WO2024066074A1 - 壳体外观检测方法及装置 - Google Patents

壳体外观检测方法及装置 Download PDF

Info

Publication number
WO2024066074A1
WO2024066074A1 PCT/CN2022/139646 CN2022139646W WO2024066074A1 WO 2024066074 A1 WO2024066074 A1 WO 2024066074A1 CN 2022139646 W CN2022139646 W CN 2022139646W WO 2024066074 A1 WO2024066074 A1 WO 2024066074A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
image acquisition
acquisition device
image
opening
Prior art date
Application number
PCT/CN2022/139646
Other languages
English (en)
French (fr)
Inventor
陈德
邓平
晏栋
Original Assignee
广东利元亨智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东利元亨智能装备股份有限公司 filed Critical 广东利元亨智能装备股份有限公司
Publication of WO2024066074A1 publication Critical patent/WO2024066074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Definitions

  • the present application belongs to the technical field of battery manufacturing equipment, and in particular, relates to a shell appearance detection method and device.
  • the embodiments of the present application provide a shell appearance inspection method and device, which can not only acquire images of the inside of the shell through a variety of schemes to realize narrow shell inspection, but also, in the field of new energy batteries, pioneeringly inspect the inside of the battery shell, improve the comprehensiveness of battery shell inspection, and reduce safety hazards in battery use.
  • an embodiment of the present application provides a shell appearance detection method, which is applied to the appearance detection of a shell with one or more openings on one side, and the method includes: extending a first image acquisition device into the shell along the opening of the shell, and rotating the first image acquisition device and the shell relative to each other to acquire a first image of the inner side wall of the shell.
  • the method includes: extending a first image acquisition device into the shell along the opening of the shell, and rotating the first image acquisition device and the shell relative to each other to acquire a first image of the inner side wall of the shell.
  • a first image acquisition mechanism is provided on one side of the first image acquisition device; the first image acquisition device or the shell is extended and rotated under the drive of the driving source, so that the first image acquisition mechanism acquires a first image of the inner side wall of the shell.
  • the first image acquisition mechanism when the length of the first image acquisition mechanism is greater than or equal to the length of the inner side wall of the shell, the first image acquisition mechanism can be extended into the shell to directly acquire images.
  • the length of the first image acquisition mechanism is less than the length of the inner side wall of the shell, the interior of the shell can be divided into multiple areas through the extension and retraction function of the first image acquisition device, and the first image acquisition mechanism can acquire images in different shell areas in turn.
  • a plurality of acquisition areas are defined inside the shell; a first image acquisition mechanism is disposed on one side of the first image acquisition device to rotate and photograph the acquisition areas in sequence, or a plurality of first image acquisition mechanisms are disposed on one side of the first image acquisition device to rotate and photograph the acquisition areas respectively.
  • a second image acquisition mechanism is further provided at the free end of the first image acquisition device, and when the first image acquisition device is extended into the interior of the shell, images of the shell opening, the inner bottom and bottom edge of the shell, and the inner side wall of the shell are sequentially acquired.
  • the method before or after inserting the first image acquisition device into the opening of the shell and into the interior of the shell, the method further includes: arranging the first image acquisition device adjacent to the outer peripheral wall of the shell, and rotating the first image acquisition mechanism or the shell to acquire a second image of the outer peripheral wall of the shell.
  • the first image acquisition device when the first image acquisition device is inserted into the opening of the shell and into the interior of the shell, it also includes: arranging a second image acquisition device adjacent to the outside of the shell, and rotating the second image acquisition device or the shell to acquire a second image of the outside of the shell.
  • the first image acquisition device before or after inserting the first image acquisition device into the opening of the shell and into the interior of the shell, it also includes: moving the shell to a third image acquisition device, and acquiring any one or more third images of the inner bottom and bottom edge of the shell, the outer bottom of the shell, and the shell opening of the shell through the third image acquisition device.
  • the embodiment of the present application further provides a device, which is provided with a control program for executing the above-mentioned shell appearance detection method, including a first image acquisition device, which is used to extend into the shell along the opening of the shell and rotate relative to the shell to acquire a first image of the shell.
  • a first image acquisition device which is used to extend into the shell along the opening of the shell and rotate relative to the shell to acquire a first image of the shell.
  • the first image acquisition device is a contact image sensor, which is a columnar structure arranged along the bottom of the shell from the shell opening, and a contact-type photosensitive element is arranged on one side of the first image acquisition device; the first image acquisition device or the shell is extended and rotated under the drive of a driving source, so that the contact-type photosensitive element acquires a first image of the inner side wall of the shell.
  • the first image acquisition device is an endoscope assembly, which includes a driving rod and at least one first camera arranged on the driving rod; the driving rod or the shell is extended and rotated under the drive of the driving source, so that the first camera acquires a first image of the inner side wall of the shell.
  • the inner bottom of the housing to the opening is divided into at least a first area and a second area; the number of the first camera is one, and the first camera is arranged at one side of the end of the driving rod;
  • the first camera is driven by the driving rod to rotate and take pictures in the first area and the second area in sequence to obtain a first image of the inner side wall of the shell.
  • the inner bottom of the shell to the opening is divided into at least a first area and a second area; the number of the first cameras is at least two, the two first cameras are equidistantly arranged on one side of the driving rod, and the two first cameras rotate and take pictures of the first area and the second area respectively to obtain a first image of the inner side wall of the shell.
  • a second camera is also provided at the end of the driving rod, and the second camera is used to obtain an image of the bottom inside the shell.
  • the device further includes: a second image acquisition device, which is arranged adjacent to the outside of the shell and rotates and photographs the outside of the shell to acquire a second image of the outside of the shell.
  • a second image acquisition device which is arranged adjacent to the outside of the shell and rotates and photographs the outside of the shell to acquire a second image of the outside of the shell.
  • the third image acquisition device is used to acquire any one or more third images of the inner bottom and bottom edge of the shell, the outer bottom of the shell, and the shell opening of the shell.
  • a displacement device for moving the housing is further included, and the first image acquisition device, the second image acquisition device, and the third image acquisition device are arranged along the displacement device.
  • the present application uses a first image acquisition device to extend into the shell to acquire an image of the inside of the shell, uses a second image acquisition device to rotate relative to the outside of the shell to take photos to acquire an image of the outside of the shell, and uses a third image acquisition device to acquire images of any one or more of the bottom and bottom edge of the inner side of the shell, the outer bottom of the shell, and the shell opening of the shell; thereby achieving full detection of the shell appearance, effectively detecting defects such as protrusions, depressions, scratches, etc. on the shell surface, achieving full coverage of shell detection, and improving the accuracy and yield rate of shell detection. This in turn improves the yield rate of shell production and reduces safety hazards caused by shell defects.
  • FIG1 is a schematic diagram of a first image acquisition device and a second image acquisition device performing image acquisition on a housing according to an embodiment of the present application;
  • FIG2 is a first structural diagram of a first image acquisition device provided by an embodiment of the present application.
  • FIG3 is a diagram of a first image acquisition device according to an embodiment of the present application acquiring a first image
  • FIG4 is a second structural schematic diagram of a first image acquisition device provided by an embodiment of the present application.
  • FIG5 is a third structural diagram of a first image acquisition device provided by an embodiment of the present application.
  • FIG6 is a diagram showing a second image captured by a second image capturing device provided by an embodiment of the present application.
  • FIG7 is a first structural diagram of a third image acquisition device provided by an embodiment of the present application.
  • FIG8 is a third image schematic diagram 1 of a third image acquisition device provided by another embodiment of the present application.
  • FIG9 is a second structural diagram of a third image acquisition device provided by an embodiment of the present application.
  • FIG10 is a second schematic diagram of a third image of a third image acquisition device provided by an embodiment of the present application.
  • FIG11 is a third structural schematic diagram of a third image acquisition device provided by an embodiment of the present application.
  • FIG. 12 is a third schematic diagram of a third image of a third image acquisition device provided by an embodiment of the present application.
  • “several” means one or more, “more” means more than two, “greater than”, “less than”, “exceed”, etc. are understood to exclude the number itself, and “above”, “below”, “within”, etc. are understood to include the number itself. If there is a description of "first” or “second”, it is only used for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features or implicitly indicating the order of the indicated technical features.
  • the embodiment of the present application provides a shell appearance detection method, which is applied to the appearance detection of a shell with one or more openings on one side.
  • the method includes: extending a first image acquisition device into the shell along the opening of the shell, and rotating the first image acquisition device and the shell relative to each other to acquire a first image of the inner side wall of the shell.
  • the first image acquisition device can acquire an image of the inner circumferential wall of the shell, which can achieve full coverage of the inner wall detection of the battery and improve the accuracy and efficiency of the battery shell detection.
  • a first image acquisition mechanism is provided on one side of the first image acquisition device; the first image acquisition device is extended and rotated under the drive of the driving source, so that the first image acquisition mechanism acquires a first image of the inner side wall of the shell.
  • the first image acquisition device is a contact image sensor
  • the first image acquisition device is a columnar structure arranged along the bottom of the shell from the shell opening
  • a contact-type photosensitive element is provided on one side of the first image acquisition device
  • the contact-type photosensitive element is the first image acquisition mechanism
  • the first image acquisition device is extended and rotated under the drive of the driving source, so that the contact-type photosensitive element acquires the first image of the inner side wall of the shell.
  • the first image acquisition device 200 extends into the interior of the housing 100 for detection, wherein the housing and the first image acquisition device may be of any shape such as a circular, square, hexagonal cross section. In this example, a circular housing and a cylindrical first image acquisition device are used as an example.
  • the first image acquisition device includes a contact image sensor 210 and a contact photosensitive element 211 disposed on one side of the contact image sensor 210.
  • the contact drive device may be driven by a drive source such as a cylinder or a motor to achieve telescopic and rotating movements.
  • the diameter of one end of the contact image sensor 210 is smaller than the inner diameter of the housing, so that the contact image sensor 210 is provided with a contact photosensitive element 211 that can be extended into the interior of the housing.
  • a light source may be disposed on one side of the contact photosensitive element 211, and the light source may be disposed adjacent to the contact photosensitive element 211 to improve the image effect acquired by the contact photosensitive element 211.
  • FIG3 is a first image acquired by the first image acquisition device, and the first image is an image of the inner wall of the shell.
  • the first image acquisition device can clearly acquire defects such as scratches and dents inside the shell.
  • the present application can also connect the shell to a driving source, and by rotating the shell 100 along the central axis of the shell, the first image acquisition device acquires an image of the side wall of the shell.
  • the first image acquisition mechanism when the length of the first image acquisition mechanism is greater than or equal to the length of the inner side wall of the shell, the first image acquisition mechanism can be extended into the shell to directly acquire images.
  • the length of the first image acquisition mechanism is less than the length of the inner side wall of the shell, the interior of the shell can be divided into multiple areas through the telescopic function of the first image acquisition device, and the first image acquisition mechanism can sequentially acquire images in different shell areas.
  • a plurality of acquisition areas are divided inside the shell; a first image acquisition mechanism is provided on one side of the first image acquisition device to rotate and photograph the acquisition areas in turn, or a plurality of first image acquisition mechanisms are provided on one side of the first image acquisition device to rotate and photograph the acquisition areas respectively.
  • the first image acquisition device is an endoscope assembly, which includes a drive rod and at least one first camera arranged on the drive rod; the drive rod is extended and rotated under the drive of the drive source, so that the first camera acquires the first image of the inner side wall of the shell.
  • the drive rod can be driven by a drive source such as a cylinder or a motor, so that the drive rod can perform actions such as extension and rotation, and the first camera is connected to one side of the drive rod.
  • the first camera is arranged on the drive rod 222, and the drive rod is provided with one end of the first camera extending into the inner side of the shell, and the inner side of the shell is photographed by the first camera.
  • the drive rod can be rotatably arranged so that the first camera can rotate along the inner circumference of the shell to take pictures.
  • the shell can also be connected to the drive source so that the shell can rotate along the central axis of the shell, so that the first camera can capture the image of the inner side wall of the shell.
  • the inner bottom of the shell to the opening is divided into at least a first area and a second area; there is one first camera, and the first camera is arranged on one side of the end of the driving rod; the first camera is driven by the driving rod to rotate and take pictures in the first area and the second area in turn to obtain a first image of the inner side wall of the shell.
  • the inside of the shell can be divided into a first area 110 and a second area 120, and a third area 130 can also be divided; the first camera can be driven by the driving rod to collect images in the first area, the second area, and the third area in sections.
  • the inner bottom of the shell to the opening is divided into at least a first area and a second area; the number of first cameras is at least two, and the two first cameras are equidistantly arranged on one side of the driving rod, and the two first cameras rotate and take pictures of the first area and the second area respectively to obtain the first image of the inner side wall of the shell.
  • the present application can set the same number of first cameras as the inner area of the shell according to the size of the framing area.
  • the framing width of the first camera 221 of the present application is the width of the first area 110, so three first cameras can be set on the driving rod, and the three first cameras are respectively arranged along the first area 110, the second area 120, and the third area 130.
  • the driving rod rotates, the images of the first area 110, the second area 120, and the third area 130 can be obtained at the same time.
  • a second camera 223 is also arranged at the end of the driving rod 222, and the second camera 223 is used to obtain the image of the inner bottom of the shell.
  • a second camera can be arranged at the end of the driving rod 222 to obtain the inner bottom of the shell 100 and the edge image of the inner bottom of the shell 100 in contact with the side wall.
  • Acquiring edge images for detection can be used to eliminate the blind spot at the connection between the side wall and the bottom of the shell, and improve the accuracy of detection inside the shell.
  • the second camera 223 and the first camera 221 have a perpendicular shooting angle to each other, and the second camera 223 can capture images during the process of the driving rod extending into the shell, and can also capture images after the driving rod has been completely extended into the shell.
  • the free end of the first image acquisition device is further provided with a second image acquisition mechanism, and when the first image acquisition device is extended into the shell, the image of the shell opening, the image of the inner bottom and the bottom edge of the shell, and the image of the inner side wall of the shell are sequentially acquired.
  • the first image acquisition device can be driven by the driving source to extend into the shell, and when extending into the shell, the image of the shell opening, the inner bottom and the bottom edge, and the inner side wall of the shell are sequentially acquired, wherein the first image acquisition mechanism acquires the image of the inner side wall of the shell, and the second image acquisition mechanism acquires the image of the shell opening, the inner bottom and the bottom edge of the shell.
  • the method before or after the first image acquisition device is inserted into the opening of the shell and then inserted into the interior of the shell, the method further includes: arranging the first image acquisition device adjacent to the outer peripheral wall of the shell, and rotating the first image acquisition mechanism or the shell to acquire a second image of the outer peripheral wall of the shell.
  • the present application can also acquire a second image of the outer side of the shell by acquiring an image of the outer peripheral wall of the shell through the first image acquisition mechanism.
  • the first image acquisition device when the first image acquisition device is inserted into the opening of the shell and inserted into the interior of the shell, it also includes: setting the second image acquisition device adjacent to the outside of the shell, and rotating the second image acquisition device or the shell to acquire a second image of the outer peripheral wall of the shell.
  • the present application can use the second image acquisition device to be adjacent to the outside of the shell, and to rotate and photograph the outer peripheral wall of the shell to acquire the second image of the outer peripheral wall of the shell.
  • the second image acquisition device can be used to capture the image of the outer peripheral wall of the shell while the first image acquisition device is capturing the image of the interior of the shell.
  • the second image acquisition device can be used to capture the image of the outer peripheral wall of the shell before or after the first image acquisition device captures the image of the interior of the shell.
  • an embodiment is listed in which the first image acquisition device acquires images of the interior of the shell while the second image acquisition device acquires images of the outer peripheral wall of the shell, see FIG1.
  • the second image acquisition device is adjacently arranged on the outer side of the shell, and can be driven by the driving source to circle the outer peripheral wall of the shell to acquire the outer peripheral image of the shell, see FIG6, FIG6 is the second image acquired by the second image acquisition device, and the scratches, depressions, convex points and other defects on the outer side of the shell can be clearly acquired from the second image.
  • the present application can also directly connect the shell to the driving source, so that the driving source drives the shell to rotate, so that the shell and the first image acquisition device 200 and the second image acquisition device 300 rotate relative to each other, and the first image acquisition device 200 and the second image acquisition device 300 acquire the first image and the second image respectively.
  • the first image acquisition device before or after extending the first image acquisition device into the opening of the shell and into the interior of the shell, it also includes: moving the shell to a third image acquisition device, and acquiring a third image of any one or more of the inner bottom and bottom edge of the shell, the outer bottom of the shell, and the shell opening of the shell through the third image acquisition device.
  • the shell can be moved to the third image acquisition device by a displacement device to acquire the inner bottom and bottom edge of the shell.
  • the third image acquisition device includes a third camera 410 and a first light source 420.
  • the first light source 420 is used for fill light.
  • the third camera 410 acquires the inner bottom of the shell and the north bottom edge of the shell under the fill light of the first light source 420, see Figure 8.
  • Figure 8 shows the inner bottom and the inner bottom edge of the shell captured by the third image acquisition device. From the inner bottom and the inner bottom edge of the shell, scratches, depressions, convex points and other defects on the outside of the shell can be clearly acquired.
  • the blind spot of the first image acquisition device 200 can be eliminated by the third image acquisition device 400, and the inner bottom and the inner bottom edge of the shell can be imaged, and the connection seam between the inner bottom of the shell and the side wall can be clearly acquired.
  • the shell can be moved to the third image acquisition device by a displacement device to acquire an image of the outer bottom of the shell.
  • the third image acquisition device includes a third camera 410 and a first light source 420.
  • the first light source 420 is used for fill light.
  • the third camera 410 acquires an image of the outer bottom of the shell under the fill light of the first light source 420, see Figure 10.
  • Figure 10 is an image of the outer bottom of the shell captured by the third image acquisition device, from which scratches, depressions, convex spots and other defects on the outer bottom of the shell can be clearly acquired.
  • the shell can be moved to the third image acquisition device by a displacement device to acquire an image of the shell opening of the shell.
  • the third image acquisition device includes a third camera 410 and a first light source 420, the first light source 420 is used for fill light, and the third camera 410 acquires an image of the shell opening of the shell under the fill light of the first light source 420, see Figure 10.
  • Figure 10 is an image of the shell opening captured by the third image acquisition device, and scratches, depressions, bumps, burrs and other defects on the outer bottom of the shell can be clearly acquired from the image of the outer bottom of the shell.
  • the embodiment of the present application further provides a device, which is provided with a control program for executing the above-mentioned shell appearance detection method, including a first image acquisition device, which is used to extend into the shell along the opening of the shell and rotate inside the shell to acquire a first image of the inside of the shell.
  • a first image acquisition device which is used to extend into the shell along the opening of the shell and rotate inside the shell to acquire a first image of the inside of the shell.
  • the first image acquisition device can acquire an image of the inner peripheral wall of the shell, which can achieve full coverage of the inner wall of the battery detection, and improve the accuracy and efficiency of the battery shell detection.
  • the first image acquisition device is a contact image sensor
  • the first image acquisition device is a columnar structure arranged along the bottom of the shell from the shell opening, and a contact-type photosensitive element is arranged on one side of the first image acquisition device; the first image acquisition device is extended and rotated under the drive of the driving source, so that the contact-type photosensitive element acquires the first image of the inner side wall of the shell.
  • the first image acquisition device is a contact image sensor
  • the first image acquisition device is a columnar structure arranged along the bottom of the shell from the shell opening, and a contact-type photosensitive element is arranged on one side of the first image acquisition device, and the contact-type photosensitive element is the first image acquisition mechanism;
  • the first image acquisition device is extended and rotated under the drive of the driving source, so that the contact-type photosensitive element acquires the first image of the inner side wall of the shell.
  • the first image acquisition device 200 extends into the interior of the housing 100 for detection, wherein the housing and the first image acquisition device may be of any shape such as a circular, square, hexagonal cross section.
  • the first image acquisition device includes a contact image sensor 210 and a contact photosensitive element 211 disposed on one side of the contact image sensor 210.
  • the contact drive device may be driven by a drive source such as a cylinder or a motor to achieve telescopic and rotating movements.
  • the diameter of one end of the contact image sensor 210 is smaller than the inner diameter of the housing, so that the contact image sensor 210 is provided with a contact photosensitive element 211 that can be extended into the interior of the housing.
  • a light source may be disposed on one side of the contact photosensitive element 211, and the light source may be disposed adjacent to the contact photosensitive element 211 to improve the image effect acquired by the contact photosensitive element 211.
  • the contact photosensitive element 211 acquires images along the interior of the shell, and can rotate 360° under the drive of the rotating motor. During the rotation, the inner wall of the shell is fully scanned or fully covered, thereby acquiring images of the interior of the shell.
  • FIG3 is a first image acquired by the first image acquisition device, and the first image is an image of the inner wall of the shell.
  • the first image acquisition device can clearly acquire defects such as scratches and dents inside the shell.
  • the present application can also connect the shell to a driving source, and by rotating the shell 100 along the central axis of the shell, the first image acquisition device acquires an image of the side wall of the shell.
  • the first image acquisition device is an endoscope assembly, which includes a drive rod and at least one first camera arranged on the drive rod; the drive rod is extended and rotated under the drive of the drive source, so that the first camera acquires the first image of the inner side wall of the shell.
  • the drive rod can be driven by a drive source such as a cylinder or a motor, so that the drive rod can perform actions such as extension and rotation, and the first camera is connected to one side of the drive rod.
  • the first camera is arranged on the drive rod 222, and the drive rod is provided with one end of the first camera extending into the inner side of the shell, and the inner side of the shell is photographed through the first camera.
  • the drive rod can be rotatably arranged so that the first camera can rotate along the inner circumference of the shell to take pictures.
  • the shell can also be connected to the drive source so that the shell can rotate along the central axis of the shell, so that the first camera can capture the image of the inner side wall of the shell.
  • the inner bottom of the shell to the opening is divided into at least a first area and a second area; there is one first camera, and the first camera is arranged on one side of the end of the driving rod; the first camera is driven by the driving rod to rotate and take pictures in the first area and the second area in turn to obtain a first image of the inner side wall of the shell.
  • the inside of the shell can be divided into a first area 110 and a second area 120, and a third area 130 can also be divided; the first camera can be driven by the driving rod to collect images in the first area, the second area, and the third area in sections.
  • the inner bottom of the shell to the opening is divided into at least a first area and a second area; the number of first cameras is at least two, and the two first cameras are equidistantly arranged on one side of the driving rod, and the two first cameras rotate and take pictures of the first area and the second area respectively to obtain a first image of the inner side wall of the shell.
  • the present application can set the same number of first cameras as the inner area of the shell according to the size of the framing area.
  • the framing width of the first camera 221 of the present application is the width of the first area 110, so three first cameras can be set on the driving rod, and the three first cameras are respectively arranged along the first area 110, the second area 120, and the third area 130.
  • the driving rod rotates, the images of the first area 110, the second area 120, and the third area 130 can be obtained simultaneously.
  • a second camera is also provided at the end of the driving rod, and the second camera is used to obtain an image of the inner bottom of the shell.
  • a second camera can be provided at the end of the driving rod 222 to obtain an image of the inner bottom of the shell 100 and an edge image where the inner bottom of the shell 100 contacts the side wall.
  • Obtaining edge images for detection can be used to eliminate the blind spot at the connection between the side wall and the bottom of the shell, and improve the accuracy of detection inside the shell.
  • the second camera 223 and the first camera 221 have a photographing angle perpendicular to each other.
  • the second camera 223 can capture images during the process of the driving rod extending into the shell, and can also capture images after the driving rod has been completely extended into the shell.
  • the first image acquisition device can also be arranged adjacent to the outer peripheral wall of the shell, and the first image acquisition mechanism or the shell is rotated to acquire a second image of the outer peripheral wall of the shell.
  • the present application can also acquire an image of the outer peripheral wall of the shell by the first image acquisition mechanism to acquire a second image of the outer side of the shell.
  • a second image acquisition device is further included, and the second image acquisition device is used to be adjacently arranged outside the shell, and to rotate and photograph the outer peripheral wall of the shell to obtain a second image of the outer peripheral wall of the shell.
  • the present application can use a second image acquisition device to be adjacently arranged outside the shell, and to rotate and photograph the outer peripheral wall of the shell to obtain a second image of the outer peripheral wall of the shell.
  • the outer peripheral wall of the shell can be imaged by the second image acquisition device while the first image acquisition device is capturing images of the inside of the shell.
  • the outer peripheral wall of the shell can be imaged by the second image acquisition device before or after the first image acquisition device captures images of the inside of the shell.
  • an embodiment of capturing images of the outer peripheral wall of the shell by the second image acquisition device while the first image acquisition device is capturing images of the inside of the shell is listed, see Figure 1, in this example, the second image acquisition device is adjacently arranged outside the shell, and can be driven by a driving source to circle around the outer peripheral wall of the shell to obtain an image of the outer peripheral wall of the shell, see Figure 6, Figure 6 is a second image captured by the second image acquisition device, and scratches, depressions, convex points and other defects on the outside of the shell can be clearly captured from the second image.
  • the present application can also directly connect the shell to the driving source so that the driving source drives the shell to rotate, so that the shell and the first image acquisition device 200 and the second image acquisition device 300 rotate relative to each other, and the first image acquisition device 200 and the second image acquisition device 300 respectively acquire the first image and the second image.
  • a third image acquisition device is further included, and the third image acquisition device is used to acquire a third image of any one or more of the inner bottom and bottom edge of the shell, the outer bottom of the shell, and the shell opening of the shell.
  • the shell can be moved to the third image acquisition device by a displacement device to acquire the inner bottom and bottom edge of the shell.
  • the third image acquisition device includes a third camera 410 and a first light source 420, and the first light source 420 is used for fill light.
  • the third camera 410 acquires the inner bottom of the shell and the north bottom edge of the shell under the fill light of the first light source 420, see Figure 8.
  • Figure 8 shows the inner bottom and the inner bottom edge of the shell captured by the third image acquisition device. From the inner bottom and the inner bottom edge of the shell, scratches, depressions, convex points and other defects on the outside of the shell can be clearly acquired. At the same time, the blind spot of the first image acquisition device 200 can be eliminated by the third image acquisition device 400, and the inner bottom of the shell and the inner bottom edge of the shell are both imaged, and the connection seam between the inner bottom of the shell and the side wall can be clearly acquired.
  • the shell can be moved to the third image acquisition device by a displacement device to acquire an image of the outer bottom of the shell.
  • the third image acquisition device includes a third camera 410 and a first light source 420.
  • the first light source 420 is used for fill light.
  • the third camera 410 acquires an image of the outer bottom of the shell under the fill light of the first light source 420, see Figure 10.
  • Figure 10 is an image of the outer bottom of the shell captured by the third image acquisition device, from which scratches, depressions, convex spots and other defects on the outer bottom of the shell can be clearly acquired.
  • the shell can be moved to the third image acquisition device by a displacement device to acquire an image of the shell opening of the shell.
  • the third image acquisition device includes a third camera 410 and a first light source 420, the first light source 420 is used for fill light, and the third camera 410 acquires an image of the shell opening of the shell under the fill light of the first light source 420, see Figure 10.
  • Figure 10 is an image of the shell opening captured by the third image acquisition device, and scratches, depressions, bumps, burrs and other defects on the outer bottom of the shell can be clearly acquired from the image of the outer bottom of the shell.
  • a displacement device for moving the housing is further included, and the first image acquisition device, the second image acquisition device, and the third image acquisition device are arranged along the displacement device.
  • the displacement device is used to move the housing on the first image acquisition device, the second image acquisition device, and the third image acquisition device in sequence, so that the first image acquisition device, the second image acquisition device, and the third image acquisition device detect the housing.
  • the technical solution of the embodiment of the present application includes but is not limited to the following technical effects:
  • the present application uses a first image acquisition device to extend into the shell to acquire an image of the inside of the shell, uses a second image acquisition device to rotate relative to the outer peripheral wall of the shell to take pictures to acquire an image of the outer peripheral wall of the shell, and uses a third image acquisition device to acquire an image of any one or more of the inner bottom and bottom edge of the shell, the outer bottom of the shell, and the shell opening of the shell; thereby achieving full detection of the shell appearance, effectively detecting defects such as protrusions, depressions, scratches, etc. on the shell surface, achieving full coverage of shell detection, and improving the accuracy and yield rate of shell detection. This in turn improves the yield rate of shell production and reduces the safety hazards caused by shell defects.
  • the device of the embodiment of the present application includes the controller of the above-mentioned embodiment, and the controller of the above-mentioned embodiment can execute the shell appearance detection method of the above-mentioned embodiment
  • the specific implementation manner and technical effects of the battery cell detection system of the embodiment of the present application can refer to the specific implementation manner and technical effects of the control method of the battery cell detection system of any of the above-mentioned embodiments.
  • computer storage medium includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules or other data).
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, disk storage or other magnetic storage devices, or any other medium that may be used to store desired information and may be accessed by a computer.
  • communication media generally include computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本申请提供了壳体外观检测方法及装置,应用于一侧或多侧开口的壳体外观检测中,所述方法包括:将第一图像获取装置沿壳体的开口处伸入所述壳体内部,并使所述第一图像获取装置、壳体相对旋转,获取壳体内部侧壁的第一图像。在本实施例中,通过将第一图像获取装置沿壳体的开口伸入壳体内部进行局部图像获取,同时,还可以通过旋转第一图像获取装置,使第一图像获取装置可以获得壳体内周壁的图像,可实现电池内壁检测全覆盖,提高电池壳体检测的准确率和检测效率。

Description

壳体外观检测方法及装置 技术领域
本申请属于电池制造设备技术领域,尤其涉及壳体外观检测方法及装置。
背景技术
在相关技术中,在电池壳体检测中,通常仅涉及壳体外部检测,如《CN 110487807A-一种干电池锌筒外观缺陷视觉检测装置及方法》授权专利,其公开了对电池壳体外部检测;但由于现有技术难以实现在窄口径的电池壳体内部检测,所以,在行业中壳体内部检测并未在产线中进行应用。但是,壳体内部同样存在划痕、凹陷等缺陷,使得电池在出厂使用过程中,造成极大的安全隐患。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了壳体外观检测方法及装置,不但能够可通过多种方案对壳体内部进行图像获取,实现窄口壳内检测,特别地,在新能源电池领域,开创性对电池壳体内部进行检测,提高电池壳体检测的全面性,减少电池使用的安全隐患。
第一方面,本申请实施例提供了一种壳体外观检测方法,应用于一侧或多侧开口的壳体外观检测中,所述方法包括:将第一图像获取装置沿壳体的开口处伸入所述壳体内部,并使所述第一图像获取装置、壳体相对旋转,获取壳体内部侧壁的第一图像。在本实施例中,通过将第一图像获取装置沿壳体的开口伸入壳体内部进行局部图像获取,同时,还可以通过旋转第一图像获取装置,使第一图像获取装置可以获得壳体内周壁的图像,可实现完电池内壁检测全覆盖,提高电池壳体检测的准确率和检测效率。
在一些实施例中,所述第一图像获取装置一侧设置有第一图像采集机构第一图像采集机构;所述第一图像获取装置或壳体在驱动源驱动下进行伸缩、旋转,使所述第一图像采集机构获取壳体内部侧壁的第一图像。在本实施例中,当所述第一图像采集机构长度大于等于壳体内部侧壁长度时,使第一图像采集机构可伸入所述壳体内部时,可直接进行图像采集。当所述第一图像采集机构长度小于壳体内部侧壁长度,可通过第一图像获取装置伸缩功能,将壳体内部划分多个区域,通过第一图像采集机构依次在不同的壳体区域进行图像获取。
在一些实施例中,所述壳体内部划多个采集区域;所述第一图像获取装置一侧设置有一个第一图像采集机构依次对所述采集区域进行旋转拍照,或者所述第一图像获取装置一侧设 置有多个第一图像采集机构分别对采集区域进行旋转拍照。
在一些实施中,所述第一图像获取装置自由端还设置有第二图像采集机构,且在所述第一图像获取装置伸入壳体内部过程中,依次获取壳体开口处图像、壳体内侧底部及底部边缘图像、壳体内部侧壁图像。
在一些实施中,在所述将第一图像获取装置伸入壳体的开口处伸入所述壳体内部之前或之后,还包括:将第一图像获取装置相邻设置在所述壳体外周壁,并使第一图像采集机构或壳体旋转,获取壳体外周壁的第二图像。
在一些实施例中,在所述将第一图像获取装置伸入壳体的开口处伸入所述壳体内部时,还包括:将第二图像获取装置相邻设置在所述壳体外侧,并使第二图像获取装置或壳体旋转,获取壳体外侧的第二图像。
在一些实施例中,在所述将第一图像获取装置伸入壳体的开口处伸入所述壳体内部之前或之后,还包括:将所述壳体移动到第三图像获取装置处,并通过第三图像获取装置获取所述壳体的内侧底部及底部边缘、壳体的外侧底部、壳体的壳体开口处中任一个或多个第三图像。
第二方面,本申请实施例还提供了一种装置,所述装置设置有用于执行上述壳体外观检测方法的控制程序,包括第一图像获取装置,所述第一图像获取装置,用于将沿壳体的开口处伸入所述壳体内部,并与壳体进行相对旋转,获取壳体内部的第一图像。在本实施例中,通过将第一图像获取装置沿壳体的开口伸入壳体内部进行局部图像获取,同时,还可以通过旋转第一图像获取装置,使第一图像获取装置可以获得壳体内周壁的图像,可实现完电池内壁检测全覆盖,提高电池壳体检测的准确率和检测效率。
在一些实施例中,所述第一图像获取装置为接触式图像传感器,所述第一图像获取装置为自所述壳体开口处沿壳体底部设置的柱体结构,且所述第一图像获取装置一侧设置有触点式感光元件;所述第一图像获取装置或壳体在驱动源驱动下进行伸缩、旋转,使所述触点式感光元件获取壳体内部侧壁的第一图像。
在一些实施例中,所述第一图像获取装置为内窥镜组件,所述内窥镜组件包括驱动杆、及设置在所述驱动杆的至少一个第一摄像头;所述驱动杆或壳体与驱动源驱动下进行伸缩、旋转,使第一摄像头获取壳体内部侧壁的第一图像。
在一些实施例中,所述壳体内侧底部到开口处至少划分为第一区域、第二区域;所述第一摄像头数量为一个,且第一摄像头设置在驱动杆端部一侧;
所述第一摄像头在所述驱动杆驱动下,依次在第一区域、第二区域进行旋转拍照,获取壳体内部侧壁的第一图像。
在一些实施例中,所述壳体内侧底部到开口处至少划分为第一区域、第二区域;所述第 一摄像头数量为至少两个,两个所述第一摄像头等距设置在所述驱动杆一侧,且两个所述第一摄像头分别对第一区域、第二区域进行旋转拍照,获取壳体内部侧壁的第一图像。
在一些实施例中,所述驱动杆端部还设置有第二摄像头,所述第二摄像头用于获取壳体内侧底部图像。
在一些实施例中,还包括:所述第二图像获取装置,用于相邻设置在所述壳体外部,并对壳体外侧进行旋转拍照,获取壳体外侧的第二图像。
在一些实施例中,还包括:所述第三图像获取装置,用于获取所述壳体的内侧底部及底部边缘、壳体的外侧底部、壳体的壳体开口处中任一个或多个第三图像。
在一些实施例中,还包括用于移动壳体的位移装置,所述第一图像获取装置、第二图像获取装置、第三图像获取装置沿所述位移装置设置。
本申请实施例的技术方案,包括但不限于如下技术效果:本申请通过第一图像获取装置伸入壳体内部获取壳体内侧图像,通过第二图像获取装置与壳体外侧进行相对旋转拍照获取壳体外侧图像,通过第三图像获取装置获取所述壳体的内侧底部及底部边缘、壳体的外侧底部、壳体的壳体开口处中任一个或多个的图像;从而实现壳体外观全检测,可有效检出壳体表面的凸起、凹陷、划痕等缺陷,实现壳体检测全覆盖,提高了壳体检测的准确率和良品率。进而提高了壳体生产的良品率,降低壳体因缺陷带来的安全隐患。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的第一图像获取装置、第二图像获取装置对壳体进行图像采集的示意图;
图2是本申请一个实施例提供的第一图像获取装置的结构示意图一;
图3是本申请一个实施例提供的第一图像获取装置获取第一图像;
图4是本申请一个实施例提供的第一图像获取装置的结构示意图二;
图5是本申请一个实施例提供的第一图像获取装置的结构示意图三;
图6是本申请一个实施例提供的第二图像获取装置获取第二图像;
图7是本申请一个实施例提供的第三图像获取装置的结构示意图一;
图8是本申请另一个实施例提供第三图像获取装置的第三图像示意图一;
图9是本申请一个实施例提供的第三图像获取装置的结构示意图二;
图10是本申请一个实施例提供的第三图像获取装置的第三图像示意图二;
图11是本申请一个实施例提供的第三图像获取装置的结构示意图三;
图12是本申请一个实施例提供的第三图像获取装置的第三图像示意图三。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
在一些情形下,如《CN110487807A-一种干电池锌筒外观缺陷视觉检测装置及方法》授权专利,其公开了对电池壳体外部检测;但由于现有技术无法难以实现在窄口径的电池壳体内部检测,所以,在行业中壳体内部检测并未在产线中进行应用。但是,壳体内部同样存在划痕、凹陷等缺陷,使得电池在出厂使用过程中,造成极大的安全隐患。
基于上述情况,本申请实施例提供了一种壳体外观检测方法,应用于一侧或多侧开口的壳体外观检测中,本方法包括:将第一图像获取装置沿壳体的开口处伸入壳体内部,并使第一图像获取装置、壳体相对旋转,获取壳体内部侧壁的第一图像。在本实施例中,通过将第一图像获取装置沿壳体的开口伸入壳体内部进行局部图像获取,同时,还可以通过旋转第一图像获取装置,使第一图像获取装置可以获得壳体内周壁的图像,可实现完电池内壁检测全覆盖,提高电池壳体检测的准确率和检测效率。
在上述的壳体外观检测方法的一种实施例中,所述第一图像获取装置一侧设置有第一图像采集机构,第一图像采集机构;所述第一图像获取装置在驱动源驱动下进行伸缩、旋转,使所述第一图像采集机构获取壳体内部侧壁的第一图像。在本实施例中,第一图像获取装置 为接触式图像传感器,第一图像获取装置为自壳体开口处沿壳体底部设置的柱体结构,且第一图像获取装置一侧设置有触点式感光元件,触点式感光元件即为第一图像采集机构;第一图像获取装置在驱动源驱动下进行伸缩、旋转,使触点式感光元件获取壳体内部侧壁的第一图像。参见图1-3,第一图像获取装置200伸入壳体100内部进行检测,其中,壳体、第一图像获取装置可以是横截面为圆形、方形、六边形等任意形状,在本例中,以圆形壳体、圆柱形的第一图像获取装置进行举例,参见图2,第一图像获取装置包括接触式图像传感器210、以及设置在接触式图像传感器210一侧的触点式感光元件211,接触式驱动装置可以由气缸、电机等驱动源进行驱动,实现伸缩、旋转动作。接触式图像传感器210一端直径小于壳体内部直径,使得接触式图像传感器210设置有触点式感光元件211可伸入壳体内部设置。同时,还可以在触点式感光元件211一侧设置发光光源,发光光源可以与触点式感光元件211相邻设置,提高触点式感光元件211获取的图像效果。接触式图像传感器210伸入壳体内部后,触点式感光元件211沿壳体内部进行图像获取,且可在旋转电机驱动下进行360°旋转,在旋转中,实现壳体内壁全扫描或者全覆盖取景,从而实现壳体内部图像获取。参见图3,图3为第一图像获取装置获取的第一图像,第一图像为壳体内壁图像,通过第一图像获取装置可清晰获取壳体内部的划痕、凹陷等缺陷。此外,本申请还可以将壳体与驱动源连接,通过使壳体100沿壳体中心轴进行旋转,使第一图像获取装置获取壳体侧壁图像。
在上述实施例的一种实施方式中,当所述第一图像采集机构长度大于等于壳体内部侧壁长度时,使第一图像采集机构可伸入所述壳体内部时,可直接进行图像采集。当所述第一图像采集机构长度小于壳体内部侧壁长度,可通过第一图像获取装置伸缩功能,将壳体内部划分多个区域,通过第一图像采集机构依次在不同的壳体区域进行图像获取。
在上述的壳体外观检测方法的一种实施例中,所述壳体内部划多个采集区域;所述第一图像获取装置一侧设置有一个第一图像采集机构依次对所述采集区域进行旋转拍照,或者所述第一图像获取装置一侧设置有多个第一图像采集机构分别对采集区域进行旋转拍照。
在上述实施例的一种实施方式中,第一图像获取装置为内窥镜组件,内窥镜组件包括驱动杆、及设置在驱动杆的至少一个第一摄像头;驱动杆与驱动源驱动下进行伸缩、旋转,使第一摄像头获取壳体内部侧壁的第一图像。在本实施例中,驱动杆可由气缸、电机等驱动源进行驱动,使驱动杆进行伸缩、旋转等动作,第一摄像头连接在驱动杆一侧,参见图4,第一摄像头设置在驱动杆222上,驱动杆设置有第一摄像头一端伸入壳体内侧,通过第一摄像头对壳体内侧进行拍照,同时,驱动杆可以旋转设置,使第一摄像头可沿壳体内周旋转拍照。此外,也可以将壳体与驱动源连接,使壳体可沿壳体中心轴进行旋转,是第一摄像头可采集壳体内部侧壁图像。
在上述实施例的一种实施方式中,壳体内侧底部到开口处至少划分为第一区域、第二区 域;第一摄像头数量为一个,且第一摄像头设置在驱动杆端部一侧;第一摄像头在驱动杆驱动下,依次在第一区域、第二区域进行旋转拍照,获取壳体内部侧壁的第一图像。参见图4,壳体内部可以划分为第一区域110、第二区域120,同时还可以划分出第三区域130;第一摄像头,可在驱动杆的驱动下,分段在第一区域、第二区域、第三区域进行图像采集。
在上述实施例的一种实施方式中,壳体内侧底部到开口处至少划分为第一区域、第二区域;第一摄像头数量为至少两个,两个第一摄像头等距设置在驱动杆一侧,且两个第一摄像头分别对第一区域、第二区域进行旋转拍照,获取壳体内部侧壁的第一图像。在本实施例中,本申请可根据取景区域大小,设置与壳体内部区域相同数量的第一摄像头,如图5所示的实施例,本申请的第一摄像头221取景宽度为第一区域110的宽度,所以,可在驱动杆设置在三个第一摄像头,且三个第一摄像头分别沿第一区域110、第二区域120、第三区域130设置,驱动杆旋转时,可同时获取第一区域110、第二区域120、第三区域130的图像。在上述实施例的一种实施方式中,驱动杆222端部还设置有第二摄像头223,第二摄像头223用于获取壳体内侧底部图像。参见图5,可在驱动杆222的端部设置第二摄像头,用于获取壳体100内侧底部、及壳体100内侧底部与侧壁接触的边缘图像。获取边缘图像进行检测,可用于消除壳体侧壁与底部连接部位的盲区,提高壳体内部检测准确率。第二摄像头223与第一摄像头221拍照角度相互垂直,第二摄像头223可在驱动杆伸入壳体内过程中进行图像采集,也可以在驱动杆完成伸入到壳体内进行图像获取。
在上述实施例的一种实施方式中,所述第一图像获取装置自由端还设置有第二图像采集机构,且在所述第一图像获取装置伸入壳体内部过程中,依次获取壳体开口处图像、壳体内侧底部及底部边缘图像、壳体内部侧壁图像。在本实施例中,第一图像获取装置可在驱动源驱动下,沿壳体内部进行伸入,在伸入壳体内部过程中,依次对壳体开口处、内侧底部及底部边缘、壳体内部侧壁进行图像采集,其中,第一图像采集机构获取壳体内部侧壁图像,第二图像采集机构获取壳体开口处图像、壳体内侧底部及底部边缘图像。
在上述实施例的一种实施方式中,在所述将第一图像获取装置伸入壳体的开口处伸入所述壳体内部之前或之后,还包括:将第一图像获取装置相邻设置在所述壳体外周壁,并使第一图像采集机构或壳体旋转,获取壳体外周壁的第二图像。本申请也可以通过第一图像采集机构采集壳体的外周壁的图像,获取壳体外侧的第二图像。
在一些实施例中,在将第一图像获取装置伸入壳体的开口处伸入壳体内部时,还包括:将第二图像获取装置相邻设置在壳体外侧,并使第二图像获取装置或壳体旋转,获取壳体外周壁的第二图像。在本实施例中,本申请可以通过第二图像获取装置,用于相邻设置在壳体外部,并对壳体外周壁进行旋转拍照,获取壳体外周壁的第二图像。具体地,可以在第一图像获取装置对壳体内部进行图像采集的同时,通过第二图像获取装置对壳体外周壁进行图像 采集。可以在第一图像获取装置对壳体内部进行图像采集之前或之后,通过第二图像获取装置对壳体外周壁进行图像采集。在本实施例中,列举在第一图像获取装置对壳体内部进行图像采集的同时,通过第二图像获取装置对壳体外周壁进行图像采集的实施例,参见图1,在本例中,第二图像获取装置相邻设置在壳体的外侧,可以在驱动源驱动下,在壳体外周壁环绕一周,获取壳体外周图像,参见图6,图6为第二图像获取装置采集的第二图像,从第二图像中可清晰获取壳体外部的划痕、凹陷、凸点等缺陷。此外,本申请也可将壳体直接与驱动源连接,使驱动源带动壳体进行转动,使得壳体与第一图像获取装置200、第二图像获取装置300相对旋转,并分别由第一图像获取装置200、第二图像获取装置300获取第一图像、第二图像。
在一些实施例中,在将第一图像获取装置伸入壳体的开口处伸入壳体内部之前或之后,还包括:将壳体移动到第三图像获取装置处,并通过第三图像获取装置获取壳体的内侧底部及底部边缘、壳体的外侧底部、壳体的壳体开口处中任一个或多个的第三图像。
在本实施例的一种实施方式中,可通过位移装置,将壳体移动到第三图像获取装置处,获取壳体的内侧底部及底部边缘。参见图7-8,第三图像获取装置包括第三摄像头410、第一光源420,第一光源420用于补光,第三摄像头410在第一光源420补光作用下获取壳体内侧底部、及壳体北侧底部边缘图像,参见图8。图8为第三图像获取装置采集的内侧底部、及壳体内侧底部边缘,从内侧底部、及壳体内侧底部边缘中可清晰获取壳体外部的划痕、凹陷、凸点等缺陷。同时,通过第三图像获取装置400可以消除第一图像获取装置200的盲区,将壳体内侧底部、壳体内侧底部边缘都进行图像采集,同时可以清晰获取壳体内侧底部与侧壁之间的连接缝。
在本实施例的一种实施方式中,可通过位移装置,将壳体移动到第三图像获取装置处,获取壳体的外侧底部图像。参见图9-10,第三图像获取装置包括第三摄像头410、第一光源420,第一光源420用于补光,第三摄像头410在第一光源420补光作用下获取壳体外侧底部图像,参见图10。图10为第三图像获取装置采集的壳体外侧底部图像,从壳体外侧底部图像中可清晰获取壳体外侧底部的划痕、凹陷、凸点等缺陷。
在本实施例的一种实施方式中,可通过位移装置,将壳体移动到第三图像获取装置处,获取壳体的壳体开口处图像。参见图11-12,第三图像获取装置包括第三摄像头410、第一光源420,第一光源420用于补光,第三摄像头410在第一光源420补光作用下获取壳体的壳体开口处图像,参见图10。图10为第三图像获取装置采集的壳体开口处图像,从壳体外侧底部图像中可清晰获取壳体外侧底部的划痕、凹陷、凸点、毛刺等缺陷。
另外,本申请实施例还提供了一种装置,装置设置有用于执行上述壳体外观检测方法的控制程序,包括第一图像获取装置,第一图像获取装置,用于将沿壳体的开口处伸入壳体内 部,并在壳体内部进行旋转,获取壳体内部的第一图像。在本实施例中,通过将第一图像获取装置沿壳体的开口伸入壳体内部进行局部图像获取,同时,还可以通过旋转第一图像获取装置,使第一图像获取装置可以获得壳体内周壁的图像,可实现完电池内壁检测全覆盖,提高电池壳体检测的准确率和检测效率。
在一些实施例中,第一图像获取装置为接触式图像传感器,第一图像获取装置为自壳体开口处沿壳体底部设置的柱体结构,且第一图像获取装置一侧设置有触点式感光元件;第一图像获取装置在驱动源驱动下进行伸缩、旋转,使触点式感光元件获取壳体内部侧壁的第一图像。在本实施例中,第一图像获取装置为接触式图像传感器,第一图像获取装置为自壳体开口处沿壳体底部设置的柱体结构,且第一图像获取装置一侧设置有触点式感光元件,触点式感光元件即为第一图像采集机构;第一图像获取装置在驱动源驱动下进行伸缩、旋转,使触点式感光元件获取壳体内部侧壁的第一图像。参见图1-3,第一图像获取装置200伸入壳体100内部进行检测,其中,壳体、第一图像获取装置可以是横截面为圆形、方形、六边形等任意形状,在本例中,以圆形壳体、圆柱形的第一图像获取装置进行举例,参见图2,第一图像获取装置包括接触式图像传感器210、以及设置在接触式图像传感器210一侧的触点式感光元件211,接触式驱动装置可以由气缸、电机等驱动源进行驱动,实现伸缩、旋转动作。接触式图像传感器210一端直径小于壳体内部直径,使得接触式图像传感器210设置有触点式感光元件211可伸入壳体内部设置。同时,还可以在触点式感光元件211一侧设置发光光源,发光光源可以与触点式感光元件211相邻设置,提高触点式感光元件211获取的图像效果。接触式图像传感器210伸入壳体内部后,触点式感光元件211沿壳体内部进行图像获取,且可在旋转电机驱动下进行360°旋转,在旋转中,实现壳体内壁全扫描或者全覆盖取景,从而实现壳体内部图像获取。参见图3,图3为第一图像获取装置获取的第一图像,第一图像为壳体内壁图像,通过第一图像获取装置可清晰获取壳体内部的划痕、凹陷等缺陷。此外,本申请还可以将壳体与驱动源连接,通过使壳体100沿壳体中心轴进行旋转,使第一图像获取装置获取壳体侧壁图像。
在一些实施例中,第一图像获取装置为内窥镜组件,内窥镜组件包括驱动杆、及设置在驱动杆的至少一个第一摄像头;驱动杆与驱动源驱动下进行伸缩、旋转,使第一摄像头获取壳体内部侧壁的第一图像。在本实施例中,驱动杆可由气缸、电机等驱动源进行驱动,使驱动杆进行伸缩、旋转等动作,第一摄像头连接在驱动杆一侧,参见图4,第一摄像头设置在驱动杆222上,驱动杆设置有第一摄像头一端伸入壳体内侧,通过第一摄像头对壳体内侧进行拍照,同时,驱动杆可以旋转设置,使第一摄像头可沿壳体内周旋转拍照。此外,也可以将壳体与驱动源连接,使壳体可沿壳体中心轴进行旋转,是第一摄像头可采集壳体内部侧壁图像。
在一些实施例中,壳体内侧底部到开口处至少划分为第一区域、第二区域;第一摄像头数量为一个,且第一摄像头设置在驱动杆端部一侧;第一摄像头在驱动杆驱动下,依次在第一区域、第二区域进行旋转拍照,获取壳体内部侧壁的第一图像。参见图4,壳体内部可以划分为第一区域110、第二区域120,同时还可以划分出第三区域130;第一摄像头,可在驱动杆的驱动下,分段在第一区域、第二区域、第三区域进行图像采集。
在一些实施例中,壳体内侧底部到开口处至少划分为第一区域、第二区域;第一摄像头数量为至少两个,两个第一摄像头等距设置在驱动杆一侧,且两个第一摄像头分别对第一区域、第二区域进行旋转拍照,获取壳体内部侧壁的第一图像。在本实施例中,本申请可根据取景区域大小,设置与壳体内部区域相同数量的第一摄像头,如图5所示的实施例,本申请的第一摄像头221取景宽度为第一区域110的宽度,所以,可在驱动杆设置在三个第一摄像头,且三个第一摄像头分别沿第一区域110、第二区域120、第三区域130设置,驱动杆旋转时,可同时获取第一区域110、第二区域120、第三区域130的图像。
在一些实施例中,驱动杆端部还设置有第二摄像头,第二摄像头用于获取壳体内侧底部图像。参见图5,可在驱动杆222的端部设置第二摄像头,用于获取壳体100内侧底部、及壳体100内侧底部与侧壁接触的边缘图像。获取边缘图像进行检测,可用于消除壳体侧壁与底部连接部位的盲区,提高壳体内部检测准确率。第二摄像头223与第一摄像头221拍照角度相互垂直,第二摄像头223可在驱动杆伸入壳体内过程中进行图像采集,也可以在驱动杆完成伸入到壳体内进行图像获取。
在一些实施例中,第一图像获取装置还可以相邻设置在所述壳体外周壁,并使第一图像采集机构或壳体旋转,获取壳体外周壁的第二图像。本申请也可以通过第一图像采集机构采集壳体的外周壁的图像,获取壳体外侧的第二图像。
在一些实施例中,还包括第二图像获取装置,第二图像获取装置,用于相邻设置在壳体外部,并对壳体外周壁进行旋转拍照,获取壳体外周壁的第二图像。在本实施例中,本申请可以通过第二图像获取装置,用于相邻设置在壳体外部,并对壳体外周壁进行旋转拍照,获取壳体外周壁的第二图像。具体地,可以在第一图像获取装置对壳体内部进行图像采集的同时,通过第二图像获取装置对壳体外周壁进行图像采集。可以在第一图像获取装置对壳体内部进行图像采集之前或之后,通过第二图像获取装置对壳体外周壁进行图像采集。在本实施例中,列举在第一图像获取装置对壳体内部进行图像采集的同时,通过第二图像获取装置对壳体外周壁进行图像采集的实施例,参见图1,在本例中,第二图像获取装置相邻设置在壳体的外侧,可以在驱动源驱动下,在壳体外周壁环绕一周,获取壳体外周图像,参见图6,图6为第二图像获取装置采集的第二图像,从第二图像中可清晰获取壳体外部的划痕、凹陷、凸点等缺陷。此外,本申请也可将壳体直接与驱动源连接,使驱动源带动壳体进行转动,使 得壳体与第一图像获取装置200、第二图像获取装置300相对旋转,并分别由第一图像获取装置200、第二图像获取装置300获取第一图像、第二图像。
在一些实施例中,还包括第三图像获取装置,第三图像获取装置,用于获取壳体的内侧底部及底部边缘、壳体的外侧底部、壳体的壳体开口处中任一个或多个的第三图像。在本实施例的一种实施方式中,可通过位移装置,将壳体移动到第三图像获取装置处,获取壳体的内侧底部及底部边缘。参见图7-8,第三图像获取装置包括第三摄像头410、第一光源420,第一光源420用于补光,第三摄像头410在第一光源420补光作用下获取壳体内侧底部、及壳体北侧底部边缘图像,参见图8。图8为第三图像获取装置采集的内侧底部、及壳体内侧底部边缘,从内侧底部、及壳体内侧底部边缘中可清晰获取壳体外部的划痕、凹陷、凸点等缺陷。同时,通过第三图像获取装置400可以消除第一图像获取装置200的盲区,将壳体内侧底部、壳体内侧底部边缘都进行图像采集,同时可以清晰获取壳体内侧底部与侧壁之间的连接缝。
在本实施例的一种实施方式中,可通过位移装置,将壳体移动到第三图像获取装置处,获取壳体的外侧底部图像。参见图9-10,第三图像获取装置包括第三摄像头410、第一光源420,第一光源420用于补光,第三摄像头410在第一光源420补光作用下获取壳体外侧底部图像,参见图10。图10为第三图像获取装置采集的壳体外侧底部图像,从壳体外侧底部图像中可清晰获取壳体外侧底部的划痕、凹陷、凸点等缺陷。
在本实施例的一种实施方式中,可通过位移装置,将壳体移动到第三图像获取装置处,获取壳体的壳体开口处图像。参见图11-12,第三图像获取装置包括第三摄像头410、第一光源420,第一光源420用于补光,第三摄像头410在第一光源420补光作用下获取壳体的壳体开口处图像,参见图10。图10为第三图像获取装置采集的壳体开口处图像,从壳体外侧底部图像中可清晰获取壳体外侧底部的划痕、凹陷、凸点、毛刺等缺陷。
在一些实施例中,还包括用于移动壳体的位移装置,位移装置,第一图像获取装置、第二图像获取装置、第三图像获取装置沿位移装置设置。在本实施例中,位移装置,用于将壳体依次在第一图像获取装置、第二图像获取装置、第三图像获取装置上移动,使第一图像获取装置、第二图像获取装置、第三图像获取装置对壳体进行检测。
本申请实施例的技术方案,包括但不限于如下技术效果本申请通过第一图像获取装置伸入壳体内部获取壳体内侧图像,通过第二图像获取装置与壳体外周壁进行相对旋转拍照获取壳体外周壁图像,通过第三图像获取装置获取壳体的内侧底部及底部边缘、壳体的外侧底部、壳体的壳体开口处中任一个或多个的图像;从而实现壳体外观全检测,可有效检出壳体表面的凸起、凹陷、划痕等缺陷,实现壳体检测全覆盖,提高了壳体检测的准确率和良品率。进而提高了壳体生产的良品率,降低壳体因缺陷带来的安全隐患。
值得注意的是,由于本申请实施例的装置包括上述实施例的控制器,而上述实施例的控制器能够执行上述实施例的壳体外观检测方法,因此,本申请实施例的电芯检测系统的具体实施方式和技术效果,可以参照上述任一实施例的电芯检测系统的控制方法的具体实施方式和技术效果。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (16)

  1. 一种壳体外观检测方法,其特征在于,应用于一侧或多侧开口的壳体外观检测中,所述方法包括:
    将第一图像获取装置沿所述壳体的开口处伸入所述壳体内部,并使所述第一图像获取装置、所述壳体相对旋转,获取所述壳体内部侧壁的第一图像。
  2. 根据权利要求1所述的一种壳体外观检测方法,其特征在于,所述第一图像获取装置一侧设置有第一图像采集机构;所述第一图像获取装置或壳体在驱动源驱动下进行伸缩、旋转,使所述第一图像采集机构获取所述壳体内部侧壁的第一图像。
  3. 根据权利要求1所述的一种壳体外观检测方法,其特征在于,所述壳体内部划多个采集区域;所述第一图像获取装置一侧设置有一个第一图像采集机构依次对所述采集区域进行旋转拍照,或者所述第一图像获取装置一侧设置有多个第一图像采集机构分别对采集区域进行旋转拍照。
  4. 根据权利要求2或3所述的一种壳体外观检测方法,其特征在于,在将所述第一图像获取装置伸入所述壳体的开口处伸入所述壳体内部之前或之后,还包括:
    将所述第一图像获取装置相邻设置在所述壳体外周壁,并使所述第一图像采集机构或壳体旋转,获取所述壳体外周壁的第二图像。
  5. 根据权利要求2或3所述的一种壳体外观检测方法,其特征在于,所述第一图像获取装置自由端还设置有第二图像采集机构,且在所述第一图像获取装置伸入所述壳体内部过程中,依次获取所述壳体开口处图像、所述壳体内侧底部及底部边缘图像、所述壳体内部侧壁图像。
  6. 根据权利要求1所述的一种壳体外观检测方法,其特征在于,在将所述第一图像获取装置伸入所述壳体的开口处伸入所述壳体内部时,还包括:
    将第二图像获取装置相邻设置在所述壳体外周壁,并使所述第二图像获取装置或所述壳体旋转,获取所述壳体外周壁的第二图像。
  7. 根据权利要求1所述的一种壳体外观检测方法,其特征在于,在将所述第一图像获取装置伸入所述壳体的开口处伸入所述壳体内部之前或之后,还包括:
    将所述壳体移动到第三图像获取装置处,并通过所述第三图像获取装置获取所述壳体的内侧底部及底部边缘、所述壳体的外侧底部、所述壳体的所述壳体开口处中任一个或多个第三图像。
  8. 一种装置,其特征在于,所述装置设置有用于执行权利要求1-7任一项所述壳体外观检测方法的控制程序,包括:
    所述第一图像获取装置,用于将沿所述壳体的开口处伸入所述壳体内部,并与所述壳体 进行相对旋转,获取所述壳体内部的第一图像。
  9. 根据权利要求8所述的一种装置,其特征在于,所述第一图像获取装置为接触式图像传感器,所述第一图像获取装置为自所述壳体开口处沿壳体底部设置的柱体结构,且所述第一图像获取装置一侧设置有触点式感光元件;所述第一图像获取装置或壳体在驱动源驱动下进行伸缩、旋转,使所述触点式感光元件获取所述壳体内部侧壁的第一图像。
  10. 根据权利要求8所述的一种装置,其特征在于,所述第一图像获取装置为内窥镜组件,所述内窥镜组件包括驱动杆、及设置在所述驱动杆的至少一个第一摄像头;所述驱动杆或壳体与驱动源驱动下进行伸缩、旋转,使所述第一摄像头获取所述壳体内部侧壁的第一图像。
  11. 根据权利要求10所述的一种装置,其特征在于,所述壳体内侧底部到开口处至少划分为第一区域、第二区域;所述第一摄像头数量为一个,且所述第一摄像头设置在所述驱动杆端部一侧;
    所述第一摄像头在所述驱动杆驱动下,依次在所述第一区域、所述第二区域进行旋转拍照,获取所述壳体内部侧壁的第一图像。
  12. 根据权利要求10所述的一种装置,其特征在于,所述壳体内侧底部到开口处至少划分为第一区域、第二区域;所述第一摄像头数量为至少两个,两个所述第一摄像头等距设置在所述驱动杆一侧,且两个所述第一摄像头分别对所述第一区域、所述第二区域进行旋转拍照,获取所述壳体内部侧壁的第一图像。
  13. 根据权利要求11或12任一项所述的一种装置,其特征在于,所述驱动杆端部还设置有第二摄像头,所述第二摄像头用于获取所述壳体开口处和/或所述壳体内侧底部图像。
  14. 根据权利要求8所述的一种装置,其特征在于,还包括:
    所述第二图像获取装置,用于相邻设置在所述壳体外部,并对所述壳体外周壁进行旋转拍照,获取所述壳体外周壁的第二图像。
  15. 根据权利要求14所述的一种装置,其特征在于,还包括:
    所述第三图像获取装置,用于获取所述壳体的内侧底部及底部边缘、所述壳体的外侧底部、所述壳体的壳体开口处中任一个或多个第三图像。
  16. 根据权利要求15所述的一种装置,其特征在于,还包括用于移动壳体的位移装置,所述第一图像获取装置、所述第二图像获取装置和所述第三图像获取装置沿所述位移装置设置。
PCT/CN2022/139646 2022-09-29 2022-12-16 壳体外观检测方法及装置 WO2024066074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211201622.1 2022-09-29
CN202211201622.1A CN115508383A (zh) 2022-09-29 2022-09-29 壳体外观检测方法及装置

Publications (1)

Publication Number Publication Date
WO2024066074A1 true WO2024066074A1 (zh) 2024-04-04

Family

ID=84507255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139646 WO2024066074A1 (zh) 2022-09-29 2022-12-16 壳体外观检测方法及装置

Country Status (2)

Country Link
CN (1) CN115508383A (zh)
WO (1) WO2024066074A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508383A (zh) * 2022-09-29 2022-12-23 广东利元亨智能装备股份有限公司 壳体外观检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105208913A (zh) * 2013-03-15 2015-12-30 默罕默德·加利宁 管道镜装置和使用其的方法
CN106645177A (zh) * 2016-12-30 2017-05-10 河南奇测电子科技有限公司 电池壳表面视觉检测流水线及其内底面检测装置
CN108844961A (zh) * 2018-08-01 2018-11-20 佛山科学技术学院 一种温控器壳体视觉检测系统及方法
CN112858166A (zh) * 2019-11-27 2021-05-28 发那科株式会社 内表面图像检查装置
CN113406098A (zh) * 2021-06-30 2021-09-17 浙江昊杨新能源科技有限公司 一种用于电池塑壳底壳及内表面脏印检测装置及方法
CN115508383A (zh) * 2022-09-29 2022-12-23 广东利元亨智能装备股份有限公司 壳体外观检测方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105208913A (zh) * 2013-03-15 2015-12-30 默罕默德·加利宁 管道镜装置和使用其的方法
CN106645177A (zh) * 2016-12-30 2017-05-10 河南奇测电子科技有限公司 电池壳表面视觉检测流水线及其内底面检测装置
CN108844961A (zh) * 2018-08-01 2018-11-20 佛山科学技术学院 一种温控器壳体视觉检测系统及方法
CN112858166A (zh) * 2019-11-27 2021-05-28 发那科株式会社 内表面图像检查装置
CN113406098A (zh) * 2021-06-30 2021-09-17 浙江昊杨新能源科技有限公司 一种用于电池塑壳底壳及内表面脏印检测装置及方法
CN115508383A (zh) * 2022-09-29 2022-12-23 广东利元亨智能装备股份有限公司 壳体外观检测方法及装置

Also Published As

Publication number Publication date
CN115508383A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2024066074A1 (zh) 壳体外观检测方法及装置
US6028719A (en) 360 degree/forward view integral imaging system
US6930703B1 (en) Method and apparatus for automatically capturing a plurality of images during a pan
US20120105647A1 (en) Control device, control method, program, and control system
WO2023138544A1 (zh) 胶囊内窥镜肠道图像的识别定位方法、存储介质和设备
JP6942940B2 (ja) 画像処理装置、画像処理方法及びプログラム
CN1917587A (zh) 摄像装置及图像处理方法
US9936112B2 (en) Monitoring camera
CN105791688A (zh) 移动终端及成像方法
KR101469158B1 (ko) 카메라 렌즈 모듈 검사장치 및 그에 따른 검사방법
JP2001141423A (ja) 画像撮像装置及び画像処理装置
JP2001141422A (ja) 画像撮像装置及び画像処理装置
CN211292626U (zh) 一种石英坩埚检测装置
CN104902148B (zh) 成像装置
TW200938834A (en) Monitoring apparatus and monitoring method
US7893991B2 (en) Image reading apparatus
JP2000075035A (ja) ガンマカメラ
JP5011859B2 (ja) 放射線断層撮像装置
JPH06189180A (ja) パノラマ撮影装置
CN110634136B (zh) 一种管道壁破损检测方法、装置及系统
CN113099174A (zh) 一种多目摄像头及含有多目摄像头的爬行器
JP2023543525A (ja) ずれ検出方法およびずれ検出装置
CN109672817B (zh) 一种隧道巡检机器人的高清摄像装置及图像采集生成方法
CN106131429A (zh) 多角度空间成像系统
JP4207327B2 (ja) 回転位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960669

Country of ref document: EP

Kind code of ref document: A1