WO2024062767A1 - 金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備 - Google Patents

金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備 Download PDF

Info

Publication number
WO2024062767A1
WO2024062767A1 PCT/JP2023/027674 JP2023027674W WO2024062767A1 WO 2024062767 A1 WO2024062767 A1 WO 2024062767A1 JP 2023027674 W JP2023027674 W JP 2023027674W WO 2024062767 A1 WO2024062767 A1 WO 2024062767A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
metal strip
width direction
tension
warpage
Prior art date
Application number
PCT/JP2023/027674
Other languages
English (en)
French (fr)
Inventor
弘和 小林
充 中村
幸雄 木村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023561273A priority Critical patent/JP7401040B1/ja
Publication of WO2024062767A1 publication Critical patent/WO2024062767A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a method for estimating the warp shape of a metal strip transported in a continuous annealing facility, a method for determining whether the metal strip is acceptable, a method for manufacturing the metal strip, and a warp shape estimation facility for the metal strip.
  • Continuous annealing equipment is equipped with a heating zone, a soaking zone, and a cooling zone.
  • the cooling methods in the cooling zone include liquid quenching, roll cooling, air-water mixture (mist) cooling, and gas jet cooling.
  • An appropriate cooling method is selected as appropriate to control the material properties of the metal strip.
  • liquid quenching has the fastest cooling speed.
  • Liquid quenching is suitable for manufacturing high-strength steel plates because it allows for the addition of less alloying elements to increase the strength of the metal strip.
  • the heated metal strip is immersed in liquid and at the same time, cooling liquid is sprayed onto the metal strip from slit nozzles installed in the liquid, thereby rapidly cooling it.
  • the tension applied to the metal strip is removed, and the metal strip is cut into plate shapes to determine pass/fail based on the amount of warpage measured.
  • the amount of warpage measured while the metal strip is being transported in the continuous annealing equipment that manufactures the metal strip, and the amount of warpage measured after the tension applied to the metal strip is removed and it is cut into plate shapes are as follows. They are not necessarily the same. For this reason, in continuous annealing equipment that manufactures metal strips, it is difficult to conduct quality inspections regarding warped shapes with high precision while the metal strip is being transported.
  • Patent Document 1 discloses a flatness control device that controls the temperature in the width direction of the metal strip in the cooling section of continuous annealing equipment in order to improve the flatness of the metal strip in a tension-free state.
  • Patent Document 1 compares the shape of the metal strip in the width direction when tension is applied to the metal strip and the shape in the width direction of the strip when the tension is released, and calculates the temperature of the metal strip in the width direction based on the comparison result. Discloses a method for controlling.
  • Patent Document 2 describes a method for estimating the residual bending moment that occurs in the longitudinal direction and the width direction of the metal strip using the amount of warpage in the width direction of the metal strip under tension and the applied tension. Disclose. Furthermore, Patent Document 2 uses a relational expression expressing elastic deformation using the estimated residual bending moment to calculate the amount of warpage in the longitudinal direction and the amount of warpage in the width direction of the cut plate in the state where the tension is released. Disclose a method for calculating.
  • the shape in the width direction of the metal strip when tension is applied to the metal strip and the shape in the width direction of the strip when the tension is released are achieved. Data needs to be collected. In this case, it is necessary to collect performance data according to the thickness, width, steel type, etc. of the metal strip, and it is necessary to repeatedly stop the line and unload the tension during production using continuous annealing equipment. This results in a decrease in the production efficiency of continuous annealing equipment. Further, the shape of the metal band described in Patent Document 1 means steepness expressed by the ratio of the displacement distance in the vertical direction and the displacement width in the longitudinal direction, as shown in FIG. 2 of Patent Document 1.
  • the shape of the metal band in Patent Document 1 refers to a wave shape such as an ear wave or an elongation occurring in the metal band. Therefore, the shape of the metal strip in Patent Document 1 is different from the shape of warpage in the width direction of the metal strip as an inspection target for quality inspection of the metal strip. Therefore, it is difficult to apply the configuration described in Patent Document 1 to the warped shape of the metal band in the plate width direction.
  • Patent Document 2 uses a relational expression expressing elastic deformation to calculate the amount of warpage in the longitudinal direction of the metal strip and the warpage in the width direction of the metal strip when the tension is unloaded from the estimated residual bending moment. This is a method of calculating the amount.
  • a relational expression expressing elastic deformation can be expressed by a high-order function such as a 4th-order function or a 6th-order function with respect to the in-plane coordinates of the metal band.
  • Patent Document 2 it is assumed that the residual bending moment of the metal strip is generated uniformly (uniformly) within the plane of the metal strip, so if the residual bending moment is unevenly distributed, Not applicable.
  • Patent Document 2 cannot be applied in a case where non-uniform residual stress is generated in the plane due to rapid cooling of the metal band, and a non-uniform warped shape is formed. If this method is applied to a metal band having a non-uniform warped shape, there is a problem in that the accuracy of estimating the warped shape is reduced.
  • the present invention has been made in view of the above circumstances, and is based on the curved shape in the width direction of a metal strip when tension is applied in the longitudinal direction.
  • a method for estimating the warp shape of a metal strip that can estimate the warp shape in the sheet width direction in a state where tension is released, a method for determining pass/fail of the metal strip, a method for manufacturing the metal strip, and equipment for estimating the warp shape of the metal strip.
  • the purpose is to
  • a method for estimating a warpage shape of a metal strip in a width direction from a shape of the metal strip in a tensioned state in which tension is removed in the longitudinal direction comprising: a width direction shape measuring step of measuring a width direction shape distribution of the metal strip in the tensioned state; an approximation curve calculation step of calculating an approximation curve that approximates the width direction shape distribution measured in the width direction shape measuring step by a quadratic curve or a circular arc; and a warpage shape estimation step of estimating a warpage shape of the metal strip in the width direction in the tension-free state using the width direction shape distribution and the approximation curve.
  • [2] The method for estimating the warpage shape of a metal strip described in [1], in which the sheet width direction shape measuring step measures the sheet width direction shape distribution of the metal strip by a distance measurement method or a light section method.
  • [3] The method for estimating a warpage shape of a metal strip described in [1] or [2], wherein the sheet width direction shape measuring step is performed after the metal strip is cooled in a cooling section of a continuous annealing equipment and before it is wound around a winder of the continuous annealing equipment.
  • a method for determining whether a metal strip is acceptable or not comprising: determining whether the metal strip is acceptable or not based on the warpage shape of the metal strip in the tension-free state estimated by the method for estimating the warpage shape of a metal strip described in any one of [1] to [3].
  • a method for manufacturing a metal strip comprising: determining whether the metal strip passes or fails using the method for determining whether the metal strip passes or fails described in [4]; and manufacturing the metal strip that has been determined to pass.
  • a metal strip warpage shape estimation equipment for estimating a warpage shape in the width direction of a metal strip in an unloaded state from a shape in the width direction of the metal strip in a tensioned state in which tension in the longitudinal direction is applied, the metal strip having a width direction shape measuring device for measuring a shape distribution in the width direction of the metal strip in the tensioned state, and a metal strip warpage shape estimation device for estimating the warpage shape in the width direction of the metal strip in the unloaded state, the metal strip warpage shape estimation device having an acquisition unit for acquiring the shape distribution in the width direction of the metal strip from the width direction shape measuring device, an approximation curve calculation unit for calculating the shape distribution in the width direction measured by the width direction shape measuring device as an approximation curve approximating a quadratic curve or a circular arc, and a warpage shape estimation unit for estimating the warpage shape in the width direction of the metal strip in the unloaded state using the shape distribution in the width direction and the approximation curve.
  • the warped shape in the sheet width direction when tension is applied in the longitudinal direction is changed from the warped shape in the sheet width direction when the tension is removed. It is possible to estimate the shape of warpage in the width direction of the board.
  • FIG. 1 is a schematic side view showing an example of continuous annealing equipment.
  • FIG. 2 is a schematic side view showing an example of a cooling unit.
  • FIG. 3 is a configuration diagram of a simple functional block of the warp shape estimation equipment.
  • FIG. 4 is a diagram schematically showing a state in which a metal band is measured by a laser distance meter.
  • FIG. 5 is a diagram schematically showing a state in which a metal band is measured using a plurality of laser rangefinders.
  • FIG. 6 is a diagram showing an example of a warped shape of a metal strip in the width direction of the metal strip measured by a shape measuring device in the width direction of the metal strip.
  • FIG. 1 is a schematic side view showing an example of continuous annealing equipment.
  • FIG. 2 is a schematic side view showing an example of a cooling unit.
  • FIG. 3 is a configuration diagram of a simple functional block of the warp shape estimation equipment.
  • FIG. 4 is a diagram schematically showing
  • FIG. 7 is a diagram schematically showing the strain that occurs on the inner surface of the metal band when the metal band is bent in the longitudinal direction.
  • FIG. 8 is a diagram illustrating an example of an approximate curve calculated by the approximate curve calculating section.
  • FIG. 9 is a diagram showing another example of the approximate curve calculated by the approximate curve calculating section.
  • FIG. 10 is a diagram showing an example of a warpage shape in a tension-free state estimated using the sheet width direction shape distribution in a tension-applied state and an approximation curve.
  • FIG. 11 is a diagram illustrating an example of a comparison between the estimated warpage shape and the actually measured value of the warp shape in a non-tensioned state.
  • FIG. 12 is a diagram showing another example of the warped shape in the non-tensioned state estimated using the plate width direction shape distribution in the tensioned state and the approximate curve.
  • FIG. 13 is a diagram illustrating another example in which the estimated warpage shape and the actual measured value of the warp shape in a non-tensioned state are compared.
  • Continuous annealing equipment is equipment that heat-treats a metal plate that has been reduced to a predetermined thickness through a hot rolling process, a pickling process, and a cold rolling process. After the hot rolling process, the metal plate is wound into a coil shape and then subjected to heat treatment, etc., so in this embodiment, the metal plate is referred to as a "metal band.”
  • Continuous annealing equipment is mainly used for heat treatment of steel plates, so metal strip mainly means steel strip. When the steel strip is cooled, warpage in the shape of a W-shape or an uneven shape that can be approximated by a high-order function is likely to be formed in the width direction of the steel strip.
  • the metal strip preferably has a thickness of 0.4 to 3.2 mm, a width of 700 to 1800 mm, and a length of 600 to 4000 m.
  • FIG. 1 shows a schematic side view of continuous annealing equipment 100.
  • a metal strip 1 is conveyed in a conveyance direction A.
  • FIG. 1 shows a schematic side view of continuous annealing equipment 100.
  • the continuous annealing equipment has an entry equipment 20, a furnace body equipment 21, and an exit equipment 24.
  • the entry equipment 20 has a payoff reel 2, a welding machine 3, and an entry looper 4.
  • the furnace body equipment 21 has an annealing equipment 22 and a reheating equipment 23.
  • the annealing equipment 22 has a preheating zone 5, a heating zone 6, a soaking zone 7, and a cooling zone 8.
  • the preheating zone 5 is installed optionally.
  • the reheating equipment 23 has a reheating zone 9, an overaging zone 10, and a final cooling zone 11.
  • the reheating zone 9 has an induction heating device.
  • the exit equipment 24 has an exit looper 12, a shape correction equipment 13, an inspection table 14, and a winder 15.
  • the annealing process of the metal strip 1 performed by the continuous annealing equipment 100 is a process of raising the temperature of the metal strip 1 from around room temperature, maintaining it at a predetermined temperature, and then lowering the temperature to around room temperature.
  • the continuous annealing equipment 100 performs an annealing process using at least a heating zone 6, a soaking zone 7, and a cooling zone 8.
  • the reheating step is a step in which the metal strip 1 that has passed through the cooling zone 8 is subjected to an overaging treatment.
  • Continuous annealing equipment 100 performs a reheating process in reheating zone 9 , overaging zone 10 , and final cooling zone 11 .
  • the heating zone 6 has equipment for increasing the temperature of the metal zone 1.
  • the heating zone 6 heats the metal strip 1 to a preset temperature within the range of 600 to 900° C. depending on the composition of the metal strip 1.
  • the heating zone 6 has an open flame or a radiant combustion burner.
  • the soaking zone 7 is a facility that maintains the metal strip 1 at a predetermined temperature.
  • the cooling zone 8 cools the metal zone 1 to a predetermined temperature.
  • the cooling zone 8 implements liquid cooling, gas jet cooling, roll cooling, mist cooling (gas-liquid mixed cooling), etc. as a cooling method.
  • liquid cooling is performed as shown in FIG.
  • the metal strip 1 is cooled by cooling using water (water quenching).
  • Liquid cooling is performed by immersing the metal strip 1 in an immersion water tank.
  • Gas jet cooling cools the surface of the metal strip 1 by spraying gas from a nozzle.
  • Roll cooling is performed by bringing the metal strip 1 into contact with a water-cooled roll.
  • mist cooling water is sprayed in the form of a fine mist, and the metal band 1 is cooled by absorbing the heat of vaporization.
  • the size of sprayed water droplets is 0.1 to 1 mm.
  • the reheating equipment 23 is arranged downstream of the cooling zone 8.
  • the reheating equipment 23 has an induction heating device that heats the metal strip 1 in the reheating zone 9 .
  • the reheating equipment 23 uses an induction heating device to reheat the metal strip 1, which has been cooled to a predetermined temperature in the cooling zone 8, to a temperature of 300 to 400°C.
  • the overaging zone 10 is a facility that performs an overaging treatment in which the reheated metal strip 1 is held for a predetermined period of time.
  • the final cooling zone 11 is a facility for finally cooling the metal zone 1 that has been subjected to the overaging treatment to a temperature near room temperature. In the continuous annealing equipment, installation of the reheating equipment 23 is optional.
  • the outlet looper 12 is a facility that temporarily stores the metal strip 1 in order to adjust the conveyance speed of the metal strip 1 in the furnace body equipment 21 and the processing speed in the outlet equipment 24.
  • the shape correction equipment 13 is equipment for flattening the shape of the metal strip 1.
  • the shape correction equipment 13 has either or both of a temper rolling mill and a tension leveler.
  • the inspection table 14 is a facility for inspecting the quality of the metal strip 1.
  • the inspection table 14 inspects the dimensions, shape (flatness, warp shape), surface quality, etc. of the metal strip 1. Although the quality inspection of the metal strip 1 is performed while the metal strip 1 is being transported, the inspector may perform the quality inspection while the metal strip 1 is being transported at a slower speed if necessary.
  • the winder 15 is equipment that winds the metal strip 1 into a coil shape.
  • the metal strip wound into a coil shape may be shipped as a product coil.
  • the metal strip wound into a coil is sent to the recoil line, where the dimensions and weight of the metal strip are adjusted, samples are taken for quality inspection, shape and dimensions are inspected, and re-coiled as a coil. In some cases. In some cases, the metal strip wound into a coil is sent to a surface treatment facility that performs plating treatment, and is subjected to surface treatment.
  • the quality inspection of the shape of the metal strip 1 on the inspection table 14 involves temporarily stopping the transport of the metal strip 1 and unloading the tension applied to the metal strip 1, which reduces the production efficiency of the continuous annealing equipment. For this reason, in the continuous annealing equipment, the metal strip 1 may be coiled by the winder 15 without stopping the transport, and then sent to the recoil line, where the quality inspection of the shape of the metal strip is performed. However, in this case, an additional manufacturing process for the metal strip is added, which increases the production costs.
  • the tension is unloaded for the metal strip 1 that is conveyed in a state where tension is applied in the longitudinal direction (hereinafter also referred to as “tensioned state”). It becomes possible to estimate the shape of warp in the board width direction in a state where the tension is applied (hereinafter also referred to as a "no-tension state”). Therefore, there is no need to stop the conveyance of the metal strip 1, and there is no need to convey the coiled metal strip through the recoil line and perform quality inspection regarding the shape.
  • the cooling zone 8 has a cooling section 40 that cools the metal zone 1 to a predetermined temperature by liquid cooling.
  • the metal strip 1 is preferably cooled by a cooling method using liquid cooling. Liquid cooling allows rapid cooling of the metal strip 1 by immersing the metal strip 1 in an immersion water tank. In liquid cooling, the cooling rate of the metal strip 1 can be adjusted by changing the conveyance speed of the metal strip 1. Therefore, by adjusting the cooling rate of the metal strip 1, liquid cooling can reduce the amount of alloying elements added to increase the strength of the metal strip 1, and is suitable for manufacturing high-strength steel sheets.
  • the cooling unit 40 cools the metal band 1 that has been heated in the heating zone 6 to a temperature higher than the recrystallization temperature or higher than the austenite transformation start temperature (AC3).
  • the cooling unit 40 cools the metal strip 1 heated in the heating zone 6 to a temperature lower than the martensitic transformation start temperature (Ms) or the bainite transformation start temperature (Bf).
  • FIG. 2 shows a schematic side view of the cooling unit 40.
  • the cooling unit 40 includes a water cooling nozzle unit 41 , an immersion water tank 43 , a pressing roll 45 , deflector rolls 46 and 47 , a draining roll 48 , and a drying oven 49 .
  • a presser roll 45 is optionally provided in the cooling section 40.
  • the water cooling nozzle unit 41 has a water injection nozzle.
  • the presser roll 45 prevents the metal band 1 from flapping (swaying).
  • the drain roll 48 removes water adhering to the metal strip 1 that has passed through the immersion water tank 43.
  • the drying oven 49 dries the metal strip 1 from which water has been removed by the draining roll 48. After the metal strip 1 is dried in the drying oven 49, it is conveyed to the reheating zone 9.
  • the immersion water tank 43 has a container shape so that it can store cooling water 44 for immersing and cooling the metal strip 1.
  • the immersion water tank 43 is equipped with a cooling chiller (cooling water circulation device) that circulates the cooling water 44 and maintains the temperature in order to suppress the temperature rise of the stored cooling water 44 and control the temperature of the cooling water 44 within a predetermined range. You may have one.
  • the water cooling nozzle unit 41 sprays cooling water onto the metal strip 1 to cool it.
  • the water cooling nozzle unit 41 has a pair of water spray nozzles on the front and back sides of the metal strip 1 arranged in multiple stages along the transport direction A of the metal strip 1.
  • the water cooling nozzle unit 41 uses multiple stages of water spray nozzles to spray cooling water onto the front and back sides of the metal strip 1, thereby cooling the metal strip 1 that has passed through the soaking zone 7.
  • FIG. 3 shows a simple functional block configuration diagram of the warp shape estimation equipment 30.
  • the warp shape estimating equipment 30 includes a sheet width direction shape measuring device 31 and a warp shape estimating device 32.
  • the warp shape estimation device 32 is, for example, a general-purpose computer such as a workstation or a personal computer, and includes an acquisition section 33, an approximate curve calculation section 34, and a warp shape estimation section 35.
  • the sheet width direction shape measuring device 31 measures the shape distribution of the metal strip 1 in the sheet width direction (hereinafter also referred to as "sheet width direction shape distribution") when the metal strip 1 is under tension.
  • the acquisition unit 33 acquires the sheet width direction shape distribution of the metal strip 1 from the sheet width direction shape measuring device 31 .
  • the approximate curve calculation section 34 uses the sheet width direction shape distribution acquired by the acquisition section 33 to calculate an approximate curve in which the shape distribution is approximated by a quadratic curve or a circular arc.
  • the warpage shape estimating unit 35 uses the sheet width direction shape distribution acquired by the acquisition unit 33 and the approximate curve calculated by the approximate curve calculating unit 34 to calculate the shape distribution of the metal strip 1 in the sheet width direction in a tension-free state. Estimate the warp shape.
  • the output unit 36 may output the estimation result of the warp shape in the width direction of the metal strip 1 in the non-tensioned state estimated by the warp shape estimating device 32.
  • the output unit 36 may be, for example, a display screen such as a liquid crystal display.
  • the output unit 36 displays the estimation result of the warped shape of the metal strip 1 in the sheet width direction in the non-tensioned state, so that the inspector who performs the quality inspection of the metal strip 1 can judge whether the warped shape of the metal strip 1 is acceptable or not. Judgment becomes possible.
  • the sheet width direction shape measuring device 31 executes a sheet width direction shape measuring step of measuring the sheet width direction shape distribution of the metal strip 1 in the tensioned state.
  • the approximate curve calculation unit 34 executes an approximate curve calculation step of calculating an approximate curve in which the sheet width direction shape distribution measured in the sheet width direction shape measurement step is approximated by a quadratic curve or a circular arc.
  • the warp shape estimating unit 35 executes a warp shape estimation step of estimating the warp shape of the metal strip 1 in the sheet width direction in a non-tensioned state using the sheet width direction shape distribution and the approximate curve.
  • the sheet width direction shape measuring device 31 can be placed at any position on the conveyance path of the metal strip 1 in the continuous annealing equipment 100. It is preferable that the sheet width direction shape measuring device 31 is disposed on the conveyance path downstream of the cooling section 40 of the cooling zone 8 . This is because the metal strip 1 cooled by the cooling unit 40 undergoes thermal contraction and volumetric expansion due to phase transformation, resulting in a complex shape with non-uniform shape distribution in the width direction. Moreover, when the shape correction equipment 13 is provided in the outlet equipment 24 of the continuous annealing equipment 100, it is more preferable that the sheet width direction shape measuring device 31 is disposed on the conveyance path downstream of the shape correction equipment 13.
  • the non-uniform shape in the width direction of the metal strip 1 generated by passing through the cooling section 40 is reduced to some extent by passing through the shape straightening equipment 13
  • the non-uniform shape in the width direction of the metal strip 1 is reduced to some extent by passing through the shape straightening equipment 13. This is because even after that, a considerable amount of non-uniform shape distribution remains.
  • the sheet width direction shape measuring device 31 is placed on the inspection table 14 of the continuous annealing equipment 100.
  • the shape measuring device 31 in the width direction of the plate is used to estimate the warp shape in a non-tensioned state, thereby omitting the determination of the shape quality of the warp shape in the recoil line. be. Further, it is preferable that the metal strip 1 passing through the conveyance path provided with the sheet width direction shape measuring device 31 is conveyed under a tension of 10 to 100 MPa in the longitudinal direction.
  • the sheet width direction shape measuring device 31 uses a laser distance meter to measure the distance between each position of the metal strip 1 in the sheet width direction and the measuring device, and specifies the sheet width direction shape distribution from the measured distance.
  • Distance measurement methods can be applied. Distance measurement methods include a laser distance meter that measures distance using a straight laser beam, and a laser scan that scans a laser beam in a fan shape to measure the distance to each position in the width direction of the metal strip 1. A distance meter can be used.
  • the sheet width direction shape measuring device 31 arranges a plurality of laser distance meters in the sheet width direction of the metal strip 1 and measures the warped shape at each position.
  • the number of laser distance meters arranged in the width direction of the metal strip 1 is preferably 3 or more and 100 or less. More preferably it is 10-20. Note that if the number of laser distance meters arranged in the width direction of the metal strip 1 is less than three, it will be difficult to accurately specify the shape distribution of the metal strip 1 in the width direction. Further, even if the number of laser distance meters arranged in the width direction of the metal strip 1 exceeds 100, no change is observed in the measurement accuracy of the shape distribution in the width direction of the metal strip 1.
  • FIG. 4 simply shows how the shape distribution of the metal strip 1 in the width direction is measured using a laser scanning distance meter.
  • the shape distribution of the metal strip 1 in the width direction can be measured with one measuring device.
  • FIG. 5 simply shows how the metal strip 1 is measured using a plurality of laser scanning distance meters.
  • the sheet width direction shape measuring device 31 arranges a plurality of laser scanning distance meters in parallel along the sheet width direction of the metal strip 1, and measures the width of each section of the metal strip 1 in the sheet width direction. The warp shape at each position in the board width direction may be measured.
  • the sheet width direction shape measuring device 31 may measure the warp shape at each position of the metal strip 1 in the sheet width direction using an optical cutting method.
  • the board width direction shape measuring device 31 may measure the warp shape by optical sectioning using, for example, the LJ-X8000 series manufactured by Keyence Corporation or the Gocator manufactured by LMT Technologies.
  • the optical cutting method a laser beam that spreads in a fan shape in the width direction of the metal strip 1 is irradiated, the reflected light from the metal strip 1 is imaged by an image sensor, and the captured image is subjected to image processing. This method measures the displacement at each position on the surface of the metal strip 1.
  • the measurement accuracy of the warp shape by the board width direction shape measuring device 31 is preferably 1 mm or less, more preferably 0.5 mm or less.
  • the upper limit of the variation range of the warped shape of the metal strip 1 to be manufactured is set as 5 to 10 mm, and this is to ensure quality assurance regarding the warped shape of the metal strip 1.
  • the sheet width direction shape measuring device 31 measures (collects) the warp shape of the metal strip 1 in the sheet width direction at a pitch of 1 m or less along the longitudinal direction of the metal strip 1.
  • the width direction shape measuring device 31 preferably has a measurement frequency of 10 Hz or more, and more preferably 20 Hz or more, for continuously conveyed metal strips. This is to enable the metal strip 1 to be transported at a speed of 600 m/min or more in the outlet equipment 24 of the continuous annealing equipment 100 and to be able to measure (collect) the metal strip 1 at a pitch of 1 m or less in the longitudinal direction.
  • the sheet width direction shape measuring device 31 may take the warp shape averaged over a range of 1 to 5 m in the longitudinal direction of the metal strip 1 as the warp shape measurement value.
  • FIG. 6 is a diagram showing an example of the warpage shape in the plate width direction of the metal strip 1 measured by the plate width direction shape measuring device 31.
  • the warped shape shown in FIG. 6 shows the warped shape in the sheet width direction obtained by rapidly cooling the high-strength steel sheet by water quenching and then measuring the high-strength steel sheet with the sheet width direction shape measuring device 31.
  • a high-strength steel plate with a tensile strength of 980 MPa or more is rapidly cooled by water quenching, the cross section of the metal strip 1 in the plate width direction becomes an uneven shape that can be approximated by a W-shape or a higher-order function, as shown in FIG. It becomes a warped shape.
  • the warped shape shown in FIG. 6 represents the average value of the shape distribution measured at 20 positions at a pitch of 100 mm in the longitudinal direction of the metal strip 1. However, the warped shape shown in FIG. 6 is standardized by the difference (amplitude) between the maximum height and minimum height in the board width direction.
  • the metal strip 1 is targeted for a shape distribution in the strip width direction when tension is applied, which is a W-shape or a curve that can be approximated by a third- or higher-order function (hereinafter also referred to as a "cubic approximation curve") .
  • the metal strip 1 is rapidly cooled, causing non-uniform residual stress (residual moment) within the surface, resulting in a non-uniform warped shape.
  • the target is to estimate the warped shape in the strip width direction in an untensioned state for the metal strip 1.
  • the approximate curve calculation section 34 calculates an approximate curve that approximates the sheet width direction shape distribution measured by the sheet width direction shape measuring device 31 and acquired by the acquisition section 33 using a quadratic curve or a circular arc.
  • An approximate curve approximated by a quadratic curve or a circular arc (hereinafter also referred to as "quadratic arc approximate curve”) is a curve that is symmetrical in the width direction of the metal strip 1 with the center in the width direction of the metal strip 1 as the center. It means a curve that has no inflection point in the board width direction.
  • the metal band 1 has a longitudinal warpage (L warp) in the longitudinal direction of the metal band 1 and a plate width of the metal band 1 in a tension-free state. Width warpage (C warpage) in the direction occurs.
  • the longitudinal warpage of the metal strip 1 includes a warp shape in the shape of a quadratic arc approximate curve due to uniform residual stress generated along the longitudinal direction.
  • the width curvature of the metal strip 1 includes a curvature shape that is a cubic approximation curve due to non-uniform residual stress.
  • the metal strip 1 transported in the continuous annealing equipment 100 is always transported in a state where tension is applied in the longitudinal direction (tensioned state).
  • FIG. 7 is a diagram schematically showing the strain generated on the inner surface of the metal band 1 when the metal band 1 is bent in the longitudinal direction.
  • the upper surface of the metal strip 1 is referred to as the "upper surface” and the lower surface of the metal strip 1 is referred to as the "lower surface” when viewed from the drawing.
  • the metal strip 1 has longitudinal warpage in a non-tensioned state, similar Poisson's ratio deformation occurs even when tension is applied and the longitudinal warpage is apparently eliminated.
  • the bending strain in the longitudinal direction of the metal strip 1 occurs uniformly in the width direction, so the strain in the width direction of the metal strip due to Poisson's ratio deformation also occurs along the width of the metal strip. Occurs uniformly. In other words, even when tension is applied and the longitudinal warpage is apparently eliminated, uniform strain occurs along the width direction of the metal strip 1, so the longitudinal warpage is converted into warpage in the width direction.
  • the warp has the shape of a quadratic arc approximation curve.
  • the approximate curve calculation unit 34 of this embodiment calculates an approximate curve that approximates the sheet width direction shape distribution measured by the sheet width direction shape measuring device 31 by a quadratic curve or a circular arc, and Identify the effects of longitudinal warpage converted to warpage.
  • the shape defect of the metal band also appears as a wave shape defect called so-called ear wave or mid-elongation.
  • the wave shape is caused by the distribution of elongation (strain) in the longitudinal direction of the metal strip in the width direction of the metal strip, making it impossible to maintain the in-plane stress generated in the longitudinal direction of the metal strip within the plane of the metal strip, resulting in buckling. This appears due to displacement out of the plane.
  • the warped shape and the wave shape have in common that they are out-of-plane deformations caused by buckling.
  • the difference depends on whether the direction of the residual stress that causes buckling is in the width direction or in the longitudinal direction. Therefore, in the wave shape, the displacement of the surface shape changes periodically in the longitudinal direction of the metal strip, while in the warped shape, the displacement of the surface shape does not occur periodically in the longitudinal direction of the metal strip. Further, although the warped shape has a characteristic that warp in the longitudinal direction and warp in the board width direction are mutually converted, such mutual conversion does not occur in the wave shape.
  • FIG. 8 is a diagram showing an example of an approximate curve calculated by the approximate curve calculation unit 34.
  • the warped shape shown in FIG. 8 is standardized by the difference (amplitude) between the maximum height and minimum height in the board width direction in the tensioned state.
  • the warped shapes shown in FIGS. 9 to 13 are similarly standardized by the difference (amplitude) between the maximum height and minimum height in the board width direction in the tensioned state.
  • FIG. 8 shows the sheet width direction shape distribution ( This is an example in which a curved shape) is approximated by a quadratic curve.
  • a quadratic curve is used as the approximate curve
  • the relationship between the position x in the board width direction and the warp shape y is expressed by a functional equation shown in equation (1) below, where a, b, and c are constants.
  • the error between the sheet width direction shape distribution, which is a measured value, and the warp shape y determined by equation (1) is calculated to determine the smallest constant in the sheet width direction.
  • FIG. 9 shows a high-strength steel plate having a thickness of 1.0 mm and a width of 1220 mm as described above, which was measured by the plate width direction shape measuring device 31 under a tension of 15 kN.
  • This is an example in which the width direction shape distribution (warp shape) is approximated by a circular arc.
  • the relationship between the position x in the board width direction and the warp shape y is expressed by a functional equation shown in equation (2) below, where d, e, and r are constants.
  • equation (2) the constant that is the smallest in the width direction is determined for the error between the measured value of the shape distribution in the width direction of the sheet and the warp shape y obtained by equation (2). Calculated as follows.
  • the warpage shape estimating section 35 uses the sheet width direction shape distribution of the metal strip 1 measured by the sheet width direction shape measuring device 31 and the approximate curve calculated by the approximate curve calculation section 34 to determine the warp shape of the metal strip 1. Estimate the warpage shape in the width direction of the board under tension. Specifically, the warp shape estimating section 35 calculates the shape of the metal strip 1 by subtracting the approximate curve calculated by the approximate curve calculating section 34 from the sheet width direction shape distribution measured by the sheet width direction shape measuring device 31. Estimate the shape of warp in the width direction of the plate under no tension.
  • the value of the warp shape at each position in the sheet width direction measured by the sheet width direction shape measuring device 31 the value of the warp shape at the corresponding sheet width direction position of the approximate curve calculated by the approximate curve calculation unit 34.
  • the warped shape in the no-tension state is specified.
  • FIG. 10 is a diagram illustrating an example of the shape of warp in the width direction of the board in the non-tensioned state, which is estimated using the shape distribution in the width direction of the board in the tensioned state and an approximate curve (quadratic curve).
  • the warp shape in the no-tension state (estimated warp shape) estimated by the warp shape estimation unit 35 is more warped in the sheet width direction than the warp shape measured under a tension of 15 kN.
  • the difference between the maximum and minimum values of is slightly increased, and the difference in height between the peaks of the warped shape and the valleys at the center of the board width is decreasing. This is considered to be because the longitudinal warpage of the metal strip 1 was converted into warpage in the board width direction, thereby increasing the amplitude of the warp height mainly in the vicinity of the center of the board width.
  • FIG. 11 is a diagram showing an example of comparing the estimated warpage shape with the actual measured value of the warpage shape in a tension-free state.
  • FIG. 12 is a diagram showing an example of the warpage shape in the width direction of the plate in the tension-free state, estimated using the plate width direction shape distribution in the tension-applied state and the approximation curve (see FIG. 9). As shown in FIG. 12
  • the estimated warpage shape has a slightly larger difference between the maximum and minimum values of the warpage shape in the width direction, and a smaller difference in height between the peaks of the warpage shape and the valleys at the center of the plate width, compared to the warpage shape measured under a tension of 15 kN.
  • FIG. 13 which shows the result of comparison with the actual measurement, it was confirmed that the estimated warpage shape estimated using the approximation curve approximating the circular arc has a good estimation accuracy when compared with the actual measurement of the warpage shape in the tension-free state.
  • the warpage shape in the width direction in the tension-free state can be estimated from the shape distribution in the width direction in the tension-applied state.
  • the method for estimating the warpage shape of a metal strip 1 is preferably applied to the metal strip 1 after cooling, considering that the metal strip 1 cooled in the cooling zone 8 of the continuous annealing equipment 100 includes a warpage shape in the width direction that is a quadratic arc approximation curve shape and a cubic approximation curve shape.
  • the width direction shape measuring device 31 is preferably disposed between the cooling section 40 and the winder 15 of the continuous annealing equipment 100.
  • the warpage shape measuring step using the width direction shape measuring device 31 is preferably performed after the metal strip 1 is cooled by the cooling section 40 and before it is wound by the winder 15 of the continuous annealing equipment 100. This is because the warpage shape in the tension-free state can be estimated without stopping the conveyance of the metal strip 1 in the continuous annealing equipment 100.
  • the pass/fail judgment regarding the warpage shape it may be judged as a failure if it exceeds a preset upper limit of the amount of warpage in the board width direction (for example, 10 mm), and pass if it is less than the upper limit of the amount of warp.
  • the upper limit of the amount of warpage used as a quality standard may be changed each time depending on the number of unevenness or the number of pitches of the warp shape estimated by the warp shape estimating section 35. This is because if the number of warped unevenness is large and the pitch is short in a non-tensioned state, processing troubles are likely to occur during secondary processing such as press molding, even if the amount of warpage is small.
  • the "amount of warpage” means the difference between the maximum value and the minimum value of the warp shape.
  • the method for estimating the warped shape of a metal strip described above to determine whether the metal strip 1 is acceptable or not, and to ship the metal strip that has been determined to be acceptable (metal strip manufacturing method).
  • metal strip manufacturing method metal strip manufacturing method.
  • the metal strip 1 whose warped shape is less than a preset quality defect reference value is manufactured, an additional process for quality inspection of the warped shape is not required, and the metal strip can be manufactured at low cost.
  • the longitudinal direction of the metal strip 1 it is possible to estimate the warpage shape in the width direction of the metal strip 1 in a non-tensioned state at a pitch of 5 to 20 m, and manufacture only the portions that are approved as the metal strip 1. preferable. This is because it is guaranteed that the warped shape satisfies the quality standards over the entire length of the metal strip 1 as a product.
  • the continuous annealing equipment 100 shown in Figure 1 was used with a width direction shape measuring device 31 placed on the inspection table 14 of the outlet equipment 24.
  • a tension of 20 to 60 MPa was applied to the metal strip 1.
  • the metal strip 1 produced in the continuous annealing equipment 100 was a high-strength steel plate with a thickness of 1.0 to 1.8 mm, a width of 800 to 1250 mm, and a tensile strength of 1310 to 1470 MPa.
  • the total weight of the high-strength steel plate used in the example was 15,000 tons.
  • a water-cooled cooling section 40 shown in FIG. 2 was arranged.
  • the cooling unit 40 was provided with a water cooling nozzle unit 41 having a plurality of nozzles that sprayed water as a cooling fluid from the front side and the back side of the metal strip 1.
  • the cooling conditions in the cooling unit 40 were controlled such that the cooling start temperature of the metal strip 1 was 740°C and the cooling end temperature was 30°C.
  • the flow rate of cooling water injected from the water cooling nozzle unit 41 was 1000 m 3 /hr, and the water temperature was 30°C.
  • the high-strength steel sheet (metal strip 1) used in this example has a warp shape distribution that can be approximated by a cubic approximate curve in the sheet width direction due to the effects of thermal contraction and phase transformation in the cooling section 40. was.
  • the board width direction shape measuring device 31 placed on the inspection table 14 was configured using a laser scanning distance meter that measures the warped shape by a distance measurement method. Then, two laser scanning distance meters were arranged in parallel in the width direction of the metal strip 1. By scanning the laser beam in the width direction of the metal strip 1, the shape distribution in the width direction of the metal strip 1 (shape distribution in the width direction) was measured. The measurement frequency by the sheet width direction shape measuring device 31 was 20 Hz. For this reason, measurement data of the warp shape was collected at a pitch of 1 m in the longitudinal direction of the metal strip 1 under the condition that the maximum transport speed of the metal strip 1 in the outlet equipment 24 of the continuous annealing equipment 100 was 600 m/min.
  • the approximate curve calculation unit 34 calculates the shape of the metal strip at each position in the longitudinal direction of the metal strip 1 based on the measurement results of the shape distribution in the width direction of the metal strip 1 in the tensioned state measured by the shape measuring device 31 in the width direction. An approximate curve approximated by a quadratic curve in the board width direction of No. 1 was calculated.
  • the warpage shape estimating unit 35 subtracts the calculated approximate curve from the measurement result of the shape distribution in the sheet width direction, thereby determining the warp shape in the sheet width direction in the tension-free state of the metal band 1 at the position in the longitudinal direction of the metal band 1. (estimated warpage shape).
  • a pass/fail determination section regarding the warped shape of the metal strip 1 was provided, and the upper limit for the pass/fail determination of the amount of warp (the difference between the maximum value and the minimum value of the warped shape) of the warped shape in the board width direction was set to 10 mm.
  • the amount of warpage was calculated from the shape of warp in the width direction of the metal strip 1 excluding the 10 mm edge of the width of the metal strip. In this case, the range of 10 mm from the end of the width of the metal band 1 is trimmed at the recoil line and is not used as a product.
  • the pass/fail determination section determined whether the amount of warpage of the warped shape was equal to or less than the upper limit value for each position in the longitudinal direction of the metal strip 1. In the pass/fail determination, a case where the value was equal to or less than the upper limit at each position in the longitudinal direction of the metal strip 1 was judged as a pass, and a case where the estimated warped shape exceeded the upper limit at at least any position was judged as a fail.
  • the metal strip 1 was further wound up by the winder 15 of the continuous annealing equipment 100, and then the coiled metal strip was conveyed to an inspection line (recoil line). Then, on the inspection line, the warped shape of the tension-free metal strip in the plate width direction was measured (actually measured warped shape).
  • the number was 88% as a ratio (correct answer rate) to the number of metal strips for which pass/fail judgment was made.
  • the approximate curve calculation unit 34 based on the measurement results of the shape distribution in the width direction of the metal strip 1 in the tensioned state measured by the width direction shape measuring device 31, for each position in the longitudinal direction of the metal strip 1, An approximate curve approximated by a circular arc in the width direction of the metal strip 1 was also calculated. Even when a circular arc is calculated as the approximate curve, the warp shape estimating unit 35 subtracts the calculated approximate curve (circular arc) from the measurement results of the shape distribution in the sheet width direction, thereby determining the tension-free state of the metal strip 1. The warp shape in the board width direction was estimated for each position in the longitudinal direction of the metal strip 1.
  • the number was 85% as a ratio (correct answer rate) to the number of metal strips for which pass/fail judgment was made.
  • a pass/fail judgment was made using the width direction shape distribution of the metal strip in a tensioned state measured by the width direction shape measuring device 31, without estimating the width direction warpage shape of the metal strip in an untensioned state.
  • the width direction shape distribution of the metal strip in a tensioned state it was judged whether the amount of warpage in the width direction was equal to or less than the upper limit, and the judgment result was compared with the pass/fail judgment result of the measured warpage shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

金属帯の急速冷却により生じる板幅方向の反り形状に対して、長手方向に張力が負荷されている状態での板幅方向の反り形状から、張力が除荷された状態での板幅方向の反り形状を推定できる金属帯の反り形状推定方法、金属帯の合否判定方法及び金属帯の反り形状推定装置を提供する。 長手方向の張力が負荷された加張力状態の金属帯の板幅方向の形状から、前記張力が除荷された無張力状態における前記金属帯の板幅方向の反り形状を推定する金属帯の反り形状推定方法であって、前記加張力状態において、前記金属帯の板幅方向形状分布を測定する板幅方向形状測定ステップと、前記板幅方向形状測定ステップで測定された前記板幅方向形状分布を2次曲線又は円弧により近似した近似曲線として算出する近似曲線算出ステップと、前記板幅方向形状分布と前記近似曲線とを用いて前記無張力状態における前記金属帯の板幅方向の反り形状を推定する反り形状推定ステップと、を有する。

Description

金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備
 本発明は、連続焼鈍設備等にて搬送される金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備に関する。
 金属帯を処理する連続焼鈍設備においては、金属帯に必要とされる機械的特性を付与するため、加熱及び冷却等の熱処理条件の制御が重要となる。特に、高強度鋼板の製造では、プレス成形性を向上させる観点から、加熱された金属帯の冷却速度を速くすると共に、冷却後の金属帯を再度加熱する焼戻し処理が行われる。
 連続焼鈍設備は、加熱帯、均熱帯及び冷却帯を備える。冷却帯における冷却方式は、液体焼き入れ法、ロール冷却法、気水混合(ミスト)冷却法、ガスジェット冷却法等がある。冷却方式は、金属帯の材質を制御するため、適切な冷却方式が適宜選択される。液体焼き入れ法は、これらの中で冷却速度が最も速い。液体焼き入れ法は、金属帯の強度を高めるための合金元素の添加を少なくできるため、高強度鋼板の製造に適している。液体焼入れ法は、加熱された金属帯を液体中に浸漬させると同時に、液体中に設けられたスリットノズルから冷却液体を金属帯に噴射し、急速冷却を行う。
 金属帯に対して急速冷却を実施した場合、金属帯の熱収縮や金属組織の相変態に伴う体積膨張の影響により、金属帯に形状不良が発生する。金属帯の急速冷却に伴う形状不良は、金属帯を搬送するため長手方向に張力が負荷されている状態では、当該張力により長手方向の反りが見かけ上抑制される。しかし、潜在的に発生した残留応力(残留モーメント)により、長手方向の反りが板幅方向の反りとして発生する。この場合、金属帯の板幅方向においては、金属帯に対する冷却速度が速い程、2次曲線又は円弧の形状として現れる反りだけでなく、W字形状や高次関数によって近似され得る凹凸形状として現れる反りが形成される。
 また、金属帯の形状に関する品質検査は、金属帯に負荷される張力を除荷すると共に、金属帯を板状に切断して測定される反り量によって合否が判定される。しかし、金属帯を製造する連続焼鈍設備において金属帯を搬送中に測定される反り量と、金属帯に負荷される張力を除荷して板状に切断した後に測定される反り量とは、必ずしも同一にはならない。このため、金属帯を製造する連続焼鈍設備において、金属帯の搬送中に反り形状に関する品質検査を高精度に行うことは困難となる。仮に、反り形状に関する品質検査を高精度に行う場合には、連続焼鈍設備において金属帯の搬送を一旦停止して、張力を除荷して反り量を測定することとなり、生産能率の低下を招く。あるいは、連続焼鈍設備とは異なる検査ラインに金属帯を搬送してから金属帯の品質検査を行うことが必要になり、品質検査のための追加工程が発生し、生産能率の低下およびコストの増加を招く。
 これに対して、特許文献1は、無張力状態における金属帯の平坦度を良好にするため、連続焼鈍設備の冷却部において金属帯の板幅方向の温度を制御する平坦制御装置を開示する。特許文献1は、金属帯に張力を負荷した状態における板幅方向の形状と、張力を除荷した状態における板幅方向の形状とを比較し、比較結果に基づいて金属帯の幅方向温度を制御する方法を開示する。
 特許文献2は、張力が負荷された状態での金属帯の板幅方向の反り量と負荷した張力とを用いて、金属帯の長手方向および板幅方向で生じる残留曲げモーメントを推定する方法を開示する。更に、特許文献2は、推定した残留曲げモーメントを用いて弾性変形を表す関係式を用いることにより、張力を除荷した状態での切り板状態における長手方向の反り量と板幅方向の反り量とを算出する方法を開示する。
特開平2-66125号公報 特開平6-102036号公報
 しかしながら、特許文献1に記載された金属帯の平坦制御装置では、金属帯に張力を負荷した状態における板幅方向の形状と、張力を除荷した状態における板幅方向の形状との両方の実績データを収集する必要がある。この場合、金属帯の板厚、板幅、鋼種区分等に応じた実績データを収集することになり、連続焼鈍設備での製造中にラインの停止と張力の除荷とを繰り返し実施する必要があり、連続焼鈍設備の生産能率の低下を招く。また、特許文献1に記載された金属帯の形状は、特許文献1の図2に示される通り、垂直方向の変位距離と長手方向の変位幅との比によって表される急峻度を意味する。即ち、特許文献1における金属帯の形状は、金属帯に発生する耳波や中伸び等の波形状を意味する。このため、特許文献1における金属帯の形状は、金属帯の品質検査の検査対象としての板幅方向における反り形状とは異なる。よって、金属帯の板幅方向における反り形状に対して、特許文献1に記載された構成の適用は困難である。
 また、特許文献2に記載された方法は、弾性変形を表す関係式を用いて、推定した残留曲げモーメントから張力を除荷した状態での金属帯の長手方向の反り量と板幅方向の反り量とを算出する方法である。弾性変形を表す関係式は、金属帯の面内の座標に対して4次関数や6次関数のように高次関数により表現し得る。しかし、特許文献2においては、金属帯の残留曲げモーメントが、金属帯の面内に一様(均一)に発生することを仮定しているため、残留曲げモーメントが不均一に分布する場合には適用できない。即ち、特許文献2に記載された方法は、金属帯の急速冷却により面内に不均一な残留応力が発生し、不均一な反り形状が形成される場合には適用できない。仮に、不均一な反り形状が形成された金属帯に適用した場合には、反り形状の推定精度が低下するという問題がある。
 本発明は、かかる事情を鑑みてなされたもので、金属帯の急速冷却により生じる板幅方向の反り形状に対して、長手方向に張力が負荷されている状態での板幅方向の反り形状から、張力が除荷された状態での板幅方向の反り形状を推定できる金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備を提供することを目的とする。
上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]長手方向の張力が負荷された加張力状態の金属帯の板幅方向の形状から、前記張力が除荷された無張力状態における前記金属帯の板幅方向の反り形状を推定する金属帯の反り形状推定方法であって、前記加張力状態において、前記金属帯の板幅方向形状分布を測定する板幅方向形状測定ステップと、前記板幅方向形状測定ステップで測定された前記板幅方向形状分布を2次曲線又は円弧により近似した近似曲線として算出する近似曲線算出ステップと、前記板幅方向形状分布と前記近似曲線とを用いて前記無張力状態における前記金属帯の板幅方向の反り形状を推定する反り形状推定ステップと、を有する、金属帯の反り形状推定方法。
[2]前記板幅方向形状測定ステップでは、距離測定法又は光切断法により前記金属帯の板幅方向形状分布を測定する、[1]に記載の金属帯の反り形状推定方法。
[3]前記板幅方向形状測定ステップは、前記金属帯が連続焼鈍設備の冷却部で冷却された後、前記連続焼鈍設備の巻取機に巻き取られる前に実行される、[1]または[2]に記載の金属帯の反り形状推定方法。
[4][1]~[3]のいずれか1つに記載の金属帯の反り形状推定方法により推定された前記無張力状態における前記金属帯の反り形状に基づいて、前記金属帯の合否判定を行う、金属帯の合否判定方法。
[5][4]に記載の金属帯の合否判定方法を用いて前記金属帯の合否判定を行い、合格と判定された前記金属帯を製造する、金属帯の製造方法。
[6]長手方向の張力が負荷された加張力状態の金属帯の板幅方向の形状から、前記張力が除荷された無張力状態における前記金属帯の板幅方向の反り形状を推定する金属帯の反り形状推定設備であって、前記加張力状態において、前記金属帯の板幅方向形状分布を測定する板幅方向形状測定装置と、前記無張力状態における前記金属帯の板幅方向の反り形状を推定する金属帯の反り形状推定装置と、を有し、前記金属帯の反り形状推定装置は、前記板幅方向形状測定装置から前記金属帯の板幅方向形状分布を取得する取得部と、前記板幅方向形状測定装置で測定された前記板幅方向形状分布を2次曲線又は円弧により近似した近似曲線として算出する近似曲線算出部と、前記板幅方向形状分布と前記近似曲線とを用いて前記無張力状態における前記金属帯の板幅方向の反り形状を推定する反り形状推定部と、を有する、金属帯の反り形状推定設備。
[7]前記板幅方向形状測定装置は、距離測定法又は光切断法により前記金属帯の板幅方向形状分布を測定する、[6]に記載の金属帯の反り形状推定設備。
[8]前記板幅方向形状測定装置は、前記金属帯の熱処理を行う連続焼鈍設備の冷却部と巻取機との間に配置される、[6]または[7]に記載の金属帯の反り形状推定設備。
 本発明によれば、金属帯の急速冷却により生じる板幅方向の反り形状に対して、長手方向に張力が負荷されている状態での板幅方向の反り形状から、張力が除荷された状態での板幅方向の反り形状を推定できる。
図1は、連続焼鈍設備の一例を示す側面模式図である。 図2は、冷却部の一例を示す側面模式図である。 図3は、反り形状推定設備の簡易的な機能ブロックの構成図である。 図4は、レーザー距離計により金属帯を測定する状態を簡易的に示す図である。 図5は、複数のレーザー距離計により金属帯を測定する状態を簡易的に示す図である。 図6は、板幅方向形状測定装置により測定された金属帯の板幅方向の反り形状の一例を示す図である。 図7は、金属帯を長手方向に曲げた際に金属帯の内面に発生する歪みを模式的に示す図である。 図8は、近似曲線算出部により算出される近似曲線の一例を示す図である。 図9は、近似曲線算出部により算出される近似曲線の他の例を示す図である。 図10は、加張力状態における板幅方向形状分布と近似曲線とを用いて推定された無張力状態における反り形状の一例を示す図である。 図11は、推定反り形状と無張力状態における反り形状の実測値とを比較した一例を示す図である。 図12は、加張力状態における板幅方向形状分布と近似曲線とを用いて推定された無張力状態における反り形状の他の例を示す図である。 図13は、推定反り形状と無張力状態における反り形状の実測値とを比較した他の例を示す図である。
 以下、金属帯を処理の対象とする連続焼鈍設備を例として、本発明の実施形態を通じて本発明を説明する。ここで、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
 連続焼鈍設備は、熱間圧延工程、酸洗工程、冷間圧延工程を経て、所定の板厚まで減厚された金属板の熱処理を行う設備である。熱間圧延工程以降は、金属板がコイル状に巻かれてから熱処理等が行われるため、本実施形態では、当該金属板を「金属帯」と記載する。連続焼鈍設備は、主に鋼板の熱処理を対象とするため、金属帯は主として鋼帯を意味する。鋼帯を冷却すると、板幅方向において、W字形状や高次関数によって近似され得る凹凸形状の反りが形成され易い。特に、高強度鋼板で凹凸形状の反りが形成され易いことから、引張強度が980MPa以上である高強度鋼板を対象とするのが好ましい。金属帯について、板厚は0.4~3.2mm、板幅は700~1800mm、長さは600~4000mの範囲が好ましい。
 図1を参照して、連続焼鈍設備100の構成について説明する。図1は、連続焼鈍設備100の側面模式図を示す。図1において、金属帯1は、搬送方向Aに向けて搬送される。
 連続焼鈍設備は、入側設備20と、炉体設備21と、出側設備24とを有する。入側設備20は、ペイオフリール2と、溶接機3と、入側ルーパー4とを有する。炉体設備21は、焼鈍設備22と、再加熱設備23とを有する。焼鈍設備22は、予熱帯5と、加熱帯6と、均熱帯7と、冷却帯8とを有する。予熱帯5の設置は、任意に行われる。再加熱設備23は、再加熱帯9と、過時効帯10と、最終冷却帯11とを有する。再加熱帯9は、誘導加熱装置を有する。出側設備24は、出側ルーパー12と、形状矯正設備13と、検査台14と、巻取機15とを有する。
 連続焼鈍設備100により実行される金属帯1の焼鈍工程は、金属帯1を室温付近の温度から昇温させ、所定の温度に保持した後、室温近傍まで温度を低下させる工程である。連続焼鈍設備100は、少なくとも、加熱帯6と、均熱帯7と、冷却帯8とにより焼鈍工程を実行する。再加熱工程は、冷却帯8を通過した金属帯1の過時効処理を行う工程である。連続焼鈍設備100は、再加熱帯9と、過時効帯10と、最終冷却帯11とにおいて再加熱工程を実行する。
 加熱帯6は、金属帯1の温度を昇温させる設備を有する。加熱帯6は、金属帯1の成分組成に応じて、600~900℃の範囲内における予め設定された温度まで金属帯1を加熱する。加熱帯6は、直火あるいは輻射式の燃焼バーナーを有する。均熱帯7は、金属帯1を所定の温度に保持する設備である。
 冷却帯8は、金属帯1を所定の温度まで冷却する。冷却帯8は、冷却方法として、液体冷却、ガスジェット冷却、ロール冷却、ミスト冷却(気液混合冷却)等を実施する。本実施形態においては、図1に示す通り、液体冷却を実施する。液体冷却は、水を用いた冷却(ウォータークエンチ)により金属帯1を冷却する。液体冷却は、浸漬水槽に金属帯1を浸漬させて冷却を実施する。ガスジェット冷却は、金属帯1の表面にノズルから気体を吹き付けて冷却する。ロール冷却は、金属帯1を水冷ロールに接触させて冷却する。ミスト冷却は、水を微細な霧状に噴霧して、その気化熱の吸収により金属帯1の冷却を行う。ミスト冷却は、噴霧される水滴の大きさを0.1~1mmとする。
 再加熱設備23は、冷却帯8の下流側に配置される。再加熱設備23は、再加熱帯9において金属帯1を加熱する誘導加熱装置を有する。再加熱設備23は、誘導加熱装置を用いて、冷却帯8にて所定の温度まで冷却された金属帯1を300~400℃の温度まで再加熱する。過時効帯10は、再加熱した金属帯1を所定時間保持する過時効処理を行う設備である。最終冷却帯11は、過時効処理が行われた金属帯1を室温付近の温度まで最終冷却する設備である。連続焼鈍設備においては、再加熱設備23の設置は任意である。
 出側ルーパー12は、炉体設備21における金属帯1の搬送速度と、出側設備24における処理速度との調整を図るため、一時的に金属帯1を貯留させる設備である。形状矯正設備13は、金属帯1の形状を平坦化するための設備である。形状矯正設備13は、調質圧延機およびテンションレベラーのいずれか又は両方の設備を有する。検査台14は、金属帯1の品質検査を行う設備である。検査台14は、金属帯1の寸法、形状(平坦度、反り形状)、表面品質等の品質検査を実施する。金属帯1の品質検査は、金属帯1の搬送中に実施されるものの、必要に応じて検査者が金属帯1の搬送速度を遅くした状態で実施してもよい。なお、従来は金属帯1の形状を検査する際に、検査台14における搬送を一旦停止し、金属帯1に負荷された張力を除荷してから、品質検査を実施していた。巻取機15は、金属帯1をコイル状に巻き取る設備である。コイル状に巻き取られた金属帯は、製品コイルとして出荷される場合がある。コイル状に巻き取られた金属帯は、リコイルラインに送られて、金属帯の寸法や重量の調整、品質検査用のサンプルの採取、形状・寸法検査、コイルとしての巻き直し等が実施される場合もある。また、コイル状に巻き取られた金属帯は、めっき処理を行う表面処理設備に送られ、表面処理が施される場合もある。
 検査台14における金属帯1の形状に関する品質検査は、金属帯1の搬送を一旦停止させ、金属帯1に負荷された張力の除荷を伴うため、連続焼鈍設備の生産能率が低下するという問題がある。そのため、連続焼鈍設備では金属帯1の搬送を停止することなく、巻取機15でコイル状としてからリコイルラインに送り、リコイルラインにおいて金属帯の形状に関する品質検査を行う場合もある。しかし、この場合、金属帯の製造工程が追加されることになるため、生産コストが増加するという問題がある。
 これに対して、本実施形態では、連続焼鈍設備100において、長手方向に張力が負荷された状態(以下、「加張力状態」ともいう。)で搬送される金属帯1について、張力が除荷された状態(以下、「無張力状態」ともいう。)における板幅方向の反り形状の推定が可能となる。このため、金属帯1の搬送の停止を必要とせず、コイル状とした金属帯をリコイルラインにて搬送させて、形状に関する品質検査を実施する必要も無くなる。
 冷却帯8は、液体冷却により金属帯1を所定の温度まで冷却する冷却部40を有する。金属帯1の冷却は、液体冷却を適用した冷却方法が好ましい。液体冷却は、浸漬水槽に金属帯1を浸漬させて冷却を実施することにより、金属帯1の急速冷却が可能である。液体冷却は、金属帯1の搬送速度を変化させることにより、金属帯1の冷却速度を調整することが可能である。このため、液体冷却は、金属帯1の冷却速度を調整することにより、金属帯1の強度を高めるための合金元素の添加を少なくでき、高強度鋼板の製造に適している。
 冷却部40は、加熱帯6において再結晶温度以上またはオーステナイト変態開始温度(AC3)以上まで加熱された金属帯1を冷却する。冷却部40は、加熱帯6で加熱された金属帯1を、マルテンサイト変態開始温度(Ms)またはベイナイト変態開始温度(Bf)よりも低い温度まで冷却する。
 ここで、冷却部40における冷却方式及び冷却構成について、図2を用いて説明する。図2は、冷却部40の側面模式図を示す。冷却部40は、水冷却ノズルユニット41と、浸漬水槽43と、押さえロール45と、デフレクターロール46、47と、水切りロール48と、乾燥炉49とを有する。冷却部40において、押さえロール45は、任意に設けられる。
 水冷却ノズルユニット41は、水噴射ノズルを有する。押さえロール45は、金属帯1のばたつき(揺れ)を防止する。水切りロール48は、浸漬水槽43を通過した金属帯1に付着した水を除去する。乾燥炉49は、水切りロール48により水を除去された金属帯1を乾燥させる。金属帯1は、乾燥炉49により乾燥された後、再加熱帯9に搬送される。
 浸漬水槽43は、金属帯1を浸漬させて冷却するための冷却水44を貯蔵できるように容器形状となっている。浸漬水槽43は、貯蔵する冷却水44の温度上昇を抑制し、冷却水44の温度を所定の範囲に制御するため、冷却水44を循環させて温度を維持する冷却チラー(冷却水循環装置)を有しても良い。
 水冷却ノズルユニット41は、金属帯1に冷却水を噴射して冷却を行う。水冷却ノズルユニット41は、搬送される金属帯1の表面及び裏面に冷却水を噴射するため、金属帯1の表面側及び裏面側の1対の水噴射ノズルが、金属帯1の搬送方向Aに沿って複数段設けられる。水冷却ノズルユニット41は、複数段の水噴射ノズルを用いて、金属帯1の表面及び裏面に冷却水を噴射して、均熱帯7を通過した金属帯1を冷却できる。
 次に、金属帯1の反り形状を推定する反り形状推定設備30について、図3を用いて説明する。図3は、反り形状推定設備30の簡易的な機能ブロックの構成図を示す。反り形状推定設備30は、板幅方向形状測定装置31と、反り形状推定装置32とを有する。反り形状推定装置32は、例えば、ワークステーションやパソコン等の汎用コンピュータであって、取得部33と、近似曲線算出部34と、反り形状推定部35とを有する。板幅方向形状測定装置31は、金属帯1の加張力状態において、金属帯1の板幅方向の形状分布(以下、「板幅方向形状分布」ともいう。)を測定する。取得部33は、板幅方向形状測定装置31から金属帯1の板幅方向形状分布を取得する。近似曲線算出部34は、取得部33により取得された板幅方向形状分布を用いて、当該形状分布を2次曲線又は円弧により近似した近似曲線を算出する。反り形状推定部35は、取得部33にて取得された板幅方向形状分布と、近似曲線算出部34にて算出された近似曲線とを用いて、無張力状態における金属帯1の板幅方向の反り形状を推定する。出力部36は、反り形状推定装置32により推定された金属帯1の無張力状態における板幅方向の反り形状の推定結果を出力してもよい。出力部36は、例えば液晶等の表示画面であってよい。出力部36に、金属帯1の無張力状態における板幅方向の反り形状の推定結果が表示されることにより、金属帯1の品質検査を行う検査者が、金属帯1の反り形状についての合否判定が可能となる。
 また、反り形状推定設備30を用いることにより、本発明に係る金属帯の反り形状推定方法を実施できる。具体的に、板幅方向形状測定装置31は、加張力状態において、金属帯1の板幅方向形状分布を測定する板幅方向形状測定ステップを実行する。近似曲線算出部34は、板幅方向形状測定ステップで測定された板幅方向形状分布を2次曲線又は円弧により近似した近似曲線として算出する近似曲線算出ステップを実行する。反り形状推定部35は、板幅方向形状分布と近似曲線とを用いて無張力状態における金属帯1の板幅方向の反り形状を推定する反り形状推定ステップを実行する。
 板幅方向形状測定装置31は、連続焼鈍設備100において、金属帯1の搬送経路の任意の位置に配置できる。板幅方向形状測定装置31は、冷却帯8の冷却部40よりも下流側の搬送経路に配置することが好ましい。冷却部40で冷却された金属帯1は、熱収縮及び相変態に伴う体積膨張が生じ、板幅方向形状分布が不均一な複雑な形状となるためである。また、連続焼鈍設備100の出側設備24に形状矯正設備13を備える場合には、板幅方向形状測定装置31は、形状矯正設備13よりも下流側の搬送経路に配置することがより好ましい。冷却部40を通過することにより金属帯1に発生した板幅方向の不均一な形状は、形状矯正設備13を通過することである程度低減されるものの、形状矯正設備13の下流側に搬送された後でも、不均一な形状分布が少なからず残るためである。更に、板幅方向形状測定装置31は、連続焼鈍設備100の検査台14に配置することが好ましい。金属帯1の寸法や表面品質の検査と共に、板幅方向形状測定装置31を用いて、無張力状態における反り形状を推定することにより、リコイルラインにおける反り形状の形状品質の判定を省略できるためである。また、板幅方向形状測定装置31が設けられた搬送経路を通過する金属帯1は、長手方向において10~100MPaの張力を負荷した状態で搬送されることが好ましい。
 板幅方向形状測定装置31は、金属帯1の板幅方向形状分布を測定可能とする限り、各種の測定装置を適用してもよい。板幅方向形状測定装置31には、レーザー距離計を用いて金属帯1の板幅方向の各位置と測定装置との間の距離を測定し、測定した距離から板幅方向形状分布を特定する距離測定法を適用できる。距離測定法には、直進式のレーザー光を用いて距離を測定するレーザー距離計の他、レーザー光を扇状にスキャンして金属帯1の板幅方向の各位置との距離を測定するレーザースキャン式距離計を用いることができる。直進式のレーザー距離計を用いる場合には、板幅方向形状測定装置31は、レーザー距離計を金属帯1の板幅方向に対して複数個配置して、各位置での反り形状を測定する。この場合、金属帯1の板幅方向に配置するレーザー距離計の数は、3個以上100個以下の数とすることが好ましい。より好ましくは10~20である。なお、金属帯1の板幅方向に配置するレーザー距離計の数が3個未満では、金属帯1の板幅方向の形状分布の精密な特定が困難となる。また、金属帯1の板幅方向に配置するレーザー距離計の数が100個を超えても、板幅方向の形状分布の測定精度に変化は見られないためである。
 板幅方向形状測定装置31について、レーザースキャン式距離計を用いた場合の状態について、図4を用いて説明する。図4は、レーザースキャン式距離計により金属帯1の板幅方向形状分布を測定する状態を簡易的に示す。レーザースキャン式距離計を用いることにより、1台の測定装置により金属帯1の板幅方向形状分布を測定できる。
 次に、板幅方向形状測定装置31について、複数のレーザースキャン式距離計を用いた場合の状態について、図5を用いて説明する。図5は、複数のレーザースキャン式距離計により金属帯1を測定する状態を簡易的に示す。図5に示す通り、板幅方向形状測定装置31は、金属帯1の板幅方向に沿って複数のレーザースキャン式距離計を並列配置して、金属帯1の板幅方向の区分毎において、板幅方向の各位置の反り形状を測定してもよい。
 板幅方向形状測定装置31は、光切断法により金属帯1の板幅方向の各位置における反り形状を測定してもよい。板幅方向形状測定装置31は、例えば、キーエンス社製のLJ-X8000シリーズや、LMT Technologies社製のGocatorを用いて、光切断法による反り形状の測定を実施してもよい。ここで、光切断法は、金属帯1の板幅方向に向けて扇状に広がるレーザー光を照射して、金属帯1からの反射光をイメージセンサにより撮像し、撮像した画像に対して画像処理を行うことにより、金属帯1の表面の各位置における変位を測定する方法である。
 板幅方向形状測定装置31による反り形状の測定精度は、1mm以下の測定精度が得られることが好ましく、より好ましくは0.5mm以下である。連続焼鈍設備100においては、製造される金属帯1の反り形状の変動範囲の上限が5~10mmとして設定されるため、金属帯1の反り形状に関する品質保証を確実に行うためである。
 板幅方向形状測定装置31は、金属帯1の板幅方向における反り形状の測定を、金属帯1の長手方向に沿って1m以下のピッチで測定(収集)することが好ましい。板幅方向形状測定装置31は、連続的に搬送される金属帯に対して、測定周波数が10Hz以上であることが好ましく、20Hz以上であることがより好ましい。連続焼鈍設備100の出側設備24では、金属帯1が600m/min以上の速度で搬送され、金属帯1の長手方向で1m以下のピッチで測定(収集)できるようにするためである。板幅方向形状測定装置31は、金属帯1の長手方向にて1~5mの範囲で平均化した反り形状を、反り形状の測定値としてよい。
 次に、板幅方向形状測定装置31により測定された金属帯1の反り形状の一例について、図6を用いて説明する。図6は、板幅方向形状測定装置31により測定された金属帯1の板幅方向の反り形状の一例を示す図である。
 図6に示す反り形状は、高強度鋼板を水焼き入れにより急速冷却した後、当該高強度鋼板を板幅方向形状測定装置31により測定して得られた、板幅方向の反り形状を示す。引張強度が980MPa以上である高強度鋼板を水焼き入れにより急速冷却すると、図6に示すように、金属帯1の板幅方向の断面が、W字形状や高次関数によって近似され得る凹凸形状の反り形状となる。ここで、図6に示す反り形状は、板厚1.2mm、板幅1200mmの高強度鋼板について、冷却工程および調質圧延工程を終了した後に測定して得られた一例である。そして、図6に示す反り形状は、金属帯1の長手方向に100mmピッチで20か所の位置で測定した形状分布の平均値を表したものである。ただし、図6に示す反り形状は、板幅方向の最大高さと最小高さとの差(振幅)により規格化している。
 本実施形態では、図6に示すように、加張力状態で板幅方向の形状分布がW字形状や3次以上の高次関数によって近似され得る曲線(以下、「3次近似曲線」ともいう。)の形状となる金属帯1を対象とする。即ち、金属帯1の急速冷却により面内に不均一な残留応力(残留モーメント)が発生し、不均一な反り形状が形成された金属帯1の無張力状態における板幅方向の反り形状の推定を対象とする。
 近似曲線算出部34は、板幅方向形状測定装置31で測定され、取得部33で取得された板幅方向形状分布を2次曲線又は円弧により近似した近似曲線を算出する。2次曲線又は円弧により近似した近似曲線(以下、「2次円弧近似曲線」ともいう。)は、金属帯1の板幅方向の中心部を中心として板幅方向に亘って対称となる曲線であって、板幅方向にて変曲点を有しない曲線を意味する。ここで、金属帯1は、金属帯1の内面に生じる様々な残留応力に起因して、無張力状態において、金属帯1の長手方向の長手反り(L反り)と、金属帯1の板幅方向の幅反り(C反り)とが発生する。金属帯1の長手反りは、長手方向に沿って発生した均一な残留応力に起因する2次円弧近似曲線の形状となる反り形状を含む。金属帯1の幅反りは、不均一な残留応力に起因する3次近似曲線の形状となる反り形状を含む。そして、連続焼鈍設備100にて搬送される金属帯1は、搬送の際に、常に長手方向に張力が負荷された状態(加張力状態)で搬送されることとなる。このため、搬送中の金属帯1は、長手方向の長手反りが見かけ上存在しないように搬送されるものの、長手反り(2次円弧近似曲線の形状)を発生させる残留応力の影響は無くなることはなく、金属帯1の板幅方向の幅反りとして変換され、顕在化する。つまり、板幅方向形状測定装置31で測定された板幅方向形状分布について、2次円弧近似曲線を算出することは、金属帯1の長手反りの影響を特定することに繋がる。
 次に、金属帯1を長手方向に曲げた場合に、金属帯1の内面に発生するひずみについて、図7を用いて説明する。図7は、金属帯1を長手方向に曲げた際に、金属帯1の内面に発生するひずみを模式的に示す図である。図7においては、図面に向かって、金属帯1の上方の面を「上面」と呼称し、金属帯1の下方の面を「下面」と呼称する。
 図7に示す通り、金属帯1を長手方向に曲げると、金属帯1の上面では長手方向の伸びひずみが発生し、下面には長手方向の圧縮ひずみが発生する。金属帯1の長手方向で伸びひずみや圧縮ひずみが発生すると、ポアソン比変形により板幅方向にもひずみが発生する。図7に示す例では、金属帯1の上面では板幅方向に圧縮ひずみが発生し、下面では板幅方向に伸びひずみが発生する。そのため、金属帯1の板幅方向においては、上面側が縮み、下面側が伸びることにより、板幅方向の反りが発生する。金属帯1が、無張力状態で長手反りを有している場合には、張力が負荷されて長手反りが見かけ上解消されている状態でも、同様のポアソン比変形が発生する。また、図7に示す例では、金属帯1の長手方向の曲げひずみは、板幅方向で一様に生じるため、ポアソン比変形に伴う板幅方向のひずみも、金属帯の板幅に沿って均一に生じている。即ち、張力が負荷されて長手反りが見かけ上解消されている状態でも、金属帯1の板幅方向に沿って均一な板幅方向のひずみが生じるため、板幅方向の反りに変換された長手反りは、2次円弧近似曲線の形状となる。本実施形態の近似曲線算出部34は、上記した通り、板幅方向形状測定装置31で測定された板幅方向形状分布を2次曲線又は円弧により近似した近似曲線を算出し、板幅方向の反りに変換された長手反りの影響を特定する。
 ここで、金属帯に発生する反り形状について、金属帯に同様に発生する波形状と共に、具体的に説明する。金属帯の形状不良は、いわゆる耳波や中伸びと呼ばれる波形状の形状不良としても現れる。波形状は、金属帯の長手方向の伸び(ひずみ)が板幅方向で分布することにより、金属帯の長手方向に発生する面内の応力を、金属帯の面内で維持できず、座屈により面外に変位することで現れる。反り形状及び波形状は、座屈によって現れる面外変形である点で共通する。しかし、座屈の発生原因となる残留応力の方向が、板幅方向であるか長手方向であるかとの違いにより相違する。そのため、波形状は、金属帯の長手方向において表面の形状の変位が周期的に変化する一方、反り形状は、金属帯の長手方向において表面の形状の周期的な変位は発生しない。また、反り形状は、長手方向の反りと板幅方向の反りとが相互に変換されるという特性を有するものの、波形状は、そのような相互の変換が発生しない。
 次に、近似曲線算出部34により算出される近似曲線の一例について、図8を用いて説明する。図8は、近似曲線算出部34により算出される近似曲線の一例を示す図である。ただし、図8に示す反り形状は、加張力状態における板幅方向の最大高さと最小高さとの差(振幅)により規格化している。なお、図9~図13に示す反り形状も、同様に加張力状態における板幅方向の最大高さと最小高さとの差(振幅)により規格化している。
 図8は、板厚を1.0mm、板幅を1220mmとする高強度鋼板に対して、15kNの張力が負荷された状態で、板幅方向形状測定装置31が測定した板幅方向形状分布(反り形状)を2次曲線で近似した例である。近似曲線として2次曲線を用いる場合は、板幅方向の位置xと反り形状yとの関係を、a、b、cを定数とする以下の(1)式に示す関数式により表す。具体的に、測定値である板幅方向形状分布と、(1)式により求められる反り形状yとの誤差について、板幅方向において最も小さくなる定数を決定するように算出する。
Figure JPOXMLDOC01-appb-M000001
 また、図9は、上記と同じく板厚を1.0mm、板幅を1220mmとする高強度鋼板に対して、15kNの張力が負荷された状態で、板幅方向形状測定装置31が測定した板幅方向形状分布(反り形状)を円弧で近似した例である。近似曲線として円弧を用いる場合は、板幅方向の位置xと反り形状yとの関係を、d、e、rを定数とする以下の(2)式に示す関数式により表す。具体的に、円弧近似を行う場合にも、測定値である板幅方向形状分布と、(2)式により求められる反り形状yとの誤差について、板幅方向において最も小さくなる定数を決定するように算出する。
Figure JPOXMLDOC01-appb-M000002
 反り形状推定部35は、板幅方向形状測定装置31で測定された金属帯1の板幅方向形状分布と、近似曲線算出部34で算出された近似曲線とを用いて、金属帯1の無張力状態における板幅方向の反り形状を推定する。具体的に、反り形状推定部35は、板幅方向形状測定装置31で測定された板幅方向形状分布から、近似曲線算出部34で算出された近似曲線を減算することにより、金属帯1の無張力状態における板幅方向の反り形状を推定する。即ち、板幅方向形状測定装置31で測定された板幅方向の位置毎の反り形状の値から、近似曲線算出部34で算出された近似曲線の対応する板幅方向位置での反り形状の値を減ずることにより、無張力状態における反り形状を特定する。
 ここで、板幅方向形状測定装置31で測定された加張力状態における板幅方向形状分布と、近似曲線算出部34で算出された近似曲線(2次曲線)とを用いて、反り形状推定部35が推定した無張力状態における板幅方向の反り形状の一例について、図10を用いて説明する。図10は、加張力状態における板幅方向形状分布と近似曲線(2次曲線)とを用いて、推定された無張力状態における板幅方向の反り形状の一例を示す図である。
 図10に示す通り、反り形状推定部35が推定した無張力状態における反り形状(推定反り形状)は、15kNの張力を負荷した状態で測定された反り形状に比べて、板幅方向における反り形状の最大値と最小値との差はやや増加し、反り形状の山部と板幅中央部の谷部との高さの差が減少している。これは、金属帯1が有する長手反りが板幅方向の反りに変換されることによって、主として板幅中央部の近傍における反り高さの振幅を増大させていたためと考えられる。
 次に、推定された推定反り形状(図10参照)と、無張力状態における反り形状の実測値とを比較した例について、図11を用いて説明する。図11は、推定反り形状と無張力状態における反り形状の実測値とを比較した一例を示す図である。
 図11に示す通り、加張力状態において測定された板幅方向形状分布に基づいて、無張力状態における板幅方向の反り形状を推定した場合に、推定された反り形状の推定精度が良いことが確認された。
 また、加張力状態における板幅方向形状分布と、これを円弧により近似した近似曲線とを用いて推定された、無張力状態における板幅方向の反り形状の例について、図12を用いて説明する。図12は、加張力状態における板幅方向形状分布と近似曲線(図9参照)とを用いて、推定された無張力状態における板幅方向の反り形状の一例を示す図である。図12に示す通り、円弧により近似した近似曲線を用いた場合も、推定反り形状は、15kNの張力を負荷した状態で測定された反り形状に比べて、板幅方向における反り形状の最大値と最小値との差はやや増加し、反り形状の山部と板幅中央部の谷部との高さの差が減少している。そして、実測値と比較した結果である図13に示す通り、円弧により近似した近似曲線を用いて推定した推定反り形状を、無張力状態における反り形状の実測値と比較した場合についても、推定された反り形状の推定精度が良いことが確認された。
 以上に述べた通り、本実施形態における金属帯の反り形状推定方法を用いることにより、加張力状態における板幅方向の形状分布から、無張力状態における板幅方向の反り形状を推定できる。金属帯1の反り形状推定方法は、連続焼鈍設備100の冷却帯8で冷却された金属帯1が、板幅方向において2次円弧近似曲線の形状となる反り形状及び3次近似曲線の形状となる反り形状を含むことを踏まえ、冷却後の金属帯1への適用が好ましい。この場合、板幅方向形状測定装置31は、連続焼鈍設備100の冷却部40と巻取機15との間に配置されることが好ましい。また、板幅方向形状測定装置31を用いた反り形状測定ステップは、金属帯1が冷却部40により冷却された後、連続焼鈍設備100の巻取機15により巻き取られる前に実行されることが好ましい。連続焼鈍設備100において、金属帯1の搬送を停止することなく、無張力状態における反り形状を推定できるためである。
 以上に述べた金属帯1の反り形状推定方法を用いて、金属帯1の無張力状態における反り形状を推定した結果に基づいて、品質検査として金属帯1の合否判定を行うことが好ましい。反り形状に関する品質検査を金属帯1の搬送の最中(オンライン)に行うことにより、金属帯1の反り形状が品質基準を満たすか否か、簡易かつ迅速に判断できるためである。また、反り形状の品質検査を行うための追加工程を省略できるためでもある。反り形状に関する合否判定(合否判定方法)は、予め設定された板幅方向の反り量の上限(例えば10mm)を超える場合を不合格、反り量の上限値以下である場合を合格としてよい。また、反り形状推定部35が推定した反り形状の凹凸の個数またはピッチ数に応じて、品質の基準とする反り量の上限をその都度変更してもよい。無張力状態で反り形状の凹凸の個数が多くピッチが短い場合には、反り量が小さい場合であっても、プレス成形等の2次加工において加工トラブルが生じやすいためである。ここで、「反り量」は、反り形状の最大値と最小値との差を意味する。
 更に、上記した金属帯の反り形状推定方法を利用して金属帯1の合否判定を行い、合格と判定された金属帯を出荷等すること(金属帯の製造方法)が好ましい。反り形状が予め設定された品質不良の基準値以下となる金属帯1が製造され、反り形状の品質検査のための追加工程が不要となり、低コストで金属帯を製造できるためである。この場合、金属帯1の長手方向において、5~20mのピッチで金属帯1の無張力状態における板幅方向の反り形状を推定し、合格とされた部分のみを金属帯1として製造することが好ましい。製品となる金属帯1の全長で、反り形状が品質基準を満たすことが保証されるためである。
 以下、本実施形態に係る金属帯の反り形状推定方法を用いて行った実施例を説明する。
 本実施例では、図1に示す連続焼鈍設備100において、出側設備24の検査台14に板幅方向形状測定装置31を配置して実施した。金属帯1が板幅方向形状測定装置31を通過する際に、金属帯1には20~60MPaの張力が負荷された状態とした。連続焼鈍設備100で製造された金属帯1は、板厚が1.0~1.8mm、板幅が800~1250mm、引張強さが1310~1470MPa級の高強度鋼板とした。実施例に用いた高強度鋼板の総重量は、15,000tonとした。
 連続焼鈍設備100の冷却帯8には、図2に示す水冷方式の冷却部40を配置した。冷却部40には、金属帯1の表面側及び裏面側から冷却流体である水を噴射する複数のノズルを備えた水冷却ノズルユニット41を設けた。本実施例では、冷却部40における冷却条件として、金属帯1の冷却開始温度を740℃とし、冷却終了温度を30℃として制御した。水冷却ノズルユニット41から噴射される冷却水の流量は、1000m/hrとし、水温は30℃とした。この場合、本実施例に用いた高強度鋼板(金属帯1)は、冷却部40における熱収縮及び相変態の影響により、板幅方向に3次近似曲線で近似し得る反り形状分布を有していた。
 検査台14に配置された板幅方向形状測定装置31は、距離測定法により反り形状を測定するレーザースキャン式距離計を用いて構成した。そして、2台のレーザースキャン式距離計を金属帯1の板幅方向に並列に配置した。金属帯1の板幅方向にレーザー光を走査させることにより、金属帯1の板幅方向における形状分布(板幅方向形状分布)を測定した。板幅方向形状測定装置31による測定周波数は、20Hzとした。このため、連続焼鈍設備100の出側設備24における金属帯1の搬送速度の最高速度600m/minの条件において、金属帯1の長手方向にて1mのピッチで反り形状の測定データを収集した。
 近似曲線算出部34は、板幅方向形状測定装置31で測定された加張力状態における金属帯1の板幅方向形状分布の測定結果に基づき、金属帯1の長手方向の位置ごとに、金属帯1の板幅方向において2次曲線により近似した近似曲線を算出した。反り形状推定部35は、板幅方向形状分布の測定結果から、算出された近似曲線を減ずることにより、金属帯1の無張力状態における板幅方向の反り形状を金属帯1の長手方向の位置ごとに推定した(推定反り形状)。
 本実施例では、金属帯1の反り形状に関する合否判定部を設け、板幅方向の反り形状の反り量(反り形状の最大値と最小値との差)の合否判定の上限を10mmとした。なお、反り量は、金属帯1の板幅端部10mmを除く板幅方向の反り形状から算出した。この場合、金属帯1の板幅端部から10mmの範囲は、リコイルラインにおいてトリミング(耳切り)が行われ製品とはならないからである。合否判定部では、金属帯1の長手方向の位置ごとに、反り形状の反り量が上限値以下となるか否かを判定した。合否判定は、金属帯1の長手方向の各位置で上限値以下となった場合を合格とし、少なくとも何れかの位置で推定反り形状が上限値を超えた場合を不合格とした。
 本実施例では、更に、金属帯1を連続焼鈍設備100の巻取機15で巻き取った後、コイル状の金属帯を検査ライン(リコイルライン)に搬送した。そして、検査ラインにおいて、無張力状態となった金属帯の板幅方向の反り形状を測定した(実測反り形状)。
 その結果、合否判定部の判定結果及び実測反り形状が共に合格とされた金属帯の数と、合否判定部の判定結果及び実測反り形状が共に不合格とされた金属帯の数との合計の数は、合否判定を行った金属帯の数に対する割合(正答率)として、88%となった。
 また、近似曲線算出部34において、板幅方向形状測定装置31で測定された加張力状態における金属帯1の板幅方向形状分布の測定結果に基づき、金属帯1の長手方向の位置ごとに、金属帯1の板幅方向において円弧により近似した近似曲線も算出した。そして、近似曲線として円弧を算出した場合についても、反り形状推定部35は、板幅方向形状分布の測定結果から、算出された近似曲線(円弧)を減ずることにより、金属帯1の無張力状態における板幅方向の反り形状を金属帯1の長手方向の位置ごとに推定した。
 その結果、合否判定部の判定結果及び実測反り形状が共に合格とされた金属帯の数と、合否判定部の判定結果及び実測反り形状が共に不合格とされた金属帯の数との合計の数は、合否判定を行った金属帯の数に対する割合(正答率)として、85%となった。
 一方、比較例として、板幅方向形状測定装置31により測定された加張力状態における金属帯の板幅方向形状分布を用いて、金属帯の無張力状態における板幅方向の反り形状を推定することなく合否判定を行った。つまり、加張力状態における金属帯の板幅方向形状分布において、板幅方向の反り形状の反り量が上限値以下となるか否かを判定し、実測反り形状の合否判定結果と比較した。その結果、比較例において、板幅方向形状分布及び実測反り形状が共に合格とされた金属帯の数と、板幅方向形状分布及び実測反り形状が共に不合格とされた金属帯の数との合計の数は、合否判定を行った金属帯の数に対する割合(正答率)として、60%であった。
 以上から、本実施形態に係る金属帯の反り形状推定方法を用いることで、金属帯の急速冷却により生じる板幅方向の反り形状に対して、長手方向に張力が負荷された状態での板幅方向の反り形状から、張力が除荷された状態での板幅方向の反り形状を推定できることが確認できた。
1  金属帯
2  ペイオフリール
3  溶接機
4  入側ルーパー
5  予熱帯
6  加熱帯
7  均熱帯
8  冷却帯
9  再加熱帯
10 過時効帯
11 最終冷却帯
12 出側ルーパー
13 形状矯正設備
14 検査台
15 巻取機
20 入側設備
21 炉体設備
22 焼鈍設備
23 再加熱設備
24 出側設備
30 反り形状推定設備
31 板幅方向形状測定装置
32 反り形状推定装置
33 取得部
34 近似曲線算出部
35 反り形状推定部
36 出力部
40 冷却部
41 水冷却ノズルユニット
43 浸漬水槽
44 冷却水
45 押さえロール
46、47 デフレクターロール
48 水切りロール
49 乾燥炉
100 連続焼鈍設備
 

 

Claims (8)

  1.  長手方向の張力が負荷された加張力状態の金属帯の板幅方向の形状から、前記張力が除荷された無張力状態における前記金属帯の板幅方向の反り形状を推定する金属帯の反り形状推定方法であって、
     前記加張力状態において、前記金属帯の板幅方向形状分布を測定する板幅方向形状測定ステップと、
     前記板幅方向形状測定ステップで測定された前記板幅方向形状分布を2次曲線又は円弧により近似した近似曲線として算出する近似曲線算出ステップと、
     前記板幅方向形状分布と前記近似曲線とを用いて前記無張力状態における前記金属帯の板幅方向の反り形状を推定する反り形状推定ステップと、
     を有する、金属帯の反り形状推定方法。
  2.  前記板幅方向形状測定ステップでは、距離測定法又は光切断法により前記金属帯の板幅方向形状分布を測定する、請求項1に記載の金属帯の反り形状推定方法。
  3.  前記板幅方向形状測定ステップは、前記金属帯が連続焼鈍設備の冷却部で冷却された後、前記連続焼鈍設備の巻取機に巻き取られる前に実行される、請求項1または請求項2に記載の金属帯の反り形状推定方法。
  4.  請求項1~3のいずれか1項に記載の金属帯の反り形状推定方法により推定された前記無張力状態における前記金属帯の反り形状に基づいて、前記金属帯の合否判定を行う、金属帯の合否判定方法。
  5.  請求項4に記載の金属帯の合否判定方法を用いて前記金属帯の合否判定を行い、合格と判定された前記金属帯を製造する、金属帯の製造方法。
  6.  長手方向の張力が負荷された加張力状態の金属帯の板幅方向の形状から、前記張力が除荷された無張力状態における前記金属帯の板幅方向の反り形状を推定する金属帯の反り形状推定設備であって、
     前記加張力状態において、前記金属帯の板幅方向形状分布を測定する板幅方向形状測定装置と、
     前記無張力状態における前記金属帯の板幅方向の反り形状を推定する金属帯の反り形状推定装置と、を有し、
     前記金属帯の反り形状推定装置は、前記板幅方向形状測定装置から前記金属帯の板幅方向形状分布を取得する取得部と、前記板幅方向形状測定装置で測定された前記板幅方向形状分布を2次曲線又は円弧により近似した近似曲線として算出する近似曲線算出部と、前記板幅方向形状分布と前記近似曲線とを用いて前記無張力状態における前記金属帯の板幅方向の反り形状を推定する反り形状推定部と、を有する、金属帯の反り形状推定設備。
  7.  前記板幅方向形状測定装置は、距離測定法又は光切断法により前記金属帯の板幅方向形状分布を測定する、請求項6に記載の金属帯の反り形状推定設備。
  8.  前記板幅方向形状測定装置は、前記金属帯の熱処理を行う連続焼鈍設備の冷却部と巻取機との間に配置される、請求項6または請求項7に記載の金属帯の反り形状推定設備。
     

     
PCT/JP2023/027674 2022-09-21 2023-07-28 金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備 WO2024062767A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023561273A JP7401040B1 (ja) 2022-09-21 2023-07-28 金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022150049 2022-09-21
JP2022-150049 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024062767A1 true WO2024062767A1 (ja) 2024-03-28

Family

ID=90454458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027674 WO2024062767A1 (ja) 2022-09-21 2023-07-28 金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備

Country Status (1)

Country Link
WO (1) WO2024062767A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266125A (ja) * 1988-08-31 1990-03-06 Sumitomo Metal Ind Ltd 連続焼鈍炉の平担制御装置
JPH05192705A (ja) * 1992-01-21 1993-08-03 Nippon Steel Corp ストリップ圧延の平担度制御装置
JPH06102036A (ja) * 1992-09-22 1994-04-12 Nippon Steel Corp 板幅方向反り及び板長手方向反り検出方法
JP2008107241A (ja) * 2006-10-26 2008-05-08 Nippon Steel Corp 金属ストリップの板形状測定方法及び装置
JP2016140898A (ja) * 2015-02-04 2016-08-08 Jfeスチール株式会社 鋼帯の平坦形状測定方法及び測定設備

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266125A (ja) * 1988-08-31 1990-03-06 Sumitomo Metal Ind Ltd 連続焼鈍炉の平担制御装置
JPH05192705A (ja) * 1992-01-21 1993-08-03 Nippon Steel Corp ストリップ圧延の平担度制御装置
JPH06102036A (ja) * 1992-09-22 1994-04-12 Nippon Steel Corp 板幅方向反り及び板長手方向反り検出方法
JP2008107241A (ja) * 2006-10-26 2008-05-08 Nippon Steel Corp 金属ストリップの板形状測定方法及び装置
JP2016140898A (ja) * 2015-02-04 2016-08-08 Jfeスチール株式会社 鋼帯の平坦形状測定方法及び測定設備

Similar Documents

Publication Publication Date Title
KR101185597B1 (ko) 퀴리점을 가진 강 스트립의 연속 소둔 방법 및 연속 소둔 설비
KR101128316B1 (ko) 연속 소둔 설비
TWI286089B (en) Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
JP2010537046A (ja) ステンレス鋼帯板の冷却において平坦度を制御する方法および装置
EP3156512A1 (en) Cooling method and cooling device for strip steel
US20210365018A1 (en) Method and electronic device for monitoring a manufacturing of a metal product, related computer program and installation
KR100353283B1 (ko) 열간압연강판의제조방법및제조장치
WO2024062767A1 (ja) 金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備
JP7401040B1 (ja) 金属帯の反り形状推定方法、金属帯の合否判定方法、金属帯の製造方法及び金属帯の反り形状推定設備
JP5135534B2 (ja) キュリー点を有する鋼帯の連続焼鈍方法および連続焼鈍設備
KR101467724B1 (ko) 열연 강판 냉각 방법
JP7424554B1 (ja) 金属帯の製造設備、金属帯の合否判定方法及び金属帯の製造方法
WO2024042825A1 (ja) 金属帯の製造設備、金属帯の合否判定方法及び金属帯の製造方法
JP6699688B2 (ja) 熱延鋼板の製造方法
JP7414193B1 (ja) 金属帯の反り形状予測方法、金属帯の反り形状制御方法、金属帯の製造方法、反り形状予測モデルの生成方法及び金属帯の反り形状制御装置
WO2024062766A1 (ja) 金属帯の反り形状予測方法、金属帯の反り形状制御方法、金属帯の製造方法、反り形状予測モデルの生成方法及び金属帯の反り形状制御装置
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
WO2024062765A1 (ja) 金属帯の反り形状制御方法、金属帯の製造方法及び金属帯の反り形状制御装置
JP5482365B2 (ja) 鋼板の冷却方法、製造方法および製造設備
EP3943619B1 (en) Quenching apparatus and method for manufacturing metal sheet
KR20220152392A (ko) 후강판의 온도 편차 예측 방법, 후강판의 온도 편차 제어 방법, 후강판의 온도 편차 예측 모델의 생성 방법, 후강판의 제조 방법, 및 후강판의 제조 설비
JP2017057447A (ja) 高張力鋼板の製造設備および製造方法
EP4275806A1 (en) Method for predicting shape of steel sheet, shape control method, manufacturing method, method for generating shape prediction model, and manufacturing equipment
WO2023026774A1 (ja) 焼入れ装置及び焼入れ方法並びに金属板の製造方法
JP7448468B2 (ja) 冷間圧延鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867893

Country of ref document: EP

Kind code of ref document: A1