochemical performance of Prussian blue and its analogs, the storage stability of Prussian blue and its analogs at room temperature and pressure is also greatly improved, thereby solving the problem that the dehydrated Prussian blue is easy to absorb water again when stored in the air, causing the electrochemical performance to decay quickly.
  • the organic molecules of the above scheme are connected to the coordinated water by hydrogen bonds, which can prevent the crystal water from occupying the vacancy, but the binding strength of the hydrogen bond is not high, and the drying and dehydration process can only remove the crystal water, and the coordinated water cannot be removed, so the above scheme cannot solve the problem of coordinated water, and these organic molecules generally have poor conductivity, so the use of the above method will also lead to a decrease in the conductivity of the Prussian positive electrode material.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a high conductive Preparation method and application of Prussian blue positive electrode materials.
  • a method for preparing a highly conductive Prussian blue positive electrode material comprising the following steps:
  • the chemical formula of the highly conductive Prussian blue-based positive electrode material is Na x M1 y [M2(CN) 6 ] 1-z ⁇ z Da ⁇ (6z-a)H 2 O, wherein M1 and M2 are transition metals, ⁇ represents a vacancy, D is a boron compound, H 2 O represents the coordinated water content, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0.05 ⁇ a ⁇ 6z, and 0.01 ⁇ z ⁇ 0.2.
  • the dehydration method is vacuum drying
  • the vacuum drying temperature is 80-150° C.
  • the drying time is 8-24 hours.
  • the Prussian blue positive electrode material is prepared by the following co-precipitation method: (1) dissolving sodium ferrocyanide and an inorganic sodium salt in water to prepare a mixed solution A, and dissolving a transition metal salt and sodium citrate in water to prepare a mixed solution B; (2) under heating conditions, adding the mixed solution B dropwise to the mixed solution A for reaction, aging after the reaction, separating the solid from the liquid to obtain a precipitate, and washing the precipitate to obtain the Prussian blue positive electrode material.
  • the soluble boron-containing compound in the conductive modification solution is at least one of boric acid, borates, metaboric acid, metaborate, tetrafluoroboric acid, tetrafluoroborate, tetrahydroborate or boron trifluoride.
  • step S2 the pH of the conductive modification solution is controlled to be 6.5-9.5.
  • Prussian blue materials have the lowest solubility under neutral conditions, are soluble in weak acids and weak bases, and strong acids and strong bases will cause the positive electrode material to decompose.
  • the temperature of the conductive modification liquid is controlled at 20-35°C.
  • Boron trifluoride has a low boiling point. If the temperature is too high, boron trifluoride is easy to volatilize; if the temperature is too low, the binding efficiency of boron trifluoride and Prussian blue positive electrode materials is too low. After boron trifluoride forms a coordination bond with the Prussian blue positive electrode material to form a stable bond, it will not fall off during normal use.
  • the concentration of the soluble boron-containing compound in the conductive modification solution is 0.1-5 mol/L.
  • the concentration of the boron-containing compound can be adjusted according to demand so that the doping amount of the boron-containing compound is within a suitable range.
  • step S2 the solid-to-liquid ratio of the dehydrated Prussian blue positive electrode material to the conductive modification liquid is 1:(1-3) g/ml.
  • step S2 the stirring reaction time is 8-16 hours.
  • the present invention also provides application of the preparation method in preparing sodium ion batteries.
  • the present invention dehydrates the Prussian blue cathode material to remove most of the crystal water, and then uses a conductive modification liquid to treat the Prussian blue cathode material.
  • the boron-containing ions or molecules (such as BO 3 3- , BF 3 ) in the conductive modification liquid can form coordination with the transition metal or replace the coordinated water combined with the transition metal, which can prevent the Prussian blue cathode material from absorbing water from the environment to generate new coordinated water and crystal water, and the reduction of coordinated water can further reduce the crystal water.
  • the boron element can also be uniformly doped in the Prussian blue cathode material, thereby improving the conductivity of the Prussian blue cathode material.
  • FIG1 is a SEM image of a highly conductive Prussian blue positive electrode material prepared in Example 1 of the present invention.
  • FIG. 2 is a charge and discharge diagram of the highly conductive Prussian blue positive electrode material prepared in Example 1 of the present invention.
  • This comparative example is the dehydrated Prussian blue positive electrode material obtained in step (2) of Example 1.
  • the molecular formula of the product is It is Na 1.61 Mn[Fe(CN) 6 ] 0.92 ⁇ 0.08 ⁇ 0.48H 2 O.
  • This comparative example prepares a Prussian blue positive electrode material, and the specific process is as follows:
  • the products prepared by the methods of the embodiments were used as the cathode, metallic sodium was used as the anode, glass fiber was used as the separator, and EC/DEC solution of sodium hexafluorophosphate was used as the electrolyte to assemble a sodium ion half-cell in a glove box, and the charge and discharge tests were carried out at an operating voltage of 2 to 4 V and different current densities.
  • the products of comparative examples 1-2 were used as control samples and the same tests were carried out. The results are shown in Table 1, wherein the charge and discharge curves of the assembled battery test of the product obtained in Example 1 are shown in Figure 2.
  • the first charge and discharge specific capacity of the Prussian blue positive electrode material prepared by the present invention is increased by more than 10 mAh/g relative to that of Comparative Example 1, and has better rate performance and cycle performance.
  • the gram capacity of Example 2 is higher than that of Example 1 and Example 3, which is because the molecular weight of the boron compound of Examples 1 and 3 is larger, which has a certain impact on the gram capacity.
  • the cycle retention rate of Comparative Example 2 is improved to a certain extent relative to Comparative Example 1, the gram capacity and rate performance of Comparative Example 2 are significantly reduced relative to Examples 1-3 and even Comparative Example 1.
  • Comparative Example 2 uses non-conductive isopropanol to treat the Prussian blue positive electrode material, thereby reducing the conductivity of the positive electrode material. At the same time, it can only compete with crystal water for coordinated water, but cannot replace coordinated water, so it still has a high coordinated water content.

Abstract

本发明公开了一种高导电性普鲁士蓝类正极材料的制备方法及其应用,先合成普鲁士蓝类正极材料,再进行脱水,将脱水后的普鲁士蓝类正极材料置于导电改性液中搅拌反应,所得固体烘干后即得高导电性普鲁士蓝类正极材料。本发明将普鲁士蓝类正极材料进行脱水以去除大部分结晶水,然后使用导电改性液处理普鲁士蓝类正极材料,导电改性液中含硼的离子或分子(如BO3 3-、BF3)可以与过渡金属形成配位或者取代过渡金属结合的配位水,可以防止普鲁士蓝类正极材料由环境中吸收水而产生新的配位水和结晶水,同时配位水的减少能够进一步降低结晶水。通过本方法还可以在普鲁士蓝类正极材料中均匀的掺杂硼元素,从而提高普鲁士蓝类正极材料的导电性能。

Description

高导电性普鲁士蓝类正极材料的制备方法及其应用 技术领域
本发明属于钠离子电池正极材料技术领域,具体涉及一种高导电性普鲁士蓝类正极材料的制备方法及其应用。
背景技术
二次电池也称为可充电电池,是一种可重复充放电、多次使用的电池。目前主要的二次电池技术有铅酸电池、镍铬电池、镍氢电池和锂离子电池。锂离子电池因其高能量密度、寿命长等优点在储能领域有着广泛的应用,然而锂的自然丰度低且分布不均,使得锂离子电池成本不断提升。钠在元素周期表中位于锂的正下方,具有与金属锂最接近的化学性质,且在地壳中储量丰度,丰度为锂的数千倍,所以钠离子电池有望成为新一代高性能、低成本储能技术。钠离子电池包含过渡金属氧化物体系、普鲁士类体系和聚阴离子体系等,其中普鲁士类体系具有明显的经济和安全优势,具有很大的应用价值,但是仍存在一些亟待解决的技术问题。
普鲁士类钠离子电池正极材料的制备方法主要包含:共沉淀法、水热法和机械混合法等,其中共沉淀法和水热法中,因为Na2M1[M2(CN)6]的ksp较小,沉淀迅速,容易产生大量含有[M2(CN)6]空位缺陷的普鲁士类正极材料,此时空位处暴露的M2的空位点容易与反应体系中的水结合,形成配位水,配位水能进一步结合结晶水,占据钠离子的储存位点,导致比容量降低。同时,在电池循环过程中,结晶水和间隙水会脱离正极材料与电解质进一步反应,导致电池的循环性能降低。因此,如何减少[M2(CN)6]空位,是普鲁士类钠离子电池面临的一个重要问题。
专利CN109065883B公开了一种普鲁士蓝及其类似物的改性方法,采用有机物对脱水后的普鲁士蓝及其类似物表面进行改性,让有机分子占据结晶水的位置,在提升普鲁士蓝及其类似物的储钠电化学性能的同时,普鲁士蓝及其类似物在常温常压下的存储稳定性也得到极大的改善,进而解决了脱水后的普鲁士蓝在空气中存放时很容易再次吸水,使电化学性能衰减快的问题。上述方案的有机分子通过氢键的方式与配位水连接,可以阻止结晶水占据空位,但是氢键的结合强度不高,且干燥脱水过程只能脱去结晶水,配位水无法脱去,因此上述方案不能解决配位水的问题,同时这些有机分子一般导电性较差,因此使用上述方式还会导致普鲁士类正极材料的导电性的降低。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种高导电 性普鲁士蓝类正极材料的制备方法及其应用。
根据本发明的一个方面,提出了一种高导电性普鲁士蓝类正极材料的制备方法,包括以下步骤:
S1:先合成普鲁士蓝类正极材料,再对所述普鲁士蓝类正极材料进行脱水;
S2:将脱水后的普鲁士蓝类正极材料置于导电改性液中搅拌反应,固液分离,所得固体烘干后即得所述高导电性普鲁士蓝类正极材料;其中,所述导电改性液为可溶性含硼化合物溶液。
在本发明的一些实施方式中,所述高导电性普鲁士蓝类正极材料的化学通式为NaxM1y[M2(CN)6]1-zz Da·(6z-a)H2O,其中M1、M2为过渡金属,□表示空位,D为硼化合物,H2O表示配位水含量,0<x≤2,0<y≤1,0.05<a≤6z,0.01<z≤0.2。
在本发明的一些实施方式中,步骤S1中,所述脱水的方式为真空干燥,所述真空干燥的温度为80-150℃,干燥的时间8-24h。
在本发明的一些实施方式中,步骤S1中,所述普鲁士蓝类正极材料由以下共沉淀法制得:(1)将亚铁氰化钠和无机钠盐溶于水制得混合溶液A,将过渡金属盐和柠檬酸钠溶于水制得混合溶液B;(2)在加热条件下,将所述混合溶液B滴加到所述混合溶液A中进行反应,反应结束后进行陈化,固液分离得到沉淀物,所述沉淀物进行洗涤,即得所述普鲁士蓝类正极材料。
在本发明的一些实施方式中,步骤S2中,所述导电改性液中的可溶性含硼化合物为硼酸、硼酸盐、偏硼酸、偏硼酸盐、四氟硼酸、四氟硼酸盐、四氢硼酸盐或三氟化硼中的至少一种。
在本发明的一些实施方式中,步骤S2中,控制所述导电改性液的pH为6.5-9.5。普鲁士蓝类材料在中性条件下溶解度最低,溶于弱酸弱碱,强酸强碱会导致正极材料分解。
在本发明的一些实施方式中,当所述可溶性含硼化合物为三氟化硼时,所述导电改性液的温度控制在20-35℃。三氟化硼的沸点较低,如温度太高,三氟化硼容易挥发;若温度太低,则三氟化硼与普鲁士蓝类正极材料的结合效率太低。三氟化硼与普鲁士蓝类正极材料形成配位键形成稳定结合后,不会在正常使用过程中脱落。
在本发明的一些实施方式中,步骤S2中,所述导电改性液中可溶性含硼化合物的浓度为0.1-5mol/L。可以根据需求调整含硼化合物的浓度,以使得含硼化合物的掺杂量在合适的范围。
在本发明的一些实施方式中,步骤S2中,脱水后的普鲁士蓝类正极材料与所述导电改性液的固液比为1:(1-3)g/ml。
在本发明的一些实施方式中,步骤S2中,所述搅拌反应的时间为8-16h。
本发明还提供所述的制备方法在制备钠离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明将普鲁士蓝类正极材料进行脱水,以去除大部分结晶水,然后使用导电改性液处理普鲁士蓝类正极材料,导电改性液中含硼的离子或分子(如BO3 3-、BF3)可以与过渡金属形成配位或者取代过渡金属结合的配位水,可以防止普鲁士蓝类正极材料由环境中吸收水而产生新的配位水和结晶水,同时配位水的减少能够进一步降低结晶水。通过上述方式还可以在普鲁士蓝类正极材料中均匀的掺杂硼元素,从而可以提高普鲁士蓝类正极材料的导电性能。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制得的高导电性普鲁士蓝类正极材料的SEM图;
图2为本发明实施例1制得的高导电性普鲁士蓝类正极材料的充放电图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种高导电性普鲁士蓝类正极材料,具体过程为:
(1)配置浓度为1mol/L的亚铁氰化钠和2mol/L的氯化钠的混合溶液A,配置1mol/L硫酸锰和1mol/L柠檬酸钠的混合溶液B,在反应器中加入1L的混合溶液A,然后将600mL混合溶液B通过蠕动泵以1ml/min滴加到反应器中并不断搅拌,控制反应温度在60℃,pH在6.5-9.5,反应结束后生成沉淀,陈化6小时后,过滤得到沉淀,使用去离子水洗涤两次,然后用乙腈洗涤两次,得到普鲁士蓝类正极材料;
(2)将普鲁士蓝类正极材料转移到120℃的真空干燥箱中干燥12h,得到脱水的普鲁士蓝类正极材料;
(3)将脱水的普鲁士蓝类正极材料置于搅拌器中,按照1:1g/ml的固液比加入1mol/L的硼酸水溶液(温度20℃),并用氢氧化钠调节硼酸水溶液的pH为6.5,搅拌反应12h后,离心获得沉淀,转移到120℃的真空干燥箱中干燥12h,即得到高导电性普鲁士蓝类正极材料。
通过ICP和TG测试结果表明,该样品的分子式为Na1.61Mn[Fe(CN)6]0.920.08(BO3)0.42·0.06H2O。
实施例2
本实施例制备了一种高导电性普鲁士蓝类正极材料,具体过程为:
(1)配置浓度为1mol/L的亚铁氰化钠和2mol/L的氯化钠的混合溶液A,配置1mol/L硫酸锰和1mol/L柠檬酸钠的混合溶液B,在反应器中加入1L的混合溶液A,然后将600mL混合溶液B通过蠕动泵以1ml/min滴加到反应器中并不断搅拌,控制反应温度在60℃,pH在6.5-9.5,反应结束后生成沉淀,陈化6小时后,过滤得到沉淀,使用去离子水洗涤两次,然后用乙腈洗涤两次,得到普鲁士蓝类正极材料;
(2)将普鲁士蓝类正极材料转移到120℃的真空干燥箱中干燥12h,得到脱水的普鲁士蓝类正极材料;
(3)将脱水的普鲁士蓝类正极材料置于搅拌器中,按照1:1g/ml的固液比加入2mol/L的BF3的无水乙醇溶液(温度20℃),搅拌反应12h后,离心获得沉淀,转移到120℃的真空干燥箱中干燥12h,即得到高导电性普鲁士蓝类正极材料。
通过ICP和TG测试结果表明,该样品的分子式为Na1.63Mn[Fe(CN)6]0.930.07(BF3)0.31·0.11H2O。
实施例3
本实施例制备了一种高导电性普鲁士蓝类正极材料,具体过程为:
(1)配置浓度为1mol/L的亚铁氰化钠和2mol/L的氯化钠的混合溶液A,配置1mol/L硫酸锰和1mol/L柠檬酸钠的混合溶液B,在反应器中加入1L的混合溶液A,然后将600mL混合溶液B通过蠕动泵以1ml/min滴加到反应器中并不断搅拌,控制反应温度在60℃,pH在6.5-9.5,反应结束后生成沉淀,陈化6小时后,过滤得到沉淀,使用去离子水洗涤两次,然后用乙腈洗涤两次,得到普鲁士蓝类正极材料;
(2)将普鲁士蓝类正极材料转移到120℃的真空干燥箱中干燥12h,得到脱水的普鲁士蓝类正极材料;
(3)将脱水的普鲁士蓝类正极材料置于搅拌器中,按照1:1g/ml的固液比加入2mol/L的硼氢化钠水溶液(温度20℃,pH=9.5),搅拌反应12h后,离心获得沉淀,转移到120℃的真空干燥箱中干燥12h,即得到高导电性普鲁士蓝类正极材料。
通过ICP和TG测试结果表明,该样品的分子式为Na1.70Mn[Fe(CN)6]0.920.08(BH3)0.35·0.13H2O。
对比例1
本对比例为实施例1步骤(2)制得的脱水后的普鲁士蓝类正极材料,测得该产物的分子式 为Na1.61Mn[Fe(CN)6]0.920.08·0.48H2O。
对比例2
本对比例制备了一种普鲁士蓝类正极材料,具体过程为:
(1)配置浓度为1mol/L的亚铁氰化钠和2mol/L的氯化钠的混合溶液A,配置1mol/L硫酸锰和1mol/L柠檬酸钠的混合溶液B,在反应器中加入1L的混合溶液A,然后将600mL混合溶液B通过蠕动泵以1ml/min滴加到反应器中并不断搅拌,控制反应温度在60℃,pH在6.5-9.5,反应结束后生成沉淀,陈化6小时后,过滤得到沉淀,使用去离子水洗涤两次,然后用乙腈洗涤两次,得到普鲁士蓝类正极材料;
(2)将普鲁士蓝类正极材料转移到120℃的真空干燥箱中干燥12h,得到脱水的普鲁士蓝类正极材料;
(3)将脱水的普鲁士蓝类正极材料置于搅拌器中,按照1:1g/ml的固液比加入异丙醇,搅拌反应12h后,离心获得沉淀,转移到120℃的真空干燥箱中干燥12h,即得到普鲁士蓝类正极材料。
通过ICP和TG测试结果表明,该样品的分子式为Na1.63Mn[Fe(CN)6]0.920.08·0.48H2O(IPA)0.28
试验例
为了验证本发明制备得到的普鲁士蓝类正极材料的性能,将各实施例方法制备的产品作为正极,以金属钠为负极,玻璃纤维为隔膜,六氟磷酸钠的EC/DEC溶液为电解液于手套箱中装配钠离子半电池,并在2~4V的工作电压,不同电流密度下进行充放电测试,同时以对比例1-2产品作为对照样品并进行相同测试,结果如表1所示,其中实施例1所得产品组装电池测试时的充放电曲线如图2所示。
表1
由表1可见,本发明制备得到的普鲁士蓝类正极材料的首次充放电比容量相对于对比例1提高了10mAh/g以上,且具有更好的倍率性能和循环性能。实施例2的克容量相对于实施例1和实施例3更高,这是实施例1和3的硼化合物的分子量更大,对克容量造成一定影响。虽然对比例2的循环保持率相对于对比例1有一定程度的提高,但是对比例2的克容量和倍率性能相对于实施例1-3甚至对比例1都有明显降低,这是因为对比例2使用了不导电的异丙醇对普鲁士蓝类正极材料进行处理从而导致正极材料导电性降低,同时其只能与结晶水竞争配位水,而不能取代配位水,因此仍然具有较高的配位水含量。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种高导电性普鲁士蓝类正极材料的制备方法,其特征在于,包括以下步骤:
    S1:先合成普鲁士蓝类正极材料,再对所述普鲁士蓝类正极材料进行脱水;
    S2:将脱水后的普鲁士蓝类正极材料置于导电改性液中搅拌反应,固液分离,所得固体烘干后即得所述高导电性普鲁士蓝类正极材料;其中,所述导电改性液为可溶性含硼化合物溶液。
  2. 根据权利要求1所述的制备方法,其特征在于,所述高导电性普鲁士蓝类正极材料的化学通式为NaxM1y[M2(CN)6]1-zzDa·(6z-a)H2O,其中M1、M2为过渡金属,□表示空位,D为硼化合物,H2O表示配位水含量,0<x≤2,0<y≤1,0.05<a≤6z,0.01<z≤0.2。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述脱水的方式为真空干燥,所述真空干燥的温度为80-150℃,干燥的时间8-24h。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述导电改性液中的可溶性含硼化合物为硼酸、硼酸盐、偏硼酸、偏硼酸盐、四氟硼酸、四氟硼酸盐、四氢硼酸盐或三氟化硼中的至少一种。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,控制所述导电改性液的pH为6.5-9.5。
  6. 根据权利要求4所述的制备方法,其特征在于,当所述可溶性含硼化合物为三氟化硼时,所述导电改性液的温度控制在20-35℃。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述导电改性液中可溶性含硼化合物的浓度为0.1-5mol/L。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,脱水后的普鲁士蓝类正极材料与所述导电改性液的固液比为1:(1-3)g/ml。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述搅拌反应的时间为8-16h。
  10. 如权利要求1-9任一项所述的制备方法在制备钠离子电池中的应用。
PCT/CN2023/078475 2022-09-29 2023-02-27 高导电性普鲁士蓝类正极材料的制备方法及其应用 WO2024066193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211200177.7A CN115377412A (zh) 2022-09-29 2022-09-29 高导电性普鲁士蓝类正极材料的制备方法及其应用
CN202211200177.7 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024066193A1 true WO2024066193A1 (zh) 2024-04-04

Family

ID=84073361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078475 WO2024066193A1 (zh) 2022-09-29 2023-02-27 高导电性普鲁士蓝类正极材料的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN115377412A (zh)
WO (1) WO2024066193A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377412A (zh) * 2022-09-29 2022-11-22 广东邦普循环科技有限公司 高导电性普鲁士蓝类正极材料的制备方法及其应用
CN115784259A (zh) * 2022-12-08 2023-03-14 广东邦普循环科技有限公司 一种普鲁士类正极材料及其缺陷修复方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946765A (zh) * 2017-05-18 2018-12-07 宁德时代新能源科技股份有限公司 普鲁士蓝类正极材料及其制备方法、电化学储能装置
CN110224130A (zh) * 2019-06-27 2019-09-10 浙江大学 一种导电高分子包覆的普鲁士蓝类钠离子电池正极材料及其制备方法
JP2020046364A (ja) * 2018-09-20 2020-03-26 Koa株式会社 全固体型イオン選択性電極、および全固体型イオン選択性電極の製造方法
CN115023829A (zh) * 2020-02-24 2022-09-06 辽宁星空钠电电池有限公司 一种低水分含量的普鲁士蓝钠离子电池正极材料及其制备方法和钠离子电池
CN115377412A (zh) * 2022-09-29 2022-11-22 广东邦普循环科技有限公司 高导电性普鲁士蓝类正极材料的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946765A (zh) * 2017-05-18 2018-12-07 宁德时代新能源科技股份有限公司 普鲁士蓝类正极材料及其制备方法、电化学储能装置
JP2020046364A (ja) * 2018-09-20 2020-03-26 Koa株式会社 全固体型イオン選択性電極、および全固体型イオン選択性電極の製造方法
CN110224130A (zh) * 2019-06-27 2019-09-10 浙江大学 一种导电高分子包覆的普鲁士蓝类钠离子电池正极材料及其制备方法
CN115023829A (zh) * 2020-02-24 2022-09-06 辽宁星空钠电电池有限公司 一种低水分含量的普鲁士蓝钠离子电池正极材料及其制备方法和钠离子电池
CN115377412A (zh) * 2022-09-29 2022-11-22 广东邦普循环科技有限公司 高导电性普鲁士蓝类正极材料的制备方法及其应用

Also Published As

Publication number Publication date
CN115377412A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN107845796B (zh) 一种碳掺杂磷酸钒钠正极材料及其制备方法和应用
WO2024066193A1 (zh) 高导电性普鲁士蓝类正极材料的制备方法及其应用
CN110061229B (zh) 一种高功率密度、长循环寿命的钠离子电池正极材料及其制备方法以及应用
WO2017000219A1 (zh) 掺杂的导电氧化物以及基于此材料的改进电化学储能装置极板
CN110429268A (zh) 一种改性硼掺杂富锂锰基正极材料及其制备方法与应用
CN115224254B (zh) 一种Cu、Zn和Mg共掺杂层状氧化物钠离子电池正极材料及其制备方法和应用
CN108039464A (zh) 一种自支撑钠/钾离子电池材料及其制备方法与应用
CN113675402A (zh) 一种金属-氮掺杂多孔碳材料及其制备方法与应用
CN114520323A (zh) 一种双策略改性层状氧化物钠离子电池正极材料及其制备方法和应用
CN104037412A (zh) 高性能锂离子二次电池负极材料多级结构纳米空心球的制备方法
CN110467170B (zh) 一种钾离子电池高电位正极材料及其制备方法
CN110790248B (zh) 具有花状结构的铁掺杂磷化钴微米球电极材料及其制备方法和应用
CN116169260A (zh) β”-Al2O3和N掺杂C复合包覆Na3V2(PO4)2F3电极材料
CN113772718B (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
CN112952088B (zh) 一种基于碳布生长的金属掺杂碳酸锰电极材料及其制备方法和应用
CN113582254A (zh) 一种层状正极材料及其制备方法与用途
CN101154728A (zh) 一种锂离子电池正极材料超细LiFePO4/C的制备方法
CN116143195B (zh) 一种钠离子电池正极材料及其制备方法和应用
CN116805684A (zh) 一种Al、Zn、Ti和Fe共掺杂双相层状氧化物钠离子电池高熵正极材料
WO2023093161A1 (zh) 一种锰酸锌负极材料的制备方法
CN114804053A (zh) 一种纳米球形磷酸铁锂正极材料及其制备方法
CN107785564B (zh) VTi2.6O7.7纳米颗粒、制备和应用
CN112993246A (zh) 一种高性能钠离子电池负极材料及其制备方法
CN108615613A (zh) MoP@C纳米线及其制备方法和应用
CN115513468B (zh) CNTs/OMC有序微孔碳纳米球的制备方法及其在锂硫电池中的应用方法