WO2024061710A1 - Ciment portland de pouzzolane prêt à l'emploi - Google Patents

Ciment portland de pouzzolane prêt à l'emploi Download PDF

Info

Publication number
WO2024061710A1
WO2024061710A1 PCT/EP2023/075210 EP2023075210W WO2024061710A1 WO 2024061710 A1 WO2024061710 A1 WO 2024061710A1 EP 2023075210 W EP2023075210 W EP 2023075210W WO 2024061710 A1 WO2024061710 A1 WO 2024061710A1
Authority
WO
WIPO (PCT)
Prior art keywords
clay
reactive agent
weight
activated clay
activated
Prior art date
Application number
PCT/EP2023/075210
Other languages
German (de)
English (en)
Inventor
Claudia Berger
Original Assignee
thyssenkrupp Polysius GmbH
Thyssenkrupp Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102022209876.5A external-priority patent/DE102022209876A1/de
Priority claimed from LU103013A external-priority patent/LU103013B1/de
Application filed by thyssenkrupp Polysius GmbH, Thyssenkrupp Ag filed Critical thyssenkrupp Polysius GmbH
Publication of WO2024061710A1 publication Critical patent/WO2024061710A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment

Definitions

  • the invention relates to a method for producing a ready-to-use Portland pozzolana cement.
  • calcined clay or naturally tempered pozzolans have been suggested as cement substitutes or SCM.
  • Calcined clay refers to a suitable, naturally occurring clay that has been thermally activated at a suitable temperature so that it acquires pozzolanic properties.
  • Clays suitable for this generally contain clay minerals in the form of 1-layer and/or 2-layer phyllosilicates, for example kaolinite, lllite or montmorillonite.
  • these clays can also contain accompanying minerals, such as quartz, feldspars, calcite, dolomite, but also metal oxides and hydroxides or especially iron hydroxides.
  • Naturally occurring clays are often rich in iron and/or contain other coloring metals, so that conventional calcination, for example, results in a reddish and/or brownish discoloration of the product. Although this coloring is not relevant for the strength and other building material properties, it is considered undesirable by system operators and building material customers. According to the current status, the acceptance of a building material by end consumers, i.e. the market potential of the calcined clays and thus the potential for possible CO2 savings, depends largely on their color.
  • activated clays on their own cannot be used as binding agents, which means that they require an additional component that, when mixed with water, creates an alkaline environment and thus leads to setting.
  • a more artificial pozzolan must be mixed with at least one suitable component that acts as a stimulator.
  • activated clays are used as a substitute to reduce the clinker factor. This can also reduce CO2 emissions because, unlike limestone, no CO2 escapes from the clays themselves during thermal treatment. These clays are activated, for example, at a temperature of 800 °C.
  • An important point for the finished product is that the customer usually... White or maximum light gray product is expected, but the clays used often contain iron or manganese.
  • these elements are oxidized within their corresponding minerals at the required temperatures and then have an intense reddish to brownish color. Therefore, these activated clays are either produced under a reducing atmosphere or, after activation at correspondingly high temperatures, reduced in a reducing environment and thereby decolorized. The product must then be cooled at least to such an extent that extensive renewed oxidation due to cooling with ambient air, with a corresponding color change towards red/brown, no longer takes place (at least no longer to a visually disturbing extent).
  • the calcination of fine-grained mineral solids, such as clay, is conventionally carried out in rotary kilns, deck kilns, fluidized bed kilns or entrained flow kilns. This ensures that a required minimum temperature is maintained with a residence time necessary for the treatment in this process.
  • US 4,948,362 A describes a process for calcining clay, in which kaolin clay is treated in a deck roasting oven with the help of a hot calcination gas to increase the degree of whiteness and minimize abrasiveness.
  • the calcined clay powder is separated from the exhaust gas of the calcination kiln and further processed to obtain the desired product.
  • US 9 458 059 B2 discloses a process for producing synthetic pozzolans with desired color characteristics by cooling under reducing conditions.
  • a process for producing a low-carbon clinker is known from EP 3 070 064 B1.
  • the object of the invention is to provide a method with which a binder with an activated clay can be easily produced.
  • the method according to the invention is used to produce a binder.
  • the method comprises the following steps: a) thermal activation of a clay at an elevated temperature to form an activated clay, b) mixing the activated clay at an elevated temperature with a reactive agent so that the reactive agent is reacted by the heat of the activated clay,
  • the reactive agent is selected from the group comprising lime, limestone, dolomite, CaCOs, MgCOs, old concrete and old cement stone. This happens in the case of CaCOs and its mineral deposits such as lime and limestone.
  • the reactive agent is converted into a lye-forming material.
  • CaCOs and/or MgCOs are achieved by decarbonatization, i.e. the at least partial conversion into CaO or MgO.
  • the purest possible old cement stone through at least partial dehydration i.e. also in the direction of CaO.
  • a lye-forming material is understood to mean a material which produces an alkaline medium under the influence of water, i.e. in particular CaO.
  • Ca(OH)2 forms and thus an alkaline medium.
  • This alkaline medium is required to set the activated clay. This creates a complete binder that can be used immediately.
  • the advantage of the invention is that the heat of the activated clay is not simply discarded, but is used specifically for the chemical conversion.
  • the amount of reactive agent added in step b) is between 10% by weight and 50% by weight of the mass of the activated clay. On the one hand, this ensures that the clay cools down sufficiently, and on the other hand, the energy is still available for the conversion of the reactive material. This should be presented purely as an example and in a very simplified manner. If one assumes that the activated clay is at 1000 °C, that the clay and the waste cement stone to be added have the same heat capacity and that 25% by weight of waste cement stone (at 0 °C) is added, this would result in a hypothetical mixing temperature of 800 °C.
  • the reaction of the reactive agent takes place at a reasonable rate up to, for example, 600 °C
  • the amount of heat from cooling the mixture from 800 °C to 600 °C would be available for the chemical reaction (dehydration) of the used cement stone.
  • the waste cement stone can be converted into a lye-forming material, which is required in the finished cement.
  • decarbonatization that is as complete as possible is desirable; in the case of dehydration, complete implementation is not necessary; especially in the case of old concrete or old cement stone, carbon dioxide that has already been bound in the material should not be released again.
  • the heat can be at least partially used to produce a binder (lye-forming material), thus saving energy in other parallel production processes.
  • the reactive agent preheated for example between 200 ° C and 500 ° C, in order to increase the proportion of the thermal energy of the activated clay available for the conversion of the reactive agent.
  • the method according to the invention has two advantages. On the one hand, the waste heat from the activation of the clay is used to carry out another process, the thermal treatment of the reactive agent to form the lye-forming material. On the other hand, the activated sound is cooled down very quickly and efficiently.
  • color optimization takes place in a reducing atmosphere between step a) and step b).
  • Many clays contain coloring components, for example and in particular Fe 111 . If these are reduced, the product becomes more gray, which improves the acceptance of the product. What is crucial, however, is that the reduced activated clay is then cooled without further oxidation taking place.
  • the process according to the invention is synergistic. By mixing the activated clay with a reactive agent, not only is simple cooling achieved, but the chemical reaction in the reactive agent extracts more and faster energy from the activated clay, so that the color can be maintained more easily after reduction.
  • CO2 comes out of lime and water comes out of old cement stone. These gases arise in the immediate vicinity of the heat-emitting activated clay and thus contribute to a local atmosphere that is at least lower in oxygen.
  • the amount of reactive agent added in step b) is between 15% by weight and 50% by weight, more preferably between 20% by weight and 50% by weight, particularly preferably between 23% by weight. -% and 26% by weight of the mass of activated clay.
  • the mass of the activated clay is considered to be 100%. The total amount therefore depends on the amount added. This mixing ratio results in efficient cooling on the one hand and, on the other hand, a product that can be used immediately and has optimal binder properties.
  • the binder is cooled after step b).
  • the binder can be cooled to a temperature of 300 ° C in step b) as a mixture of activated clay and reactive agent / lye-forming material.
  • the binder is then further cooled in an entrained flow direct current heat exchanger with a separation cyclone (if necessary in a cascade of such), in particular to below 100 ° C, so that it can be stored, filled or transported away.
  • the reactive agent is selected from the group comprising lime, limestone, dolomite, waste cement stone.
  • Lime, limestone or dolomite is particularly preferred if the clay is activated in step a) at a temperature between 1200 ° C and 950 ° C.
  • Waste cement stone is particularly preferably chosen if the clay is activated in step a) at a temperature between 950 ° C and 700 ° C.
  • the mixing in step b) takes place in a mixer.
  • the mixer has a mixing tool, for example a screw mixer. Through the active and intimate mixing.
  • the mixer is a static mixer, i.e. a mixer without moving parts, which is advantageous at high temperatures.
  • a mixer that allows intimate mixing of the solids and has the lowest possible gas volume is preferred. This means that as little oxygen as possible is present, which could cause the activated clay to change color.
  • Fig. 1 first exemplary embodiment
  • FIG. 1 shows a first exemplary embodiment of a system for carrying out the method according to the invention.
  • clay Via the clay supply 100, clay enters a preparation device 10, in which the clay is, for example, dried and crushed. From there the clay is transferred to a preheater 20.
  • the preheater 20 can be designed, for example, as a cascade of co-current heat exchangers with a separation cyclone. From there, the clay is transferred to the calciner 30 for thermal activation, which is brought to the temperature necessary for activation using a combustion chamber 40. The activated tone is then transferred to a reduction device 50 for color optimization.
  • a mixer 60 for this purpose, hydrogen, hydrocarbon-containing gases, carbon monoxide, synthesis gas or mixtures of these, in particular with nitrogen, exhaust air from the process and/or carbon dioxide, are supplied via the reducing agent supply 140.
  • the activated and color-optimized clay is transferred to a mixer 60 and intimately mixed there with a reactive agent supplied via the reactive agent feed 110, for example old cement stone.
  • a reactive agent supplied via the reactive agent feed 110 for example old cement stone.
  • a mixer 60 is particularly suitable for intimately mixing two solids with the lowest possible proportion of gas above the solid.
  • the resulting product is further cooled in a material cooler 70 and discharged via the product output 120.
  • air in particular is introduced into the material cooler 70 via the gas supply 130 and heated there.
  • the heated air is then transferred to the preparation device 10 where the clay is dried by the heat introduced with the air.
  • the air leaves the preparation device 10 via the preparation exhaust air 160.
  • the exhaust gas emerging from the reduction device 50 which may still contain unburned components, is fed to the calciner 30 and burned completely there.
  • the gas leaves the calciner 30 and is transferred to the preheater 20, where it preheats the clay and is itself cooled before it is released via the preheater exhaust air 150.
  • Fig. 2 shows a second exemplary embodiment, which differs from the first exemplary embodiment in that the mixer 60 is dispensed with and instead the reactive agent is added directly into the material cooler 70 via the reactive agent supply 110.
  • the material cooler 70 is preferably designed as a cascade of co-current heat exchangers with a separation cyclone, with the color-optimized activated clay and the reactive agent being introduced together into the first co-current heat exchanger of the cascade.
  • FIG 3 shows a third exemplary embodiment, which differs from the first exemplary embodiment in that a portion of the air heated in the material cooler 70 is additionally guided into the reduction device 50. Furthermore, at least some of the gases from the preheater exhaust air 150 and the preparation exhaust air 160 are supplied to the combustion chamber 40.
  • FIG 4 shows a fourth exemplary embodiment, which differs from the second exemplary embodiment in that a portion of the air heated in the material cooler 70 and at least a portion of the gases from the preheater exhaust air 150 and the preparation exhaust air 160 are additionally supplied to the combustion chamber 40.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

La présente invention concerne un procédé de production d'un liant, le procédé comprenant les étapes suivantes : a) l'activation thermique d'argile à une température accrue pour former de l'argile activée, b) le mélange de l'argile activée à une température accrue avec un agent réactif de telle sorte que l'agent réactif est mis à réagir en raison de la chaleur de l'argile activée, l'agent réactif étant mis à réagir en raison de l'énergie thermique de l'argile activée et l'agent réactif étant converti en un matériau créant un milieu alcalin.
PCT/EP2023/075210 2022-09-20 2023-09-14 Ciment portland de pouzzolane prêt à l'emploi WO2024061710A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102022209876.5A DE102022209876A1 (de) 2022-09-20 2022-09-20 Gebrauchsfertiger Portlandpuzzolanzement
LULU103013 2022-09-20
LU103013A LU103013B1 (de) 2022-09-20 2022-09-20 Gebrauchsfertiger Portlandpuzzolanzement
DE102022209876.5 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024061710A1 true WO2024061710A1 (fr) 2024-03-28

Family

ID=88060582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/075210 WO2024061710A1 (fr) 2022-09-20 2023-09-14 Ciment portland de pouzzolane prêt à l'emploi

Country Status (1)

Country Link
WO (1) WO2024061710A1 (fr)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948362A (en) 1988-11-14 1990-08-14 Georgia Kaolin Company, Inc. Energy conserving process for calcining clay
DE102008020600B4 (de) 2008-04-24 2010-11-18 Outotec Oyj Verfahren und Anlage zur Wärmebehandlung feinkörniger mineralischer Feststoffe
US20120160135A1 (en) 2010-12-13 2012-06-28 Flsmidth A/S Process for the Manufacture of Synthetic Pozzolan
DE102011014498B4 (de) 2011-03-18 2013-04-25 Outotec Oyj Verfahren zur Herstellung eines Klinkerersatzstoffes, Klinkerersatzstoff, Verwendung des Klinkerersatzstoffs, Zementklinker, Zement, Mörtel oder Beton, Verfahren zur Herstellung des Zementklinkers oder eines Baustoffs und Bauwerk
WO2015039198A1 (fr) 2013-09-20 2015-03-26 Votorantim Cimentos S/A Procédé de production d'une composition chimique pour la production d'un additif actif pouvant être utilisé en tant que substitut de clinker portland, composition chimique et son utilisation
WO2015104466A1 (fr) 2014-01-10 2015-07-16 Greenmade Development Limited Ciments hydrauliques à base de ciment ou de clinker de ciment ou de la chaux, de sulfate de calcium, et d'un composant pouzzolanique; leur procédé de fabrication et leurs utilisations
US9458059B2 (en) 2010-12-13 2016-10-04 Flsmidth A/S Process for the calcination and manufacture of synthetic pozzolan
EP3070064B1 (fr) 2015-03-17 2020-01-01 Secil-Companhia Geral de Cal e Cimento S.A. Procédé de fabrication d'un clinker à faible émission de carbone
EP3218320B1 (fr) 2014-11-10 2020-02-19 thyssenkrupp Industrial Solutions AG Procédé de traitement thermique d'argiles et/ou de zéolites naturelles
EP3615489A2 (fr) 2017-04-26 2020-03-04 Dynamis Engenharia E Comércio Ltda. Procédé de fabrication de pouzzolane avec changement de couleur et pouzzolane ainsi obtenue
WO2022058206A1 (fr) 2020-09-21 2022-03-24 Thyssenkrupp Industrial Solutions Ag Récupération d'énergie dans le refroidissement d'argiles actives à couleur optimisée
DE102020211750A1 (de) 2020-09-21 2022-03-24 Thyssenkrupp Ag Energierückgewinnung bei der Kühlung farboptimierter aktivierter Tone

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948362A (en) 1988-11-14 1990-08-14 Georgia Kaolin Company, Inc. Energy conserving process for calcining clay
DE102008020600B4 (de) 2008-04-24 2010-11-18 Outotec Oyj Verfahren und Anlage zur Wärmebehandlung feinkörniger mineralischer Feststoffe
US20120160135A1 (en) 2010-12-13 2012-06-28 Flsmidth A/S Process for the Manufacture of Synthetic Pozzolan
US9458059B2 (en) 2010-12-13 2016-10-04 Flsmidth A/S Process for the calcination and manufacture of synthetic pozzolan
DE102011014498B4 (de) 2011-03-18 2013-04-25 Outotec Oyj Verfahren zur Herstellung eines Klinkerersatzstoffes, Klinkerersatzstoff, Verwendung des Klinkerersatzstoffs, Zementklinker, Zement, Mörtel oder Beton, Verfahren zur Herstellung des Zementklinkers oder eines Baustoffs und Bauwerk
WO2015039198A1 (fr) 2013-09-20 2015-03-26 Votorantim Cimentos S/A Procédé de production d'une composition chimique pour la production d'un additif actif pouvant être utilisé en tant que substitut de clinker portland, composition chimique et son utilisation
WO2015104466A1 (fr) 2014-01-10 2015-07-16 Greenmade Development Limited Ciments hydrauliques à base de ciment ou de clinker de ciment ou de la chaux, de sulfate de calcium, et d'un composant pouzzolanique; leur procédé de fabrication et leurs utilisations
EP3218320B1 (fr) 2014-11-10 2020-02-19 thyssenkrupp Industrial Solutions AG Procédé de traitement thermique d'argiles et/ou de zéolites naturelles
EP3070064B1 (fr) 2015-03-17 2020-01-01 Secil-Companhia Geral de Cal e Cimento S.A. Procédé de fabrication d'un clinker à faible émission de carbone
EP3615489A2 (fr) 2017-04-26 2020-03-04 Dynamis Engenharia E Comércio Ltda. Procédé de fabrication de pouzzolane avec changement de couleur et pouzzolane ainsi obtenue
WO2022058206A1 (fr) 2020-09-21 2022-03-24 Thyssenkrupp Industrial Solutions Ag Récupération d'énergie dans le refroidissement d'argiles actives à couleur optimisée
DE102020211750A1 (de) 2020-09-21 2022-03-24 Thyssenkrupp Ag Energierückgewinnung bei der Kühlung farboptimierter aktivierter Tone

Similar Documents

Publication Publication Date Title
EP0177769B1 (fr) Procédé de préparation d'hydroxyde de calcium
EP3218320B1 (fr) Procédé de traitement thermique d'argiles et/ou de zéolites naturelles
DE102020211750A1 (de) Energierückgewinnung bei der Kühlung farboptimierter aktivierter Tone
DE2728289C3 (de) Stahlschlackenzement und ein Verfahren zu dessen Herstellung
WO2022058206A1 (fr) Récupération d'énergie dans le refroidissement d'argiles actives à couleur optimisée
EP3248952A1 (fr) Materiau de remplacement de clinker en silicate d'aluminium et dolomite
EP4088074B1 (fr) Appareil et procédé pour le traitement thermique de solides minéraux
DD239400A5 (de) Verfahren zur herstellung von hydraulischem binder
DE4441614C1 (de) C¶4¶ A¶3¶ S freier Portlandzementklinker und dessen Verwendung
DE2308851A1 (de) Verfahren zur herstellung von hydratationshaertendem material aus stahlerzeugungshochofenschlacke
DE3407052A1 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung von ungebrannten pellets
DE102020200186A1 (de) Verfahren zur Wärmebehandlung und Farboptimierung von natürlichen Tonen
LU103013B1 (de) Gebrauchsfertiger Portlandpuzzolanzement
WO2024061710A1 (fr) Ciment portland de pouzzolane prêt à l'emploi
DE3015710A1 (de) Verfahren zum abbinden von in brennstoffen befindlichem schwefel
DE102022209876A1 (de) Gebrauchsfertiger Portlandpuzzolanzement
EP4214174B1 (fr) Récupération d'énergie dans le refroidissement d'argiles actives à couleur optimisée
DE102020126001B3 (de) Mehrstufiges Tonkalzinationsverfahren zur Steuerung der Produktfarbe
BE1028620B1 (de) Energierückgewinnung bei der Kühlung farboptimierter aktivierter Tone
BE1027979B1 (de) Verfahren zur Wärmebehandlung und Farboptimierung von natürlichen Tonen
DD138197B1 (de) Verfahren zur herstellung von zement
DE19844038C2 (de) Verfahren zum Herstellen von weißem Zement und Vorrichtung zur Durchführung desselben
DE10013929A1 (de) Verfahren zur Senkung der Emission von Stickoxiden beim Brennen von Zementklinker in einem Drehofen
EP0415095B1 (fr) Procédé pour le traitement thermique de matières finement divisées
DE2843128A1 (de) Verfahren zur herstellung von portlandzementklinker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769241

Country of ref document: EP

Kind code of ref document: A1