WO2024062190A1 - Propergol composite a vitesse de combustion reduite - Google Patents

Propergol composite a vitesse de combustion reduite Download PDF

Info

Publication number
WO2024062190A1
WO2024062190A1 PCT/FR2023/051432 FR2023051432W WO2024062190A1 WO 2024062190 A1 WO2024062190 A1 WO 2024062190A1 FR 2023051432 W FR2023051432 W FR 2023051432W WO 2024062190 A1 WO2024062190 A1 WO 2024062190A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
approximately
polyester polyol
propellant
solid propellant
Prior art date
Application number
PCT/FR2023/051432
Other languages
English (en)
Inventor
Nancy Desgardin
Audrey HOLSTEIN
Original Assignee
Arianegroup Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arianegroup Sas filed Critical Arianegroup Sas
Publication of WO2024062190A1 publication Critical patent/WO2024062190A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B29/00Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
    • C06B29/22Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate the salt being ammonium perchlorate
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/06Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being an inorganic oxygen-halogen salt

Definitions

  • the present invention lies in the technical field of solid propellant propulsion and more specifically relates to composite solid propellants with reduced combustion speed.
  • the invention also relates to the use of these propellants.
  • Rocket propulsion is a propulsion method used in space (launchers for satellites, satellites, orbital station) and military (missiles) applications.
  • solid propellant engines are highly appreciated for their performance and their small footprint. Indeed, solid propellants are by nature very dense, and therefore generate for the same on-board volume a greater quantity of propellant gases than liquid propellant, which results in a reduction in the weight of the structure. Additionally, these engines are relatively easy to install, giving them a lower structural mass than a cryogenic engine. Finally, their operation requires no moving parts, thus reducing the risk of breakdown. For these reasons, this type of engine remains a preferred option when designing a launcher such as the Ariane 5 launcher.
  • Propellants can be divided into two families according to their composition.
  • the first family historically the oldest, includes propellants composed of nitrocellulose, a solid cellulose which absorbs liquid nitroglycerin, as well as additives. These homogeneous propellants are known under the name “double base”. In fact, each of these two energetic materials combines both the oxidizing agent and the reducing agent. Their performance is not very high, but they are generally non-smoke-producing (apart from the presence of metallic additives), which has contributed to their use for the design of tactical missiles.
  • the second family of propellants is known under the name “composite”.
  • Application FR-A-3 017 615 describes a monolithic charge, of essentially cylindrical external shape, with a cylindrical central channel, of composite solid propellant containing in a crosslinked inert binder of the polyurethane type: an oxidizing charge of ammonium perchlorate distributed in three monomodal distributions, and a reducing aluminum filler having a median diameter (D 50 ) less than or equal to 30 pm.
  • Vc aPn .
  • Said combustion speed Vc and the pressure exponent n of the propellant are fundamental parameters for the ballistic adjustment of a solid propellant engine (burning duration, thrust, combustion stability, etc.). They determine at any instant of firing the stationary operating point of the engine.
  • composite propellants with a polyurethane binder comprising a reducing aluminum filler, such as those described in application FR-A-3 017 615, have a combustion speed of the order of 10 mm/s, in a range operating pressure of 8-10 MPa.
  • Patent application US 2019/016645 describes a solid propellant comprising a reaction product between a PBHT (hydroxytelechelic polybutadiene) or PEHT (hydroxytelechelic polyether) type prepolymer, a dimer diol and a curative isocyanate.
  • the propellants tested have a combustion speed of around 0.3 ips (“inches per second) or approximately 7.6 mm/s. The pressure at which the burning rate was determined is however not mentioned.
  • Patent application US 2019/077725 describes a solid propellant comprising PBHT type, a dimer diol and an isocyanate.
  • the invention relates to a composite solid propellant comprising:
  • crosslinked polyurethane type binder which is the reaction product of a polyester polyol and a polyisocyanate type crosslinking agent, in the presence of a crosslinking catalyst;
  • the polyester polyol has a weight average molecular weight of between about 1000 g/mol and about 4000 g/mol. In some embodiments, the polyester polyol includes 50 to 300 carbon atoms.
  • the invention relates to the use of the aforementioned composite solid propellant as fuel for a rocket, satellite or missile engine. Description of figures
  • Figure 1 represents the volume electrical resistivity of polymers and corresponding binders.
  • Figure 2 represents the mechanical properties at break of binders based on PBHT or polyester polyol.
  • Figure 3 represents the compared combustion rates of typical compositions with a PBHT or polyester polyol binder.
  • Figures 4A-4C represent the compared traction curves of typical compositions with PBHT or polyester polyol binder obtained after cooking or after aging. Description of the invention
  • the invention relates to a composite solid propellant comprising:
  • a crosslinked polyurethane type binder which is the reaction product of a polyester polyol and a polyisocyanate type crosslinking agent, in the presence of a crosslinking catalyst; - approximately 20.0% to approximately 90.0% by mass of ammonium perchlorate;
  • the crosslinked binder of the polyurethane type is obtained by crosslinking the polyester polyol with at least one crosslinking agent of the polyisocyanate type, which generally occurs in a controlled quantity, i.e. in a quantity such that the NCO/OH bridging ratio (Rp) is between 0.7 and 1.5, advantageously this ratio is equal to 1.
  • the OH functions are, as will be understood, provided by the polyester polyol.
  • the polyester polyol has a mass average molecular weight of between about 1000 g/mol and about 4000 g/mol, for example between about 1500 g/mol and about 2500 g/mol.
  • the polyester polyol comprises from 50 to 300 carbon atoms, for example from 100 to 200 carbon atoms.
  • the polyester polyol is obtained from an acid monomer (preferably a diacid) and an alcohol monomer (preferably a diol).
  • the acidic monomer comprises 4 to 50 carbon atoms, preferably 4 to 10 carbon atoms.
  • the alcohol monomer comprises 30 to 50 carbon atoms, preferably 32 to 40 carbon atoms.
  • the rectangular block of the diol is a hydrocarbon structure of 30 to 50 carbons.
  • the polyisocyanate crosslinking agent is suitable for crosslinking such polyester polyols.
  • the crosslinking agent known per se, is a polyisocyanate chosen from methyl diisocyanate (MDI), toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), dicyclohexyl methylene diisocyanate (MDCI) , hexamethylene diisocyanate (HDI), the trimer of said hexamethylene diisocyanate (in particular marketed by the company Bayer under the trade name Desmodur® N 3300), biuret trihexane isocyanate (BTHI), 3,5,5-trimethyl-l, 6- hexamethylene diisocyanate and their mixtures.
  • MDI methyl diisocyanate
  • TDI toluene diisocyanate
  • IPDI isophorone
  • Such crosslinking agents are conventionally used (i) in a quantity necessary and sufficient to ensure the crosslinking of the polyester polyol (not excessive so as not to pollute the crosslinked product obtained) and (ii) in a quantity such that the bridging ratio Rp is such as defined above.
  • the reaction between the polyester polyol and the polyisocyanate crosslinking agent is carried out in the presence of a crosslinking catalyst, which is generally used in an amount between approximately 0.1 ppm and approximately 10 ppm, advantageously between approximately 0.1 ppm and approximately 1 ppm, this quantity being expressed relative to the mass of composite solid propellant.
  • the crosslinking catalyst is chosen from triphenylbismuth, tin dibutyldilaurate (BDTL), a bismuth carboxylate such as bismuth octoate or bismuth neodecanoate (as described in the FR-A application -3 102 476), and their mixtures.
  • BDTL triphenylbismuth, tin dibutyldilaurate
  • a bismuth carboxylate such as bismuth octoate or bismuth neodecanoate
  • the composite solid propellant according to the invention comprises approximately 20.0% to approximately 90.0% by mass, such as for example approximately 60% by mass to approximately 75% by mass, of ammonium perchlorate (oxidizing charge).
  • the ammonium perchlorate comprises, for 100% of its mass, the following proportions of different fillers:
  • class A filler means a filler whose monomodal particle size distribution has a value of D 10 between 100 pm and 110 pm, a value of D 50 between 170 pm and 220 pm and a value of D 90 between 315 pm and 340 pm.
  • class B filler is understood to mean a filler whose monomodal particle size distribution has a value of D 10 between 15 pm and 20 pm, a value of D 50 between 60 pm and 120 pm and a value of D 90 between 185 pm and 220 pm.
  • class C filler means a filler whose monomodal particle size distribution has a value of D i0 between 1.7 pm and 3.6 pm, a value of D 50 between 6 pm and 12 pm and a value of D 90 between 20 pm and 32 pm.
  • the values D i0 , D 50 and D 90 represent the diameter for which the cumulative volume percentage is respectively equal to 10%, 50% or 90%. These particle size values come from measurements carried out using a laser particle size analyzer (MastersizerTM 3000 type or equivalent), according to a procedure defined by standard NF 11-666.
  • the composite solid propellant according to the invention also comprises 0% to approximately 25.0% by mass, such as for example approximately 15% by mass to approximately 20% by mass, of aluminum (reducing filler).
  • the reducing aluminum filler has a value of D 50 less than or equal to 30 pm.
  • the composite solid propellant according to the invention also comprises 0% to approximately 5.0% by weight of a ballistic catalyst.
  • the ballistic catalyst is chosen from conventional ballistic catalysts, such as lead salts and oxides, and bismuth citrate.
  • conventional ballistic catalysts such as lead salts and oxides
  • bismuth citrate is chosen from conventional ballistic catalysts, such as lead salts and oxides.
  • the Applicant has described, in patent application WO 2016/066245, the advantageous use of said bismuth citrate as a ballistic catalyst.
  • the composite solid propellant according to the invention may also comprise up to approximately 20.0% by mass of at least one additive.
  • said at least one additive is chosen from plasticizers, anti-glow agents, adhesion agents between the binder and the oxidizing filler, antioxidants, energetic fillers.
  • plasticizers we can cite dioctyl azelate, diisooctyl sebacate, isodecyl pelargonate, polyisobutylene, dioctyl phthalate but also energetic plasticizers such as triethylene glycol dinitrate.
  • anti-glow agents we can cite compounds based on alkali metals, sodium (Na 2 SO 4 , etc.) and especially potassium (K 2 SO 4 , KNO 3 , K 3 AIF 6 , C 4 H 5 KO 6 , etc.), particularly potassium salts such as potassium cryolite (K 3 AIF 6 ) or monobasic potassium tartrate (C 4 H 5 KO 6 ), said monobasic potassium tartrate which may be in L- or D- enantiomer form or in racemic form.
  • potassium salts such as potassium cryolite (K 3 AIF 6 ) or monobasic potassium tartrate (C 4 H 5 KO 6 ), said monobasic potassium tartrate which may be in L- or D- enantiomer form or in racemic form.
  • These specific potassium salts are available commercially, at conventional particle sizes (powders with grains generally having a D 50 between 1 and 300 pm).
  • adhesion agents between the binder and the oxidizing charge mention may be made of bis(2-methylaziridinyl)-methylaminophosphine oxide (methyl BAPO) or triethylene pentamine acrylonitrile (TEPAN).
  • methyl BAPO bis(2-methylaziridinyl)-methylaminophosphine oxide
  • TEPAN triethylene pentamine acrylonitrile
  • antioxidants we can cite those from the rubber industry, such as ditertiobutylparacresol (DBC) or 2,2'-methylene-bis(4-methyl-6-tertio-butylphenol) (MBP5 ).
  • DBC ditertiobutylparacresol
  • MBP5 2,2'-methylene-bis(4-methyl-6-tertio-butylphenol)
  • RDX hexogen
  • HMX octogen
  • the composite solid propellants according to the invention can be prepared by a process comprising the following steps:
  • the partial vacuum mentioned is intended for degassing the medium above which it is applied. It is generally around 10 mm Hg. We note incidentally that it is not necessarily of constant intensity.
  • the heat treatment for crosslinking the polyester polyol is generally carried out at a temperature between approximately 30°C and approximately 60°C (30°C ⁇ T ⁇ 60°C), for several days.
  • the composite solid propellants in accordance with the invention advantageously have a combustion speed of less than approximately 10 mm/s, for example of the order of approximately 6 mm/s to approximately 7 mm/s, and pressure exponents of between 0.2 and 0.5, over an operating pressure range from approximately 5 MPa to approximately 10 MPa. They are particularly suitable as rocket, satellite or missile engine fuel. Their use for this purpose is particularly recommended. It is an integral part of the present invention and constitutes another aspect thereof.
  • Another aspect of the invention lies in the use, in a solid propellant containing an oxidizing charge of ammonium perchlorate, a reducing charge of aluminum and a crosslinked binder of the polyurethane type, of a polyester polyol as defined herein. above as a precursor ingredient of said binder.
  • the invention relates to a propellant loading containing at least one composite solid propellant as defined above.
  • a propellant loading containing at least one composite solid propellant as defined above.
  • Such loading is suitable not only for satellite or missile engines, but also for engines for space launchers such as those of the Ariane 5 rocket.
  • the propellant loads contained in these engines have a mass ranging from a few hundred kilograms to several hundred tons.
  • the invention relates to a rocket, satellite or missile engine comprising a propellant charge as defined above.
  • a binder was prepared from a polyisocyanate and a polymer (PBHT, R45HTTM, marketed by the company Cray Valley, or polyester polyol according to the invention, PriplastTM 1838, marketed by the company Croda) optionally in the presence of a plasticizer, dioctyl azelate (DOZ), according to the following protocol:
  • Propellants were prepared in the following manner, from either a conventional PBHT or a polyester polyol according to the invention:
  • the combustion speed (Vc) of these propellants was measured.
  • the results are presented in Figure 3.
  • the dashed curves represent the Vc of a propellant comprising ammonium perchlorate of composition A and either PBHT (top curve) or a polyester polyol (bottom curve).
  • the solid curves represent the Vc of a propellant comprising ammonium perchlorate of composition B and either PBHT (top curve) or a polyester polyol (bottom curve).
  • polyester polyol according to the invention which is a biosourced product, of low density (0.96), of low Tg (-63°C), and less insulating than PBHT, can therefore be used advantageously as a substitute for PBHT .
  • the mechanical properties of the propellants obtained in Example 2 were measured at the end of cooking and after accelerated aging. The results are presented in Figure 4.
  • the dashed curves represent the traction curves of a propellant with a PBHT binder.
  • the solid line curves represent the traction curves of a propellant with a polyester polyol binder with the same load distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

L'invention concerne un propergol solide composite comprenant : 5,0% à 20,0 % en masse d'un liant réticulé de type polyuréthanne, qui est le produit de réaction d'un polyester polyol et d'un agent de réticulation de type polyisocyanate, en présence d'un catalyseur de réticulation; 20,0% à 90,0 % en masse de perchlorate d'ammonium; éventuellement jusqu'à 25,0 % en masse d'aluminium; éventuellement jusqu'à 5,0% en masse d'un catalyseur balistique; éventuellement jusqu'à 20,0% en masse d'au moins un additif.

Description

Propergol composite à vitesse de combustion réduite
Domaine technique de l'invention
La présente invention se situe dans le domaine technique de la propulsion à propergol solide et concerne plus précisément des propergols solides composites à vitesse de combustion réduite. L'invention concerne également l'utilisation de ces propergols.
Etat de la technique
La propulsion fusée est une méthode de propulsion utilisée dans des applications spatiales (lanceurs pour satellites, satellites, station orbitale) et militaires (missiles). Dans le domaine aérospatial, les moteurs à propergol solide sont très appréciés pour leur performance et leur faible encombrement. En effet, les propergols solides sont par nature très denses, et génèrent donc pour un même volume embarqué une plus grande quantité de gaz propulsifs qu'un ergol liquide, ce qui se traduit par une diminution du poids de la structure. De plus, ces moteurs sont relativement faciles à installer, leur conférant une masse structurelle plus faible qu'un moteur cryotechnique. Enfin, leur fonctionnement ne requiert aucune pièce mobile, diminuant ainsi les risques de panne. Pour ces raisons, ce type de moteur reste une option privilégiée lors de la conception d'un lanceur tel que par exemple le lanceur Ariane 5.
On peut diviser les propergols en deux familles suivant leur composition. La première famille, historiquement la plus ancienne, regroupe les propergols composés de nitrocellulose, une cellulose solide qui absorbe de la nitroglycérine liquide, ainsi que d'additifs. Ces propergols homogènes sont connus sous la dénomination de "double base". En effet, chacun de ces deux matériaux énergétiques réunit à la fois l'agent oxydant et l'agent réducteur. Leurs performances ne sont pas très importantes, mais ils sont généralement non fumigènes (hors présence d'additifs métalliques), ce qui a contribué à leur utilisation pour la conception de missiles tactiques. La seconde famille de propergol est connue sous la dénomination "composite". Ils sont typiquement composés d'une phase solide (cristaux d'oxydant et carburant) maintenue en place par une gomme synthétique, le liant (typiquement un polybutadiène), le tout formant un ensemble hétérogène. L'ajout de poudre métallique (de l'aluminium ou du fer par exemple) permet d'augmenter la densité du propergol ainsi que ses performances. Les propergols composites ont de bien meilleures performances que les propergols double base, et sont largement utilisés pour les applications spatiales. La demande FR-A-3 017 615 décrit un chargement monolithique, de forme extérieure essentiellement cylindrique, à canal central cylindrique, de propergol solide composite renfermant dans un liant inerte réticulé de type polyuréthanne : une charge oxydante de perchlorate d'ammonium répartie en trois distributions monomodales, et une charge réductrice d'aluminium présentant un diamètre médian (D50) inférieur ou égal à 30 pm.
La vitesse de combustion d'un propergol solide dépend de la pression P régnant dans la chambre de combustion et suit classiquement une loi (dite loi de Vieille) exprimée sous la forme :
Vc= aPn.
Ladite vitesse de combustion Vc et l'exposant de pression n du propergol sont des paramètres fondamentaux pour le réglage balistique d'un moteur à propergol solide (durée de combustion, poussée, stabilité de combustion...). Ils déterminent à tout instant de tir le point de fonctionnement stationnaire du moteur.
Typiquement, les propergols composites à liant polyuréthanne, comprenant une charge réductrice d'aluminium, tels que ceux décrits dans la demande FR-A-3 017 615, ont une vitesse de combustion de l'ordre de 10 mm/s, dans une plage de pression de fonctionnement de 8-10 MPa.
On comprend qu'une diminution de la vitesse de combustion d'un propergol solide pourrait être avantageuse en terme par exemple de durée de combustion du propergol, pour autant que les performances énergétiques et mécaniques du combustible ne soient pas impactées. Plusieurs solutions pourraient contribuer à atteindre cet objectif. Une solution consisterait à ne pas utiliser de catalyseur balistique ; une autre solution consisterait à utiliser, comme charge oxydante, du perchlorate d'ammonium de granulométrie plus importante que celle couramment utilisée ; une autre solution consisterait à identifier un isocyanate avantageux en tant que précurseur de la matrice polyuréthane. Toutefois ces solutions potentielles soit ne sont pas pérennes (en termes d'approvisionnement en matières premières), soit ne permettent a priori pas de maintenir un niveau satisfaisant de performance énergétique et/ou mécanique.
La demande de brevet US 2019/016645 décrit un propergol solide comprenant un produit de réaction entre un prépolymère de type PBHT (polybutadiène hydroxytéléchélique) ou PEHT (polyéther hydroxytéléchélique), un dimère diol et un isocyanate curatif. Les propergols testés ont une vitesse de combustion de l'ordre de 0,3 ips (« inches per second) soit environ 7,6 mm/s. La pression à laquelle la vitesse de combustion a été déterminée n'est toutefois pas mentionnée. La demande de brevet US 2019/077725 décrit un propergol solide comprenant du type PBHT, un dimère diol et un isocyanate.
Il est du mérite des inventeurs de proposer des propergols solides composites ayant une vitesse de combustion de l'ordre de 6 à 7 mm/s dans une plage de pression allant d'environ 5 MPa à environ 10 MPa, et présentant les propriétés habituelles souhaitées pour les applications spatiales et stratégiques (performances, propriétés mécaniques,...). Résumé de l'invention
Selon un aspect, l'invention concerne un propergol solide composite comprenant :
- environ 5,0% à environ 20,0 % en masse d'un liant réticulé de type polyuréthanne, qui est le produit de réaction d'un polyester polyol et d'un agent de réticulation de type polyisocyanate, en présence d'un catalyseur de réticulation ;
- environ 20,0% à environ 90,0 % en masse de perchlorate d'ammonium ;
- 0% à environ 25,0 % en masse d'aluminium ;
- 0% à environ 5,0% en masse d'un catalyseur balistique ;
- 0% à environ 20,0% en masse d'au moins un additif.
Dans certains modes de réalisation, le polyester polyol a une masse moléculaire moyenne en masse comprise entre environ 1000 g/mol et environ 4000 g/mol. Dans certains modes de réalisation, le polyester polyol comprend de 50 à 300 atomes de carbone.
Selon un autre aspect, l'invention concerne l'utilisation du propergol solide composite susmentionné comme combustible d'un moteur de fusée, de satellite ou de missile. Description des figures
La figure 1 représente la résistivité électrique volumique de polymères et de liants correspondants.
La figure 2 représente les propriétés mécaniques à rupture de liants à base de PBHT ou de polyester polyol.
La figure 3 représente les vitesses de combustion comparées de compositions types à liant PBHT ou polyester polyol.
Les figures 4A-4C représentent les courbes de traction comparées de compositions types à liant PBHT ou polyester polyol obtenues en sortie de cuisson ou après vieillissement. Description de l'invention
Selon un aspect, l'invention concerne un propergol solide composite comprenant :
- environ 5,0% à environ 20,0 % en masse d'un liant réticulé de type polyuréthanne, qui est le produit de réaction d'un polyester polyol et d'un agent de réticulation de type polyisocyanate, en présence d'un catalyseur de réticulation ; - environ 20,0% à environ 90,0 % en masse de perchlorate d'ammonium ;
- 0% à environ 25,0 % en masse d'aluminium ;
- 0% à environ 5,0% en masse d'un catalyseur balistique ;
- 0% à environ 20,0% en masse d'au moins un additif.
Bien entendu, la somme des quantités des différents constituants du propergol solide composite est égale à 100%.
Le liant réticulé de type polyuréthanne est obtenu par réticulation du polyester polyol avec au moins un agent de réticulation de type polyisocyanate, qui intervient généralement en quantité contrôlée, i.e. en une quantité telle que le rapport de pontage (Rp) NCO/OH soit compris entre 0,7 et 1,5, avantageusement ce rapport est égal à 1. Les fonctions OH sont, on l'aura compris, apportées par le polyester polyol.
Dans certains modes de réalisation, le polyester polyol a une masse moléculaire moyenne en masse comprise entre environ 1000 g/mol et environ 4000 g/mol, par exemple comprise entre environ 1500 g/mol et environ 2500 g/mol.
Dans certains modes de réalisation, le polyester polyol comprend de 50 à 300 atomes de carbone, par exemple de 100 à 200 atomes de carbone.
A titre d'exemples de polyesters polyols susceptibles d'être utilisés dans le cadre de la présente invention, on peut citer ceux commercialisés par la société Croda sous la dénomination commerciale Priplast™.
Dans certains modes de réalisation, le polyester polyol est obtenu à partir d'un monomère acide (de préférence un diacide) et d'un monomère alcool (de préférence un diol). Dans certains modes de réalisation, le monomère acide comprend 4 à 50 atomes de carbone, de préférence 4 à 10 atomes de carbone. Dans certains modes de réalisation, le monomère alcool comprend 30 à 50 atomes de carbone, de préférence 32 à 40 atomes de carbone.
Par exemple, dans le schéma simplifié ci-dessous d'une synthèse de polyester, le bloc rectangulaire du diol est une structure hydrocarbonée de 30 à 50 carbones.
Figure imgf000005_0001
L'agent de réticulation de type polyisocyanate convient à la réticulation de tels polyesters polyols. Dans certains modes de réalisation, l'agent de réticulation, connu en soi, est un polyisocyanate choisi parmi le méthyl diisocyanate (MDI), le toluène diisocyanate (TDI), l'isophorone diisocyanate (IPDI), le dicyclohexyl méthylène diisocyanate (MDCI), l'hexaméthylène diisocyanate (HDI), le trimère dudit hexaméthylène diisocyanate (notamment commercialisé par la société Bayer sous la dénomination commerciale Desmodur® N 3300), le biuret trihexane isocyanate (BTHI), le 3,5,5-triméthyl-l,6- hexaméthylène diisocyanate et leurs mélanges. De tels agents de réticulation sont conventionnellement utilisés (i) en quantité nécessaire et suffisante pour assurer la réticulation du polyester polyol (non excessive pour ne pas polluer le produit réticulé obtenu) et (ii) en quantité telle que le rapport de pontage Rp soit tel que défini ci-dessus. La réaction entre le polyester polyol et l'agent de réticulation de type polyisocyanate est mise en œuvre en présence d'un catalyseur de réticulation, qui est généralement utilisé en une quantité comprise entre environ 0,1 ppm et environ 10 ppm, avantageusement entre environ 0,1 ppm et environ 1 ppm, cette quantité étant exprimée relativement à la masse de propergol solide composite. Dans certains modes de réalisation, le catalyseur de réticulation est choisi parmi le triphénylbismuth, le dibutyldilaurate d'étain (BDTL), un carboxylate de bismuth comme l'octoate de bismuth ou le néodécanoate de bismuth (tel que décrit dans la demande FR-A-3 102 476), et leurs mélanges.
Le propergol solide composite conforme à l'invention comprend environ 20,0% à environ 90,0 % en masse, comme par exemple environ 60% en masse à environ 75% en masse, de perchlorate d'ammonium (charge oxydante).
Dans certains modes de réalisation, le perchlorate d'ammonium comprend, pour 100 % de sa masse, les proportions suivantes de différentes charges :
- 40 à 80 % en masse de charge de classe A ;
- 5 à 35 % en masse de charge de classe B ;
- 1 à 35 % en masse de charge de classe C.
On entend dans la présente divulgation par « charge de classe A » une charge dont la distribution granulométrique monomodale présente une valeur de D10 comprise entre 100 pm et 110 pm, une valeur de D50 comprise entre 170 pm et 220 pm et une valeur de D90 comprise entre 315 pm et 340 pm.
On entend dans la présente divulgation par « charge de classe B » une charge dont la distribution granulométrique monomodale présente une valeur de D10 comprise entre 15 pm et 20 pm, une valeur de D50 comprise entre 60 pm et 120 pm et une valeur de D90 comprise entre 185 pm et 220 pm.
On entend dans la présente divulgation par « charge de classe C » une charge dont la distribution granulométrique monomodale présente une valeur de Di0 comprise entre 1,7 pm et 3,6 pm, une valeur de D50 comprise entre 6 pm et 12 pm et une valeur de D90 comprise entre 20 pm et 32 pm.
Les valeurs Di0, D50 et D90 représentent le diamètre pour lequel le pourcentage volumique cumulé est respectivement égal à 10%, 50% ou 90%. Ces valeurs granulométriques sont issues de mesures réalisées au moyen d'un granulomètre laser (de type Mastersizer™ 3000 ou équivalent), selon un mode opératoire défini par la norme NF 11-666.
Le propergol solide composite conforme à l'invention comprend également 0% à environ 25,0 % en masse, comme par exemple environ 15% en masse à environ 20% en masse, d'aluminium (charge réductrice).
Dans certains modes de réalisation, la charge réductrice d'aluminium présente une valeur de D50 inférieure ou égale à 30 pm.
Le propergol solide composite conforme à l'invention comprend également 0% à environ 5,0% en masse d'un catalyseur balistique.
Dans certains modes de réalisation, le catalyseur balistique est choisi parmi les catalyseurs balistiques conventionnels, tels notamment les sels et oxydes de plomb, et le citrate de bismuth. La Demanderesse a décrit, dans la demande de brevet WO 2016/066245, l'utilisation avantageuse dudit citrate de bismuth comme catalyseur balistique.
Le propergol solide composite conforme à l'invention peut également comprendre jusqu'à environ 20,0% en masse d'au moins un additif.
Dans certains modes de réalisation ledit au moins un additif est choisi parmi les plastifiants, les agents anti-lueur, les agents d'adhésion entre le liant et la charge oxydante, les antioxydants, des charges énergétiques.
A titre d'exemples de plastifiants, on peut citer l'azélate de dioctyle, le sébaçate de diisooctyle, le pélargonate d'isodécyle, le polyisobutylène, le phtalate de dioctyle mais également des plastifiants énergétiques tels que le triéthylène glycol dinitrate.
A titre d'exemples d'agents anti-lueur, on peut citer des composés à base de métaux alcalins, sodium (Na2SO4,...) et surtout potassium (K2SO4, KNO3, K3AIF6, C4H5KO6, etc.), tout particulièrement les sels de potassium comme la cryolite de potassium (K3AIF6) ou le tartrate de potassium monobasique (C4H5KO6), ledit tartrate de potassium monobasique pouvant être sous forme d'énantiomère L- ou D- ou sous forme racémique. Ces sels spécifiques de potassium sont disponibles commercialement, à des granulométries conventionnelles (poudres avec des grains présentant généralement un D50 entre 1 et 300 pm).
A titre d'exemples d'agents d'adhésion entre le liant et la charge oxydante, on peut citer l'oxyde de bis(2-méthylaziridinyl)- méthylaminophosphine (méthyl BAPO) ou le triéthylène pentamine acrylonitrile (TEPAN).
A titre d'exemples d'antioxydants, on peut citer ceux issus de l'industrie du caoutchouc, comme le ditertiobutylparacrésol (DBC) ou le 2,2'-méthylène-bis(4-méthyl-6-tertio- butylphénol) (MBP5).
A titre d'exemples de charges énergétiques, on peut citer l'hexogène (RDX) ou l'octogène (HMX).
De façon nullement limitative, les propergols solides composites selon l'invention peuvent être préparés par un procédé comprenant les étapes suivantes :
- la constitution d'une pâte homogène par : a) incorporation, avec agitation, à une température comprise entre environ 30°C et environ 70°C, dans un polyester polyol tel que défini ci-dessus, des autres ingrédients constitutifs du propergol solide composite recherché à l'exception de l'agent de réticulation et du catalyseur de réticulation, et b) agitation du mélange résultant, sous vide partiel, à une température comprise entre environ 30°C et environ 70°C ;
- l'incorporation dans ladite pâte homogène constituée, sous vide partiel et à une température comprise entre environ 30°C et environ 50°C, dudit agent de réticulation et d'environ 0,1 ppm à environ 10 pm dudit catalyseur de réticulation, suivie d'une agitation du mélange constitué ;
- la coulée dudit mélange constitué dans au moins une structure ; et
- le traitement thermique dudit mélange constitué agité coulé dans ladite au moins une structure.
Le vide partiel mentionné est destiné au dégazage du milieu au-dessus duquel il est appliqué. Il est généralement d'environ 10 mm Hg. On note incidemment qu'il n'est pas forcément d'intensité constante.
Le traitement thermique (pour la réticulation du polyester polyol) est généralement mis en oeuvre à une température comprise entre environ 30°C et environ 60°C (30°C < T < 60°C), pendant plusieurs jours. Les propergols solides composites conformes à l'invention ont avantageusement une vitesse de combustion inférieure à environ 10 mm/s, par exemple de l'ordre d'environ 6 mm/s à environ 7 mm/s, et des exposants de pression compris entre 0,2 et 0,5, sur une plage de pression de fonctionnement allant d'environ 5 MPa à environ 10 MPa. Ils conviennent notamment comme combustible de moteur de fusée, de satellite ou de missile. Leur utilisation à cette fin est particulièrement préconisée. Elle fait partie intégrante de la présente invention et constitue un autre aspect de celle-ci.
Un autre aspect de l'invention réside dans l'utilisation, dans un propergol solide contenant une charge oxydante de perchlorate d'ammonium, une charge réductrice d'aluminium et un liant réticulé de type polyuréthanne, d'un polyester polyol tel que défini ci-dessus comme ingrédient précurseur dudit liant.
Selon un autre aspect, l'invention concerne un chargement de propergol contenant au moins un propergol solide composite tel que défini ci-dessus. Un tel chargement est adapté non seulement aux moteurs de satellite ou de missile, mais également aux moteurs pour lanceurs spatiaux tels que par exemple ceux de la fusée Ariane 5. Les chargements de propergol contenus dans ces moteurs ont une masse allant de quelques centaines de kilogrammes à plusieurs centaines de tonnes.
Selon un autre aspect, l'invention concerne un moteur de fusée, de satellite ou de missile comprenant un chargement de propergol tel que défini ci-dessus.
L'invention sera mieux comprise à l'aide des exemples ci-dessous, donnés à titre illustratif.
Exemple 1
On a préparé un liant à partir d'un polyisocyanate et d'un polymère (PBHT, R45HT™, commercialisé par la société Cray Valley, ou polyester polyol selon l'invention, Priplast™ 1838, commercialisé par la société Croda) éventuellement en présence d'un plastifiant, l'azélate de dioctyle (DOZ), selon le protocole suivant :
- agitation, sous vide partiel, à une température de 70°C du polymère et du plastifiant pendant 60 minutes ;
- incorporation après refroidissement à une température de 50°C, des agents de réticulation MDCI et Desmodur N3300 et 3 pm de DBTL, suivie d'une agitation du mélange constitué ;
- la coulée dudit mélange constitué dans un moule ;
- le traitement thermique de 10 jours à 50°C.
Puis on a déterminé la résistivité électrique volumique (exprimée en ohm.m) à 20°C et la contrainte (Sm, exprimée en MPa) des liants ainsi obtenus. Les mesures de contrainte ont été effectuées par tractions uniaxiales à 50 mm/min, conformément à la Norme NFT70- 315. Les résultats sont présentés sur les figures 1 et 2. Comme on peut le constater sur ces figures, des propriétés intéressantes sont obtenues en utilisant un polyester polyol à la place d'un PBHT conventionnel : baisse de la résistance électrique et propriétés mécaniques similaires en traction.
Exemple 2
On a préparé des propergols de la manière suivante, à partir soit d'un PBHT conventionnel, soit d'un polyester polyol selon l'invention :
- incorporation, avec agitation, à une température de 70°C, dans le polymère, des ingrédients constitutifs du propergol solide composite (principalement 68% de perchlorate d'ammonium (de composition A ou B en fonction des proportions de classes de perchlorate d'ammonium utilisées) et 20% d'aluminium) à l'exception de l'agent de réticulation et du catalyseur de réticulation ;
- agitation du mélange résultant, sous vide partiel, à une température de 70°C pendant 60 minutes ;
- incorporation dans ladite pâte homogène constituée, sous vide partiel et à une température de 50°C, des agents de réticulation MDCI et Desmodur® N3300 et 0,15 pm de DBTL, suivie d'une agitation du mélange constitué ;
- la coulée dudit mélange constitué dans un moule ;
- le traitement thermique de 2 semaines à 50°C.
On a mesuré la vitesse de combustion (Vc) de ces propergols. Les résultats sont présentés sur la figure 3. Les courbes en pointillé représentent la Vc d'un propergol comprenant du perchlorate d'ammonium de composition A et soit du PBHT (courbe du haut) soit un polyester polyol (courbe du bas). Les courbes en trait plein représentent la Vc d'un propergol comprenant du perchlorate d'ammonium de composition B et soit du PBHT (courbe du haut) soit un polyester polyol (courbe du bas).
On constate, sur la plage de pression de fonctionnement de 5 MPa à 10 MPa, une baisse de vitesse de combustion (environ -1 mm/s) du propergol contenant le polyester polyol par rapport au propergol contenant du PBHT, et ce quel que soit le type de perchlorate d'ammonium utilisé.
On a également déterminé les performances énergétiques des propergols. Les résultats sont présentés dans le tableau ci-dessous. Tableau 1
Figure imgf000011_0001
Is : impulsion spécifique/ Is p : impulsion spécifique volumique /
T : température de combustion / Tvol : taux de charges en % volumique
On peut noter que les performances énergétiques des deux propergols sont similaires. Le polyester polyol conforme à l'invention, qui est un produit biosourcé, de densité faible (0,96), de faible Tg (-63°C), et moins isolant que le PBHT, peut donc être utilisé avantageusement comme substitut au PBHT.
Exemple 3
On a mesuré les propriétés mécaniques des propergols obtenus à l'exemple 2 en sortie de cuisson et après vieillissement accéléré. Les résultats sont présentés sur la figure 4. Les courbes en pointillé représentent les courbes de traction d'un propergol à liant PBHT. Les courbes en trait plein représentent les courbes de traction d'un propergol à liant polyester polyol avec la même répartition de charges. Tandis que les propriétés mécaniques du propergol à liant polyester polyol sont en retrait comparativement à celles du propergol à liant PBHT au temps initial t0, on constate après vieillissement accéléré de 3 mois à 60°C dans des conditions sèches ou humides que les propriétés mécaniques du propergol à liant polyester polyol deviennent plus élevées que les propriétés mécaniques du propergol à liant PBHT vieilli dans les mêmes conditions.

Claims

Revendications
1. Propergol solide composite comprenant :
- 5,0% à 20,0 % en masse d'un liant réticulé de type polyuréthanne, qui est le produit de réaction d'un polyester polyol et d'un agent de réticulation de type polyisocyanate, en présence d'un catalyseur de réticulation ;
- 20,0% à 90,0 % en masse de perchlorate d'ammonium ;
- 0% à 25,0 % en masse d'aluminium ;
- 0% à 5,0% en masse d'un catalyseur balistique ;
- 0% à 20,0% en masse d'au moins un additif ; ledit polyester polyol étant obtenu à partir d'un monomère alcool comprenant de 30 à 50 atomes de carbone, de préférence de 32 à 40 atomes de carbone.
2. Propergol solide composite selon la revendication 1, dans lequel le polyester polyol a une masse moléculaire moyenne en masse comprise entre environ 1000 g/mol et environ 4000 g/mol, de préférence entre environ 1500 g/mol et environ 2500 g/mol.
3. Propergol solide composite selon l'une des revendications précédentes, dans lequel le polyester polyol comprend de 50 à 300 atomes de carbone, de préférence de 100 à 200 atomes de carbone.
4. Propergol solide composite selon l'une des revendications précédentes, dans lequel l'agent de réticulation est choisi parmi le méthyl diisocyanate, le toluène diisocyanate, l'isophorone diisocyanate, le dicyclohexyl méthylène diisocyanate, l'hexaméthylène diisocyanate, le trimère d'hexaméthylène diisocyanate, le biuret trihexane isocyanate, le 3,5,5-triméthyl-l,6-hexaméthylène diisocyanate et leurs mélanges.
5. Propergol solide composite selon l'une des revendications précédentes, dans lequel le catalyseur de réticulation est choisi parmi le triphénylbismuth, le dibutyldilaurate d'étain, un carboxylate de bismuth, et leurs mélanges.
6. Propergol solide composite selon l'une des revendications précédentes, dans lequel le catalyseur balistique, lorsqu'il est présent, est choisi parmi les sels et oxydes de plomb et le citrate de bismuth.
7. Utilisation d'un propergol solide composite tel que défini dans l'une quelconque des revendications précédentes comme combustible de moteur de fusée, de satellite ou de missile.
8. Utilisation, dans un propergol solide contenant une charge oxydante de perchlorate d'ammonium, une charge réductrice d'aluminium et un liant réticulé de type polyuréthanne, d'un polyester polyol tel que défini dans l'une quelconque des revendications 1 à 3 comme ingrédient précurseur dudit liant.
9. Chargement de propergol comprenant au moins un propergol solide composite tel que défini dans l'une quelconque des revendications 1 à 6.
10. Moteur de fusée, de satellite ou de missile comprenant un chargement de propergol selon la revendication 9.
PCT/FR2023/051432 2022-09-21 2023-09-19 Propergol composite a vitesse de combustion reduite WO2024062190A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2209416 2022-09-21
FR2209416A FR3139819A1 (fr) 2022-09-21 2022-09-21 propergol composite à vitesse de combustion réduite

Publications (1)

Publication Number Publication Date
WO2024062190A1 true WO2024062190A1 (fr) 2024-03-28

Family

ID=85461786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051432 WO2024062190A1 (fr) 2022-09-21 2023-09-19 Propergol composite a vitesse de combustion reduite

Country Status (2)

Country Link
FR (1) FR3139819A1 (fr)
WO (1) WO2024062190A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260631A (en) * 1962-12-17 1966-07-12 Aerojet General Co Polyurethane propellants containing inorganic oxidizers with organo-silicon coating
CA1161594A (fr) * 1979-11-08 1984-01-31 Meude Tremblay Liants a base de polyurethane
GB1605257A (en) * 1960-10-31 1986-09-24 Aerojet General Co Sustainer propellant
EP0741119B1 (fr) * 1995-05-05 2000-02-16 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Propergol composite et son procédé de fabrication
FR3017615A1 (fr) 2014-02-18 2015-08-21 Herakles Chargements de propergol solide optimises pour limiter les instabilites thermo-acoustiques ; moteurs de fusee associes
WO2016066245A1 (fr) 2014-10-31 2016-05-06 Audi Ag Procédé de fonctionnement d'un système de communication, et système de communication
US20190016645A1 (en) 2017-07-13 2019-01-17 Orbital Atk, Inc. Precursor formulations of a solid propellant, solid propellants including a reaction product of the precursor formulation, rocket motors including the solid propellant, and related methods
US20190077725A1 (en) 2015-11-18 2019-03-14 Aerojet Rocketyne, Inc. Solid rocket motor having hydorxyl -terminated binder weight diol
FR3102476A1 (fr) 2019-10-24 2021-04-30 Arianegroup Sas Propergol solide composite

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605257A (en) * 1960-10-31 1986-09-24 Aerojet General Co Sustainer propellant
US3260631A (en) * 1962-12-17 1966-07-12 Aerojet General Co Polyurethane propellants containing inorganic oxidizers with organo-silicon coating
CA1161594A (fr) * 1979-11-08 1984-01-31 Meude Tremblay Liants a base de polyurethane
EP0741119B1 (fr) * 1995-05-05 2000-02-16 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Propergol composite et son procédé de fabrication
FR3017615A1 (fr) 2014-02-18 2015-08-21 Herakles Chargements de propergol solide optimises pour limiter les instabilites thermo-acoustiques ; moteurs de fusee associes
WO2016066245A1 (fr) 2014-10-31 2016-05-06 Audi Ag Procédé de fonctionnement d'un système de communication, et système de communication
US20190077725A1 (en) 2015-11-18 2019-03-14 Aerojet Rocketyne, Inc. Solid rocket motor having hydorxyl -terminated binder weight diol
US20190016645A1 (en) 2017-07-13 2019-01-17 Orbital Atk, Inc. Precursor formulations of a solid propellant, solid propellants including a reaction product of the precursor formulation, rocket motors including the solid propellant, and related methods
FR3102476A1 (fr) 2019-10-24 2021-04-30 Arianegroup Sas Propergol solide composite

Also Published As

Publication number Publication date
FR3139819A1 (fr) 2024-03-22

Similar Documents

Publication Publication Date Title
EP2516356B1 (fr) Explosif solide malleable et son obtention
EP1790626B1 (fr) Procédé bicomposant semi-continu perfectionné d&#39;obtention d&#39;un chargement explosif composite à matrice polyuréthanne
CA2418319C (fr) Procede bicomposant semi-continu d&#39;obtention d&#39;un chargement explosif composite a matrice polyurethanne
EP0576326B1 (fr) Composition pyrotechnique génératrice de gaz chauds non toxiques et son utilisation dans un système de protection des occupants d&#39;un véhicule automobile
EP3212593B1 (fr) Produit pyrotechnique composite avec charges d&#39;adn et de rdx dans un liant de type pag et sa preparation
EP3212594B1 (fr) Produit pyrotechnique composite performant sans plomb dans sa composition et sa preparation
EP3812356A1 (fr) Propergol solide composite
WO2024062190A1 (fr) Propergol composite a vitesse de combustion reduite
WO2010061127A2 (fr) Composition composite pour propergol solide comprenant un derive ferrocenique et une charge d&#39;aluminium submicronique, propergol solide et chargement
EP3515881B1 (fr) Produit pyrotechnique composite renfermant un agent anti-lueur de type sel de potassium.
EP3753916B1 (fr) Produit pyrotechnique composite
CA2267512C (fr) Nouveaux materiaux pyrotechniques non detonables pour microsystemes
EP0404651A1 (fr) Composition solide génératrice de gaz et son utilisation dans les générateurs de gaz pour coussins gonflables destinés à protéger les passagers d&#39;un véhicule automobile
EP1364931B1 (fr) Poudres propulsives pour armes à tube à force élevée et effet érosif réduit
EP3656753B1 (fr) Procédé de préparation de produits pyrotechniques composites
EP3770136B1 (fr) Propergol solide composite
FR3051189A1 (fr) Explosif composite a effet de souffle maitrise
FR2868774A1 (fr) Composition explosive
FR3051188A1 (fr) Explosif composite a vitesse de detonation lente et generateur d&#39;onde plane ou lineaire en renfermant
FR2680783A1 (fr) Procede pour ameliorer les proprietes mecaniques d&#39;un propergol double base composite obtenu par la methode de moulage et propergol ainsi obtenu.
FR2697833A1 (fr) Agent liant pour charge propulsive.
BE896878A (fr) Fabrication de compositions propulsives et de charges propulsives.
FR3005657A1 (fr) Composition de propulseur sans fumee contenant un compose a base de bismuth et procede de preparation de celle-ci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790048

Country of ref document: EP

Kind code of ref document: A1