WO2024062833A1 - 蛍光分析用セル、蛍光分析装置、蛍光分析方法、及び、分析対象セルの製造方法 - Google Patents

蛍光分析用セル、蛍光分析装置、蛍光分析方法、及び、分析対象セルの製造方法 Download PDF

Info

Publication number
WO2024062833A1
WO2024062833A1 PCT/JP2023/030431 JP2023030431W WO2024062833A1 WO 2024062833 A1 WO2024062833 A1 WO 2024062833A1 JP 2023030431 W JP2023030431 W JP 2023030431W WO 2024062833 A1 WO2024062833 A1 WO 2024062833A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence analysis
fluorescence
cell
light
analysis cell
Prior art date
Application number
PCT/JP2023/030431
Other languages
English (en)
French (fr)
Inventor
雄一 北川
誠司 樋口
享 三村
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Publication of WO2024062833A1 publication Critical patent/WO2024062833A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a fluorescence analysis cell, a fluorescence analysis device, a fluorescence analysis method, and a method for manufacturing a cell to be analyzed.
  • a fluorescence analyzer is a device that analyzes substances contained in a test liquid by detecting the fluorescence of the test liquid, which is generated by irradiating the test liquid with excitation light that excites the substances in the test liquid. be.
  • a fluorescence analysis cell used in a fluorescence analysis apparatus generally uses a square cell that accommodates a sample liquid to be measured. When excitation light is incident on this square cell, fluorescence of the substance in the test liquid contained in the square cell is generated.
  • the fluorescence of the test liquid generated inside the square cell is absorbed by the substance in the test liquid before reaching the surface of the square cell (fluorescence reabsorption).
  • fluorescence reabsorption occurs even more.
  • fluorescence smaller than the original fluorescence generated inside the cell is detected, resulting in measurement errors in fluorescence analysis.
  • the present invention has been made to solve the above problems, and its main objective is to reduce measurement errors caused by reabsorption of fluorescence.
  • the fluorescence analysis cell according to the present invention is a fluorescence analysis cell used for fluorescence analysis of a test liquid, and includes a pair of light-transmitting parts facing each other across an internal space that accommodates the test liquid;
  • the spacer is provided so as to surround the internal space, and the distance between the opposing surfaces between the pair of transparent parts is 500 nm or more and 1 mm or less.
  • the distance between the opposing surfaces of the pair of transparent parts in the spacer part is set to 500 nm or more and 1 mm or less, the time required for the fluorescence generated in the test liquid to reach the fluorescence analysis cell surface is reduced. The distance is smaller compared to a rectangular cell. As a result, reabsorption of fluorescence from the test liquid can be reduced. Therefore, since the influence of fluorescence reabsorption is reduced, measurement errors caused by fluorescence reabsorption can be reduced.
  • the distance between the opposing surfaces of a pair of transparent parts is set to a value greater than 1 mm, measurement errors due to reabsorption of fluorescence will occur.
  • the maximum distance between opposing surfaces is 1 mm. Note that when detecting the transmitted light that has passed through the fluorescence analysis cell, the distance between the opposing surfaces is set to 1 mm at the maximum, since the transmitted light cannot be detected if the optical path length is greater than 1 mm. Further, the minimum distance between the opposing surfaces between the pair of transparent parts is set to 500 nm, which is the technical limit for forming a spacer part.
  • the fluorescence analysis cell may include a pair of flat light-transmitting members constituting a pair of light-transmitting parts, and a spacer provided between the pair of light-transmitting members and constituting the spacer part. is desirable. With such a structure, the fluorescence analysis cell is composed of a pair of flat transparent members and a spacer, so that the fluorescence analysis cell can be manufactured with a simple structure.
  • the fluorescence analysis cell further includes a holding member that sandwiches and fixes the pair of light-transmitting members.
  • the holding member sandwiches and fixes the pair of light-transmitting members, the distance between the opposing surfaces of the pair of light-transmitting parts can be fixed. Therefore, since the optical path length of the incident excitation light is constant, the fluorescence of the test liquid excited by the excitation light can be detected with high accuracy.
  • the cell installation part in which the said fluorescence analysis cell is installed is usually provided with the fixing
  • the clamping member sandwiches and fixes the pair of light-transmitting members, so the pair of light-transmitting members shift and the test liquid leaks from the cell. This can be prevented. Furthermore, when performing fluorescence analysis after installing the fluorescence analysis cell in the cell installation section, the clamping member sandwiches and fixes the pair of light-transmitting members, making it possible to prevent the test liquid from leaking from the cell. It is possible to reduce measurement errors in fluorescence analysis.
  • the light-transmitting part is made of quartz glass. Thereby, a test liquid that emits or absorbs in the ultraviolet region can be analyzed.
  • the effect of the fluorescence analysis cell becomes even more remarkable when the fluorescence analysis cell accommodates a test liquid with an absorbance of 2 or more.
  • the fluorescence analysis apparatus using the fluorescence analysis cell includes an excitation light irradiation unit that focuses and irradiates excitation light toward the fluorescence analysis cell, and a pair of transparent elements on the side where the excitation light enters. It is desirable to include a cell installation part for installing the fluorescence analysis cell so that a surface perpendicular to the surface of the optical member is inclined with respect to the irradiation direction of the excitation light. With this kind of fluorescence analyzer, the distance for the fluorescence generated in the sample liquid to reach the fluorescence analysis cell surface is smaller than that of a square cell, reducing the reabsorption of fluorescence from the sample liquid. can do.
  • the fluorescence analysis cell is installed so that the plane perpendicular to the plane of the pair of light-transmitting members on the side where the excitation light enters is inclined with respect to the irradiation direction of the excitation light, the fluorescence analysis cell Fluorescence and transmitted light can be generated.
  • the fluorescence analysis device having the fluorescence analysis cell focuses and irradiates excitation light toward a cell installation part in which the fluorescence analysis cell is installed, and the fluorescence analysis cell installed in the cell installation part. It is preferable to include an excitation light irradiation unit that does this, and an adjustment mechanism that adjusts the relative position between the excitation light condensing position and the fluorescence analysis cell position.
  • the adjustment mechanism adjusts the relative position between the excitation light collection position and the fluorescence analysis cell position, so that the excitation light collection position and the surface of the test liquid on the side where the excitation light is incident are adjusted. It is possible to match the position of As a result, more fluorescence is generated on the surface of the test liquid, making reabsorption of fluorescence less likely to occur. Therefore, measurement errors caused by fluorescence reabsorption can be reduced.
  • the fluorescence analysis device includes a fluorescence detection unit that detects the intensity of fluorescence generated from the fluorescence analysis cell, and a transmitted light detection unit that detects transmitted light generated when the excitation light passes through the fluorescence analysis cell. It is desirable to further include a calculation section that corrects the fluorescence intensity using the absorbance determined from the transmitted light detected by the transmitted light detection section.
  • the excitation light incident on the fluorescence analysis cell can cause the fluorescence analysis cell to It is possible to detect the fluorescence generated by the fluorescence analysis cell and the transmitted light that has passed through the fluorescence analysis cell. Furthermore, since the absorbance is calculated from the transmitted light and the fluorescence intensity is corrected using the absorbance, correction can be made even when the concentration of the test liquid is high.
  • the fluorescence analysis cell is a flow cell including an introduction part for introducing the test liquid into the internal space, and a discharge part for leading out the test liquid from the internal space.
  • the fluorescence analysis cell is a flow cell including an inlet and an outlet, the test liquid can be continuously or intermittently flowed into the fluorescence analysis cell. As a result, there is no need to prepare a batch-type cell in which a sample liquid is stored in a fluorescence analysis cell and subjected to fluorescence analysis each time it is analyzed.
  • the analytical method of the present invention is characterized by using the above-mentioned fluorescence analysis cell.
  • the test liquid can be accommodated in the internal space formed by the pair of light-transmitting parts and the spacer part with the distance between the opposing surfaces between them being 500 nm to 1 mm, so the distance that the fluorescence generated inside the cell travels to the cell surface is shorter than in the case of a rectangular cell.
  • the reabsorption of the fluorescence of the test liquid can be reduced, so that measurement errors caused by the reabsorption of the fluorescence can be reduced without diluting the test liquid or correcting the fluorescence intensity.
  • a method for preparing an analysis target cell to be subjected to fluorescence analysis includes sandwiching an annular spacer having a thickness of 500 nm or more and 1 mm or less, and a test liquid located inside the spacer between a pair of light-transmitting members. .
  • the test liquid can be stored in the internal space formed by the spacer and the pair of light-transmitting members, with the distance between the facing surfaces of the pair of light-transmitting members being 500 nm to 1 mm. , the reabsorption of fluorescence generated inside the cell can be reduced.
  • measurement errors caused by reabsorption of fluorescence can be reduced without diluting the test liquid or correcting the fluorescence intensity.
  • FIG. 1 is an overall schematic diagram of a fluorescence analyzer having a fluorescence analysis cell according to the present embodiment.
  • FIG. 2 is a perspective view of a fluorescence analysis cell according to the same embodiment.
  • FIG. 2 is a cross-sectional view taken along the line A-A' of the fluorescence analysis cell according to the same embodiment. It is a manufacturing method of the fluorescence analysis cell based on the same embodiment.
  • FIG. 7 is a cross-sectional view taken along the line A-A' of a cell installation part according to a modified embodiment.
  • FIG. 7 is a perspective view of a fluorescence analysis cell according to a modified embodiment.
  • FIG. 7 is a cross-sectional view taken along the line A-A' of a fluorescence analysis cell according to a modified embodiment.
  • FIG. 7 is a cross-sectional view taken along the line A-A' of a fluorescence analysis cell according to a modified embodiment.
  • FIG. 7 is a cross-sectional view taken along the line A-A' of a fluorescence analysis cell according to a modified embodiment.
  • the fluorescence analyzer 100 of this embodiment analyzes substances contained in the test liquid X by detecting fluorescence generated by the substances contained in the test liquid X.
  • the test liquid X has an absorbance of 2 or more, for example, and specific examples of the test liquid ), beverages (for example, fruit juice, drinks containing fruit juice, beverages containing colorants, coffee, sake, beer, etc.), foods (for example, jelly, health foods, seasonings, etc.), oils, electrolytes, etc.
  • the fluorescence analysis device 100 of this embodiment includes a fluorescence analysis cell 10 that contains the test liquid X, a cell installation section 20 in which the fluorescence analysis cell 10 is installed, an excitation light irradiation section 30 that irradiates excitation light L1 having a wavelength that excites a substance contained in the test liquid X, a fluorescence measurement section 40 that measures the fluorescence L2 generated in the test liquid X, a transmitted light detection section 50 that detects transmitted light L3, which is the excitation light that has passed through the fluorescence analysis cell 10, a calculation section 60 that performs calculations using the signal of the fluorescence L2 detected by the fluorescence measurement section 40 and the signal of the transmitted light L3 detected by the transmitted light detection section 50, and an output section 70 that outputs the results of calculations by the calculation section 60.
  • the fluorescence analysis cell 10 accommodates the test liquid X that is the subject of fluorescence analysis.
  • the cell length of the fluorescence analysis cell 10 containing the test liquid X is configured at a distance of 500 nm or more and 1 mm or less, so as shown in FIG. 1, the excitation light L1 incident on the fluorescence analysis cell 10 is In addition to becoming light L2, the light passes through the fluorescence analysis cell 10 and becomes transmitted light L3. A more detailed configuration will be described in detail.
  • the cell installation section 20 is where the fluorescence analysis cell 10 is installed. Specifically, as shown in FIG. 2, the cell installation section 20 is movable relative to the main body mounting section 21 on which the fluorescence analysis cell 10 is placed in an upright state, and the main body mounting section 21.
  • the cell pressing section 22 is provided and presses and fixes the fluorescence analysis cell 10 against the main body mounting section 21.
  • the main body mounting section 21 includes a transmitted light passage section 211 through which the transmitted light L3 passes.
  • the transmitted light passage section 211 is, for example, an opening formed in the main body mounting section 21, as shown in FIG.
  • the cell installation unit 20 also installs the fluorescence analysis cell 10 in such a way that the plane perpendicular to the plane of the pair of light-transmitting members 110a and 110b on which the excitation light L1 enters is inclined with respect to the irradiation direction of the excitation light L1.
  • the cell installation section 20 arranges the fluorescence analysis cell 10 so that a surface perpendicular to the surface of the light-transmitting section 11a is inclined with respect to the irradiation direction of the excitation light L1.
  • the cell is installed so that the angle formed between the surface of the transparent part 11a into which the excitation light L1 enters and the direction of incidence of the excitation light L1 is 30 degrees or more and 45 degrees or less.
  • the fluorescence analysis cell 10 is arranged. Since the cell installation unit 20 arranges the fluorescence analysis cell 10 in this manner, when the excitation light L1 enters the fluorescence analysis cell 10, the fluorescence L2 and transmitted light L3 are generated from the fluorescence analysis cell 10.
  • the excitation light irradiation unit 30 irradiates the test liquid X with excitation light L1 having a wavelength that excites the test liquid X, and includes an excitation light source 31 such as a xenon lamp, and the light from the excitation light source 31. It includes a spectroscope 32 that performs spectroscopy, and an optical condensing system 33 that condenses excitation light L1 having a specific wavelength.
  • the excitation light L1 collected by the optical focusing system 33 enters the fluorescence analysis cell 10.
  • the fluorescence measurement unit 40 detects the fluorescence L2 generated in the test liquid X and transmitted through the fluorescence analysis cell 10.
  • the fluorescence measurement unit 40 includes a detection side spectroscope 41 that separates the fluorescence L2 of the test liquid X irradiated with the excitation light L1, and a fluorescence detection unit 42 that detects the separated fluorescence L2.
  • the fluorescence detection unit 42 calculates the fluorescence intensity indicating the intensity of the fluorescence L2 based on the detected fluorescence L2.
  • a specific example of the fluorescence detection unit 42 is a CCD detector that detects fluorescence having a wavelength band of 250 nm or more and 620 nm or less, and is capable of detecting fluorescence in the ultraviolet region with a wavelength of 380 nm or less.
  • the transmitted light detection section 50 detects transmitted light L3. Further, a detector (not shown) in the transmitted light detection section 50 is, for example, a silicon photodiode that detects a wavelength of 230 nm or more and 800 nm or less. Since the fluorescence analysis cell 10 in this embodiment has a cell length of 500 nm or more and 1 mm or less, the transmitted light L3 is transmitted through the fluorescence analysis cell 10, and the detector of the transmitted light detection unit 50 detects the transmitted light L3. do.
  • the calculation unit 60 performs calculations using the fluorescence intensity detected by the fluorescence detection unit 42 and the transmitted light L3 detected by the transmitted light detection unit 50, and analyzes the properties of the substance contained in the test liquid X.
  • the calculation unit 60 is a calculation device equipped with a CPU, an A/D converter, etc., converts the detected fluorescence intensity and transmitted light L3 with the A/D converter, and performs calculations with the CPU. By doing this, the properties of the substance contained in the test liquid X, for example, the concentration of the test liquid X, and the absorbance indicating the intensity of the transmitted light L3 with respect to the excitation light L1 are calculated.
  • the calculation unit 60 uses the calculated absorbance to correct the fluorescence intensity.
  • the test liquid When irradiated with a fluorescent light, a fluorescence intensity that is lower than the actual fluorescence intensity may be detected.
  • the calculation unit 60 performs, for example, IFE correction.
  • IFE correction here refers to correcting the fluorescence intensity by taking into account reabsorption of fluorescence (inner filter effect) by absorbing components in the test liquid when the test liquid has a high concentration.
  • the correction performed on the fluorescence intensity using the absorbance is not limited to IFE correction, and may be other corrections.
  • the calculation unit 60 Based on the absorbance calculated by the calculation unit 60, the calculation unit 60 calculates the influence of the inner filter effect. Thereafter, the calculation unit 60 corrects the detected fluorescence intensity to the actual fluorescence intensity by calculating the fluorescence intensity taking into account the influence of the inner filter effect.
  • the output unit 70 outputs data regarding the properties of the substance analyzed by the calculation unit 60, and the output data is displayed on a display, for example.
  • the fluorescence analysis cell 10 accommodates the test liquid X and is used for fluorescence analysis. Specifically, as shown in FIG. 3, the fluorescence analysis cell 10 includes a pair of flat transparent members 110a and 110b that constitute a pair of transparent parts 11a and 11b, and a pair of transparent members 110a and 110b, respectively. A spacer 120 is provided between 110a and 110b and constitutes a spacer portion 12 having a thickness of 500 nm or more and 1 mm or less.
  • the thickness of the spacer portion 12 is preferably in the range of 1 ⁇ m or more and 500 ⁇ m or less, and more preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less. be.
  • the pair of light-transmitting members 110a and 110b have, for example, a rectangular shape, and constitute a pair of light-transmitting parts 11a and 11b that transmit the excitation light L1 emitted from the excitation light irradiation section 30, respectively.
  • the material of the pair of light-transmitting members 110a and 110b is a material through which the excitation light L1 and the fluorescence L2 are transmitted, such as quartz glass.
  • the light-transmitting member 110a is arranged on the side of the excitation light irradiation section 30, and the fluorescence L2 is emitted from the light-transmitting section 11a that constitutes the light-transmitting member 110a.
  • the light-transmitting member 110b is arranged on the side of the transmitted light detection unit 50, and the transmitted light L3 is emitted from the light-transmitting portion 11b that constitutes the light-transmitting member 110b.
  • the spacer 120 has an annular shape, and in this embodiment, it has a rectangular frame shape.
  • the spacer 120 constitutes a spacer section 12 that defines the distance between the opposing surfaces 111a and 111b of the pair of light-transmitting sections 11a and 11b.
  • the material of the spacer 120 is a material that has corrosion resistance against the test liquid X and does not generate impurities in the test liquid X, and is made of stainless steel, for example.
  • the shape of the spacer is not limited to a rectangular frame shape, but may be any hollow shape such as a circular frame shape.
  • the spacer 120 is provided in contact with the pair of light-transmitting members 110a and 110b.
  • the spacer 120 makes the opposing surfaces 111a, 111b of the pair of transparent parts 11a, 11b parallel to each other, and sets the distance between these opposing surfaces 111a, 111b to a predetermined distance (for example, 500 nm or more and 1 mm or less).
  • the pair of light-transmitting members 110a and 110b constitute a pair of light-transmitting parts 11a and 11b, respectively, inside the spacer 120.
  • the spacer portion 12 and the pair of light-transmitting portions 11a and 11b form an internal space in which the test liquid X is accommodated.
  • the spacer portion 12 by providing a spacer 120 between the pair of light-transmitting members 110a and 110b, the spacer portion 12
  • the inner circumferential surface 12a of the test liquid X forms an internal space that accommodates the test liquid X.
  • the fluorescence analysis cell 10 becomes an analysis target cell S, which is a target of fluorescence analysis, by storing the test liquid X in this internal space.
  • An annular spacer 120 having a thickness of 500 nm or more and 1 mm or less is provided overlappingly on the opposing surface 111a of one of the pair of light-transmitting members 110a and 110b, for example, the light-transmitting member 110a (FIG. 4 (see (a)). As a result, a space is formed that is surrounded by the opposing surface 111a of the light-transmitting member 110a and the inner circumferential surface 12a of the annular spacer 120.
  • test liquid X is accommodated in the space formed by the opposing surface 111a of the light-transmitting member 110a and the inner circumferential surface 12a of the spacer 120 (see FIG. 4(b)).
  • the other light-transmitting member 110b is placed on the upper surface of the spacer 120 so as to cover the test liquid X (see FIG. 4(c)). As a result, the test liquid It is enclosed in the internal space to be formed. As a result, the cell S to be analyzed is produced (see FIG. 4(d)).
  • the analysis target cell S prepared by this method is placed upright on the main body placing part 21 of the cell setting part 20, and is pressed against the main body placing part 21 by the cell pressing part 22. It is fixed by pressing.
  • the test liquid X is accommodated in an internal space formed by the opposing surfaces 111a, 111b of the pair of light-transmitting parts 11a, 11b and the inner peripheral surface 12a of the spacer part 12. Since the spacer part 12 has a distance between the opposing surfaces 111a, 111b of 500 nm or more and 1 mm or less, the distance that the fluorescence generated in the test liquid X takes to reach the surface of the fluorescence analysis cell 10 is smaller than that of a rectangular cell. As a result, it is possible to reduce the reabsorption of the fluorescence of the test liquid X generated inside the cell.
  • the present invention is particularly effective when the test liquid X is diluted and its physical properties are affected, for example, when the test liquid X is a liquid whose physical properties are affected by changes in the coordination of a solvent or coexisting solute.
  • the fluorescence analyzer 100 may further include an adjustment mechanism 23 that adjusts the relative position between the condensing position of the excitation light L1 and the position of the fluorescence analysis cell 10.
  • an adjustment mechanism 23 that adjusts the relative position between the condensing position of the excitation light L1 and the position of the fluorescence analysis cell 10.
  • a thickness is provided between the main body mounting portion 21 and the fluorescence analysis cell 10 to match the condensing position of the excitation light L1 and the surface position of the test liquid X. It is conceivable to provide an adjustment spacer 231.
  • the light-transmitting member 110a moves in the direction of incidence of the excitation light L1 according to the thickness of the adjustment spacer 231, so that the condensing position of the excitation light L1 and the test liquid It is possible to match the surface position.
  • the excitation light L1 is focused on the surface of the test liquid X, so more fluorescence is generated on the surface of the test liquid X, and reabsorption of fluorescence becomes less likely to occur. Therefore, measurement errors caused by fluorescence reabsorption can be reduced.
  • the adjustment mechanism 23 is provided with an adjustment spacer 231 having a thickness that matches the condensing position of the excitation light L1 and the surface position of the test liquid X; It is not limited to the spacer 231.
  • the adjustment mechanism 23 may be an adjustment mechanism 23 that adjusts the relative position by moving the cell installation section 20 itself relative to the incident direction of the excitation light L1.
  • this adjustment mechanism 23 may adjust the above-mentioned relative position by moving the condensing position of the excitation light L1 of the excitation light irradiation section 30.
  • the fluorescence analysis cell 10 may further include a clamping member 13 that clamps and fixes the pair of light-transmitting members 110a, 110b.
  • the distance between the opposing surfaces of the pair of light-transmitting parts 11a, 11b is fixed, and therefore the optical path length of the excitation light L1 is also fixed.
  • the holding member 13 sandwiches and fixes the pair of light-transmitting members 110a, 110b, it is possible to prevent the pair of light-transmitting members 110a, 110b from shifting and leaking the test liquid X from the fluorescence analysis cell 10. can.
  • the pair of light-transmitting members 110a and 110b can be prevented from being displaced by the holding member 13, the work from manufacturing the fluorescence analysis cell 10 to installing the fluorescence analysis cell 10 in the cell installation section 20 is performed. can be made easier.
  • the spacer 120 constitutes the spacer portion 12 having a thickness of 500 nm or more and 1 mm or less, but the thickness of the spacer 120 is not limited to this.
  • the transparent parts around the pair of transparent parts 11a and 11b are set such that the distance between the opposing surfaces 111a and 111b of the pair of transparent parts 11a and 11b is 500 nm or more and 1 mm or more.
  • An example of this is to reduce the thickness of the optical member and increase the thickness of the spacer 120.
  • the fluorescence analysis cell 10 may have a structure in which the spacer portion 12 is integrally provided in at least one of the pair of light-transmitting members 110a and 110b.
  • the distance between the opposing surfaces 111a and 111b of the pair of transparent parts 11a and 11b is 500 nm or more and 1 mm or less. It is conceivable to provide the spacer portion 12 integrally.
  • the fluorescence analysis cell 10 can include the spacer section 12 without providing the spacer 120. Note that a configuration may be adopted in which both of the pair of light-transmitting members 110a and 110b are provided with a convex portion that constitutes the spacer portion 12.
  • the fluorescence analysis cell 10 is configured as a batch cell in which the test liquid X is placed in the fluorescence analysis cell 10 for each analysis and subjected to fluorescence analysis, but it may also be configured as a flow cell in which the test liquid X is introduced into and discharged from the fluorescence analysis cell 10. That is, as shown in FIG. 9, the fluorescence analysis cell 10 may be configured to include an introduction section 14 that introduces the test liquid X into the internal space, and an outlet section 15 that discharges the test liquid X from the internal space. In this case, the fluorescence analysis device 100 can perform fluorescence analysis by continuously or intermittently circulating the test liquid X through the fluorescence analysis cell 10.
  • the distance between the opposing surfaces 111a and 111b of the pair of transparent parts 11a and 11b was constant, but a configuration may be adopted in which the distance between the opposing surfaces changes. That is, as shown in FIG. 10, by making one of the opposing surfaces 111a a stepped surface 114 having a stepped shape, for example, a configuration in which the distance between the opposing surfaces changes can be achieved. As a result, since there are a plurality of distances between the opposing surfaces, which are the optical path lengths of the excitation light L1, it is possible to measure the absorbance of the test liquid X for a plurality of optical path lengths in one measurement.
  • the fluorescence analyzer 100 was configured to include the transmitted light detection section 50, but it may not include the transmitted light detection section 50. In this case, the fluorescence analyzer 100 can perform fluorescence analysis without the need to measure absorbance.

Abstract

被検液Xの蛍光分析に用いられる蛍光分析用セル10であって、被検液Xを収容する内部空間を挟んで対向する一対の透光部11a、11bと、内部空間を取り囲むように設けられ、かつ、一対の透光部11a、11bの対向面111a、111bの間の距離を500nm以上1mm以下とするスペーサ部12とを備える。

Description

蛍光分析用セル、蛍光分析装置、蛍光分析方法、及び、分析対象セルの製造方法
 本発明は、蛍光分析用セル、蛍光分析装置、蛍光分析方法、及び、分析対象セルの製造方法に関するものである。
 蛍光分析装置は、被検液中の物質を励起する励起光を被検液に照射することで発生する被検液の蛍光を検出することによって、被検液に含まれる物質を分析する装置である。
 ここで、特許文献1に示すように、蛍光分析装置に用いる蛍光分析用セルには、一般に、測定対象の被検液を収容する角形セルが用いられている。この角形セルに励起光を入射すると、角形セルに収容された被検液中の物質の蛍光が生じる。
 しかしながら、角形セルを用いる場合、角形セルの内部で発生した被検液の蛍光は、角形セルの表面に到達するまでの間に被検液中の物質により吸収される(蛍光の再吸収)。特に、濃度の高い被検液といった、被検液中の物質が多く存在する場合、上記の蛍光の再吸収はさらに多く生じる。その結果、セル内部で発生した元来の蛍光よりも小さい蛍光が検出されるので、蛍光分析の測定誤差を生じてしまう。
 なお、吸光度を用いて蛍光強度を補正する方法もあるが、吸光度が例えば2以上の被検液では光がほとんど透過しないため、そもそも吸光度を検出することができず、蛍光強度を補正することができない。
 さらに、被検液を希釈して、希釈した被検液を蛍光分析する方法もあるが、希釈により被検液に含まれる物質の性状が変化する場合がある。この場合、希釈前の被検液に含まれる物質の蛍光から変化することで蛍光分析の測定誤差が生じてしまうので、そもそも被検液を希釈することができない場合もある。
特開2020-148547号公報
 そこで本発明は、上記問題点を解決すべくなされたものであり、蛍光の再吸収に起因する測定誤差を低減することをその主たる課題とするものである。
 すなわち本発明に係る蛍光分析用セルは、被検液の蛍光分析に用いられる蛍光分析用セルであって、当該被検液を収容する内部空間を挟んで対向する一対の透光部と、前記内部空間を取り囲むように設けられ、かつ、前記一対の透光部間の対向面の距離を500nm以上1mm以下とするスペーサ部とを備えることを特徴とする。
 このような構成であれば、スペーサ部が、一対の透光部間の対向面の距離を500nm以上1mm以下としているので、被検液で発生した蛍光が蛍光分析用セル表面に到達するまでの距離が角形セルと比較して小さくなる。この結果、被検液の蛍光の再吸収を低減することができる。したがって、蛍光の再吸収による影響が小さくなるので、蛍光の再吸収に起因する測定誤差を低減することができる。
 ここで、例えば吸光度が2の被検液において、一対の透光部の対向面の距離を1mmより大きい値とすると、蛍光の再吸収に起因する測定誤差を生じてしまうので、透光部の対向面の距離を最大で1mmとしている。なお、前記蛍光分析用セルを透過した透過光を検出する場合は、光路長が1mmより大きいと透過光を検出することができないので、対向面の距離を最大で1mmとしている。また、一対の透光部間の対向面の距離の最小値は、スペーサ部を形成するのに技術的に限界である500nmとしている。
 前記蛍光分析用セルは、一対の透光部それぞれを構成する平板状の一対の透光部材と、前記一対の透光部材の間に設けられるとともに、前記スペーサ部を構成するスペーサとを備えることが望ましい。
 このようなものであれば、蛍光分析用セルは、平板状の一対の透光部材とスペーサとから構成されるので、蛍光分析用セルを単純な構造で作製することができる。
 さらに、前記蛍光分析用セルは、前記一対の透光部材を挟んで固定する挟持部材をさらに備えることが望ましい。
この構成であれば、挟持部材が一対の透光部材を挟んで固定するので、一対の透光部の対向面の距離を固定することができる。したがって、入射する励起光の光路長が一定となるので、励起光によって励起する被検液の蛍光を精度よく検出することができる。
 なお、前記蛍光分析用セルが設置されるセル設置部は、通常、前記蛍光分析用セルを固定する固定部が設けられている。このセル設置部の固定部に前記蛍光分析用セルを設置する場合に、挟持部材が一対の透光部材を挟んで固定するので、一対の透光部材がずれて被検液がセルから漏れ出ることを防ぐことができる。さらに、前記蛍光分析用セルをセル設置部に設置した後に蛍光分析を行う場合に、挟持部材が一対の透光部材を挟んで固定するので、被検液がセルから漏れ出ることを防ぐことができ、蛍光分析の測定誤差を低減することができる。
 そのうえ、前記透光部は、石英ガラスから構成されていることが好ましい。これにより、紫外領域に放射又は吸収を持つ被検液を分析対象とすることができる。
 また、前記蛍光分析用セルの効果がより一層顕著になるのは、前記蛍光分析用セルが、吸光度2以上の被検液を収容する場合である。
 さらに、前記蛍光分析用セルを用いた蛍光分析装置は、前記蛍光分析用セルに向けて励起光を集光して照射する励起光照射部と、前記励起光が入射する側の前記一対の透光部材の面に垂直な面が前記励起光の照射方向に対して傾斜するように前記蛍光分析用セルを設置するセル設置部とを備えることが望ましい。
 このような蛍光分析装置であれば、被検液で発生した蛍光が蛍光分析用セル表面に到達するまでの距離が角形セルと比較して小さくなるので、被検液の蛍光の再吸収を低減することができる。また、励起光が入射する側の一対の透光部材の面に垂直な面が、励起光の照射方向に対して傾斜するように、蛍光分析用セルが設置されるので、蛍光分析用セルにおいて蛍光および透過光を発生させることができる。
 前記蛍光分析用セルを有する蛍光分析装置は、前記蛍光分析用セルが設置されるセル設置部と、前記セル設置部に設置された前記蛍光分析用セルに向けて励起光を集光して照射する励起光照射部と、前記励起光の集光位置と前記蛍光分析用セルの位置との相対位置を調整する調整機構とを備えることが望ましい。
 この構成であれば、調整機構は、励起光の集光位置と蛍光分析用セルの位置との相対位置を調整するので、励起光の集光位置と励起光が入射する側の被検液表面の位置とを一致させることができる。この結果、被検液表面でより多くの蛍光が発生するので、蛍光の再吸収が起こりにくくなる。したがって、蛍光の再吸収に起因する測定誤差を低減することができる。
 前記蛍光分析装置は、前記蛍光分析用セルから生じた蛍光における蛍光強度を検出する蛍光検出部と、前記励起光が前記蛍光分析用セルを透過することによって生じた透過光を検出する透過光検出部と、前記透過光検出部により検出された前記透過光から求まる吸光度を用いて、前記蛍光強度に対して補正を行う演算部とをさらに備えることが望ましい。
 このような蛍光分析装置であれば、蛍光分析用セルの一対の透光部間の対向面の距離が500nm以上1mm以下であるので、蛍光分析用セルに入射した励起光によって、蛍光分析用セルで発生した蛍光と、蛍光分析用セルを透過した透過光とを検出することができる。また、透過光から吸光度を算出し、その吸光度を用いて、蛍光強度に対し補正を行うので、被検液の濃度が高い場合でも、補正をすることができる。
 前記蛍光分析装置において、前記蛍光分析用セルは、前記内部空間に前記被検液を導入する導入部と、前記内部空間から前記被検液を導出する導出部とを備えるフローセルであることが好ましい。
 このような構成であれば、蛍光分析用セルが導入部及び導出部を備えるフローセルであるので、被検液を蛍光分析用セルに連続的又は間欠的に流すことができる。その結果、分析の度に被検液を蛍光分析用セルに収容して蛍光分析されるバッチ式のセルを作製する必要がなくなる。
 本発明の分析方法は、前記蛍光分析用セルを用いることを特徴とする。
 このような分析方法であれば、一対の透光部とその間の対向面の距離を500nm以上1mm以下とするスペーサ部とが形成する内部空間に被検液を収容することができるので、セル内部で発生した蛍光がセル表面に到達するまでの距離は、角形セルの場合と比較して小さくなる。この結果、被検液の蛍光の再吸収を低減することができるので、被検液の希釈又は蛍光強度の補正を行うことなく、蛍光の再吸収に起因する測定誤差を低減することができる。
 蛍光分析される分析対象セルの作製方法は、厚みが500nm以上1mm以下である環状のスペーサ、及び前記スペーサの内側に位置する被検液を、一対の透光部材により挟み込むことを挙げることができる。
 このような作製方法であれば、一対の透光部材間の対向面の距離を500nm~1mmとするスペーサと一対の透光部材とが形成する内部空間に被検液を収容することができるので、セル内部で発生する蛍光の再吸収を低減することができる。
 以上に述べた本発明によれば、被検液の希釈又は蛍光強度の補正を行うことなく、蛍光の再吸収に起因する測定誤差を低減することができる。
本実施形態に係る蛍光分析用セルを有する蛍光分析装置の全体模式図である。 同実施形態に係る蛍光分析用セルの斜視図である。 同実施形態に係る蛍光分析用セルのA-A’断面における断面図である。 同実施形態に係る蛍光分析用セルの製造方法である。 変形実施形態に係るセル設置部のA-A’断面における断面図である。 変形実施形態に係る蛍光分析用セルの斜視図である。 変形実施形態に係る蛍光分析用セルのA-A’断面における断面図である。 変形実施形態に係る蛍光分析用セルのA-A’断面における断面図である。 変形実施形態に係る蛍光分析用セルのA-A’断面における断面図である。 変形実施形態に係る蛍光分析用セルのA-A’断面における断面図である。
 以下、本発明の一実施形態に係る蛍光分析装置について、図面を参照しながら説明する。なお、以下に示すいずれの図についても、わかりやすくするために、適宜省略し又は誇張して模式的に描かれている。同一の構成要素については、同一の符号を付して説明を適宜省略する。
<装置の基本構成>
 本実施形態の蛍光分析装置100は、図1に示すように、被検液Xに含まれる物質により発生する蛍光を検出することで、被検液Xに含まれる物質を分析するものである。また、被検液Xは、例えば吸光度が2以上であり、被検液Xの具体例としては、バイオ製品(例えば、細胞や微生物の培養液や培地、生体材料や代謝産物を含んだ液体等)、飲料(例えば、果汁や果汁入飲料、着色料を含んだ飲料、コーヒー、日本酒、ビール等)、食品(例えば、ゼリー、健康食品、調味料等)、オイル、又は電解液等である。
 具体的に本実施形態の蛍光分析装置100は、被検液Xが収容される蛍光分析用セル10と、蛍光分析用セル10が設置されるセル設置部20と、被検液Xに含まれる物質を励起する波長を持つ励起光L1を照射する励起光照射部30と、被検液Xで生じた蛍光L2を測定する蛍光測定部40と、蛍光分析用セル10を透過した励起光である透過光L3を検出する透過光検出部50と、蛍光測定部40で検出した蛍光L2の信号及び透過光検出部50で検出した透過光L3の信号を用いて演算を行う演算部60と、演算部60で演算した結果を出力する出力部70とを備える。
 蛍光分析用セル10は、蛍光分析の対象である被検液Xを収容するものである。蛍光分析用セル10が被検液Xを収容するセル長は、500nm以上1mm以下の距離に構成されるので、図1に示すように、蛍光分析用セル10に入射した励起光L1は、蛍光L2となる他に、蛍光分析用セル10を透過して透過光L3となる。より詳細な構成は詳述する。
 セル設置部20は、蛍光分析用セル10が設置されるものである。具体的には、図2に示すように、セル設置部20は、蛍光分析用セル10が起立した状態で載置される本体載置部21と、本体載置部21に対して移動可能に設けられ、本体載置部21に対して蛍光分析用セル10を押圧して固定するセル押圧部22とを備える。そして、本体載置部21は、透過光L3を透過光検出部50に導くために、透過光L3が通過する透過光通過部211を有する。透過光通過部211は、図2に示すように、例えば、本体載置部21に形成された開口部である。
 また、セル設置部20は、励起光L1が入射する側の一対の透光部材110a、110bの面に垂直な面が励起光L1の照射方向に対して傾斜するように蛍光分析用セル10を設置する。言い換えると、セル設置部20は、透光部11aの面と垂直な面が励起光L1の照射方向に対して傾斜するように、蛍光分析用セル10を配置する。特に本実施形態において、図1に示すように、励起光L1が入射する透光部11aの面と励起光L1の入射方向とのなす角が30度以上45度以下となるように、セル設置部20は蛍光分析用セル10を配置する。このようにセル設置部20が蛍光分析用セル10を配置するので、励起光L1が蛍光分析用セル10に入射すると、蛍光分析用セル10から蛍光L2および透過光L3が発生する。
 励起光照射部30は、被検液Xを励起する波長を持つ励起光L1を被検液Xに照射するものであり、例えばキセノンランプ等の励起光源31と、当該励起光源31からの光を分光する分光器32と、特定の波長を有する励起光L1を集光する光学集光系33とを備える。光学集光系33で集光された励起光L1は、蛍光分析用セル10へと入射する。
 蛍光測定部40は、被検液Xで発生して蛍光分析用セル10から透過した蛍光L2を検出するものである。蛍光測定部40は、励起光L1が照射された被検液Xの蛍光L2を分光する検出側分光器41と、その分光された蛍光L2を検出する蛍光検出部42とを備える。蛍光検出部42は、検出した蛍光L2に基づいて、さらに蛍光L2の強度を示す蛍光強度を算出する。蛍光検出部42の具体的な例としては、250nm以上620nm以下の波長帯域を有する蛍光を検出するCCD検出器であり、380nm以下の波長である紫外領域の蛍光を検出することができる。
 透過光検出部50は、透過光L3を検出するものである。また、透過光検出部50における検出器(図示しない)は、例えば、230nm以上800nm以下の波長を検出するシリコンフォトダイオードである。本実施形態における蛍光分析用セル10は、セル長が500nm以上1mm以下であるので、透過光L3は、蛍光分析用セル10を透過し、透過光検出部50の検出器が透過光L3を検出する。
 演算部60は、蛍光検出部42が検出した蛍光強度、および、透過光検出部50が検出した透過光L3を用いて演算を行い、被検液Xに含まれる物質の性状を分析するものである。具体的には、演算部60は、CPU、A/D変換器などを備えた演算装置であり、検出された蛍光強度及び透過光L3をA/D変換器で変換し、CPUにより演算を行うことによって、被検液Xに含まれる物質の性状、例えば、被検液Xの濃度、および、励起光L1に対する透過光L3の強度を示す吸光度を算出する。
 さらに、演算部60は、算出した吸光度を用いて、蛍光強度に対し補正を行う。本実施形態において、被検液Xは吸光度が2以上であるので、その被検液X中の吸収成分による蛍光の再吸収(インナーフィルター効果)によって、例えば400nm以下のといった短波長の励起光L1を照射した場合に、実際の蛍光強度よりも小さい蛍光強度が検出されることがある。この蛍光強度を補正するために、演算部60は、例えばIFE補正を行う。なお、ここでいうIFE補正とは、被検液が高濃度である場合に、その被検液中の吸収成分による蛍光の再吸収(インナーフィルター効果)を考慮して蛍光強度を補正することを言う。また、吸光度を用いて、蛍光強度に対して行う補正は、IFE補正に限られず、その他の補正であってもよい。
 IFE補正の具体的な内容を以下に説明する。演算部60が算出した吸光度から、演算部60は、インナーフィルター効果による影響を演算する。その後、演算部60は、インナーフィルター効果による影響を加味した蛍光強度を算出することによって、検出された蛍光強度を実際の蛍光強度に補正する。
 出力部70は、演算部60により分析された物質の性状に関するデータを出力するものであり、出力されたデータは、例えばディスプレイ上に表示される。
<蛍光分析用セルの具体的構成>
 そして、蛍光分析用セル10は、被検液Xを収容するとともに、蛍光分析に用いられるものである。具体的には、図3に示すように、蛍光分析用セル10は、一対の透光部11a、11bそれぞれを構成する平板状の一対の透光部材110a、110bと、当該一対の透光部材110a、110bの間に設けられ、かつ、500nm以上1mm以下の厚みを有するスペーサ部12を構成するスペーサ120とを備える。また、蛍光分析用セル10を透過して透過光L3を検出することができるように、スペーサ部12の厚みの好ましい範囲は、1μm以上500μm以下であり、より好ましい範囲は、1μm以上10μm以下である。
 一対の透光部材110a、110bは、例えば矩形状をなすものであり、励起光照射部30から射出された励起光L1を透過する一対の透光部11a、11bそれぞれを構成するものである。なお、一対の透光部材110a、110bの材質は、励起光L1及び蛍光L2が透過する材質であり、例えば石英ガラスが挙げられる。
具体的には、図2及び図3に示すように、透光部材110aは、励起光照射部30側に配置され、透光部材110aを構成する透光部11aから蛍光L2が出射する。また、透光部材110bは、透過光検出部50側に配置され、透光部材110bを構成する透光部11bから透過光L3が出射する。
 そして、スペーサ120は、環状をなしており、本実施形態では矩形枠状をなすものである。スペーサ120は、一対の透光部11a、11bの対向面111a、111bの間の距離を規定するスペーサ部12を構成する。なお、スペーサ120の材質は、被検液Xに対して耐食性を有し、かつ、被検液X中に不純物を生じない材質であり、例えばステンレス鋼から形成される。また、スペーサの形状は、矩形枠状に限られず、円形枠状などの中空の形状であればよい。
 具体的には、図2及び図3に示すように、スペーサ120は、一対の透光部材110a、110bと互いに接して設けられる。この結果、スペーサ120は、一対の透光部11a、11bの対向面111a、111b同士を互いに平行にするとともに、これらの対向面111a、111bの間の距離を所定の距離(例えば500nm以上1mm以下)とする。このようにして、一対の透光部材110a、110bは、スペーサ120の内側において、それぞれ一対の透光部11a、11bを構成する。
 その上、スペーサ部12と一対の透光部11a、11bとは、被検液Xを収容する内部空間を形成する。具体的には、図3に示すように、一対の透光部材110a、110bの間にスペーサ120が設けられることにより、一対の透光部11a、11bの対向面111a、111bと、スペーサ部12の内側周面12aとが被検液Xを収容する内部空間を形成する。そして、蛍光分析用セル10は、この内部空間に被検液Xを収容することで、蛍光分析の対象である分析対象セルSとなる。
<分析対象セルSの作製方法>
 次に、被検液Xを封入して蛍光分析される分析対象セルSの作製方法について図4を参照して説明する。
 一対の透光部材110a、110bのうちの一方の透光部材、例えば透光部材110aの対向面111aとなる面に、厚みが500nm以上1mm以下である環状のスペーサ120を重ねて設ける(図4(a)参照)。これにより、透光部材110aの対向面111aとなる面と環状のスペーサ120の内側周面12aとが取り囲む空間が形成される。
 透光部材110aの対向面111aとなる面とスペーサ120の内側周面12aとにより形成される空間に、被検液Xを収容する(図4(b)参照)。
 スペーサ120の上面に、もう一方の透光部材110bを、被検液Xを覆うように載置する(図4(c)参照)。これにより、被検液Xは、一対の透光部材110a、110bが構成する一対の透光部11a、11bの対向面111a、111bとスペーサ120が構成するスペーサ部12の内側周面12aとが形成する内部空間に封入される。この結果、分析対象セルSが作製される(図4(d)参照)。
 この方法により作製された分析対象セルSは、図2に示すように、セル設置部20の本体載置部21によって起立して載置され、セル押圧部22により本体載置部21に対して押圧して固定される。
<本実施形態の効果>
 本実施形態の蛍光分析装置100によれば、蛍光分析用セル10において、一対の透光部11a、11bの対向面111a、111bとスペーサ部12の内側周面12aとが形成する内部空間に被検液Xが収容される。スペーサ部12が、対向面111a、111bの間の距離を500nm以上1mm以下としているので、被検液Xで発生した蛍光が蛍光分析用セル10の表面に到達するまでの距離は、角形セルと比較して小さくなる。その結果、セル内部で生じた被検液Xの蛍光の再吸収を低減することができる。したがって、被検液Xの蛍光の再吸収が低減するので、蛍光の再吸収に起因する測定誤差を低減することができる。特に、被検液Xが希釈されて物性に影響が出るものである場合、例えば、被検液Xが、溶媒や共存溶質の配位が変化することで物性に影響が出るものである場合に、本発明は特に効果を有する。
<その他の変形実施形態>
 なお、本発明は前記各実施形態に限られるものではない。
 蛍光分析装置100は、励起光L1の集光位置と蛍光分析用セル10の位置との相対位置を調整する調整機構23をさらに備えるものであってもよい。例えば、図5(b)に示すように、本体載置部21と蛍光分析用セル10との間に、励起光L1の集光位置と被検液Xの表面位置とを一致させる厚みを持つ調整用スペーサ231を設けることが考えられる。図5(a)の場合と比べて、調整用スペーサ231の厚みに応じて透光部材110aが励起光L1の入射方向へと移動するので、励起光L1の集光位置と被検液Xの表面位置とを一致させることができる。この結果、被検液Xの表面で励起光L1が集光するので、被検液Xの表面でより多くの蛍光が発生し、蛍光の再吸収が起こりにくくなる。したがって、蛍光の再吸収に起因する測定誤差を低減することができる。
 なお、上記調整機構23は、励起光L1の集光位置と被検液Xの表面位置とを一致させる厚みを持つ調整用スペーサ231を設けるものであったが、調整機構23は、この調整用スペーサ231に限られない。例えば、調整機構23は、セル設置部20自体を励起光L1の入射方向に対して移動させることで、上記相対位置を調整する調整機構23であってもよい。また、この調整機構23は、励起光照射部30の励起光L1の集光位置を移動させることで、上記相対位置を調整するものであってもよい。
 また、図6に示すように、蛍光分析用セル10は、一対の透光部材110a、110bを挟んで固定する挟持部材13をさらに備える構成としてもよい。この場合、一対の透光部11a、11bの対向面の距離が固定されるので、励起光L1の光路長も固定される。その結果、励起光L1が被検液X中の物質を励起することで生じる蛍光の測定誤差を低減することができる。
 そして、挟持部材13が一対の透光部材110a、110bを挟んで固定するので、一対の透光部材110a、110bがずれて被検液Xが蛍光分析用セル10から漏れ出ることを防ぐことができる。また、挟持部材13により一対の透光部材110a、110bがずれることを防ぐことができるので、蛍光分析用セル10を作製してから蛍光分析用セル10をセル設置部20に設置するまでの作業をしやすくすることができる。
 さらに、前記実施形態では、スペーサ120は、500nm以上1mm以下の厚みを有するスペーサ部12を構成するものであったが、スペーサ120の厚みはこれに限られない。この場合、図7に示すように、一対の透光部11a、11bの対向面111a、111bの間の距離を500nm以上1mm以上となるように、一対の透光部11a、11bの周りの透光部材の厚みを小さくし、スペーサ120の厚みを大きくすることが挙げられる。
 また、蛍光分析用セル10は、一対の透光部材110a、110bの少なくとも一方においてスペーサ部12を一体に設ける構成としてもよい。この場合、図8に示すように、例えば、一対の透光部材の一方の透光部材110aにおいて、一対の透光部11a、11bの対向面111a、111bの間の距離が500nm以上1mm以下となるスペーサ部12を一体に設けることが考えられる。この構成により、蛍光分析用セル10は、スペーサ120を設けることなく、スペーサ部12を備えることができる。なお、一対の透光部材110a、110bの両方が、スペーサ部12を構成する凸部を設ける構成としてもよい。
 また、前記実施形態では、蛍光分析用セル10は、分析の度に被検液Xを蛍光分析用セル10に収容して蛍光分析されるバッチセルの構成であったが、被検液Xを蛍光分析用セル10に導入及び導出するフローセルとする構成としてもよい。すなわち、図9に示すように、蛍光分析用セル10が、内部空間に前記被検液Xを導入する導入部14と、内部空間から被検液Xを導出する導出部15とを備える構成としてもよい。この場合、蛍光分析装置100は、蛍光分析用セル10に被検液Xを連続的又は間欠的に流通させて蛍光分析することができる。
 さらにその上、前記実施形態では、一対の透光部11a、11bの対向面111a、111bの距離は一定であったが、当該対向面間の距離が変化する構成としてもよい。すなわち、図10に示すように、一方の対向面111aを、例えば階段状である段差面114とすることで、対向面間の距離が変化する構成とすることができる。この結果、励起光L1の光路長である対向面間の距離が複数あるので、一度の測定で複数の光路長に関する被検液Xの吸光度測定を行うことができる。
 そして、前記実施形態では、蛍光分析装置100は、透過光検出部50を備える構成であったが、透過光検出部50を備えなくともよい。この場合、蛍光分析装置100は、吸光度測定を行う必要なく蛍光分析をすることができる。
 その他、本発明は前記各実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
 本発明によれば、蛍光の再吸収に起因する測定誤差を低減することができる。
100・・・蛍光分析装置
10 ・・・蛍光分析用セル
11 ・・・透光部
12 ・・・スペーサ部
20 ・・・セル設置部
30 ・・・励起光照射部
40 ・・・蛍光測定部
50 ・・・透過光検出部
60 ・・・演算部
70 ・・・出力部

Claims (12)

  1.  被検液の蛍光分析に用いられる蛍光分析用セルであって、
     前記被検液を収容する内部空間を挟んで対向する一対の透光部と、
     前記内部空間を取り囲むように設けられ、かつ、前記一対の透光部間の対向面の距離を500nm以上1mm以下とするスペーサ部と、
     を備える、蛍光分析用セル。
  2.  前記一対の透光部それぞれを構成する平板状の一対の透光部材と、
     前記一対の透光部材の間に設けられるとともに、前記スペーサ部を構成するスペーサと、
     を備える、請求項1に記載の蛍光分析用セル。
  3.  前記一対の透光部材を挟んで固定する挟持部材をさらに備える、請求項2記載の蛍光分析用セル。
  4.  前記透光部は、石英ガラスから構成されている、請求項1乃至3の何れか一項に記載の蛍光分析用セル。
  5.  前記被検液は、吸光度が2以上である、請求項1乃至4の何れか一項に記載の蛍光分析用セル。
  6.  請求項1乃至5の何れか一項に記載の蛍光分析用セルを有する蛍光分析装置。
  7.  前記蛍光分析用セルに向けて励起光を集光して照射する励起光照射部と、
     前記励起光が入射する側の前記一対の透光部材の面に垂直な面が前記励起光の照射方向に対して傾斜するように、前記蛍光分析用セルを設置するセル設置部とを備える、請求項6記載の蛍光分析装置。
  8.  前記励起光の集光位置と前記蛍光分析用セルの位置との相対位置を調整する調整機構をさらに備える、請求項6または7に記載の蛍光分析装置。
  9.  前記励起光を照射することによって前記蛍光分析用セルで生じた蛍光を検出する蛍光検出部と、
     前記励起光が前記蛍光分析用セルを透過することによって生じた透過光を検出する透過光検出部と、
     前記透過光から求まる吸光度を用いて、前記蛍光検出部が検出した蛍光の強度に対して補正を行う演算部とをさらに備える、請求項7または8に記載の蛍光分析装置。
  10.  前記蛍光分析用セルは、前記内部空間に前記被検液を導入する導入部と、前記内部空間から前記被検液を導出する導出部とを備えるフローセルである、請求項6乃至9の何れか一項に記載の蛍光分析装置。
  11.  請求項1乃至10の何れか一項に記載の蛍光分析用セルを用いる蛍光分析方法。
  12.  蛍光分析される分析対象セルの製造方法であって、
     厚みが500nm以上1mm以下である環状のスペーサ、及び、前記スペーサの内側に位置する被検液を、一対の透光部材により挟み込むことによる、前記分析対象セルの製造方法。
PCT/JP2023/030431 2022-09-22 2023-08-24 蛍光分析用セル、蛍光分析装置、蛍光分析方法、及び、分析対象セルの製造方法 WO2024062833A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151742 2022-09-22
JP2022151742 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062833A1 true WO2024062833A1 (ja) 2024-03-28

Family

ID=90454101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030431 WO2024062833A1 (ja) 2022-09-22 2023-08-24 蛍光分析用セル、蛍光分析装置、蛍光分析方法、及び、分析対象セルの製造方法

Country Status (1)

Country Link
WO (1) WO2024062833A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253635A (ja) * 1988-04-01 1989-10-09 Hitachi Ltd 蛍光分析方法及びその装置
JPH0835927A (ja) * 1994-07-25 1996-02-06 Jasco Corp 蛍光検出用フローセル及びそれを用いた蛍光検出器
JP2003515724A (ja) * 1998-10-09 2003-05-07 ユニバーシティ オブ ワシントン デュアル広角(duallargeangle)光散乱検出
JP2008196943A (ja) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd 生物学的特異的反応物質の測定チップ、測定システムおよび測定方法
WO2008130032A1 (ja) * 2007-04-19 2008-10-30 The Ritsumeikan Trust 液中粒子分級装置及び液中粒子分級方法、粒径測定装置及び粒径測定方法
WO2017199511A1 (ja) * 2016-05-19 2017-11-23 富士電機株式会社 水質分析計
JP2018532998A (ja) * 2015-09-14 2018-11-08 エッセンリックス コーポレーション 試料、特に血液を分析するための装置及びシステム、並びにそれらの使用方法
JP2019211455A (ja) * 2017-06-22 2019-12-12 株式会社堀場製作所 光学測定用セル及びこれを用いた粒子物性測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253635A (ja) * 1988-04-01 1989-10-09 Hitachi Ltd 蛍光分析方法及びその装置
JPH0835927A (ja) * 1994-07-25 1996-02-06 Jasco Corp 蛍光検出用フローセル及びそれを用いた蛍光検出器
JP2003515724A (ja) * 1998-10-09 2003-05-07 ユニバーシティ オブ ワシントン デュアル広角(duallargeangle)光散乱検出
JP2008196943A (ja) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd 生物学的特異的反応物質の測定チップ、測定システムおよび測定方法
WO2008130032A1 (ja) * 2007-04-19 2008-10-30 The Ritsumeikan Trust 液中粒子分級装置及び液中粒子分級方法、粒径測定装置及び粒径測定方法
JP2018532998A (ja) * 2015-09-14 2018-11-08 エッセンリックス コーポレーション 試料、特に血液を分析するための装置及びシステム、並びにそれらの使用方法
WO2017199511A1 (ja) * 2016-05-19 2017-11-23 富士電機株式会社 水質分析計
JP2019211455A (ja) * 2017-06-22 2019-12-12 株式会社堀場製作所 光学測定用セル及びこれを用いた粒子物性測定装置

Similar Documents

Publication Publication Date Title
EP1730495B1 (en) Ozone concentration sensor
CN108351304B (zh) 水质分析仪
JP5419301B2 (ja) 試料分析装置
US10132787B2 (en) Device for optically determining the concentration of alcohol and carbohydrates in a liquid sample
EP2081015A2 (en) Apparatus for inspecting food
JP2008309785A (ja) 減衰全反射センサー
KR101281105B1 (ko) 수용액 내 존재하는 우라늄 농도의 정량방법
JP5743558B2 (ja) 分析装置
KR20110067049A (ko) 고농도 기체의 스펙트럼 분석에 적합한 장치
JPWO2019176624A1 (ja) ガス分析方法及び装置
KR20170052256A (ko) 라만 산란을 이용한 물질의 농도 측정 장치 및 방법
JP5272965B2 (ja) 蛍光検出器
WO2024062833A1 (ja) 蛍光分析用セル、蛍光分析装置、蛍光分析方法、及び、分析対象セルの製造方法
US9541531B2 (en) Detector for liquid chromatography
KR101803676B1 (ko) 컴팩트형 비분산 적외선 가스 분석장치
US20170227397A1 (en) Analyte system and method for determining hemoglobin parameters in whole blood
JP4218954B2 (ja) 吸光式分析計
JP2002107299A (ja) ガス測定装置
JP2002098631A (ja) 小型試料濃度測定装置
JP2010249726A (ja) ガス分析装置
KR20150136760A (ko) 가스 측정 센서 및 방법
US20230296438A1 (en) Absorbance spectroscopy analyzer and method of use
CN110879208A (zh) 一种带自校准功能的吸光度检测系统
JP2006275794A5 (ja)
US9933411B2 (en) Analyte system and method for determining hemoglobin parameters in whole blood