WO2024065984A1 - 一种钠离子电池隔膜及其制备方法 - Google Patents

一种钠离子电池隔膜及其制备方法 Download PDF

Info

Publication number
WO2024065984A1
WO2024065984A1 PCT/CN2022/132467 CN2022132467W WO2024065984A1 WO 2024065984 A1 WO2024065984 A1 WO 2024065984A1 CN 2022132467 W CN2022132467 W CN 2022132467W WO 2024065984 A1 WO2024065984 A1 WO 2024065984A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
coating
layer
sodium
active material
Prior art date
Application number
PCT/CN2022/132467
Other languages
English (en)
French (fr)
Inventor
吕维强
尼图木带斯特-维尼-门迪耶夫
万兆
牛英华
钟卓杭
索海尔穆罕默德
Original Assignee
电子科技大学长三角研究院(湖州)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学长三角研究院(湖州) filed Critical 电子科技大学长三角研究院(湖州)
Publication of WO2024065984A1 publication Critical patent/WO2024065984A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of battery preparation, and in particular to a sodium ion battery separator and a preparation method thereof.
  • sodium-ion batteries As a reserve option to replace lithium-ion batteries in the future, sodium-ion batteries have been rapidly developed due to their advantages such as high storage capacity, low cost, and compatibility of the industrial chain with lithium-ion batteries.
  • sodium ions due to the large radius of sodium ions, it is difficult for sodium ions to shuttle between the diaphragm and the electrolyte, and it is difficult to deintercalate between the positive and negative electrodes of the battery, which poses a high challenge to sodium-ion battery diaphragms.
  • common sodium-ion battery diaphragms include three categories: polymer membranes, inorganic materials and polymer composite multilayer membranes, and fiber diaphragms.
  • Polymer membranes have high strength and strong electrochemical stability, but poor thermal stability; inorganic materials and polymer composite multilayer membranes have good thermal stability, but the impedance is relatively large. Fiber diaphragms have good electrochemical stability, but the production and processing are complex and the corrosion resistance is poor. Therefore, ordinary commercial diaphragms are difficult to be directly applied to sodium-ion batteries, and the coating of commercial diaphragms needs to be improved.
  • the present invention proposes a sodium ion battery separator, which is characterized by comprising a three-layer structure, and the specific materials of the three-layer structure are as follows:
  • the first base film sodium electrode porous diaphragm base film
  • the second layer of insulating thermally stable ceramic coating ceramic coating material 10wt%-95wt%, polymer binder 5wt%-90wt%;
  • the third active material layer positive/negative electrode active material 60wt%-98wt%, polymer binder 1wt%-30wt%, conductive agent 1wt%-10wt%.
  • the first base film is one or any combination of polypropylene, polyethylene, double-layer PP/PE, three-layer PP/PE/PP composite film, nitrocellulose film, cellulose acetate film, polyamide film, polyethylene terephthalate, polyester film, thermoplastic polyimide, thermosetting polyimide, polyamide-imide, polyetherimide, and fiber glass film.
  • the ceramic coating material is one or any combination of alumina, boehmite, silica, and aramid fiber.
  • the polymer binder is one or more of polyvinylidene fluoride-based polymer, polytetrafluoroethylene, polyacrylonitrile, carboxymethyl cellulose, polystyrene-butadiene copolymer, acrylate polymer, polymethyl methacrylate, polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polybismethoxyethoxyethanol salt-phosphazene, polyvinyl chloride, polydimethylsiloxane, and polyvinylidene fluoride-hexafluoropropylene and chemical derivatives, copolymers and blends of these materials.
  • polyvinylidene fluoride-based polymer polytetrafluoroethylene
  • polyacrylonitrile carboxymethyl cellulose
  • polystyrene-butadiene copolymer acrylate polymer
  • polymethyl methacrylate polyethylene oxide
  • polyacrylonitrile polyvinylidene fluoride
  • the positive electrode active material is one or any combination of more than one of sodium vanadium phosphate, sodium iron phosphate, sodium manganate, and mixtures, dopants and derivatives thereof.
  • the negative electrode active material is one or any combination of graphite, soft carbon, hard carbon, graphene, silicon powder, silicon-carbon and silicon-oxygen materials, and mixtures, dopants and derivatives thereof.
  • the conductive agent is one or any combination of acetylene black, 350G, carbon fiber, carbon nanotube, Ketjen black, graphite conductive agent, graphene, Super P, VGCF, CNTs.
  • a method for preparing a sodium ion battery separator comprises the following steps:
  • the first base film is a first base film
  • the first base membrane is selected from commercial sodium ion battery separators or other separators;
  • Second layer of insulating thermally stable ceramic coating Second layer of insulating thermally stable ceramic coating:
  • the slurry prepared in step (3) is coated on one side of the base film.
  • the coating method is automatic coating by a machine, and the coating speed is set to 3-5 mm/s. Other coating methods can also be selected.
  • step (4) placing the composite diaphragm prepared in step (4) in a vacuum drying oven for 24 hours, setting the oven temperature to 60-80° C., and after vacuum drying, controlling the thickness of the insulating thermally stable ceramic coating to be 2 ⁇ m, with an error of no more than 5%;
  • the third active material layer is the third active material layer.
  • step (3) (4) adding 1 to 30 parts by weight of a conductive agent to the second slurry prepared in step (3), stirring at a speed of 400 to 600 rpm for 24 hours to form a uniform active material layer slurry;
  • step (4) coating the slurry prepared in step (4) on the insulating thermally stable ceramic coating by automatic coating by a machine, with the other side not coated, and setting the coating speed to 3-5 mm/s; other coating methods may also be selected;
  • step (6) placing the composite diaphragm coated in step (5) in a vacuum drying oven for 24 hours, setting the oven temperature to 60° C. After vacuum drying, the thickness of the active material layer is controlled to be 5 to 15 ⁇ m;
  • the solvent used in preparing the slurry coating and film formation for the second and third layers is one or a combination of N-methylpyrrolidone, acetone, 1,3-dioxolane, 1,2-dimethoxyethane, tetraethylene glycol dimethyl ether, poly(ethylene glycol) dimethyl ether, diethylene glycol dibutyl ether, 2-ethoxyethyl ether, sulfone, cyclopentane, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl formate carbonate, benzene, toluene, xylene, methyl acetate, fluoroethylene carbonate, vinylene carbonate, allyl ethyl carbonate, and water.
  • the other coating methods in the second insulating heat-stable ceramic coating layer and the third active material layer are one of spraying, gravure roller coating, screen printing, dip pulling, and electrophoresis.
  • the beneficial effects of the present invention are: (1)
  • the application of the insulating thermally stable ceramic coating and the active material layer greatly improves the incompatibility problem between ordinary commercial diaphragms and sodium ion batteries.
  • sodium ion electrolyte salts often use NaClO4 or NaPF6
  • the radius of sodium ions is large, while the pores of ordinary commercial diaphragms are small, making it difficult for sodium ions to easily shuttle.
  • the sodium ion battery diaphragm of the present invention has a larger pore radius and can well form a uniform sodium ion channel.
  • the wetting ability of the electrolyte is greatly improved, and it can be quickly infiltrated by the electrolyte, so that the performance of the sodium ion battery is further improved.
  • the application of insulating thermally stable ceramic coating and active material layer greatly improves the safety performance of ordinary commercial separators.
  • the sodium ion battery separator of this patent has the characteristics of thermodynamic stability and strong mechanical properties. Compared with the base film, it can better withstand the tensile and collision pressure of the battery during the assembly process. At the same time, it can withstand a wider temperature range and has higher safety performance under extreme conditions such as battery short circuit and battery puncture.
  • the sodium ion battery separator of the present invention has a higher area specific capacity and better electrochemical stability.
  • the present invention transfers a portion of the sodium electrode to the separator, which can avoid the problems of poor rate performance of thick electrodes and difficulty in electrolyte infiltration.
  • the use of the separator of the present invention to prepare sodium ion batteries can change the traditional method of sodium electrolyte infiltration from one end of the electrode to the other end, and change it to a new mode of infiltration from the middle to both ends of the electrode.
  • the sodium ion battery separator in the new mode also has the characteristics of low impedance, fast charging and discharging, and high area specific capacity.
  • Figure 1 shows the EIS impedance spectra of NVP coated diaphragm and commercial diaphragm batteries.
  • Figure 2 is the CV curves of NVP coated membrane and commercial membrane batteries.
  • Figure 3 is a graph showing the thermal stability of NVP coated diaphragms and commercial diaphragms.
  • Figure 4 shows the battery cycle test graph of NVP coated membrane and commercial membrane.
  • Figure 5 is a contact angle test graph of NVP coated membrane and commercial membrane.
  • the sodium electrolyte diaphragm of the present invention comprises a three-layer structure, and the specific materials of the three-layer structure are as follows:
  • the first base film sodium battery commercial diaphragm
  • the second layer of insulating thermally stable ceramic coating ceramic coating material 10wt%-95wt%; polymer binder 5wt%-90wt%;
  • the third active material layer positive/negative electrode active material 60wt%-98wt%; polymer binder 1wt%-30wt%; conductive agent 1wt%-30wt%.
  • the first layer of base film is one of the following or any combination thereof: polypropylene (PP), polyethylene (PE), double-layer PP/PE, three-layer PP/PE/PP composite film, nitrocellulose film (NC film), cellulose acetate film (CA film), polyamide film (PA), polyethylene terephthalate (PET), polyester film (BOPET, CPET), thermoplastic polyimide (TPI), thermosetting polyimide (PI-s), polyamide-imide (PAI), polyetherimide (PEI), and glass fiber film.
  • PP polypropylene
  • PE polyethylene
  • PE double-layer PP/PE
  • three-layer PP/PE/PP composite film nitrocellulose film
  • NC film cellulose acetate film
  • PA polyamide film
  • PET polyethylene terephthalate
  • BOPET polyester film
  • CPET thermoplastic polyimide
  • PI-s thermosetting polyimide
  • PAI polyamide-imide
  • PEI polyetherimide
  • the second layer of ceramic coating material is one of the following or any combination thereof: aluminum oxide, magnesium hydroxide, silicon dioxide, boehmite, and aramid fiber.
  • the polymer binder is one of the following or any combination thereof: polyvinylidene fluoride based polymer (PVDF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), carboxymethyl cellulose (CMC), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), polyethylene oxide (PEO), polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), polybismethoxyethoxyethanol salt-phosphazene, polyvinyl chloride, polydimethylsiloxane, and polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and chemical derivatives, copolymers and blends of these materials.
  • PVDF polyvinylidene fluoride based polymer
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • CMC carboxymethyl cellulose
  • PVDF-HFP poly
  • the third layer of positive electrode active material is one of the following or any combination thereof: sodium vanadium phosphate (NVP), sodium ferric phosphate (NFP), sodium manganate (NMO) and mixtures, dopants and derivatives thereof.
  • the third layer of negative electrode active material is one of the following or any combination thereof: graphite, soft carbon, hard carbon, silicon powder, silicon-carbon and silicon-oxygen materials, and mixtures, dopants and derivatives thereof.
  • the third layer of conductive agent is one or more of acetylene black, 350G, carbon fiber (VGCF), carbon nanotubes (CNTs), Ketjenblack (KetjenblackEC300J, KetjenblackEC600JD, Carbon ECP, Carbon ECP600JD), graphite conductive agent (KS-6, KS-15, SFG-6, SFG-15), graphene, Super P, VGCF, and CNTs.
  • the solvent used in the preparation of the slurry coating for the second layer and the third layer is selected from the following one or any combination thereof: N-methylpyrrolidone (NMP), acetone, 1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), tetraethylene glycol dimethyl ether (TEGDME), poly(ethylene glycol) dimethyl ether (PEGDME), diethylene glycol dibutyl ether (DEGDBE), 2-ethoxyethyl ether (EEE), sulfone, cyclopentane, ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (MEC), methyl formate carbonate (MF), benzene, toluene, xylene, methyl acetate (MA), fluoroethylene carbonate (FEC), vinylene carbonate (VC), allyl ethyl carbonate (AEC), water or a combination thereof.
  • NMP N-methylpyr
  • the first base film is a first base film
  • the first layer of diaphragm is selected as a commercial PE diaphragm base film.
  • Second layer of insulating thermally stable ceramic coating Second layer of insulating thermally stable ceramic coating:
  • step (3) Add 90 parts by weight of commercial aluminum oxide powder to the stirred colloid and stir for 30 minutes.
  • the ratio of the slurry to the transparent colloid prepared in step (2) is controlled to be 1g:2.5ml to 1g:4ml.
  • the colloid is stirred for 24 hours to form a slurry with a solid content sufficient for coating the second layer of the diaphragm.
  • the prepared slurry is coated on the first layer of commercial PE diaphragm base film.
  • the coating method adopts a machine scraping method.
  • the coating speed is controlled at 3 mm/s, and the thickness of the insulating thermal stable ceramic coating is controlled at 2 microns.
  • the coated diaphragm is vacuum dried for 24 hours to prepare a ceramic coated diaphragm.
  • the third positive electrode active coating is the third positive electrode active coating:
  • step (7) Add 75 parts by weight of sodium vanadium phosphate (NVP), a positive electrode active material, to the above colloid and stir for 1 hour to fully dissolve it to form a uniform secondary colloid.
  • NDP sodium vanadium phosphate
  • the ratio of the slurry to the transparent colloid prepared in step (7) is controlled to be 1 g:10 ml.
  • the coating slurry prepared above is coated on the ceramic coating diaphragm in step (6).
  • the coating method is automatic scraping by a machine, and the coating speed should be controlled at 5 mm/s.
  • the scraper thickness is 20 ⁇ m
  • the NVP coating layer thickness is 6 ⁇ m
  • the scraper thickness is 25 ⁇ m
  • the NVP coating layer thickness is 10 ⁇ m.
  • the sodium ion battery separator is placed horizontally in an oven.
  • the temperature of the oven is controlled at 60°C and maintained in a vacuum state.
  • the drying time is 24 hours.
  • Comparative Example 1 only commercial PE separator was used to prepare sodium ion battery, and the rest remained unchanged.
  • Comparative Example 2 is basically the same as that of Example 1, and a ceramic coated diaphragm is selected to prepare the battery. The difference is that the sodium ion battery active material coating is not performed.
  • Example 1 Compared with Comparative Examples 1 and 2, the diaphragm shown in Example 1 has greatly improved interface stability between the diaphragm and the electrolyte and the electrode, and has a wider temperature range and higher capacity.
  • the specific test data are as follows:
  • Figure 1 illustrates the electrochemical impedance spectrum of a battery prepared with an NVP-coated diaphragm.
  • the battery impedance is significantly reduced, indicating that the diaphragm of this patent invention has better electrochemical stability and improves the compatibility between the diaphragm and the sodium ion electrode and electrolyte.
  • Figure 2 is the CV curve of the NVP coated diaphragm battery.
  • the oxidation peak and reduction peak of the NVP coated diaphragm are more obvious, and the peak value is higher, indicating that the electrochemical reversibility of the coated diaphragm battery is better, showing the good electrochemical reversible performance of the diaphragm, indicating that the invention of this patent can be well applied to sodium ion batteries.
  • Figure 3 is the thermal stability test of the NVP coated diaphragm and the original ceramic diaphragm. It can be seen from the figure that the PE film and the ceramic film are completely deformed at a heating temperature of 120°C, while the NVP coated diaphragm is only slightly deformed and still maintains a good shape at 160°C, demonstrating the excellent thermal stability and high safety of the NVP coated diaphragm.
  • Figure 4 is a battery charge and discharge cycle test chart of the NVP coated diaphragm. The data shows that ordinary commercial diaphragms are not very suitable for sodium ion batteries. On the contrary, batteries prepared with NVP coated diaphragms can be well suited for sodium ion batteries and show excellent capacity performance.
  • Figure 5 is a contact angle test of the NVP coated diaphragm.
  • the commercial PE diaphragm has extremely poor compatibility with the sodium electrolyte and basically does not absorb the sodium electrolyte.
  • the electrolyte contact angle of the NVP coated diaphragm is only 13.15°, indicating that after NVP coating, the diaphragm's absorption capacity for the electrolyte is greatly improved, and the interface compatibility between the diaphragm and the electrode is greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

本发明涉及一种钠离子电池成膜及其制备方法,包含三层结构,所述三层结构具体材料如下所示:第一层基膜:钠电多孔隔膜基膜;第二层绝缘热稳陶瓷涂层:陶瓷涂层物质10wt%-95wt%,聚合物粘结剂5wt%-90wt%;第三层活性物质层:正极/负极活性物质60wt%-98wt%,聚合物粘结剂1wt%-30wt%,导电剂1wt%-30wt%。本发明对商业隔膜的涂层进行改善,改善后的涂层隔膜能很好地适用于钠离子电池,克服了普通商业隔膜与钠离子电池不兼容的问题,并且提升了电池安全性,提高了隔膜的机械性能,热稳定性以及电池的容量。

Description

一种钠离子电池隔膜及其制备方法 技术领域
本发明涉及电池制备技术领域,具体涉及到一种钠离子电池隔膜及其制备方法。
背景技术
钠离子电池作为未来可替代锂离子电池的预备选项,因具有高存储量,低成本,产业链与锂离子电池相兼容等优点,得到迅速发展。然而由于钠离子的半径较大,导致钠离子在隔膜以及电解液中穿梭较为困难,同时在电池正负极之间难以脱嵌,这对钠离子电池隔膜提出了很高的挑战。目前常见的钠离子电池隔膜包括聚合物膜,无机材料与聚合物复合多层膜,纤维隔膜等三大类。聚合物膜强度高,电化学稳定性强,但是热稳定性较差;无机材料与聚合物复合多层膜热稳定性好,然而阻抗偏大。纤维隔膜电化学稳定性较好,但生产加工复杂,耐腐蚀性差。因此普通的商业隔膜难以直接应用于钠离子电池,需要对商业隔膜进行涂层改善。
技术解决方案
基于上述背景技术中存在的问题,本发明提出了一种钠离子电池隔膜,其特征在于:包含三层结构,所述三层结构具体材料如下所示:
第一层基膜:钠电多孔隔膜基膜;
第二层绝缘热稳陶瓷涂层:陶瓷涂层物质10wt%-95wt%,聚合物粘结剂5wt%-90wt%;
第三层活性物质层:正极/负极活性物质60wt%-98wt%,聚合物粘结剂1wt%-30wt%,导电剂1wt%-10wt%。
优选地,所述第一层基膜为聚丙烯、聚乙烯、双层PP/PE、三层PP/PE/PP复合膜、硝酸纤维素膜、醋酸纤维素膜、聚酰胺膜、聚对苯二甲酸乙二醇酯、聚酯膜、热塑性聚酰亚胺、热固性聚酰亚胺、聚酰胺-酰亚胺,聚醚亚胺、纤维玻璃膜中的一种或一种以上的任意组合。
优选地,所述陶瓷涂层材料为氧化铝、勃姆石、二氧化硅、芳纶纤维中的一种或一种以上的任意组合。
优选地,所述聚合物粘结剂为聚偏氟乙烯基聚合物、聚四氟乙烯、聚丙烯腈、羧甲基纤维素、聚苯乙烯-丁二烯共聚物、丙烯酸酯聚合物、聚甲基丙烯酸甲酯、聚环氧乙烷、聚丙烯腈、聚偏二氟乙烯、聚双甲氧基乙氧基乙醇盐-磷腈、聚氯乙烯、聚二甲基硅氧烷、以及聚偏二氟乙烯-六氟丙烯及这些材料的化学衍生物、共聚物和共混物中的一种或一种以上的任意组合。
优选地,所述正极活性物质为磷酸矾钠、磷酸铁钠、锰酸钠以及它们的混合物、掺杂物和衍生物中的一种或一种以上的任意组合。
优选地,所述负极活性物质为石墨、软碳、硬碳、石墨烯、硅粉、硅碳和硅氧材料以及它们的混合物、掺杂物和衍生物中的一种或一种以上的任意组合。
优选地,所述导电剂为乙炔黑、350G、碳纤维、碳纳米管、科琴黑、石墨导电剂、石墨烯、Super P、VGCF、CNTs中的一种或一种以上的任意组合。
优选地,一种钠离子电池隔膜的制备方法,包括以下步骤:
第一层基膜:
(1)第一层基膜选定选择商业钠离子电池隔膜或其他隔膜;
第二层绝缘热稳陶瓷涂层:
(1)选取一定量的溶剂,进行预加热处理,并选取5~90份质量的聚合物粘结剂,控制聚合物粘结剂与溶剂的比例为1g:2.5ml~ 1g:4ml;
(2)将聚合物粘结剂加入到溶剂中,以300转/分钟的速度搅拌60分钟形成均匀的浆料;
(3)选取10~95份质量的陶瓷涂层物质加入上述浆料中,以500转/分钟的速度搅拌24小时形成均匀的浆料;
(4)将步骤(3)制备的浆料涂覆在基膜的一侧,涂覆方法为机器自动涂覆,设置涂覆速度为3~5mm/s。同时也可以选择其他涂覆方法。
(5)将步骤(4)中制备的复合隔膜放置真空烘干箱真空烘干24小时,设置烘箱温度为60~80°C,真空烘干后,控制绝缘热稳陶瓷涂层厚度为2微米,误差不超过5%;
第三层活性物质层:
(1) 选取一定量的溶剂,进行预加热处理,并选取1-30份质量的聚合物粘结剂,控制聚合物粘结剂与溶剂的比例为1g:5ml~1g:10ml;
(2)将聚合物粘结剂加入到溶剂中,以400转/分钟的速度搅拌60分钟形成均匀的浆料;
(3)选取60~98份质量的正极活性物质粉末或负极活性物质粉末加入上述浆料中,以400~600转/分钟的速度搅拌60分钟,形成均匀的第二浆料;
(4)选取1~30份质量的导电剂加入步骤(3)所制备的第二浆料中,以400~600转/分钟的速度搅拌24小时,形成均匀的活性物质层浆料;
(5)将上述步骤(4)制备浆料涂覆在绝缘热稳陶瓷涂层上,涂覆方法为机器自动涂覆,另一侧不涂覆,设置涂覆速度为3~5mm/s;同时也可以选择其他涂覆方法;
(6)将步骤(5)中涂覆完成的复合隔膜放置真空烘干箱真空烘干24小时,设置烘箱温度为60°C,真空烘干后,控制活性物质层厚度为5~15微米;
(7)将步骤(6)中的烘干完成的三层钠离子电池隔膜封装。
优选地,所述第二层和第三层在配置浆料涂覆成膜时使用的溶剂为N-甲基吡咯烷酮、丙酮、1,3-二氧戊环、1,2-二甲氧基乙烷、四乙二醇二甲醚、聚(乙二醇)二甲醚、二乙二醇二丁醚、2-乙氧基乙基醚、砜、环丁砜、碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸甲酸甲酯、苯、甲苯、二甲苯、乙酸甲酯、碳酸氟代亚乙酯、碳酸亚乙烯酯、碳酸烯丙基乙酯、水中的一种或一种以上的组合。
优选地,所述第二层绝缘热稳陶瓷涂层和第三层活性物质层中的其他涂覆方法为喷涂、凹版辊涂、丝网印刷、浸渍提拉、电泳中的一种。
有益效果
相对于现有技术而言,本发明的有益效果是:(1)在本发明中,绝缘热稳陶瓷涂层和活性物质层的应用极大地改善了普通商业隔膜同钠离子电池不兼容的问题。由于钠离子电解质盐常使用NaClO 4或者NaPF 6,导致钠离子半径较大,而普通的商业隔膜孔隙较小,致使钠离子难以轻松穿梭。本发明专利的钠离子电池隔膜较基膜相比,拥有更大的孔隙半径,可以很好地形成均匀的钠离子通道,同时对电解液的浸润能力有了大幅提升,能够迅速被电解液浸润,使钠离子电池的性能得到了进一步的提升。
(2)本发明中,绝缘热稳陶瓷涂层和活性物质层的应用极大地提高了普通商业隔膜的安全性能。本专利的钠离子电池隔膜具有热力学稳定,机械性能强的特点,相对于基膜可以更好地承担电池在组装过程中的拉伸及碰撞压力,同时可以承受更宽的温度作用范围,在电池短路和电池穿刺等极端条件下拥有更高的安全性能。
(3)本发明的钠离子电池隔膜具有更高的面积比容量及更好的电化学稳定性。本发明将钠电电极部分比例转移到隔膜上,可以避免厚电极倍率性能差,电解液难以浸润的问题。使用本发明的隔膜制备钠离子电池,可以改变钠电电解液从电极一端向另一端浸润的传统方式,变为从中间向电极两端浸润的新型模式,并且在新型模式下的钠离子电池隔膜同时也具有低阻抗,快速充放电以及高面积比容量的特点。
附图说明
图1为NVP涂覆隔膜与商业隔膜电池的EIS阻抗谱图。
图2为NVP涂覆隔膜与商业隔膜电池的CV曲线图。
图3为NVP涂覆隔膜与商业隔膜的热稳定测试图。
图4为NVP涂覆隔膜与商业隔膜的电池循环测试图。
图5为NVP涂覆隔膜与商业隔膜接触角测试图。
本发明的实施方式
以下结合实施例对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
本发明的钠电隔膜包含三层结构,三层结构具体材料如下所示:
第一层基膜:钠电商业隔膜
第二层绝缘热稳陶瓷涂层:陶瓷涂层物质10wt%-95wt%;聚合物粘结剂5wt%-90wt%;
第三层活性物质层:正极/负极活性物质60wt%-98wt%;聚合物粘结剂 1wt%-30wt%;导电剂 1wt%-30wt%。
其中,第一层基膜为以下一种或它们之间的任意组合:聚丙烯(PP)、聚乙烯(PE)、双层PP/PE、三层PP/PE/PP复合膜、硝酸纤维素膜(NC膜)、醋酸纤维素膜(CA膜)、聚酰胺膜(PA)、聚对苯二甲酸乙二醇酯(PET)、聚酯膜(BOPET、CPET)、热塑性聚酰亚胺(TPI)、热固性聚酰亚胺(PI-s)、聚酰胺-酰亚胺(PAI),聚醚亚胺(PEI)、玻璃纤维膜。
第二层陶瓷涂层材料为以下一种或它们之间的任意组合:氧化铝、氢氧化镁、二氧化硅、勃姆石、芳纶纤维。
聚合物粘结剂为以下一种或它们之间的任意组合:聚偏氟乙烯基聚合物(PVDF)、聚四氟乙烯(PTFE)、聚丙烯腈(PAN)、羧甲基纤维素(Carboxymethyl Cellulose,CMC)、聚偏二氟乙烯-六氟丙烯(PVDF-HFP)、聚环氧乙烷(PEO)、聚丙烯腈(PAN)、聚偏二氟乙烯(PVDF)、聚双甲氧基乙氧基乙醇盐-磷腈、聚氯乙烯、聚二甲基硅氧烷、以及聚偏二氟乙烯-六氟丙烯(PVDF-HFP)及这些材料的化学衍生物、共聚物和共混物。
第三层正极活性物质为以下一种或它们之间的任意组合:磷酸矾钠(NVP)、磷酸铁钠(NFP)、锰酸钠(NMO)以及它们的混合物、掺杂物和衍生物。
第三层负极活性物质为以下一种或它们之间的任意组合:石墨、软碳、硬碳、硅粉、硅碳和硅氧材料以及它们的混合物、掺杂物和衍生物。
第三层导电剂为乙炔黑、350G、碳纤维(VGCF)、碳纳米管(CNTs)、科琴黑(KetjenblackEC300J、KetjenblackEC600JD、Carbon ECP、Carbon ECP600JD)、石墨导电剂(KS-6、KS-15、SFG-6、SFG-15)、石墨烯、Super P、VGCF、CNTs中的一种或者多种。
第二层和第三层在配置浆料涂覆成膜时使用的溶剂选自以下一种或它们之间的任意组合:N-甲基吡咯烷酮(NMP)、丙酮、1,3-二氧戊环(DOL)、1,2-二甲氧基乙烷(DME)、四乙二醇二甲醚(TEGDME)、聚(乙二醇)二甲醚(PEGDME)、二乙二醇二丁醚(DEGDBE)、2-乙氧基乙基醚(EEE)、砜、环丁砜、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(MEC)、碳酸甲酸甲酯(MF)、苯、甲苯、二甲苯、乙酸甲酯(MA)、碳酸氟代亚乙酯(FEC)、碳酸亚乙烯酯(VC)、碳酸烯丙基乙酯(AEC)、水或其组合。
实施例与对比例如下:
实施例1
磷酸钒钠正极涂覆隔膜及电池制备
第一层基膜:
(1)第一层隔膜选定为商业PE隔膜基膜。(具体型号:科路得公司锂/钠离子电池PE膜,产品型号: MA-EN-SE-0C,厚度为12µm,产品宽度86mm)
第二层绝缘热稳陶瓷涂层:
(2)将有机溶剂NMP预加热1分钟,之后将PVDF粉末按照10份质量放入到一定容量的有机溶剂NMP当中,等待其充分溶解成为透明的胶体状,之后在室温下进行搅拌,1个小时之后,形成均匀的透明胶体。
(3)将商业三氧化二铝粉末按照90份质量加入到已经搅拌好的胶体中,搅拌30min。控制浆料与有步骤(2)所制备的透明胶体的比例为1g:2.5ml ~ 1g:4ml。
(4)将上述胶体继续搅拌24小时,搅拌均匀形成固含量为第二层隔膜涂覆的浆料。
(5)将制备的浆料涂覆在第一层商业PE隔膜基膜上,涂覆方法采用机器刮涂的方式,涂布的速度控制在3mm/s,控制绝缘热稳陶瓷涂层的厚度在2微米。
(6)将涂覆后的隔膜进行真空烘干24小时,制成陶瓷涂覆隔膜。
第三层正极活性涂层:
(7)将有机溶剂NMP预加热1分钟,之后将聚合物极材PVDF按照15份质量加入到有机溶剂NMP中,在完全加入后在室温下搅拌1小时,形成均匀的透明胶体。
(8)将正极活性物质磷酸钒钠(NVP)按照75份质量加入到上述胶体中,搅拌1个小时,使其充分溶解形成均匀的二次胶体。控制浆料与有步骤(7)所制备的透明胶体的比例为1g:10ml。
(9)将导电剂科琴黑按照10份质量加入上述二次胶体中,搅拌均匀并进行超声分散,时间为30min。
(10)将其置于室温下进行搅拌,速度控制在600转/分钟,搅拌时间为24小时,待胶体混合均匀,形成第三层正极活性物质层的涂覆浆料。
(11)将上述制备的涂覆浆料涂布到步骤(6)中的陶瓷涂覆隔膜上,涂覆方法为机器自动刮涂,涂布的速度应当控制在5mm/s。当刮刀厚度为20µm时,NVP涂覆层厚度为6µm;刮刀厚度为25µm时,NVP涂覆层厚度为10µm。
(12)完成上述成膜步骤之后,将钠离子电池隔膜水平放置于烘箱当中,烘箱的温度控制在60℃,并且保持真空状态,烘干时间为24小时。
(13) 以钠片或石墨为负极,以磷酸钒钠正极片为正极组装电池,保证隔膜活性涂层面与正极相接触,组装电池进行测试。
对比例1
对比例1仅选用商业PE隔膜制备钠离子电池,其余不变。
对比例2
对比例2与实施例1的工艺基本一致,选用陶瓷涂覆隔膜制备电池,不同点在于未进行钠离子电池活性物质涂覆。
实施例1所示隔膜同对比例1与对比例2相比,隔膜与电解液及电极间的界面稳定性有了极大地提升,同时拥有更宽的温度范围与更高的容量,具体测试数据如下:
图1阐述的是NVP涂覆隔膜制备电池的电化学阻抗谱,其电池阻抗大幅度降低,表明本专利发明的隔膜拥有更好的电化学稳定性,同时提升了隔膜与钠离子电极,电解液之间的兼容性。
图2为NVP涂覆隔膜电池的CV曲线, NVP涂覆隔膜的氧化峰和还原峰更明显,峰值更高,表明该涂覆隔膜电池的电化学可逆性更加良,展现了该隔膜良好的电化学可逆性能,表明本专利发明的可很好地适用于钠离子电池。
图3为 NVP涂覆隔膜与原始陶瓷隔膜的热稳定性测试,由图中可以看PE膜和陶瓷膜在加热温度为120°C时已完全变形,而NVP涂覆隔膜仅发生了轻微形变,并且在160°C时仍保持着良好的形状,展示了NVP涂覆隔膜十分优异的热稳定性和高安全性。
图4为NVP涂覆隔膜的电池充放电循环测试图,该数据表明普通商业隔膜不太适用于钠离子电池,与之相反NVP涂覆隔膜制备的电池可以很好地适用于钠离子电池,展现了十分优异的容量性能。
图5为NVP涂覆隔膜的接触角测试,如图5所示,商业PE隔膜与钠电电解液的兼容性极差,基本不吸收钠电电解液,相反NVP涂覆隔膜的电解液接触角仅为13.15°,表明经NVP涂覆之后,隔膜对电解液的吸收能力大幅提升,隔膜与电极之间界面兼容性极大改善。
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本发明的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本发明的保护范围。

Claims (10)

  1. 一种钠离子电池隔膜,其特征在于:包含三层结构,所述三层结构具体材料如下所示:
    第一层基膜:钠电多孔隔膜基膜;
    第二层绝缘热稳陶瓷涂层:陶瓷涂层物质10wt%-95wt%,聚合物粘结剂5wt%-90wt%;
    第三层活性物质层:正极/负极活性物质60wt%-98wt%,聚合物粘结剂1wt%-30wt%,导电剂1wt%-30wt%。
  2. 根据权利要求1所述的一种钠离子电池隔膜,其特征在于:所述第一层基膜为聚丙烯、聚乙烯、双层PP/PE、三层PP/PE/PP复合膜、硝酸纤维素膜、醋酸纤维素膜、聚酰胺膜、聚对苯二甲酸乙二醇酯、聚酯膜、热塑性聚酰亚胺、热固性聚酰亚胺、聚酰胺-酰亚胺,聚醚亚胺、纤维玻璃膜中的一种或一种以上的任意组合。
  3. 根据权利要求1所述的一种钠离子电池隔膜,其特征在于:所述陶瓷涂层材料为氧化铝、勃姆石、二氧化硅、芳纶纤维中的一种或一种以上的任意组合。
  4. 根据权利要求1所述的一种钠离子电池隔膜,其特征在于:所述聚合物粘结剂为聚偏氟乙烯基聚合物、聚四氟乙烯、聚丙烯腈、羧甲基纤维素、聚苯乙烯-丁二烯共聚物、丙烯酸酯聚合物、聚甲基丙烯酸甲酯、聚环氧乙烷、聚丙烯腈、聚偏二氟乙烯、聚双甲氧基乙氧基乙醇盐-磷腈、聚氯乙烯、聚二甲基硅氧烷、以及聚偏二氟乙烯-六氟丙烯及这些材料的化学衍生物、共聚物和共混物中的一种或一种以上的任意组合。
  5. 根据权利要求1所述的一种钠离子电池隔膜,其特征在于:所述正极活性物质为磷酸矾钠、磷酸铁钠、锰酸钠以及它们的混合物、掺杂物和衍生物中的一种或一种以上的任意组合。
  6. 根据权利要求1所述的一种钠离子电池隔膜,其特征在于:所述负极活性物质为石墨、软碳、硬碳、石墨烯、硅粉、硅碳和硅氧材料以及它们的混合物、掺杂物和衍生物中的一种或一种以上的任意组合。
  7. 根据权利要求1所述的一种钠离子电池隔膜,其特征在于:所述导电剂为乙炔黑、350G、碳纤维、碳纳米管、科琴黑、石墨导电剂、石墨烯、Super P、VGCF、CNTs中的一种或一种以上的任意组合。
  8. 根据权利要求1-7任一所述的一种钠离子电池隔膜的制备方法,其特征在于,包括以下步骤:
    第一层基膜:
    (1)第一层基膜选定选择商业钠离子电池隔膜或其他隔膜;
    第二层绝缘热稳陶瓷涂层:
    (1)选取一定量的溶剂,进行预加热处理,并选取5~90份质量的聚合物粘结剂,控制聚合物粘结剂与溶剂的比例为1g:2.5ml~ 1g:4ml;
    (2)将聚合物粘结剂加入到溶剂中,以300转/分钟的速度搅拌60分钟形成均匀的浆料;
    (3)选取10-95份质量的陶瓷涂层物质加入上述浆料中,以500转/分钟的速度搅拌24小时形成均匀的浆料;
    (4)将步骤(3)制备的浆料涂覆在基膜的一侧,涂覆方法为机器自动涂覆,设置涂覆速度为3-5mm/s,同时也可以选择其他涂覆方法;
    (5)将步骤(4)中制备的复合隔膜放置真空烘干箱真空烘干24小时,设置烘箱温度为60~80°C,真空烘干后,控制绝缘热稳陶瓷涂层厚度为2微米,误差不超过5%;
    第三层活性物质层:
    (1) 选取一定量的溶剂,进行预加热处理,并选取1-30份质量的聚合物粘结剂,控制聚合物粘结剂与溶剂的比例为1g:5ml~1g:10ml;
    (2)将聚合物基材加入到溶剂中,以400转/分钟的速度搅拌60分钟形成均匀的浆料;
    (3)选取10-98份质量的正极活性物质粉末或负极活性物质粉末加入上述浆料中,以400~600转/分钟的速度搅拌60分钟,形成均匀的第二浆料;
    (4)选取1-30份质量的导电剂加入步骤(3)所制备的第二浆料中,以400~600转/分钟的速度搅拌24小时,形成均匀的活性物质层浆料;
    (5)将步骤(4)制备的浆料涂覆在绝缘热稳陶瓷涂层上,涂覆方法为机器自动涂覆,另一侧不涂覆,设置涂覆速度为3~5mm/s;同时也可以选择其他涂覆方法;
    (6)将步骤(5)中涂覆完成的复合隔膜放置真空烘干箱真空烘干24小时,设置烘箱温度为60~80°C,真空烘干后,控制活性物质层厚度为5-15微米;
    (7)将步骤(6)中的烘干完成的三层钠离子电池隔膜封装。
  9. 根据权利要求8所述的一种钠离子电池隔膜的制备方法,其特征在于:所述第二层和第三层在配置浆料涂覆成膜时使用的溶剂为N-甲基吡咯烷酮、丙酮、1,3-二氧戊环、1,2-二甲氧基乙烷、四乙二醇二甲醚、聚(乙二醇)二甲醚、二乙二醇二丁醚、2-乙氧基乙基醚、砜、环丁砜、碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸甲酸甲酯、苯、甲苯、二甲苯、乙酸甲酯、碳酸氟代亚乙酯、碳酸亚乙烯酯、碳酸烯丙基乙酯、水中的一种或一种以上的组合。
  10. 根据权利要求8所述的一种钠离子电池隔膜的制备方法,其特征在于:所述第二层绝缘热稳陶瓷涂层和第三层活性物质层中的其他涂覆方法为喷涂、凹版辊涂、丝网印刷、浸渍提拉、电泳中的一种。
PCT/CN2022/132467 2022-09-28 2022-11-17 一种钠离子电池隔膜及其制备方法 WO2024065984A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211196808.2 2022-09-28
CN202211196808.2A CN115579508A (zh) 2022-09-28 2022-09-28 一种钠离子电池隔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2024065984A1 true WO2024065984A1 (zh) 2024-04-04

Family

ID=84583056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132467 WO2024065984A1 (zh) 2022-09-28 2022-11-17 一种钠离子电池隔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN115579508A (zh)
WO (1) WO2024065984A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117673647B (zh) * 2024-02-02 2024-04-23 吉林大学 一种离子导体涂层修饰的隔膜、制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861667A (zh) * 2007-11-19 2010-10-13 株式会社Lg化学 具有多孔涂层的隔膜及含有所述隔膜的电化学装置
CN103493253A (zh) * 2011-07-20 2014-01-01 株式会社Lg化学 隔膜、其制造方法和使用该隔膜的电化学器件
CN110970588A (zh) * 2019-12-18 2020-04-07 江苏厚生新能源科技有限公司 钠离子电池用涂覆隔膜及其制备方法、钠离子电池
CN113113730A (zh) * 2021-04-01 2021-07-13 溧阳中科海钠科技有限责任公司 一种钠离子电池陶瓷隔膜及其制备方法和一种钠离子电池及其制备方法
CN113328207A (zh) * 2021-06-02 2021-08-31 电子科技大学 锂离子电池复合隔膜及其制备方法
CN113839146A (zh) * 2021-09-17 2021-12-24 电子科技大学 负极活性材料涂覆的锂离子电池隔膜及其制备方法和应用
CN115020920A (zh) * 2022-04-21 2022-09-06 电子科技大学长三角研究院(湖州) 一种锂电隔膜与电池集成制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861667A (zh) * 2007-11-19 2010-10-13 株式会社Lg化学 具有多孔涂层的隔膜及含有所述隔膜的电化学装置
CN103493253A (zh) * 2011-07-20 2014-01-01 株式会社Lg化学 隔膜、其制造方法和使用该隔膜的电化学器件
CN110970588A (zh) * 2019-12-18 2020-04-07 江苏厚生新能源科技有限公司 钠离子电池用涂覆隔膜及其制备方法、钠离子电池
CN113113730A (zh) * 2021-04-01 2021-07-13 溧阳中科海钠科技有限责任公司 一种钠离子电池陶瓷隔膜及其制备方法和一种钠离子电池及其制备方法
CN113328207A (zh) * 2021-06-02 2021-08-31 电子科技大学 锂离子电池复合隔膜及其制备方法
CN113839146A (zh) * 2021-09-17 2021-12-24 电子科技大学 负极活性材料涂覆的锂离子电池隔膜及其制备方法和应用
CN115020920A (zh) * 2022-04-21 2022-09-06 电子科技大学长三角研究院(湖州) 一种锂电隔膜与电池集成制备方法

Also Published As

Publication number Publication date
CN115579508A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
JP6871342B2 (ja) 電極、電極製造方法、並びに二次電池及びその製造方法
JP4127989B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
CN104124427B (zh) 电极、包含该电极的电化学装置和制造该电极的方法
US9515321B2 (en) Binder solution for anode, active material slurry for anode comprising the binder solution, anode using the slurry and electrochemical device comprising the anode
TWI483446B (zh) A battery collector, a battery positive electrode, a battery negative electrode, a battery, and a manufacturing method
EP2077594A1 (en) Composite separator films for lithium-ion batteries
JP4431304B2 (ja) リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
CN111326710B (zh) 一种夹层结构电极
TW200941791A (en) Preparation process for preventing deformation of jelly-roll type electrode assembly
JP2007324073A (ja) リチウム二次電池並びにそのセパレータ及びその製造方法
KR20100058579A (ko) 전기화학전지용 분리막 및 이의 제조방법
CN112086676A (zh) 一种具有改善的高温性能的二次电池
CN106450116A (zh) 新型锂离子电池用疏水性二氧化硅气凝胶复合隔膜
JP4414165B2 (ja) 電子部品用セパレータおよび電子部品
JP7085026B2 (ja) ポリマーセパレータ及びその製造方法と応用、並びにリチウムイオン電池及びその製造方法
WO2014021291A1 (ja) 非水電解質電池用セパレータおよび非水電解質電池
WO2018180742A1 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
KR20150015918A (ko) 이차전지용 분리막 및 이를 포함하는 이차전지
CN112310465B (zh) 硫化物浸渍的固态电池的制造方法
CA2950400C (en) Secondary battery and separator used therein
WO2023201913A1 (zh) 一种锂电隔膜与电池集成制备方法
WO2024065984A1 (zh) 一种钠离子电池隔膜及其制备方法
CN111613760A (zh) 一种电池隔板、电池及电池隔板的制备方法
CN113224465A (zh) 一种多层复合结构的陶瓷隔膜及其电池
WO2023179550A1 (zh) 一种复合油基隔膜及其制备方法和二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960581

Country of ref document: EP

Kind code of ref document: A1