WO2024060808A1 - 驱动装置以及机器人 - Google Patents
驱动装置以及机器人 Download PDFInfo
- Publication number
- WO2024060808A1 WO2024060808A1 PCT/CN2023/107281 CN2023107281W WO2024060808A1 WO 2024060808 A1 WO2024060808 A1 WO 2024060808A1 CN 2023107281 W CN2023107281 W CN 2023107281W WO 2024060808 A1 WO2024060808 A1 WO 2024060808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- driving device
- input end
- planet carrier
- driven
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 285
- 230000009467 reduction Effects 0.000 claims abstract description 182
- 230000033001 locomotion Effects 0.000 claims abstract description 90
- 238000001514 detection method Methods 0.000 claims description 120
- 230000005540 biological transmission Effects 0.000 claims description 44
- 230000004308 accommodation Effects 0.000 claims description 33
- 239000003638 chemical reducing agent Substances 0.000 claims description 32
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 239000000969 carrier Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 20
- 239000002184 metal Substances 0.000 description 12
- 238000006073 displacement reaction Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 238000003466 welding Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000013480 data collection Methods 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0009—Constructional details, e.g. manipulator supports, bases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/12—Programme-controlled manipulators characterised by positioning means for manipulator elements electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/12—Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/08—General details of gearing of gearings with members having orbital motion
Definitions
- This application relates to the field of motor technology, specifically to a driving device and a robot.
- the driving device includes a power mechanism, a first reduction mechanism, a second reduction mechanism, and a detection mechanism.
- the power mechanism is configured to form an input of the driving device. end;
- the first reduction mechanism has a first input end, a first output end, and a first reduction ratio;
- the second reduction mechanism has a second input end, a second output end, and a second reduction ratio;
- the detection mechanism There is a first detection component and a second detection component; wherein the first reduction ratio is greater than the second reduction ratio, and the power mechanism is connected to the first input end and the second input end respectively, so that The first input end and the second input end can rotate synchronously;
- the embodiment of the present application also provides a driving device.
- the driving device includes a power mechanism, a harmonic reducer, a planetary reducer, and a detection mechanism.
- the power mechanism is configured to form the driving device. Input end; the harmonic reducer has a first input end, a first output end, and a first reduction ratio; the planetary reducer has a second input end, a second output end, and a second reduction ratio; the detection mechanism There is a first detection component and a second detection component; wherein the first reduction ratio is greater than the second reduction ratio, and the power mechanism is connected to the first input end and the second input end respectively, so that The first input end and the second input end can rotate synchronously; the first detection component is partially provided at the first input end and is configured to detect motion information of the power mechanism; The second detection component is partially disposed on the first output end and is configured to detect motion information of the second output end; the second output end is configured to form an output end of the driving device .
- Another aspect of the embodiment of the present application also provides a robot, which includes the above-mentioned driving device.
- the motion information of the power mechanism can be obtained by detecting the motion information of the first input end through the first detection component, and detecting the motion information of the first output end through the second detection component and through the correspondence between the first reduction ratio and the second reduction ratio.
- Figure 1 is a schematic structural diagram of a driving device in some embodiments of the present application.
- FIG. 2 is a schematic structural diagram of the driving device in the embodiment of Figure 1 from another perspective;
- Figure 3 is an exploded schematic diagram of the structure of the driving device in the embodiment of Figure 1;
- Figure 4 is a schematic cross-sectional structural view of the housing assembly along the A-A direction in the embodiment of Figure 1;
- Figure 5 is a schematic structural diagram of a bearing member in some embodiments of the present application.
- Figure 6 is an exploded schematic diagram of the structure of the first reduction mechanism in some embodiments of the present application.
- Figure 7 is a partial cross-sectional structural schematic diagram of the driving device in some embodiments of the present application.
- Fig. 8 is a schematic diagram of the cross-sectional structure of the driving device along the A-A direction in the embodiment of Fig. 1;
- Figure 9 is an exploded schematic diagram of the structure of the second reduction mechanism in the embodiment of Figure 8.
- Figure 10 is an exploded schematic diagram of the power mechanism structure in the embodiment of Figure 8.
- Figure 11 is a schematic structural block diagram of a robot in some embodiments of the present application.
- an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
- the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
- the driving device includes a power mechanism, a first reduction mechanism, a second reduction mechanism and a detection mechanism; the power mechanism is configured to form an input end of the driving device; the first reduction mechanism The mechanism has a first input end, a first output end, and a first reduction ratio; the second reduction mechanism has a second input end, a second output end, and a second reduction ratio; the detection mechanism has a first detection component and a second detection component; wherein the first reduction ratio is greater than the second reduction ratio, and the power mechanism is connected to the first input end and the second input end respectively, so that the first input end and the second input end can rotate synchronously; the first detection component part is provided at the first input end and is configured to detect motion information of the power mechanism; the second detection component part is provided at the first output terminal and is configured to detect motion information of the second output terminal; the second output terminal is configured to form an output terminal of the driving device.
- the first output end rotates one circle
- the first input end rotates m times
- the second output end rotates n times; where m>n>1, the rotation of the second output end
- the angle range is 0 ⁇ n*360°.
- the first detection component includes a first detected component provided on the first input end, and a first detecting component disposed opposite to the first detected component, and the first detecting component is configured In order to obtain the motion information of the power mechanism through the first detected component;
- the second detecting component includes a second detected component provided on the first output end, and a second detected component connected to the second detected component.
- a second detecting piece is arranged opposite to the second detecting piece, and the second detecting piece is configured to obtain the motion information of the second output end through the second detected piece.
- the second detection component is a single-turn absolute encoder.
- the first reduction mechanism is connected to the power mechanism and configured to be linked with the power mechanism;
- the first reduction mechanism includes a driving part and a driven part, and the driving part is configured for The first input end is formed and connected with the power mechanism and used for assembling the first detected part;
- the driven member is configured to form the first output end and is used for assembling the first detected part.
- a second detected component wherein the first reduction ratio is the ratio of the rotational speeds of the driving component and the driven component;
- the driving device includes a circuit board spaced apart from the first deceleration mechanism, the first detection component is disposed on the circuit board and is opposite to the first detected component, and the second detection component is disposed on the circuit board. On the circuit board and opposite to the second detected component.
- the driving device includes a housing assembly, the housing assembly has a first accommodation cavity and a second accommodation cavity, the first accommodation cavity is configured to accommodate the second reduction mechanism, the The power mechanism, the second accommodation cavity is configured to accommodate the first deceleration mechanism, the detection mechanism, and the circuit board;
- the housing assembly includes a first end cover and a second oppositely arranged an end cover, and a bearing member disposed between the first end cover and the second end cover; the first end cover cooperates with the bearing member to form the first accommodation cavity; The second end cover cooperates with the bearing member to form the second accommodation cavity.
- the power mechanism includes a rotor assembly rotatably connected to the supporting member, and the rotor assembly is configured to drive the active member and the second input end to rotate synchronously;
- the supporting member includes a first supporting part and a second supporting part, the first supporting part is arranged between the first end cover and the second end cover and respectively connects the first end cover and the second end cover, and the second supporting part is arranged in the second accommodating cavity and is configured to be used for assembling the first reduction mechanism.
- the second bearing part includes a bearing plate, and a first surrounding wall and a second surrounding wall provided on a side of the bearing plate away from the first end cover, and the bearing plate is provided with an assembly hole, so The first surrounding wall is provided on the outer edge of the bearing plate, and the second surrounding wall is provided on the inner edge of the bearing plate; one end of the rotor assembly is inserted into the assembly hole and connected to the bearing through a bearing. The bearing plate is rotated and assembled.
- the height of the first surrounding wall protruding from the bearing plate is greater than the height of the second surrounding wall protruding from the bearing plate.
- the first deceleration mechanism further includes a fixing member assembled on the first surrounding wall, the fixing member is arranged around the periphery of the driven member, and the driven member is surrounded by the driving member.
- the driving part rotates, it acts on the driven part to cause the driven part to rotate; wherein, the fixed part has internal teeth, the driven part has external teeth, and an outer part of the driven part
- the driven component rotates for one revolution and the driving component rotates for multiple cycles.
- the housing assembly further includes a support member assembled in the second accommodation cavity, and the load-bearing member includes a connecting portion connecting the first load-bearing part and the second load-bearing part, and the first load-bearing part
- the load-bearing part is annular and surrounds the periphery of the second load-bearing part, and the connection part is provided between the first load-bearing part and the second load-bearing part;
- the support member is assembled and connected with the connection part for use In assembling the circuit board; wherein the support member and the second bearing part are spaced apart, and there is a gap between the support member and the second end cover.
- the support member includes a first support part and a second support part, the first support part is used for assembly and connection with the connection part, and the second support part is used for assembling the circuit board; wherein, the The second support part is rotatably connected to the follower through a bearing.
- the driven part includes a first driven part with external teeth, and a second driven part that is rotatably assembled with the second supporting part through a bearing, and the external teeth of the first driven part are used to interact with the second supporting part.
- the internal teeth of the fixed part mesh; wherein, a flexible bearing is provided between the first driven part and the driving part, and the second driven part is provided with the third driven part on a side close to the circuit board. Two parts to be inspected.
- the active part includes a main body part and a first convex part and a second convex part provided on opposite sides of the main body part, and the main body part acts on the follower part to cause the follower part to rotate.
- the first convex part is provided on the side of the main body part close to the circuit board and is configured for assembling the first detected component
- the second convex part is provided on the main body part away from the One side of the circuit board is configured for connection with the rotor assembly.
- the rotor assembly includes a rotating frame, a fixed plate arranged on the rotating frame, and a permanent magnet arranged on the fixed plate, the rotating frame is arranged on the side of the bearing member away from the second end cover, and the rotating frame is respectively connected to the active member and the second input end, so as to drive the active member and the second input end to rotate synchronously;
- the power mechanism also includes a stator assembly, the stator assembly is electrically connected to the circuit board and is configured to generate magnetic force to drive the rotor assembly to rotate after power is turned on, and then drive the active member and the second input end to rotate synchronously through the rotating frame.
- the second reduction mechanism includes a transmission assembly and a planet carrier
- the transmission assembly is connected to the power mechanism and is configured to be linked with the power mechanism
- the planet carrier is connected to the transmission assembly and can be The transmission assembly is driven to rotate; wherein, the transmission assembly is configured to form the second input end, and the planet carrier is configured to form the second output end.
- the transmission assembly includes a main gear, an internal gear and a duplex gear, wherein the main gear is connected to the rotating frame and can rotate under the drive of the rotating frame, the internal gear is arranged around the main gear, and the duplex gear is respectively meshed with the main gear and the internal gear and connected to the planetary carrier; wherein the internal gear is fixedly assembled on the first end cover.
- the planet carrier includes a first planet carrier, a second planet carrier, a rotating shaft and a fixed part, the first planet carrier and the second planet carrier are spaced apart and oppositely arranged, and the rotating shaft and the fixed part are provided on between the first planet carrier and the second planet carrier; wherein the double gear drives the first planet carrier and the second planet carrier to rotate synchronously through the rotating shaft, and the fixing member is The first planet carrier and the second planet carrier are locked and fixed.
- the drive device includes a power mechanism, a harmonic reducer, a planetary reducer and a detection mechanism; the power mechanism is configured to form the input end of the drive device; the harmonic reducer has a first input end, a first output end, and a first reduction ratio; the planetary reducer has a second input end, a second output end, and a second reduction ratio; the detection mechanism has a first detection component and a second detection component; wherein the first reduction ratio is greater than the second reduction ratio, and the power mechanism is respectively connected to the first input end and the second input end so that the first input end and the second input end can rotate synchronously; the first detection component is partially arranged at the first input end and is configured to detect the motion information of the power mechanism; the second detection component is partially arranged at the first output end and is configured to detect the motion information of the second output end; the second output end is configured to form the output end of the drive device.
- the robot has a driving device; the driving device includes a power mechanism, a first deceleration mechanism, a second deceleration mechanism, and a detection mechanism; the power mechanism is configured to form an input to the driving device end; the first reduction mechanism has a first input end, a first output end, and a first reduction ratio; the second reduction mechanism has a second input end, a second output end, and a second reduction ratio; the detection mechanism There is a first detection component and a second detection component; wherein the first reduction ratio is greater than the second reduction ratio, and the power mechanism is connected to the first input end and the second input end respectively, so that The first input end and the second input end can rotate synchronously; the first detection component is partially provided at the first input end and is configured to detect motion information of the power mechanism; The second detection component is partially disposed on the first output end and is configured to detect motion information of the second output end; the second output end is configured to form an output end of the driving device .
- Figure 1 is a schematic structural view of the driving device 10 in some embodiments of the present application.
- Figure 2 is a schematic structural view of the driving device 10 in the embodiment of Figure 1 from another perspective.
- Figure 3 is a schematic structural view of the driving device 10 in the embodiment of Figure 1.
- the driving device 10 provided by the embodiment of the present application can be used in various types of equipment that require driving force provided by electric energy, such as bipedal robots or quadrupedal robots, to realize walking or other corresponding functions of the robot, and the driving device 10 can specifically It's a servo motor or steering gear.
- the driving device 10 in the embodiment of the present application is applied to equipment such as robots, which can complete functions such as walking, running, and jumping under the drive of the driving device 10.
- a typical robot structure is, for example, a robot dog, that is, a robot structure including a robot body and four legs.
- the robot in this embodiment can also be a structure including two, three or more legs, or even a structure including one leg, which is not specifically limited here.
- the robot can walk, run, For movement forms such as jumping, a speed reduction mechanism is usually integrated in the driving device 10 to increase the output torque.
- the driving device 10 may include a housing assembly 100 , a first reduction mechanism 200 , a second reduction mechanism 300 , a power mechanism 400 , a detection mechanism 500 and a circuit board 600 .
- the first reduction mechanism 200, the second reduction mechanism 300, the power mechanism 400, the detection mechanism 500 and the circuit board 600 are all provided in the housing assembly 100, and the power mechanism 400 is connected to the first reduction mechanism 200 and the second reduction mechanism 300 respectively.
- the first reduction mechanism 200 is configured to be linked to the power mechanism 400
- the second reduction mechanism 300 is configured to be linked to the power mechanism 400 to increase the output torque of the driving device 10 .
- the power mechanism 400 may be configured to form an input end of the driving device 10
- the output end of the second reduction mechanism 300 may be configured to form an output end of the driving device 10
- the power mechanism 400 and the detection mechanism 500 are both electrically connected to the circuit board 600 , and the power mechanism 400 can use the electric energy transmitted by the circuit board 600 to provide driving force for the driving device 10 .
- the detection mechanism 500 can detect the movement information of the output end of the second reduction mechanism 300 and the movement information of the power mechanism 400, and transmit it to the circuit board 600, so that the circuit board 600 can compare the movement information of the output end of the second reduction mechanism 300. and the motion information of the power mechanism 400 to more accurately control the input and output positions of the driving device 10, thereby improving the transmission accuracy and controllability of the driving device 10.
- X direction is defined in FIG. 1 to facilitate the following description.
- X may be the direction of the rotation axis of the second reduction mechanism 300 and the power mechanism 400, that is, the axial direction.
- the first reduction mechanism 200 is connected to the power mechanism 400 and is configured to be linked with the power mechanism 400.
- the first reduction mechanism 200 may have a first input terminal 201, a first output terminal 202 and a first reduction ratio, that is, the first reduction ratio may be a speed ratio of the first input terminal 201 and the first output terminal 202.
- the first input terminal 201 is connected to the power mechanism 400 and may rotate under the drive of the power mechanism 400. Based on this, the motion information of the power mechanism 400 may be obtained by obtaining the motion information of the first input terminal 201.
- the first reduction mechanism 200 may be a harmonic reducer to obtain a larger reduction ratio.
- the first reduction mechanism 200 may also be other types of reducers such as a planetary transmission reducer with a small tooth difference, a cycloid pinwheel transmission reducer, etc., which will not be described in detail.
- the second reduction mechanism 300 is connected to the power mechanism 400 and is configured to interlock with the power mechanism 400 .
- the second reduction mechanism 300 may have a second input end 301, a second output end 302, and a second reduction ratio, that is, the second reduction ratio may be the rotational speed ratio of the second input end 301 and the second output end 302.
- the second input end 301 is connected to the power mechanism 400 and can rotate under the driving of the power mechanism 400 .
- the second reduction mechanism 300 may be a planetary reducer to obtain a reasonable reduction ratio.
- the second reduction mechanism 300 may also be composed of one or more of other types of reducers such as planetary reducers, ordinary reducers, cycloidal pinwheel reducers, harmonic reducers, etc. No further details will be given.
- the power mechanism 400 is connected to the first input end 201 and the second input end 301 respectively to synchronously drive the first input end 201 and the second input end 301 to rotate, thereby enabling the first input end 201 and the second input end 301 to rotate. Synchronous rotation occurs.
- the first reduction ratio is greater than the second reduction ratio.
- the rotations of the first output end 202 and the second output end 302 are out of synchronization, and the rotation speed of the first output end 202 is smaller than the rotation speed of the second output end 302 . Therefore, when the rotation angle range of the first output end 202 is small, the detection mechanism 500 can be used to obtain a larger range of rotation angle of the second output end 302 .
- the power mechanism 400 can be configured to form an input end of the driving device 10
- the second output end 302 of the second reduction mechanism 300 can be configured to form an output end of the driving device 10 .
- the first output terminal 202 rotates one revolution
- the first input terminal 201 rotates m revolutions, and m>1.
- the first reduction ratio is m:1.
- the second input terminal 301 rotates m times
- the second output terminal 302 rotates n times, m>n>1.
- the second reduction ratio is m:n.
- FIG. 4 is a schematic cross-sectional structural view of the housing assembly 100 along the A-A direction in the embodiment of FIG. 1 .
- the housing assembly 100 can be used to install the first reduction mechanism 200 , the second reduction mechanism 300 , the power mechanism 400 , the detection mechanism 500 and the circuit board 600 .
- the housing assembly 100 may include a first end cover 110 and a second end cover 120 that are oppositely arranged, a bearing member 130 disposed between the first end cover 110 and the second end cover 120 , and a bearing member 130 disposed between the first end cover 110 and the second end cover 120 .
- the limiting plate 140 on the 110.
- the first end cover 110 can be connected to one side of the bearing member 130, the second end cover 120 can be connected to the other opposite side of the bearing member 130, and the first end cover 110 and the bearing member 130 cooperate and surround to form a first
- the accommodating cavity 101, the second end cover 120 and the bearing member 130 cooperate to form a second accommodating cavity 102.
- the first accommodation cavity 101 is configured to accommodate the second reduction mechanism 300 and the power mechanism 400
- the second accommodation cavity 102 is configured to accommodate the first reduction mechanism 200 , the detection mechanism 500 and the circuit board 600 .
- the limiting plate 140 may be provided on a side of the first end cover 110 away from the second end cover 120 , and may be configured to limit the second reduction mechanism 300 .
- the housing component 100 may be made of hard plastic, which not only ensures the structural strength of the housing component 100 but also reduces the weight of the housing component 100 .
- the material of the housing component 100 can also be flexibly selected according to actual needs, which is not specifically limited in this embodiment.
- the first end cover 110 can be used to cooperate with the bearing member 130 to form a first accommodation cavity 101 to accommodate the second reduction mechanism 300 and the moving gear. Force Agency 400.
- the first end cover 110 may include a bottom wall 111 , an outer side wall 112 and an inner side wall 113 .
- the outer wall 112 can be disposed on one side of the bottom wall 111
- the inner wall 113 can be disposed on the other opposite side of the bottom wall 111
- both the outer wall 112 and the inner wall 113 can be disposed around the bottom wall 111 .
- the bottom wall 111 can be arranged in an annular shape, the outer side wall 112 can be arranged on the outer edge of the bottom wall 111 , and the inner wall 113 can be arranged on the inner edge of the bottom wall 111 , so that the first end cap 110 can be similar to a circle in shape. It is barrel-shaped so that the first end cover 110 and the bearing member 130 cooperate to form the first accommodation cavity 101 .
- the height of the outer wall 112 in the axial direction X may be higher than the height of the inner wall 113 in the axial direction X, thereby increasing the space formed around the outer wall 112 .
- the inner wall 113 can divide the first accommodation cavity 101 into a first accommodation space 1011 and a second accommodation space 1012.
- the first accommodation space 1011 is configured to accommodate the power mechanism 400
- the second accommodation space 1012 is Configured to accommodate the second reduction mechanism 300 .
- the first accommodation space 1011 and the second accommodation space 1012 are connected with each other at one end close to the bearing member 130 to provide a linkage space for the power mechanism 400 and the second reduction mechanism 300 . That is, there is a gap between the end of the inner wall 113 away from the bottom wall 111 and the bearing member 130 .
- the power mechanism 400 can partially extend into the second accommodation space 1012 from the gap between the inner wall 113 and the bearing member 130 to interact with the second deceleration.
- Organization 300 realizes linkage.
- the axial direction X may be a direction perpendicular to the bottom wall 111 .
- the shape of the first end cap 110 is not limited to a barrel shape, and its shape can also be specifically set according to actual needs, which is not limited in this embodiment.
- the side of the bottom wall 111 located in the first accommodation cavity 101 can also be provided with a heat sink 114 made of thermally conductive silicone, and the heat sink 114 can be placed opposite the power mechanism 400, so that the heat sink 114 can be used to further improve The heat dissipation efficiency of the first end cover 110.
- the limiting plate 140 can be disposed on a side of the bottom wall 111 away from the bearing 130 , and the limiting plate 140 can be used to limit the displacement of the second reduction mechanism 300 in the axial direction X to prevent the second reduction mechanism 300 from rotating during rotation. Movement occurs along the axial direction X.
- the limiting plate 140 can be arranged in an annular shape to match the shape of the bottom wall 111 , and the orthographic projection of the limiting plate 140 on the bottom wall 111 can also be arranged around the inner wall 113 .
- the limiting plate 140 can also be arranged around the second deceleration mechanism 300, and the limiting plate 140 can also be similar to a "Z"-shaped structure in appearance, so that the limiting plate 140 can have a protruding direction toward the second deceleration mechanism 300.
- the flange edge can also overlap the side of the second reduction mechanism 300 that is perpendicular to the axial direction X, thereby limiting the displacement of the second reduction mechanism 300 in the axial direction X.
- a screw hole can be provided on the side of the first end cover 110 away from the bearing member 130 , and screws can be provided on the limiting plate 140 , so that the limiting plate 140 can be fixed to the first end cover 110 through screws. connect.
- the limiting plate 140 can also be fixedly connected to the first end cover 110 through assembly methods such as welding, snapping, and bonding. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
- the second end cap 120 can be arranged on the side of the carrier 130 away from the first end cap 110, and the second end cap 120 can be used to cooperate with the carrier 130 to enclose and form a second accommodating chamber 102 to accommodate the first reduction mechanism 200, the detection mechanism 500 and the circuit board 600, so that the detection mechanism 500 can detect the input and output motion information of the first reduction mechanism 200 and the second reduction mechanism 300 and the motion information of the power mechanism 400.
- the second end cap 120 may include a top wall 121 and a side wall 122.
- the top wall 121 is spaced apart from the carrier 130, and the side wall 122 is arranged between the top wall 121 and the carrier 130 and can be used to connect with the carrier 130 to assemble and fix the second end cap 120.
- the side wall 122 can be arranged in an annular shape and surround the outer periphery of the top wall 121, so that the second end cap 120 can cooperate with the carrier 130 to enclose and form the second accommodating chamber 102.
- the second end cover 120 may further include a connecting wall 123 disposed on the side wall 122, the connecting wall 123 is preferably disposed at one end of the side wall 122 away from the top wall 121, and extends in a direction away from the second accommodating cavity 102, that is, the connecting wall 123 may be understood as a lug structure disposed on the side wall 122.
- the connecting wall 123 is configured to be connected and fixed to the carrier 130, so as to assemble the second end cover 120 on a side of the carrier 130 away from the first end cover 110.
- the connecting wall 123 may be disposed around the outer periphery of the side wall 122.
- the carrier 130 may be provided with screw holes, and the connecting wall 123 may be provided with screws, so that the connecting wall 123 can be fixedly connected to the carrier 130 by screws.
- the connecting wall 123 can also be fixedly connected to the bearing member 130 through assembly methods such as welding, snapping, and bonding.
- the bearing member 130 can be disposed between the first end cover 110 and the second end cover 120 , and is assembled and connected with the first end cover 110 and the second end cover 120 respectively, thereby forming the overall structure of the driving device 10 .
- the projection of the first end cap 110 on the carrier 130 covers the projection of the second end cap 120 on the carrier 130 , that is, the projection of the outer wall 112 on the carrier 130 surrounds the side wall 122 The periphery of the projection projected onto the carrier 130 .
- FIG. 5 is a schematic structural diagram of the bearing member 130 in some embodiments of the present application.
- FIG. 6 is an exploded schematic diagram of a partial structure of the first reduction mechanism 200 in some embodiments of the present application.
- FIG. 7 is A partial cross-sectional structural diagram of the driving device 10 in some embodiments of the present application is a cross-sectional structural diagram of the first reduction mechanism 200 assembled on the housing assembly 100 .
- the bearing member 130 may include a first bearing part 131, a second bearing part 132, and a connecting part 133 connecting the first bearing part 131 and the second bearing part 132.
- the first carrying part 131 is configured for assembling the first end cap 110 and the second end cap 120 , that is, the first carrying part 131 131 is provided between the first end cap 110 and the second end cap 120 and connects the first end cap 110 and the second end cap 120 respectively.
- the second bearing portion 132 is configured for assembling the first reduction mechanism 200 .
- the detection mechanism 500 is assembled on the first reduction mechanism 200 and the circuit board 600 respectively.
- the first bearing part 131 , the second bearing part 132 and the connecting part 133 can be directly formed into an integrated structure bearing member 130 through an integral molding process.
- the first bearing portion 131 can be arranged in an annular shape and surround the periphery of the second bearing portion 132 , that is, the second bearing portion 132 can be disposed in an annular hollow area of the first bearing portion 131 and connected with the first bearing portion 131 . There is a gap between the inner edges of the portion 131 .
- the connecting portion 133 is provided between the first bearing portion 131 and the second bearing portion 132 and is connected to the first bearing portion 131 and the second bearing portion 132 respectively.
- There may be multiple connecting parts 133 and the multiple connecting parts 133 may be evenly distributed between the first bearing part 131 and the second bearing part 132 to ensure the overall structural strength of the bearing member 130 . It should be understood that in the description of this application, "plurality" means at least two, such as two, three, etc., unless otherwise explicitly and specifically limited.
- the hollow area 1301 communicates with the first accommodating cavity 101 and the second accommodating cavity 102, so that it is provided in the first accommodating cavity 101.
- the power mechanism 400 and the circuit board 600 provided in the second accommodation cavity 102 can be electrically connected through lines passing through the hollow area 1301 .
- the first bearing part 131 may also be similar to a "Z"-shaped structure in shape, so that the first bearing part 131 may have a flange edge protruding toward the first end cover 110, and the flange edge It can also be overlapped with the outer side wall 112 of the first end cover 110 to realize the connection and fixation between the first bearing part 131 and the outer side wall 112 .
- the first bearing part 131 may be provided with screw holes, and the outer side wall 112 may be provided with screws, so that the outer side wall 112 may be fixedly connected to the first bearing part 131 through screws.
- the outer side wall 112 can also be fixedly connected to the first bearing portion 131 through assembly methods such as welding, snapping, and bonding.
- the first carrying part 131 may include a first assembly plate 1311 and a second assembly plate 1312 connected by bends.
- the first assembly plate 1311 may be arranged in an annular shape and surround the periphery of the second bearing part 132 with a gap between it and the second bearing part 132 .
- the first assembly plate 1311 is located on a side of the outer wall 112 close to the inner wall 113 and is configured to connect to the connecting wall 123 of the second end cover 120 .
- the first assembly plate 1311 may be provided with studs, and the connecting wall 123 may be provided with screws, so that the connecting wall 123 may be fixedly connected to the first assembly plate 1311 through screws.
- the connecting wall 123 can also be fixedly connected to the first assembly plate 1311 through assembly methods such as welding, snapping, and bonding.
- the second assembly plate 1312 is provided on the side of the first assembly plate 1311 away from the first end cover 110 and is surrounding the outer edge of the first assembly plate 1311. That is, the second assembly plate 1312 extends from the outer edge of the first assembly plate 1311.
- the ring extends in a direction away from the bottom wall 111 of the first end cap 110 .
- the second assembly plate 1312 is located on a side of the outer wall 112 close to the inner wall 113 and is configured to connect to the outer wall 112 of the first end cover 110 .
- the second assembly plate 1312 may be provided with studs, and the outer side wall 112 may be provided with screws, so that the outer side wall 112 may be fixedly connected to the second assembly plate 1312 through screws.
- the outer side wall 112 can also be fixedly connected to the second assembly plate 1312 through assembly methods such as welding, snapping, and bonding.
- the first carrying portion 131 may further include an overlapping plate 1313 , which is provided at an end of the second assembly plate 1312 away from the first assembly plate 1311 , and extends from the second assembly plate 1312 toward the end away from the first assembly plate 1312 .
- the direction of the two bearing parts 132 extends, that is, the overlapping plate 1313 protrudes from the second assembly plate 1312 toward the direction of the outer wall 112 of the first end cover 110 .
- the overlapping plate 1313 may be configured to overlap the end of the outer side wall 112 away from the bottom wall 111 to limit the bearing member 130 in the X direction.
- the overlapping plate 1313 and the first assembly plate 1311 are spaced apart in the Within 101.
- the second bearing part 132 may include a bearing plate 1321, a first surrounding wall 1322 and a second surrounding wall 1323.
- the bearing plate 1321 may be located in the annular hollow area of the first assembly plate 1311 and spaced apart from the first assembly plate 1311.
- the middle area of the bearing plate 1321 is provided with an assembly hole 1302, that is, the bearing plate 1321 can be arranged in an annular shape.
- the first surrounding wall 1322 may be disposed on the outer peripheral edge of the bearing plate 1321, and the second surrounding wall 1323 may be disposed on the inner peripheral edge of the bearing plate 1321.
- the second surrounding wall 1323 surrounds the outer periphery of the assembly hole 1302
- the first surrounding wall 1322 surrounds the periphery of the second surrounding wall 1323 and is spaced apart from the second surrounding wall 1323 .
- the first surrounding wall 1322 and the second surrounding wall 1323 are both provided on the side of the carrying plate 1321 away from the bottom wall 111 of the first end cover 110 .
- the height of the first surrounding wall 1322 in the axial direction X may be higher than the height of the second surrounding wall 1323 in the axial direction
- the surrounding wall 1323 protrudes from the height of the bearing plate 1321 .
- the housing assembly 100 may further include a support member 150 assembled in the second accommodation cavity 102 , the support member 150 is assembled and connected with the connecting portion 133 , and is configured for assembling the circuit board 600 .
- the support member 150 may include a first support part 151 and a second support part 152.
- the first support part 151 is configured to be assembled and connected with the connecting part 133 to position and assemble the support member 150.
- the second support portion 152 is configured for mounting the circuit board 600 .
- the first support part 151 may be arranged in an annular shape, and may be located between the side wall 122 and the second bearing part 132 in a direction perpendicular to the X direction.
- the first supporting part 151 and the first surrounding wall 1322 of the second carrying part 132 partially overlap.
- there is a gap between the first support part 151 and the side wall 122 so that the power mechanism 400 and the circuit board 600 can be electrically connected through lines passing through the gap.
- the projection of the first support part 151 on the carrier 130 in the A supporting part 151 can be fixedly connected to the connecting part 133 through screws.
- the first supporting part 151 may also be fixedly connected to the connecting part 133 through assembly methods such as welding, snapping, and bonding.
- the first supporting part 151 and the second carrying part 132 are spaced apart in the X direction.
- the second support part 152 is provided on the side of the first support part 151 away from the second bearing part 132 and is provided on the inner edge of the first support part 151 .
- the circuit board 600 is assembled on the second supporting part 152 .
- the second supporting part 152 can be arranged in an annular shape, and the circuit board 600 is arranged in the annular hollow area of the second supporting part 152 and is assembled and connected with the second supporting part 152 .
- the second support part 152 may be provided with studs, and the circuit board 600 may be provided with screws, so that the circuit board 600 may be fixedly connected to the second support part 152 through the screws.
- the second supporting part 152 can also be fixedly connected to the circuit board 600 through assembly methods such as welding, snapping, and adhesion.
- the circuit board 600 and the first supporting part 151 are spaced apart in the X direction.
- the first reduction mechanism 200 may be connected to the power mechanism 400 and configured to be linked with the power mechanism 40 .
- the first reduction mechanism 200 is assembled between the second bearing part 132 and the support member 150 and is spaced apart from the circuit board 600 .
- the first deceleration mechanism 200 may include a driving part 210, a driven part 220 and a fixed part 230.
- the driving part 210 is configured to form the first input end 201 of the first deceleration mechanism 200 and is connected with the driving mechanism 400, Driven by the power mechanism 400, it rotates.
- the driven member 220 is configured to form the first output end 202 of the first reduction mechanism 200 and is linked with the driving member 210 to rotate under the action of the driving member 210, and the rotation speed of the driving member 210 is greater than that of the driven member 210.
- the rotational speed of 220 that is, the first reduction ratio, may be the ratio of the rotational speeds of the driving member 210 and the driven member 220 .
- the fixing piece 230 is configured to position the first reduction mechanism 200 .
- the first reduction mechanism 200 may be a harmonic reducer, that is, the driving member 210 may be a wave generator of the harmonic reducer, the driven member 220 may be a flexspline of the harmonic reducer, and the fixing member 230 may be a harmonic reducer.
- Wave generator steel wheel Before the harmonic reducer is assembled, the flexspline and its inner hole are circular. When the wave generator is installed into the inner hole of the flexspline, the radial length of the wave generator changes in the circumferential direction, that is, the circumferential surface of the wave generator. The projection is not a circle of equal diameter.
- the flexspline is squeezed by the wave generator into an elliptical shape, so that the flexspline meshes with the fixed steel wheel in the long axis direction of the ellipse, and the flexspline meshes with the fixed steel wheel in the short axis direction of the ellipse.
- the drum separates.
- the steel wheel or the fixed part 230 can be an annular structure with internal teeth
- the flexspline or the driven part 220 can be a thin-walled cylindrical structure with external teeth and can be deformed. Further, the number of internal teeth of the fixed part 230 is greater than the number of external teeth of the driven part 220 .
- the flexspline rotates with the wave generator.
- the meshing and separation positions of the flexspline and the steel wheel continuously change.
- the ratio of the number of rotations of the driving member 210 to the number of rotations of the driven member 220 is the reduction ratio of the harmonic reducer.
- the reduction ratio of the harmonic reducer is m:1.
- the active member 210 may be located in the hollow area surrounded by the first surrounding wall 1322
- the driven member 220 may be located in the hollow area surrounded by the first surrounding wall 1322 , and may be surrounding the active member 210 and the driven member 220 can move under the action of the driving member 210.
- the fixing member 230 is arranged around the periphery of the driven member 220 and assembled on the first surrounding wall 1322.
- the fixing member 230 may be annular and have internal teeth.
- the fixing member 230 is fixedly assembled on the inner side of the first surrounding wall 1322 .
- the driven member 220 may be annular and have external teeth, and the number of external teeth of the driven member 220 is less than the number of internal teeth of the fixing member 230 .
- the height of the first surrounding wall 1322 in the axial direction X can be higher than the height of the second surrounding wall 1323 in the axial direction X.
- the portion of the first surrounding wall 1322 protruding from the second surrounding wall 1323 in the axial direction X is provided with a limiting portion 1303, that is, the limiting portion 1303 is provided at one end of the first surrounding wall 1322 away from the bearing plate 1321, and the limiting portion 1303 is used to assemble the fixing member 230 and to limit the fixing member 230 in the axial direction X.
- the limiting portion 1303 is generally in the shape of an annular step.
- the driven member 220 may include a first driven part 221 , a second driven part 222 arranged sequentially in the axial direction X, and a driven connection part 223 connecting the first driven part 221 and the second driven part 222 .
- the first driven part 221 may be annular and have external teeth for engaging with the fixing part 230 .
- the second driven part 222 is located on the side of the first driven part 221 close to the circuit board 600 , and the driven connection part 223 is provided between the first driven part 221 and the second driven part 222 .
- the projection of the first driven part 221 on the circuit board 600 in the axial direction X surrounds the periphery of the projection of the second driven part 222 on the circuit board 600 in the axial direction X, so that the driven part
- the connecting portion 223 forms step-like limiting structures on opposite sides in the axial direction X.
- the first reduction mechanism 200 may also include a first bearing 240 provided between the driving member 210 and the driven member 220, and a second bearing 250 provided between the driven member 220 and the supporting member 150, that is, a third bearing 240.
- a bearing 240 may be disposed around the driving member 210 and assembled with an interference fit with the driving member 210 and the driven member 220 respectively in a direction perpendicular to the axial direction X.
- the second bearing 250 may be disposed around the driven member 220 and be assembled with an interference fit with the driven member 220 and the supporting member 150 respectively in a direction perpendicular to the axial direction X.
- the first bearing 240 is provided between the first driven part 221 and the driving part 210
- the second bearing 250 is provided between the second driven part 222 and the second supporting part 152 .
- the first bearing 240 and the second bearing 250 respectively resist the driven connection part 223 for limiting the position of the first bearing 240 and the second bearing 250 in the axial direction X. That is, the driving member 210 and the driven member 220 are spaced apart, and are assembled through the first bearing 240 .
- the driven member 220 is spaced apart from the supporting member 150
- the second bearing 250 is used to assemble the driven member 220 and the supporting member 150 .
- the driving member 210 may be provided with a protruding structure corresponding to the driven connection part 223 to cooperate with the driven connection part 223 to limit the position of the first bearing 240 in the axial direction X.
- the second support part 152 may be provided with a stepped structure corresponding to the driven connection part 223 to cooperate with the driven connection part 223 to limit the opposite sides of the second bearing 250 in the axial direction X.
- the first bearing 240 is a flexible bearing that drives the driven member 220 to rotate under the action of the driving member 210 .
- the second bearing 250 can also be a flange bearing, so that the second bearing 250 has a flange edge protruding toward the follower 220 or the second support portion 152 , and the flange edge can be It is connected to the driven member 220 or the second supporting part 152 to limit the position of the driven member 220 or the second supporting part 152 in the axial direction X.
- the second driven part 222 may have a first driven wall 2221 and a second driven wall 2222 connected by bends.
- the first driven wall 2221 is opposite to the circuit board 600 and is arranged at a distance.
- the moving wall 2222 is provided on the side of the first driven wall 2221 away from the circuit board 600 and is connected to the driven connecting portion 223 .
- the second bearing 250 may be disposed around the second driven wall 2222.
- the first driven wall 2221 may be annular, and the second driven wall 2222 is provided on the outer edge of the first driven wall 2221.
- One end of the active member 210 may be exposed from the annular hollow area of the first driven wall 2221 and be disposed opposite to the circuit board 600 .
- the active member 210 may include a main body 211 , a first protrusion 212 and a second protrusion 213 disposed on opposite sides of the main body 211 .
- the main body 211 is configured to pass through the first bearing 240 .
- the first protrusion 212 is provided on the side of the main body 211 close to the circuit board 500
- the second protrusion 213 is provided on the side of the main body 211 away from the circuit board 500 .
- the first convex part 211, the second convex part 212 and the follower 220 are coaxially arranged.
- the first protruding portion 212 extends from the main body portion 211 to the hollow area of the first driven wall 2221 and is spaced apart from the first driven wall 2221 .
- the second protruding portion 212 is configured to be connected to the power mechanism 400 .
- the detection mechanism 500 has a first detection component 510 and a second detection component 520.
- the first detection component 510 is partially provided at the first input end 201, that is, the active component 210, and is configured to detect motion information of the power mechanism 400.
- the second detection component 520 is partially disposed on the first output end 202 , that is, the follower 220 , and is configured to detect motion information of the second output end 302 .
- the second output terminal 302 can be understood as forming the output terminal of the driving device 10 .
- the first detection component 510 and the second detection component 520 are both electrically connected to the circuit board 600. With such arrangement, the first detection component 510 and the second detection component 520 can be used to form input and output positions, rotational speeds, etc. of the driving device 10. The information is detected, so that the circuit board 600 can more accurately control the input and output position, rotation speed and other movements of the driving device 10 by comparing the motion information detected by the first detection component 510 and the second detection component 520, thereby improving the The transmission accuracy and controllability of the driving device 10.
- the motion information may refer to information such as the rotation angle, rotation speed, and rotation position of the output end of the second reduction mechanism 300 and the power mechanism 400 during the rotation process.
- the first detection component 510 may include a first detected member 511 disposed on the active member 210, and a first detection member 512 disposed on the circuit board 600, wherein the first detection member 512 is disposed opposite to the first detected member 511.
- the first detection member 512 is configured to obtain motion information of the power mechanism 400 through the first detected member 511.
- the first detected component 511 is provided on the active component 210 and can move synchronously with the active component 210 driven by the active component 210 .
- the first detection component 512 is disposed on the circuit board 600 and can obtain motion information of the power mechanism 400 based on the motion detection of the first detected component 511 .
- the first detected component 511 can be directly fixed on the side of the active component 210 close to the circuit board 600 and exposed from the hollow area of the first driven wall 2221 to face the first detecting component 512 .
- the first protrusion 212 is provided with a mounting groove 2101, and the first detected component 511 is at least partially embedded in the mounting groove 2101, and is exposed from the hollow area of the first driven wall 2221 to communicate with the first detecting component 512.
- the first detected component 511 can move synchronously with the active component 210 .
- the first detecting part 512 can be disposed on a side of the circuit board 600 close to the active part 210 , so that the first detecting part 512 can obtain the movement information of the active part 210 through the movement detection of the first detected part 511 , that is, the power mechanism 400 movement information.
- the first detection component 510 can be an encoder component, that is, the first detected component 511 can be a code disk, and the first detecting component 512 can be a reading head, whereby the first detected component 512 can be used to read the first detected component 512 .
- the position of the component 511 changes, and based on this, the motion information of the active component 210 is obtained.
- the second detection component 520 may include a second detected component 521 disposed on the driven member 220 and a second detecting component 522 disposed on the circuit board 600.
- the second detecting component 522 is disposed opposite to the second detected component 521. .
- the second detecting component 522 is configured to obtain motion information of the output end of the second deceleration mechanism 300 through the second detected component 521 .
- the second detected part 521 is provided on the driven part 220 and can move synchronously with the driven part 220 driven by the driven part 220 .
- the second detection component 522 is disposed on the circuit board 600 and can obtain motion information of the output end of the second deceleration mechanism 300 based on the motion detection of the second detected component 521 .
- the second detected component 521 can be fixed on a side of the driven component 220 close to the circuit board 600 , so that the second detected component 521 can be positioned opposite to the circuit board 600 and can move synchronously with the driven component 220 .
- the second detecting member 522 can be disposed on a side of the circuit board 600 close to the driven member 220 , so that the second detecting member 522 can detect the motion of the second detected member 521 to obtain the following information.
- the motion information of the moving member 220 is also the motion information of the output end of the second reduction mechanism 300 .
- the first driven wall 2221 can be annular
- the second driven wall 2222 is provided on the outer edge of the first driven wall 2221
- the second detected component 521 can also be annular and surround the first driven wall.
- the inner edge of 2221 Preferably, an assembly portion 2102 is provided on the inner edge of the first driven wall 2221, and the second detected component 521 is sleeved on the assembly portion 2102 for assembly.
- the second detection component 520 may be an encoder component, that is, the second detected component 521 may also be a code disk, and the second detecting component 522 may be a read head, whereby the second detected component 522 is used to read the second detected component 522 .
- the position change of the component 521 is detected, and based on this, the motion information of the driven component 220 is obtained, that is, the motion information of the output end of the second deceleration mechanism 300 .
- the second output terminal 302 rotates for n revolutions. Therefore, the second output can be obtained by detecting any angular position of the first output terminal 202 within one revolution.
- the angular position of the end 302 is such that the rotation range of the second output end 202 can be 0 ⁇ n*360°.
- the second detection component 520 may be a single-turn absolute encoder.
- the first detection component 510 and the second detection component 520 may also use a combination of optical encoders and magnetic encoders to obtain corresponding motion information, which will not be described again.
- the embodiment of the present application is based on the control requirements of the driving device 10, using dual encoders to detect and obtain the rotation speed, position and other motion information of the input end and output end of the driving device 10, and through the acquired motion of the input end and output end of the driving device 10 information to complete precise control of the driving device 10.
- the first detection component 510 is a single pair of magnetic pole magnetic encoder
- the second detection component 520 is a dual-channel magnetic ring encoder.
- a mechanical multi-turn encoding can be formed. Compared with the traditional mechanical multi-turn encoder, it can avoid the problems of accumulation of backlash caused by multi-stage gear transmission, the large installation space required for multi-stage gear transmission and the low transmission efficiency.
- the transmission ratio of the second reduction mechanism 300 is -1/10, that is, the second reduction ratio of the second reduction mechanism is 10:1
- the driving member 210 rotates 80 times and the driven member 220 rotates 1 time.
- the second output terminal 302 rotates 8 times.
- the number of rotations of the driven member 220 and the number of rotations of the second output end 302 have a fixed proportional relationship.
- the angle range that can be detected by the first detection component 510 and the second detection component 520 is 0 ⁇ 360°
- the angle range that can be detected by the second output terminal 302 is 0 ⁇ 8*360°, that is, it can Realize the detection effect of mechanical multi-turn encoder.
- the second reduction ratio as n/1, where M/a>n/1 and M>n>1.
- the reduction mechanism based on the harmonic reducer can obtain a larger transmission ratio and correspondingly a larger range. Due to the internal meshing transmission mode of the driven part 220 and the fixed part 230, it is more space-saving than the expansion gear transmission mode.
- the first detection component 510 and the second detection component 520 can also obtain information such as the rotation speed of the driving device 10 .
- Figure 8 is a schematic cross-sectional structural diagram of the driving device 10 along the A-A direction in the embodiment of Figure 1.
- Figure 9 is an exploded schematic structural diagram of the second reduction mechanism 300 in the embodiment of Figure 8.
- Figure 10 is a diagram An exploded schematic diagram of the structure of the power mechanism 400 in Embodiment 8.
- the second reduction mechanism 300 can be arranged in the first accommodating chamber 101, and the second reduction mechanism 300 can be used to increase the output torque of the driving device 10.
- the second reduction mechanism 300 can include: a transmission assembly 310 and a planet carrier 320.
- the transmission assembly 310 can be connected to the housing assembly 100 and the power mechanism 400 respectively, and is configured to be linked with the power mechanism 400, and the transmission assembly 310 can be the second input end 301 of the second reduction mechanism 300.
- the planet carrier 320 can be connected to the transmission assembly 310, and can rotate under the drive of the transmission assembly 310, and the planet carrier 320 can be the second output end 302 of the second reduction mechanism 300.
- the output end of the second reduction mechanism 300 can be formed by assembling a structural member such as an output shaft on the planet carrier 320 .
- the second reduction mechanism 300 can adopt the NW planetary reducer scheme (N represents internal meshing, W represents external meshing), so that the second reduction mechanism 300 can not only increase the output torque of the driving device 10, but also make The transmission ratio distribution of the second reduction mechanism 300 is more reasonable, which increases the strength of the second reduction mechanism 300 and extends the service life of the second reduction mechanism 300 .
- the transmission assembly 310 can be connected with the power mechanism 400 , and the transmission assembly 310 can be used to increase the output torque of the driving device 10 .
- the transmission assembly 310 may include: a main gear 311 , an internal gear 312 and a double gear 313 .
- the main gear 311 can be disposed in the first accommodation cavity 101, and the main gear 311 can be connected with the power mechanism 400, and can rotate with the axial direction X as the rotation axis direction under the driving of the power mechanism 400.
- the internal gear 312 can also be disposed in the first receiving cavity 101 , and the internal gear 312 can also be disposed around the main gear 311 .
- the double gear 313 can be connected to the planet carrier 320, and the double gear 313 can also mesh with the main gear 311 and the internal gear 312 respectively, so that the double gear 313 can roll relative to the internal gear 312 driven by the main gear 311, and thus The planet carrier 320 is driven to rotate.
- the main gear 311 may be the second input end 301 of the second reduction mechanism 300 .
- the main gear 311 can be disposed on the side of the inner wall 113 away from the outer wall 112 , and the main gear 311 can also be disposed through the planet carrier 320 , so that the main gear 311 can be driven relative to the planet carrier 320 by the power mechanism 400 Turn.
- one end of the main gear 311 can be rotationally connected to the planet carrier 320, and the other opposite end can be connected to the power mechanism 400, and the middle area of the main gear 311 can be provided with corresponding teeth for meshing with the duplex gear 313. , to drive the double gear 313 to rotate.
- the internal gear 312 may be disposed around the main gear 311 , and the internal gear 312 may be connected to the inner side wall 113 of the first end cover 110 .
- the internal gear 312 meshes with the double gear 313, in order to prevent the internal gear 312 from circumferential movement driven by the double gear 313, the internal gear 312 can be fixed on the inner side wall 113, thereby limiting the movement of the internal gear 312.
- the circumferential movement enables the duplex gear 313 to roll relative to the internal gear 312 .
- the inner side wall 113 may be disposed around the inner gear 312
- a limiting pin may be disposed between the inner gear 312 and the inner side wall 113 .
- the limiting pin may interfere with the inner gear 312 and the inner side wall 113 respectively to limit the inner gear 312 circumferential motion.
- the double gear 313 may be disposed between the main gear 311 and the internal gear 312, and the double gear 313 may mesh with the main gear 311 and the internal gear 312 respectively. In this way, when the main gear 311 is driven by the power mechanism 400 to rotate, the double gear 313 can be driven by the main gear 311 to rotate. And since the internal gear 312 is fixed on the inner side wall 113, the double gear 313 will roll relative to the internal gear 312, thereby driving the planet carrier 320 to rotate.
- the main gear 311 and the double gear 313 form an external mesh
- the internal gear 312 and the double gear 313 form an internal mesh, thereby forming a NW planetary reducer solution, which can not only make the output torque of the driving device 10 larger , it can also make the transmission ratio distribution of the second reduction mechanism 300 more reasonable to improve the strength of the main gear 311, the internal gear 312 and the duplex gear 313, and extend the service life of the main gear 311, the internal gear 312 and the duplex gear 313.
- the planet carrier 320 can be the output end of the second reduction mechanism 300 , and the planet carrier 320 can be disposed in the first accommodation cavity 101 , connected to the double gear 313 , and can rotate driven by the double gear 313 .
- the planet carrier 320 may be disposed on a side of the inner wall 113 away from the outer wall 112 , and the planet carrier 320 may include: a first planet carrier 321 , a second planet carrier 322 , a rotating shaft 323 and a fixing member 324 .
- the first planet carrier 321 and the second planet carrier 322 may be opposite and spaced apart, so that there is a space between the first planet carrier 321 and the second planet carrier 322 for installing the double gear 313 .
- the rotating shaft 323 may be disposed between the first planet carrier 321 and the second planet carrier 322, and the rotating shaft 323 may also be connected to the first planet carrier 321 and the second planet carrier 322 respectively.
- the double gear 313 can be connected to the rotating shaft 323, and can drive the first planet carrier 321 and the second planet carrier 322 to rotate through the rotating shaft 323.
- the fixing member 324 can be inserted into the first planet carrier 321 and the second planet carrier 322 for locking and fixing the first planet carrier 321 and the second planet carrier 322 to maintain the first planet carrier 321 and the second planet carrier 322 . Turn consistency.
- first”, “second” and “third” in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
- first planet carrier 321 can be disposed on a side of the second planet carrier 322 away from the second end cover 120 , and the first planet carrier 321 can be disposed in an annular shape, so that the main gear 311 can pass through the first planet carrier.
- a third bearing 330 can be disposed between the first planet carrier 321 and the main gear 311, and the third bearing 330 can be disposed around the main gear 311 to improve the coaxiality of the rotation of the first planet carrier 321 and the main gear 311. .
- the third bearing 330 can also be a flange bearing, so that the third bearing 330 can have a flange edge protruding toward the first planet carrier 321 , and the flange edge can also be overlapped and close to the first planet carrier 321
- One side of the second planet carrier 322 thereby limits the displacement of the first planet carrier 321 in the axial direction X.
- the main gear 311 may be provided with a first limiting member 3111, and the first limiting member 3111 may be provided around the main gear 311 and disposed on a side of the third bearing 330 away from the first planet carrier 321 to adjust the position of the third bearing 330.
- the displacement of the third bearing 330 in the axial direction X is limited to prevent the third bearing 330 from axial movement.
- the first limiting member 3111 may be a retaining spring, and the first limiting member 3111 may be locked on the main gear 311 so that the first limiting member 3111 limits the third bearing 330 .
- the first limiting member 3111 may not be limited to a retaining spring, and it only needs to be that the first limiting member 3111 can limit the third bearing 330 .
- the first planet carrier 321 can be the second output end 302 of the second reduction mechanism 300, that is, the output flange of the entire driving device 10, which can be used to communicate with other components outside the driving device 10. Connect to drive other components to achieve functions such as lifting, rotating or vibrating.
- a fourth bearing 160 may be provided between 321 .
- the fourth bearing 160 may be a crossed roller bearing, and the flange edge of the limiting plate 140 may be overlapped with a side of the fourth bearing 160 away from the first planet carrier 321 .
- the first planet carrier 321 may also be provided with a flange edge protruding toward the fourth bearing 160 , and the flange edge may overlap the side of the fourth bearing 160 close to the second planet carrier 322 .
- the displacement of the fourth bearing 160 in the axial direction X can be limited first through the limiting plate 140, and then the displacement of the first planet carrier 321 in the axial direction X can be limited through the fourth bearing 160, thereby achieving the third A limiter for the planet carrier 321 prevents the first planet carrier 321 from being displaced along the axial direction X during rotation.
- the second planet carrier 322 can be arranged on the side of the first planet carrier 321 close to the second end cover 120, and the second planet carrier 322 can also be arranged in a circular ring shape to match the first planet carrier 321, so that the main gear 311 can be easily inserted into the second planet carrier 322.
- the planet carrier 322 may be provided with a boss 3221 protruding toward the first planet carrier 321, and the first planet carrier 321 may be provided on the side of the boss 3221 away from the second planet carrier 322, so that the first planet carrier 321 and the second planet carrier 322 may be arranged oppositely and spaced apart, thereby providing space for the installation of the double gear 313.
- the fixing member 324 may be inserted into the first planet carrier 321 and the boss 3221 to lock the first planet carrier 321 and the second planet carrier 322, and ensure the rotation consistency of the first planet carrier 321 and the second planet carrier 322.
- the fixing member 324 may be a screw, and the first planet carrier 321 and the boss 3221 may be provided with corresponding screw holes, thereby realizing the fixed connection between the first planet carrier 321 and the second planet carrier 322.
- the number of bosses 3221 can be three, and the three bosses 3221 can be evenly distributed on the side of the second planet carrier 322 close to the first planet carrier 321.
- the number of fixing members 324 can also be three, and one fixing member 324 can be inserted into one boss 3221.
- the number of bosses 3221 is not limited to three, and it can also be two, four or five, as long as the number of fixing members 324 can match the number of bosses 3221.
- the rotating shaft 323 can be disposed between the first planet carrier 321 and the second planet carrier 322, and the rotating shaft 323 can also be connected to the first planet carrier 321 and the second planet carrier 322 respectively, so that the double gear 313 can drive the third planet carrier through the rotating shaft 323.
- the first planet carrier 321 and the second planet carrier 322 rotate.
- One end of the rotating shaft 323 can be connected to the first planet carrier 321 , and the other opposite end can be connected to the second planet carrier 322 .
- the double gear 313 can be sleeved on the rotating shaft 323 and can rotate relative to the rotating shaft 323 driven by the main gear 311 .
- the double gear 313 is also meshed with the internal gear 312, when the double gear 313 rotates relative to the rotating shaft 323, it will also roll relative to the internal gear 312, so that the double gear 313 can drive the first gear through the rotating shaft 323.
- the planet carrier 321 and the second planet carrier 322 rotate.
- the rotating shaft 323 can be inserted into the first planet carrier 321 and the second planet carrier 322 , and the rotating shaft 323 can also be an interference fit with the second planet carrier 322 .
- the number of rotating shafts 323 may be three, and the three rotating shafts 323 may be evenly distributed on the side of the second planet carrier 322 close to the first planet carrier 321 .
- the number of double gears 313 can also be three, and one double gear 313 can be sleeved on one rotating shaft 323 .
- the number of rotating shafts 323 is not limited to three, as long as the number of double gears 313 matches the number of rotating shafts 323 .
- the power mechanism 400 can be disposed in the first accommodation cavity 101 , and the power mechanism 400 can be used to provide driving force for the driving device 10 .
- Powertrain 400 may include a stator assembly 410 and a rotor assembly 420 .
- the stator assembly 410 can be disposed between the outer side wall 112 and the inner side wall 113 , and the stator assembly 410 can also be electrically connected to the circuit board 600 and can generate magnetic force after being energized.
- the rotor assembly 420 can be disposed between the stator assembly 410 and the outer side wall 112 , and the rotor assembly 420 can also be connected to the main gear 311 , and can rotate under the magnetic drive of the stator assembly 410 , thereby driving the main gear 311 to rotate.
- the detection mechanism 500 can obtain the motion information of the power mechanism 400 by detecting the motion information of the rotor assembly 420, so that the circuit board 600 can compare the motion information of the power mechanism 400 with the output of the second reduction mechanism 300.
- the input and output positions of the driving device 10 can be more accurately controlled, thereby improving the transmission accuracy and controllability of the driving device 10 .
- the stator assembly 410 may be disposed opposite to the rotor assembly 420 , and when energized, the stator assembly 410 generates magnetic force to drive the rotor assembly 420 to rotate, thereby providing driving force for the driving device 10 .
- the stator assembly 410 may include: a metal piece 411 and a coil 412 .
- the metal piece 411 can be formed by stacking multiple layers of silicon steel sheets, and the metal piece 411 can be arranged between the outer wall 112 and the inner wall 113 and connected to the side of the inner wall 113 close to the outer wall 112 for fixation. in the first accommodation cavity 101.
- the metal piece 411 can be fixedly connected to the inner wall 113 by bonding or snapping.
- the coil 412 can be wound around the metal piece 411 , and when energized, the coil 412 can become an electromagnet to generate magnetic force, driving the rotor assembly 420 to drive the main gear 311 to rotate, thereby providing driving force for the driving device 10 .
- the metal piece 411 and the coil 412 can be opposite to and adjacent to the heat sink 114 on the bottom wall 111, so that the heat sink 114 can conduct the heat generated after the coil 412 is energized.
- the rotor assembly 420 can be disposed between the metal piece 411 and the outer side wall 112, and is opposite and spaced apart from the metal piece 411 and the outer side wall 112 to facilitate the rotation of the rotor assembly 420.
- the rotor assembly 420 may include: a rotating frame 421, a permanent magnet 422, and a fixed plate 423.
- the rotating frame 421 can be arranged on the side of the bearing member 130 away from the second end cover 120, and the rotating frame 421 can be connected to the main gear 311.
- the fixed plate 423 is arranged on the side of the rotating frame 421 away from the bearing member 130, and is arranged around the outer periphery of the rotating frame 421.
- the permanent magnet 422 is arranged on the fixed plate 423 and is arranged opposite to the coil 412, and the permanent magnet 422 can drive the rotating frame 421 to rotate under the magnetic force of the coil 412, and then use the rotating frame 421 to drive the main gear 311 to rotate.
- a plurality of permanent magnets 422 can be provided, and are arranged on the fixed plate 423 in an array manner at equal intervals.
- the rotating frame 421 can also be connected to the active member 210, and then the active member 210 can be driven to rotate by the rotating frame 421.
- the main gear 311 and the active member 210 are respectively assembled and connected to opposite sides of the rotating frame 421, so that the rotating frame 421 can drive the main gear 311 and the active member 210 to rotate synchronously, and then the first detection component 510 can be used to detect the motion information of the power mechanism 400.
- the turret 421 may include: a first fixing part 4211 , a bearing part 4212 and a second fixing part 4213 .
- the first fixed part 4211 is configured to connect the main gear 311 and the driving member 210 so that the turret 421 drives the main gear 311 and the driving member 210 to rotate synchronously.
- the first fixing part 4211 may be disposed around the main gear 311 and interfere with the main gear 311 so that the turret 421 drives the main gear 311 to rotate.
- the first fixing part 4211 may also be provided around the second protruding part 213 of the active part 210 and interfere with the active part 210 so that the rotating frame 421 drives the active part 210 to rotate.
- the first fixing part 4211 can also be connected to the main gear 311 and the driving part 210 through other fixing methods, as long as the first fixing part 4211 can drive the main gear 311 and the driving part 210 to rotate synchronously. Can.
- the first fixed part 4211 may also be disposed between the second planet carrier 322 and the main gear 311, and a fifth bearing 340 may be disposed between the first fixed part 4211 and the second planet carrier 322, and the fifth bearing 340 may It is provided around the first fixed part 4211 to improve the rotational coaxiality of the main gear 311, the turret 421 and the planet carrier 320.
- the fifth bearing 340 may also be a flange bearing, so that the fifth bearing 340 may have a flange edge protruding toward the second planet carrier 322 , and the flange edge may also overlap the second planet carrier 322 away from the second planet carrier 322 .
- the first fixed part 4211 may be provided with a second limiting member 42111, and the second limiting member 42111 may be provided around the first fixed part 4211 and disposed on the side of the fifth bearing 340 away from the first planet carrier 321 , to limit the displacement of the fifth bearing 340 in the axial direction X.
- the second limiting member 42111 may be a ledge formed by protruding from the first fixing part 4211, and the fifth bearing 340 may be disposed on a side of the ledge close to the second planet carrier 322, thereby utilizing the ledge to The fifth bearing 340 performs position limiting.
- the second limiting member 42111 may also be a retaining spring, as long as the second limiting member 42111 can limit the fifth bearing 340 .
- the bearing portion 4212 can be disposed on a side of the first fixed portion 4211 away from the main gear 311, and the projection of the bearing portion 4212 on a plane perpendicular to the axial direction X covers the projection of the stator assembly 410 on a plane perpendicular to the axial direction X.
- the bearing portion 4212 can be arranged around the outer periphery of the first fixing portion 4211, and at least one through hole 42121 can be opened on the bearing portion 4212, and the through hole 42121 can communicate with the first accommodating cavity 101 and the second accommodating cavity. 102, so that the through holes 42121 can be used to further improve the heat dissipation efficiency of the driving device 10.
- the second fixing part 4213 can be disposed on the outer periphery of the bearing part 4212, and the second fixing part 4213 can also be located between the metal piece 411 and the outer side wall 112, which can be used to install the fixing plate 423 so that the permanent magnet 422 can be connected with
- the coils 412 on the metal piece 411 are arranged oppositely.
- the second fixing part 4213 may be disposed on a side of the bearing part 4212 away from the bearing member 130 .
- the first fixing part 4211, the carrying part 4212 and the second fixing part 4213 are all arranged in an annular shape, and the second fixing part 4213 can also be arranged around the metal piece 411 so that the permanent magnet 422 and the coil 412 face each other. set up.
- the first fixing part 4211, the carrying part 4212, and the second fixing part 4213 may be an integral structure, and the three may be formed through corresponding integral molding processes to improve the structural strength of the turret 421.
- the fixed plate 423 and the permanent magnet 422 can be fixedly connected by attaching double-sided tape.
- the fixed plate 423 and the permanent magnet 422 can also be connected through other fixing methods.
- the mounting hole 1302 is provided in the middle area of the bearing plate 1321.
- the first fixing portion 4211 can also be disposed between the bearing member 130 and the active member 210, that is, one end of the first fixing portion 4211 extends into the mounting hole 1302 to connect with the mounting hole 1302.
- the active part 210 is connected.
- a sixth bearing 350 may also be provided between the first fixed part 4211 and the bearing member 130, and the sixth bearing 350 may be provided around the first fixed part 4211 to improve the rotational speed of the driving member 210, the turret 421 and the planet carrier 320. axis degree.
- the sixth bearing 350 may also be a flange bearing, so that the sixth bearing 350 may have a flange edge protruding toward the bearing member 130 , and the flange edge may also overlap the bearing member 130 close to the first planet carrier. 321, thereby limiting the displacement of the sixth bearing 350 in the axial direction X.
- the first fixed part 4211 may be provided with a third limiting member 42112, and the third limiting member 42112 may be provided around the first fixed part 4211 and disposed on the side of the sixth bearing 350 close to the first planet carrier 321 , to limit the displacement of the sixth bearing 350 in the axial direction X.
- the third limiting member 42112 may be a ledge formed by protruding from the first fixing part 4211, and the sixth bearing 350 may be disposed on a side of the ledge away from the second planet carrier 322, thereby utilizing the ledge to The sixth bearing 350 performs position limiting.
- a limiting groove 42113 is provided at the end of the first fixed part 4211 that is assembled and connected to the active member 210 , and the second protruding part 213 of the active member 210 is inserted into the limited groove 42113 to achieve interference with the first fixed part 4211 Cooperate so that the turret 421 drives the driving member 210 to rotate.
- the limiting groove 42113 can also limit the displacement of the active member 210 in the axial direction X.
- the third limiting member 42112 may also be a retaining spring, as long as the third limiting member 42112 can limit the sixth bearing 350 .
- the stator assembly 410 in the embodiment of the present application may further include lead wires 413 and line cards 414.
- the line cards 414 are configured Between the rotor assembly 420 and the outer wall 112, a channel is formed in cooperation with the outer wall 112 for the lead wire 413 to pass through. One end of the lead wire 413 passing through the channel is connected to the coil 412, and the other opposite end is connected to the circuit board 600.
- one end of the lead wire 413 is located on a side of the stator assembly 410 away from the carrier 130 and is connected to the coil 412 on this side.
- the lead wire 413 sequentially passes through the gap between the bottom wall 111 and the stator assembly 410, the channel between the line card 414 and the outer wall 112, the hollow area 1301 of the bearing member 130, the support member 150 and The gap between the side walls 122 reaches the circuit board 600 , thereby achieving electrical connection with the circuit board 600 .
- the number of lead wires 413 can be set as needed, for example, it can be one wire, two wires, or three wires, without any specific limitation.
- the main gear 311 and the driving member 210 can be driven to rotate synchronously.
- the first detection component 510 on the moving element 210 and the circuit board 600 can detect the motion information of the rotor component 410 , that is, the input end of the driving device 10 .
- the rotation of the main gear 311 can drive the planet carrier 320 to rotate, that is, the torque output of the output end of the driving device 10 is realized.
- the rotation of the driving member 210 can drive the driven member 220 to rotate, and the slave can be detected through the second detection component 520.
- the movement information of the moving member 220 is then obtained based on the reduction ratio of the first reduction mechanism 200 and the second reduction mechanism 300.
- the movement information of the output end of the planet carrier 320 driving device 10 can be obtained, that is, the movement information of the driven member 220 can represent the planet carrier. 320 motion information at the output of the drive device 10 .
- the circuit board 600 can achieve more precise control of the input and output of the driving device 10 by comparing the motion information of the driven part 220 and the driving part 210, thereby improving the transmission accuracy and controllability of the driving device 10.
- the fourth bearing 160 is first coaxially assembled with the end hole of the first end cover 110, and the shoulder of the first end cover 110 performs axial X-limiting on the fourth bearing 160; one end of the lead wire 413 is connected to the circuit board 600, and the other end is connected to the coil 421; then the stator assembly 410 is coaxially assembled with the first end cover 110, and the stator assembly 410 is limited by the inner side wall 113 of the first end cover 110; then the internal gear 312 is coaxially assembled with the inner hole of the stator assembly 410, and the two are interference fit, and the internal gear 312 is limited and oriented by the inner side wall 113 of the first end cover 110 to ensure that the internal gear 312 does not move axially or rotate circumferentially.
- the second reduction mechanism 300 assembles the second reduction mechanism 300, evenly install multiple rotating shafts 323 on the second planetary carrier 322, and then coaxially install multiple double gears 313 corresponding to the positions of the multiple rotating shafts 323, then coaxially install the third bearing 330 with the first planetary carrier 321, and install the third bearing 330 into the hole of the first planetary carrier 321, and the shoulder of the first planetary carrier 321 limits the third bearing 330, and then align the first planetary carrier 321 with the third bearing 330 installed and the second planetary carrier 322 with the rotating shaft 323 and the double gear 313 installed, and position the first planetary carrier 321 and the second planetary carrier 322 through the fixing member 324 to complete the assembly of the second reduction mechanism 300.
- the second reduction mechanism 300 is assembled on the first end cover 110.
- the first planet carrier 321 is installed in the bearing hole of the fourth bearing 160, and the shoulder of the first planet carrier 321 is in contact with the lower end surface of the inner ring of the fourth bearing 160, and the first planet carrier 321 is limited so that it does not move axially.
- the double gear 313 is matched with the internal gear 312 in the circumferential direction, and the teeth of the double gear 313 are properly meshed with the teeth of the internal gear 312.
- the main gear 311 and the rotor assembly 420 are installed.
- the main gear 311 and the rotor assembly 420 must ensure synchronous rotation, that is, the main gear 311 and the rotor assembly 420 are coaxially assembled, one shaft end of the main gear 311 is interference-fitted in the hole of the rotating frame 421, and the main gear 311 is axially positioned by the shoulder of the rotating frame 421.
- the fifth bearing 340 is coaxially assembled with the rotating frame 421 before the main gear 311 is assembled, and the fifth bearing 340 is limited by the shoulder of the rotating frame 421.
- the assembled main gear 311 and rotor assembly 420 are assembled as a whole coaxially with the second planetary carrier 322. On the one hand, the teeth of the main gear 311 are properly meshed with the teeth of the double gear 313.
- the upper shaft end of the main gear 311 is assembled with the shaft hole of the third bearing 330, and the fifth bearing 340 is assembled coaxially with the hole of the second planetary carrier 322.
- the lead wire 413 is led out from the hollow area 1301 of the bearing 130 and then connected to the circuit board 600; then the sixth bearing 350 is installed on the lower shaft end of the rotating frame 421, and the sixth bearing 350 is limited by the shaft shoulder of the rotating frame 421, and then the bearing 130 and the sixth bearing 350 are assembled coaxially, and the end face of the bearing 130 is matched with the first end cover 110, so that the assembly of the second reduction mechanism 300 and the power mechanism 400 is completed.
- the driving part 210 and the first bearing 240 are coaxially assembled, and then the inner hole of the driven part 220 is installed on the outer ring of the first bearing 240.
- the first bearing 240 is limited by the driving part 210 and the driven part 220. .
- the fixing member 230 and the bearing member 130 are assembled together with an interference fit so that the fixing member 230 does not rotate.
- the second bearing 250 can be a standard bearing. Deep groove ball or other thin bearings.
- the support member 150 is installed and fixed on the bearing member 130, and the second bearing 250 is limited at the same time. Finally, the circuit board 600 provided with the first detection member 512 and the second detection member 522 is fixedly installed on the support member 150.
- one shaft end of the driving member 210 is installed in the shaft hole of the turret 421 with interference, so that the driving member 210 and the turret 421 rotate synchronously, and then the second end cover 120 is installed on the bearing member 130, thus completing the driving Assembly of device 10.
- the driving device provided by the embodiment of the present application is configured with a power mechanism connected to the first input end of the first reduction mechanism and the second input end of the second reduction mechanism respectively, so that the first input end and the second input end can rotate synchronously. , and the motion information of the first input end and the second input end can represent the motion information of the input end of the driving device. Further, by configuring the second output end of the second reduction mechanism to form the output end of the driving device, the driving device can use the second reduction mechanism to increase the output torque to obtain stronger driving force.
- the detection mechanism can respectively obtain the motion information of the active part, that is, the first input end, and the driven part, that is, the first output end.
- the detection mechanism Based on the first deceleration mechanism and The corresponding relationship between the reduction ratio of the second reduction mechanism can obtain the movement information of the second output end of the second reduction mechanism, that is, obtain the movement information of the output end of the driving device, so that the driving device can compare the first input end and the first output end.
- Motion information enables more precise control of the input and output positions of the drive device, improving the transmission accuracy and controllability of the drive device.
- Figure 11 is a schematic structural block diagram of a robot 900 in some embodiments of the present application.
- the robot 900 can be controlled by a control system and can walk, run, and jump through the driving device 10 in the aforementioned embodiments.
- a typical robot structure is, for example, a robot dog, which is a robot structure that includes a robot body and four legs.
- this robot structure The robot in the embodiment may also have a structure including two, three or more legs, or even a structure including one leg, which is not specifically limited here.
- the robot 900 generally includes a robot body 910, a control device 920, an information collection device 930, a power supply 940 and a guidance device 950 provided on the robot body 910.
- the robot main body 910 can realize walking, running and other mobile forms.
- the control device 920 can be provided inside or outside the robot body 910 to control the movement of the robot 900.
- the control device 920 can also be used to control the working status of the information collection device 930, the power supply 940, the guidance device 950, etc. It can be understood that the control device 920 can be a control circuit board integrated with modules such as a data conversion module, an interface module, and a processing module.
- the data conversion module can be connected to the information collection device 930 and the guidance device 950 respectively through the interface module.
- the interface module can be a USB interface that meets the USB 2.0 specification, USB3.0 specification and USB3.1 specification, and can include: Micro USB interface or USB TYPE-C interface.
- the interface module can also be a signal interface.
- Even the interface module can be any other type of serial interface that can be used for serial data transmission.
- the data conversion module is used to serialize and convert the data collected from the information collection device 930 through the interface module, and output the converted serial data through the interface module to process the converted serial data, such as transmission. To the guidance device 950 or external equipment, etc.
- the data conversion module is also used to convert the serial data received through the interface module to convert the received serial data into interface data that matches the interface protocol of the interface module, and transmit the converted interface data through the interface module to the guidance device 950 or an external device to output the converted interface data through the interface module.
- the processing module can be, for example, an application processor (Application Processor, AP), which is used to process the received data and output the processed data (video data and/or audio data) through the control circuit board.
- Application Processor Application Processor
- the processing module can be, for example, a special device matched with the robot 900, or the processing module can also be an electronic device (such as a smart phone, a tablet computer, etc.) equipped with the above module.
- the processor (such as CPU or AP, etc.) in the electronic device can be the above-mentioned processing module.
- the processor can perform corresponding processing on the data received through the control device 920 .
- control circuit board can be implemented as an ASIC (Application Specific Integrated Circuit) data integration processing chip, or it can also be implemented as an FPGA (Field Programmable Gate Array), etc.
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the information collection device 930 may include an audio data collection module, a video data collection module/image data collection module, and a sensor data collection module.
- the information collection device 930 can be connected to the control device 920 through the interface module, and transmit the collected data information to the control device 920 .
- the audio data collection module may include a microphone and an audio codec (Codec), for example. Audio codecs encode audio from data collected through a microphone.
- Audio codec encode audio from data collected through a microphone.
- the video data acquisition module/image data acquisition module may include, for example, a camera, such as a lens of an ordinary camera, an IR lens of an IR (Infrared Ray) camera, etc.
- a camera such as a lens of an ordinary camera, an IR lens of an IR (Infrared Ray) camera, etc.
- the sensing data collection module may include, for example, a proximity sensor, an attitude sensor, an acceleration sensor, etc.
- Proximity sensors (such as the distance sensor provided on the first FPC523) are a general term for sensors that replace contact detection methods such as limit switches and perform detection without contacting the detection object. It can detect the movement information and presence information of objects and convert them into electrical signals.
- the detection principle of the inductive proximity sensor is to detect the magnetic loss caused by the eddy current generated on the surface of the conductor through the influence of external magnetic field. This method generates an AC magnetic field in the detection coil and detects the impedance changes caused by the eddy current generated by the metal body of the detection object.
- the attitude sensor is a high-performance three-dimensional motion attitude measurement system based on MEMS technology. It contains motion sensors such as a three-axis gyroscope, a three-axis accelerometer, and a three-axis electronic compass. It obtains temperature-compensated three-dimensional attitude and orientation data through the embedded low-power ARM processor. Using quaternion-based three-dimensional algorithms and special data fusion technology, zero-drift three-dimensional attitude and orientation data expressed in quaternions and Euler angles are output in real time.
- An acceleration sensor is a sensor capable of measuring acceleration. It usually consists of mass block, damper, elastic element, sensitive element and adjustment circuit. During the acceleration process, the sensor uses Newton's second law to obtain the acceleration value by measuring the inertial force exerted on the mass block.
- common acceleration sensors include capacitive, inductive, strain gauge, piezoresistive, piezoelectric, etc.
- the power supply 940 can be connected to the control device 920 through an interface module to provide electric energy for the movement of the robot 900, and the power supply 940 is also configured to provide electric energy for the operation of the control device 920, the information collection device 930, and the guidance device 950.
- the guidance device 950 can be connected to the control device 920 through an interface module to perform corresponding guidance functions under the control of the control device 920 .
- the robot 900 may further include a storage device 960 disposed in the robot body 910 .
- Storage device 960 may include readable media in the form of volatile storage units, such as random access storage units (RAM) and/or cache storage units, and may further include read-only storage units (ROM).
- Storage 960 may also include programs/utilities having a set of (at least one) program modules, including but not limited to: an operating system, one or more application programs, other program modules, and program data, in these examples Each of these, or some combination thereof, may include the implementation of a network environment.
- the robot 900 can also communicate with one or more external devices (such as mobile phones, computers, etc.), and can also communicate with a or multiple devices that enable a user to interact with the robot 900, and/or communicate with any device (eg, router, modem, etc.) that enables the robot 900 to communicate with one or more other computing devices. This communication can occur through input/output (I/O) interfaces.
- the robot 900 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through a network adapter.
- LAN local area network
- WAN wide area network
- public network such as the Internet
- robot 900 may be used in conjunction with robot 900, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and Data backup storage system, etc.
- the drive device and the robot having the drive device provided in the embodiments of the present application can more accurately control the position of the input and output of the drive device by comparing the motion information of the first input end and the first output end, thereby improving the transmission accuracy and controllability of the drive device and further improving the control accuracy of the robot.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Robotics (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
一种驱动装置(10)以及机器人(900),驱动装置(10)包括动力机构(400)、第一减速机构(200)、第二减速机构(300)、检测机构(500),动力机构(400)用于形成驱动装置(10)的输入端;第一减速机构(200)具有第一输入端(201)、第一输出端(202)、第一减速比;第二减速机构(300)具有第二输入端(301)、第二输出端(302)、第二减速比;检测机构(500)具有第一检测组件(510)、第二检测组件(520);第一减速比大于第二减速比,动力机构(400)分别与第一输入端(201)和第二输入端(301)连接以使第一输入端(201)和第二输入端(301)同步转动;第一检测组件(510)用于检测动力机构(400)的运动信息;第二检测组件(520)用于检测第二输出端(302)的运动信息。
Description
本申请要求于2022年09月23日提交的申请号为202211167597.X,且发明名称为“驱动装置及具有该驱动装置的机器人”的中国专利申请的优先权,其通过引用方式全部并入本申请。
本申请涉及电机技术领域,具体是涉及一种驱动装置以及机器人。
随着电机技术的不断发展和普及,多数设备中均会装载有电机,从而利用电机提供驱动力,以实现机械部件的运动,如升降、旋转以及振动等等,使得设备可以实现相应的功能。然而,现有电机的传动精度不高,无法精准控制电机输入输出的位置,降低了电机的可控性,因此,如何提升电机的传动精度,已经成为了业内人员的主要关注对象。
发明内容
本申请实施例一方面提供了一种驱动装置,所述驱动装置包括动力机构、第一减速机构、第二减速机构以及检测机构,所述动力机构被配置为用于形成所述驱动装置的输入端;所述第一减速机构具有第一输入端、第一输出端、第一减速比;所述第二减速机构具有第二输入端、第二输出端、第二减速比;所述检测机构具有第一检测组件以及第二检测组件;其中,所述第一减速比大于所述第二减速比,所述动力机构分别与所述第一输入端和所述第二输入端连接,以使得所述第一输入端和所述第二输入端能够发生同步转动;
本申请实施例另一方面还提供了一种驱动装置,所述驱动装置包括动力机构、谐波减速器、行星减速器以及检测机构,所述动力机构被配置为用于形成所述驱动装置的输入端;所述谐波减速器具有第一输入端、第一输出端、第一减速比;所述行星减速器具有第二输入端、第二输出端、第二减速比;所述检测机构具有第一检测组件以及第二检测组件;其中,所述第一减速比大于所述第二减速比,所述动力机构分别与所述第一输入端和所述第二输入端连接,以使得所述第一输入端和所述第二输入端能够发生同步转动;所述第一检测组件部分设于所述第一输入端,并被配置为用于检测所述动力机构的运动信息;所述第二检测组件部分设于所述第一输出端,并被配置为用于检测所述第二输出端的运动信息;所述第二输出端被配置为用于形成所述驱动装置的输出端。
本申请实施例又一方面还提供了一种机器人,所述机器人包括上述的驱动装置。
本申请实施例提供的驱动装置以及机器人,通过设置第一减速机构的第一减速比大于第二减速机构的第二减速比,在第一减速机构的第一输入端和第二减速机构的第二输入端同步转动时,第一减速机构的第一输出端的转动角度小于第二减速机构的第二输出端的转动角度。进一步通过第一检测组件检测第一输入端的运动信息可以获取到动力机构的运动信息,以及通过第二检测组件检测第一输出端的运动信息并通过第一减速比和第二减速比之间的对应关系来获得第二输出端的运动信息,进而获取驱动装置的输入端和输出端的运动信息,从而可以通过比对驱动装置的输入端和输出端的运动信息,实现对驱动装置进行更为精准的控制,提升了驱动装置的传动精度和可控性。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一些实施例中驱动装置的结构示意图;
图2是图1实施例中驱动装置的另一视角的结构示意图;
图3是图1实施例中驱动装置的结构拆分示意图;
图4是图1实施例中壳体组件沿A-A向的截面结构示意图;
图5是本申请一些实施例中承载件的结构示意图;
图6是本申请一些实施例中第一减速机构的结构拆分示意图;
图7是本申请一些实施例中驱动装置的部分截面结构示意图;
图8是图1实施例中驱动装置沿A-A向的截面结构示意图;
图9是图8实施例中第二减速机构的结构拆分示意图;
图10是图8实施例中动力机构结构拆分示意图;
图11是本申请一些实施例中机器人的结构示意框图。
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在一实施例中,所述驱动装置包括动力机构、第一减速机构、第二减速机构以及检测机构;所述动力机构被配置为用于形成所述驱动装置的输入端;所述第一减速机构具有第一输入端、第一输出端、第一减速比;所述第二减速机构具有第二输入端、第二输出端、第二减速比;所述检测机构,具有第一检测组件以及第二检测组件;其中,所述第一减速比大于所述第二减速比,所述动力机构分别与所述第一输入端和所述第二输入端连接,以使得所述第一输入端和所述第二输入端能够发生同步转动;所述第一检测组件部分设于所述第一输入端,并被配置为用于检测所述动力机构的运动信息;所述第二检测组件部分设于所述第一输出端,并被配置为用于检测所述第二输出端的运动信息;所述第二输出端被配置为用于形成所述驱动装置的输出端。
其中,所述第一输出端旋转1周时,所述第一输入端旋转了m周,所述第二输出端旋转了n周;其中,m>n>1,所述第二输出端的转动角度的量程为0~n*360°。
其中,所述第一检测组件包括设于所述第一输入端上的第一被检测件、以及与所述第一被检测件相对设置的第一检测件,所述第一检测件被配置为可通过所述第一被检测件获取所述动力机构的运动信息;所述第二检测组件包括设于所述第一输出端上的第二被检测件、以及与所述第二被检测件相对设置的第二检测件,所述第二检测件被配置为可通过所述第二被检测件获取所述第二输出端的运动信息。
其中,所述第二检测组件为单圈绝对值编码器。
其中,所述第一减速机构与所述动力机构连接,并被配置为与所述动力机构相联动;所述第一减速机构包括主动件和从动件,所述主动件被配置为用于形成所述第一输入端,并与所述动力机构连接以及用于装配所述第一被检测件;所述从动件被配置为用于形成所述第一输出端,并用于装配所述第二被检测件;其中,所述第一减速比为所述主动件与所述从动件的转速的比值;
所述驱动装置包括与所述第一减速机构间隔设置的电路板,所述第一检测件设于所述电路板上并与所述第一被检测件相对设置,所述第二检测件设于所述电路板上并与所述第二被检测件相对设置。
其中,所述驱动装置包括壳体组件,所述壳体组件具有第一容置腔和第二容置腔,所述第一容置腔被配置为用于容纳所述第二减速机构、所述动力机构,所述第二容置腔被配置为用于容纳所述第一减速机构、所述检测机构、所述电路板;所述壳体组件包括相对设置的第一端盖和第二端盖、以及设于所述第一端盖和所述第二端盖之间的承载件,所述第一端盖与所述承载件配合围设形成所述第一容置腔,所述第二端盖与所述承载件配合围设形成所述第二容置腔。
其中,所述动力机构包括与所述承载件转动连接的转子组件,所述转子组件被配置为用于带动所述主动件和所述第二输入端进行同步转动;所述承载件包括第一承载部和第二承载部,所述第一承载部设于所述第一端盖和所述第二端盖之间并分别连接所述第一端盖和所述第二端盖,所述第二承载部设于所述第二容置腔内并被配置为用于装配所述第一减速机构。
其中,所述第二承载部包括承载板、以及设于所述承载板背离所述第一端盖的一侧的第一围壁和第二围壁,所述承载板设有装配孔,所述第一围壁设置于所述承载板的外环沿,所述第二围壁设置于所述承载板的内环沿;所述转子组件的一端插设于所述装配孔并通过轴承与所述承载板转动装配。
其中,所述第一围壁凸出于所述承载板的高度大于所述第二围壁凸出于承载板的高度。
其中,所述第一减速机构还包括装配于所述第一围壁上的固定件,所述固定件环设于所述从动件的外围,所述从动件环绕于所述主动件的外围,所述主动件转动时作用于所述从动件使得所述从动件转动;其中,所述固定件具有内齿,所述从动件具有外齿,所述从动件的一个外齿与所述固定件的一个内齿啮合到再一次与所述一个内齿内核时,所述从动件旋转了一周,所述主动件旋转了多周。
其中,所述壳体组件还包括装配于所述第二容置腔内的支撑件,所述承载件包括连接所述第一承载部和所述第二承载部的连接部,所述第一承载部呈环形并环绕于所述第二承载部的外围,所述连接部设于所述第一承载部和所述第二承载部之间;所述支撑件与所述连接部装配连接并用于装配所述电路板;其中,所述支撑件和所述第二承载部间隔设置,所述支撑件和所述第二端盖之间具有间隙。
其中,所述支撑件包括第一支撑部和第二支撑部,所述第一支撑部用于与所述连接部装配连接,所述第二支撑部用于装配所述电路板;其中,所述第二支撑部通过轴承与所述从动件转动连接。
其中,所述从动件包括具有外齿的第一从动部、以及通过轴承与所述第二支撑部转动装配的第二从动部,所述第一从动部的外齿用于与所述固定件的内齿啮合;其中,所述第一从动部和所述主动件之间设有柔性轴承,所述第二从动部靠近所述电路板的一侧设有所述第二被检测件。
其中,所述主动件包括主体部、以及设于所述主体部相对两侧的第一凸部和第二凸部,所述主体部作用于所述从动件以使得所述从动件转动,所述第一凸部设于所述主体部靠近所述电路板的一侧并被配置为用于装配所述第一被检测件,所述第二凸部设于所述主体部背离所述电路板的一侧并被配置为用于与所述转子组件连接。
其中,所述转子组件包括转动架、设于所述转动架上的固定板、以及设于所述固定板上的永磁体,所述转动架设于所述承载件背离所述第二端盖的一侧,且所述转动架分别与所述主动件和所述第二输入端连接,以用于带动所述主动件和所述第二输入端进行同步转动;所述动力机构还包括定子组件,所述定子组件与所述电路板电性连接并被配置为在通电后产生磁力驱动所述转子组件转动,进而通过所述转动架带动所述主动件和所述第二输入端进行同步转动。
其中,所述第二减速机构包括传动组件和行星架,所述传动组件与所述动力机构连接并被配置为与所述动力机构相联动,所述行星架与所述传动组件连接并可在所述传动组件的带动下进行转动;其中,所述传动组件被配置为用于形成所述第二输入端,所述行星架被配置为用于形成所述第二输出端。
其中,所述传动组件包括主齿轮、内齿轮以及双联齿轮,所述主齿轮与所述转动架连接并可在所述转动架的带动下转动,所述内齿轮围绕所述主齿轮设置,所述双联齿轮分别与所述主齿轮和所述内齿轮啮合,并连接所述行星架;其中,所述内齿轮固定装配于所述第一端盖。
其中,所述行星架包括第一行星架、第二行星架、转轴以及固定件,所述第一行星架和所述第二行星架间隔且相对设置,所述转轴和所述固定件设于所述第一行星架和所述第二行星架之间;其中,所述双联齿轮通过所述转轴带动所述第一行星架和所述第二行星架进行同步转动,所述固定件用于锁紧固定所述第一行星架和所述第二行星架。
在一实施例中,所述驱动装置包括动力机构、谐波减速器、行星减速器以及检测机构;所述动力机构被配置为用于形成所述驱动装置的输入端;所述谐波减速器具有第一输入端、第一输出端、第一减速比;所述行星减速器具有第二输入端、第二输出端、第二减速比;所述检测机构具有第一检测组件以及第二检测组件;其中,所述第一减速比大于所述第二减速比,所述动力机构分别与所述第一输入端和所述第二输入端连接,以使得所述第一输入端和所述第二输入端能够发生同步转动;所述第一检测组件部分设于所述第一输入端,并被配置为用于检测所述动力机构的运动信息;所述第二检测组件部分设于所述第一输出端,并被配置为用于检测所述第二输出端的运动信息;所述第二输出端被配置为用于形成所述驱动装置的输出端。
在一实施例中,所述机器人具有驱动装置;所述驱动装置包括动力机构、第一减速机构、第二减速机构以及检测机构;所述动力机构被配置为用于形成所述驱动装置的输入端;所述第一减速机构具有第一输入端、第一输出端、第一减速比;所述第二减速机构具有第二输入端、第二输出端、第二减速比;所述检测机构具有第一检测组件以及第二检测组件;其中,所述第一减速比大于所述第二减速比,所述动力机构分别与所述第一输入端和所述第二输入端连接,以使得所述第一输入端和所述第二输入端能够发生同步转动;所述第一检测组件部分设于所述第一输入端,并被配置为用于检测所述动力机构的运动信息;所述第二检测组件部分设于所述第一输出端,并被配置为用于检测所述第二输出端的运动信息;所述第二输出端被配置为用于形成所述驱动装置的输出端。
请参阅图1至图3,图1是本申请一些实施例中驱动装置10的结构示意图,图2是图1实施例中驱动装置10的另一视角的结构示意图,图3是图1实施例中驱动装置10的结构拆分示意图。
本申请实施例提供的驱动装置10可以应用于各类需要通过电能提供驱动力的设备中,如两足机器人或四足机器人,以实现机器人的行走或其他相应的功能,且驱动装置10具体可以是伺服电机或舵机。
需要说明的是,本申请实施例中的驱动装置10应用于诸如机器人等设备,机器人等设备可以在驱动装置10的驱动下完成行走、跑、跳等功能。比较典型的一种机器人结构例如为机器狗,也即一种包括机器人主体以及四条腿的机器人结构,当然,本实施例中的机器人也可以为包括两条、三条或者多条腿的结构,甚至可以是包括一条腿的结构,此处不做具体限定。基于驱动装置10驱动机器人行走、跑、
跳等运动形态,通常在驱动装置10中集成有减速机构以提升输出力矩。
其中,驱动装置10可以包括壳体组件100、第一减速机构200、第二减速机构300、动力机构400、检测机构500以及电路板600。第一减速机构200、第二减速机构300、动力机构400、检测机构500以及电路板600均设于壳体组件100内,且动力机构400分别与第一减速机构200以及第二减速机构300连接,第一减速机构200被配置为与动力机构400相联动,第二减速机构300被配置为与动力机构400相联动以用于增大驱动装置10的输出力矩。优选地,动力机构400可以被配置为用于形成驱动装置10的输入端,第二减速机构300的输出端可以被配置为用于形成驱动装置10的输出端。动力机构400和检测机构500均与电路板600电性连接,且动力机构400可以利用电路板600传输的电能为驱动装置10提供驱动力。检测机构500可以检测第二减速机构300的输出端的运动信息、以及动力机构400的运动信息,并传输给电路板600,以使得电路板600可以通过比对第二减速机构300的输出端的运动信息和动力机构400的运动信息,对驱动装置10输入输出的位置进行更为精准的控制,从而可以提升驱动装置10的传动精度和可控性。
其中,图1中定义出了X方向以便于下文进行相关描述,X可以为第二减速机构300和动力机构400的转动轴线的方向即轴向。
进一步地,第一减速机构200与动力机构400连接,并被配置为与动力机构400相联动。第一减速机构200可以具有第一输入端201、第一输出端202以及第一减速比,即第一减速比可以为第一输入端201和第一输出端202的转速比值。第一输入端201与动力机构400连接,并可在动力机构400的驱动下转动。基于此,可以通过获取第一输入端201的运动信息来得到动力机构400的运动信息。其中,第一减速机构200可以为谐波减速器,以获取较大的减速比。
当然,在其他实施方式中,第一减速机构200还可以为少齿差行星传动减速器、摆线针轮传动减速器等其他类型的减速器,不作赘述。
第二减速机构300与动力机构400连接,并被配置为与动力机构400相联动。第二减速机构300可具有第二输入端301、第二输出端302以及第二减速比,即第二减速比可为第二输入端301和第二输出端302的转速比值。第二输入端301与动力机构400连接,并可在动力机构400的驱动下转动。第二减速机构300可为行星减速器以获取合理的减速比。
当然,在其他实施方式中,第二减速机构300还可为行星减速器、普通减速器、摆线针轮减速器、谐波减速器等其他类型的减速器中的一种或者多种组成,不作赘述。
其中,动力机构400分别与第一输入端201和第二输入端301连接,以同步驱动第一输入端201和第二输入端301转动,进而使得第一输入端201和第二输入端301能够发生同步转动。优选地,第一减速比大于第二减速比,此时第一输出端202和第二输出端302的转动不同步,且第一输出端202的转速小于第二输出端302的转速。由此,可以在第一输出端202的转动角度范围较小时可以通过检测机构500获取第二输出端302的较大范围的转动角度。可以理解的,动力机构400可以被配置为用于形成驱动装置10的输入端,第二减速机构300的第二输出端302可以被配置为用于形成驱动装置10的输出端。
例如,当第一输出端202旋转1周时,第一输入端201旋转了m周,m>1,此时,第一减速比为m:1。与此同时,第二输入端301旋转了m周,第二输出端302旋转了n周,m>n>1,此时,第二减速比为m:n。由此可得出,当第一输出端202旋转了1周时,第二输出端302旋转了n周,以此建立起第一输出端202在1周内的任意角度对应第二输出端302的位置,即可获得第二输出端202的转动角度的量程为0~n*360°。
结合图3参阅图4,图4是图1实施例中壳体组件100沿A-A向的截面结构示意图。壳体组件100可以用于安装第一减速机构200、第二减速机构300、动力机构400、检测机构500以及电路板600。其中,壳体组件100可以包括相对设置的第一端盖110和第二端盖120、设于第一端盖110和第二端盖120之间的承载件130、以及设于第一端盖110上的限位板140。其中,第一端盖110可以与承载件130的一侧连接,第二端盖120可以与承载件130的另一相对侧连接,且第一端盖110与承载件130配合围设形成第一容置腔101,第二端盖120与承载件130配合围设形成第二容置腔102。第一容置腔101被配置为用于容纳第二减速机构300和动力机构400,第二容置腔102被配置为用于容纳第一减速机构200、检测机构500以及电路板600。
其中,限位板140可以设于第一端盖110背离第二端盖120的一侧,其可以被配置为用于对第二减速机构300进行限位。
在一实施例中,壳体组件100的材质可以是硬质塑料,如此不仅可以保证壳体组件100的结构强度,还可以减轻壳体组件100的重量。当然,在其他实施例中,壳体组件100的材质也可以根据实际需求进行灵活选择,本实施例对此不做具体限定。
第一端盖110可以用于与承载件130配合围设形成第一容置腔101,以容纳第二减速机构300和动
力机构400。如图3至图4所示,第一端盖110可以包括底壁111、外侧壁112以及内侧壁113。其中,外侧壁112可以设置于底壁111的一侧,内侧壁113可设置于底壁111的另一相对侧,且外侧壁112和内侧壁113均可以围绕底壁111设置。底壁111可以呈环状设置,外侧壁112可以设置于底壁111的外环沿,内侧壁113可以设置于底壁111的内环沿,使得第一端盖110在外形上可以类似于圆桶状,以便于第一端盖110与承载件130配合围设形成第一容置腔101。优选地,外侧壁112在轴向X上的高度可以高于内侧壁113在轴向X上的高度,从而增大外侧壁112围绕形成的空间。内侧壁113可将第一容置腔101划分为第一容置空间1011和第二容置空间1012,第一容置空间1011被配置为用于容纳动力机构400,第二容置空间1012被配置为用于容纳第二减速机构300。其中,第一容置空间1011和第二容置空间1012靠近承载件130的一端相互连通,以为动力机构400和第二减速机构300提供联动空间。即内侧壁113背离底壁111的一端与承载件130之间具有间隙,动力机构400可部分自内侧壁113与承载件130之间的间隙伸入第二容置空间1012,以与第二减速机构300实现联动。
优选地,轴向X具体可以是垂直于底壁111的方向。
在一些实施例中,第一端盖110的形状也可以不限于圆桶状,其形状也可以根据实际需求进行具体设置,本实施例对此不做限定。
进一步地,底壁111位于第一容置腔101内的一侧还可以设置有材质为导热硅胶的散热片114,且该散热片114可以与动力机构400相对设置,从而利用散热片114进一步提升第一端盖110的散热效率。
限位板140可以设置于底壁111背离承载件130的一侧,且限位板140可以用于限制第二减速机构300在轴向X上位移,以避免第二减速机构300在转动过程中沿轴向X发生窜动。如图3至图4所示,限位板140可以呈环状设置,以与底壁111的形状相适配,且限位板140在底壁111上的正投影也可以围绕内侧壁113设置。其中,限位板140还可以围绕第二减速机构300设置,且限位板140在外形上还可类似于“Z”字形结构,使得限位板140可具有朝向第二减速机构300凸出的法兰边,且该法兰边还可搭接至第二减速机构300与轴向X相垂直的一侧,从而对第二减速机构300在轴向X上的位移进行限制。在本实施例中,第一端盖110背离承载件130的一侧可以设置有螺钉孔,而限位板140上可以设置有螺钉,使得限位板140可以通过螺钉与第一端盖110固定连接。
在一些实施例中,限位板140也可以通过如焊接、卡接以及粘接等装配方式与第一端盖110固定连接。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
第二端盖120可以设置于承载件130背离第一端盖110的一侧,且第二端盖120可用于与承载件130配合围设形成第二容置腔102,以容纳第一减速机构200、检测机构500和电路板600,使得检测机构500能够检测第一减速机构200、第二减速机构300的输入输出运动信息以及动力机构400的运动信息。如图3、图4所示,第二端盖120可包括顶壁121和侧壁122。顶壁121与承载件130间隔设置,侧壁122设于顶壁121和承载件130之间并可用于与承载件130连接,以对第二端盖120进行装配固定。侧壁122可呈环状设置,并环绕于顶壁121的外周缘,以使第二端盖120能够与承载件130配合围设形成第二容置腔102。
在一实施例中,第二端盖120还可以包括设于侧壁122上的连接壁123,该连接壁123优选设置侧壁122背离顶壁121的一端,并朝向背离第二容置腔102的方向延伸,即连接壁123可以理解为设置于侧壁122上的凸耳结构。其中,该连接壁123被配置为用于与承载件130连接固定,以将第二端盖120装配于承载件130背离第一端盖110的一侧。优选地,连接壁123可以环绕于侧壁122的外周缘设置。
其中,承载件130上可以设置有螺钉孔,而连接壁123上可以设置有螺钉,使得连接壁123可以通过螺钉与承载件130固定连接。
当然,在其他实施例中,连接壁123也可以通过如焊接、卡接以及粘接等装配方式与承载件130固定连接。
承载件130可以设置于第一端盖110和第二端盖120之间,并分别与第一端盖110和第二端盖120装配连接,从而形成驱动装置10的整体结构。可选地,第一端盖110投影于承载件130上的投影覆盖于第二端盖120投影于承载件130上的投影,即外侧壁112投影于承载件130上的投影环绕于侧壁122投影于承载件130上的投影的外围。
结合图3参阅图5至图7,图5是本申请一些实施例中承载件130的结构示意图,图6是本申请一些实施例中第一减速机构200的部分结构拆分示意图,图7是本申请一些实施例中驱动装置10的部分截面结构示意图即第一减速机构200装配于壳体组件100的截面结构示意图。
其中,承载件130可以包括第一承载部131、第二承载部132以及连接第一承载部131和第二承载部132的连接部133。第一承载部131被配置为用于装配第一端盖110和第二端盖120,即第一承载部
131设于第一端盖110和第二端盖之间120并分别连接第一端盖110和第二端盖120。第二承载部132被配置为用于装配第一减速机构200。检测机构500分别装配于第一减速机构200和电路板600上。
优选地,第一承载部131、第二承载部132以及连接部133可以通过一体成型工艺直接形成一体结构的承载件130。
具体而言,第一承载部131可以呈环形设置,并环绕于第二承载部132的外围,即第二承载部132可以设于第一承载部131的环形中空区域设置,并与第一承载部131的内环沿之间具有间隙。连接部133设于第一承载部131和第二承载部132之间,并分别连接于第一承载部131和第二承载部132。其中,连接部133可以设有多个,多个连接部133可以均匀分布于第一承载部131和第二承载部132之间,以保证承载件130的整体结构强度。应理解的,本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
其中,第一承载部131和第二承载部132之间具有镂空区域1301,该镂空区域1301连通第一容置腔101和第二容置腔102,以使得设于第一容置腔101中的动力机构400和设于第二容置腔102中的电路板600可以通过穿设于镂空区域1301的线路实现电性连接。
在一实施例中,第一承载部131在外形上还可以类似于“Z”字形结构,使得第一承载部131可以具有朝向第一端盖110凸出的法兰边,且该法兰边还可以搭接至第一端盖110的外侧壁112以实现第一承载部131与外侧壁112的连接固定。其中,其中,第一承载部131上可以设置有螺钉孔,而外侧壁112上可以设置有螺钉,使得外侧壁112可以通过螺钉与第一承载部131固定连接。当然,外侧壁112也可以通过如焊接、卡接以及粘接等装配方式与第一承载部131固定连接。
具体而言,第一承载部131可以包括弯折连接的第一装配板1311和第二装配板1312。第一装配板1311可以呈环形设置,并环绕于第二承载部132的外围,且与第二承载部132之间具有间隙。其中,第一装配板1311位于外侧壁112靠近内侧壁113的一侧,并被配置为用于连接第二端盖120的连接壁123。其中,第一装配板1311上可以设置有螺柱,而连接壁123上可以设置有螺钉,使得连接壁123可以通过螺钉与第一装配板1311固定连接。当然,在其他实施例中,连接壁123也可以通过如焊接、卡接以及粘接等装配方式与第一装配板1311固定连接。
第二装配板1312设于第一装配板1311背离第一端盖110的一侧,并环设于第一装配板1311的外环沿,即第二装配板1312自第一装配板1311的外环沿朝向背离第一端盖110的底壁111的方向延伸。其中,第二装配板1312位于外侧壁112靠近内侧壁113的一侧,并被配置为用于连接第一端盖110的外侧壁112。其中,第二装配板1312上可以设置有螺柱,而外侧壁112上可以设置有螺钉,使得外侧壁112可以通过螺钉与第二装配板1312固定连接。当然,在其他实施例中,外侧壁112也可以通过如焊接、卡接及粘接等装配方式与第二装配板1312固定连接。
在一实施例中,第一承载部131还可以包括搭接板1313,该搭接板1313设于第二装配板1312背离第一装配板1311的一端,并自第二装配板1312朝向背离第二承载部132的方向延伸,即搭接板1313自第二装配板1312朝向第一端盖110的外侧壁112的方向凸出。其中,搭接板1313可以被配置为用于搭接外侧壁112背离底壁111的端部,以在X方向上对承载件130进行限位。可选地,搭接板1313和第一装配板1311在X方向上间隔设置,搭接板1313搭接于外侧壁112背离底壁111的端部,第一装配板1311位于第一容置腔101内。
第二承载部132可以包括承载板1321、第一围壁1322以及第二围壁1323,承载板1321可以位于第一装配板1311的环形中空区域,并与第一装配板1311间隔设置。承载板1321的中部区域设有装配孔1302,即承载板1321可以呈环形设置。第一围壁1322可以设置于承载板1321的外环沿,第二围壁1323可以设置于承载板1321的内环沿。换言之,第二围壁1323环设于装配孔1302的外周缘,第一围壁1322环绕于第二围壁1323的外围并与第二围壁1323间隔设置。
其中,第一围壁1322和第二围壁1323均设于承载板1321背离第一端盖110的底壁111的一侧。优选地,第一围壁1322在轴向X上的高度可以高于第二围壁1323在轴向X上的高度,即第一围壁1322凸出于承载板1321的高度可高于第二围壁1323凸出于承载板1321的高度。
进一步地,壳体组件100还可以包括装配于第二容置腔102内的支撑件150,该支撑件150与连接部133装配连接,并被配置为用于装配电路板600。其中,支撑件150可以包括第一支撑部151和第二支撑部152,第一支撑部151被配置为用于与连接部133装配连接,以对支撑件150进行定位装配。第二支撑部152被配置为用于装配电路板600。
其中,第一支撑部151可以呈环形设置,并在垂直于X方向的方向上可以位于侧壁122和第二承载部132之间。可选地,在X方向上,第一支撑部151和第二承载部132的第一围壁1322部分重叠。优选地,第一支撑部151与侧壁122之间具有间隙,以使得设于动力机构400和设于电路板600可以通过穿设于上述间隙的线路实现电性连接。
第一支撑部151在X方向上投影于承载件130上的投影覆盖至少部分连接部133,其中,连接部133上可以设置有螺柱,而第一支撑部151上可以设置有螺钉,使得第一支撑部151可以通过螺钉与连接部133固定连接。当然,在其他实施例中,第一支撑部151也可以通过如焊接、卡接以及粘接等装配方式与连接部133固定连接。
优选地,第一支撑部151和第二承载部132在X方向上间隔设置。
第二支撑部152设于第一支撑部151背离第二承载部132的一侧,并设置于第一支撑部151的内环沿。电路板600装配于第二支撑部152上。优选地,第二支撑部152可以呈环形设置,电路板600设于第二支撑部152的环形中空区域,并与第二支撑部152装配连接。
其中,第二支撑部152上可以设置有螺柱,而电路板600上可以设置有螺钉,使得电路板600可以通过螺钉与第二支撑部152固定连接。当然,在其他实施例中,第二支撑部152也可以通过如焊接、卡接以及粘接等装配方式与电路板600固定连接。
优选地,电路板600和第一支撑部151在X方向上间隔设置。
进一步地,第一减速机构200可以与动力机构400连接,并被配置为与动力机构40相联动。第一减速机构200装配于第二承载部132和支撑件150之间,并与电路板600间隔设置。其中,第一减速机构200可以包括主动件210、从动件220以及固定件230,主动件210被配置为用于形成第一减速机构200的第一输入端201,并与驱动机构400连接,在动力机构400的驱动下转动。从动件220被配置为用于形成第一减速机构200的第一输出端202,并与主动件210相联动,以在主动件210的作用下转动,且主动件210的转速大于从动件220的转速,即第一减速比可以为主动件210和从动件220的转速的比值。固定件230被配置为用于定位第一减速机构200的位置。
如前述,第一减速机构200可以为谐波减速器,即主动件210可以为谐波减速器的波发生器,从动件220可以为谐波减速器的柔轮,固定件230可以为谐波发生器的钢轮。谐波减速器未装配前,柔轮及其内孔呈圆形,当波发生器装入柔轮的内孔后,由于波发生器的径向长度在周向上呈变化形态即波发生器的圆周面投影不是等径圆,柔轮被波发生器的挤压撑成类似于呈椭圆形态,使得柔轮在椭圆的长轴方向与固定的钢轮啮合,柔轮在椭圆的短轴方向与固定的钢轮分离。
其中,钢轮即固定件230可以为具有内齿的环状结构体,柔轮即从动件220可以为具有外齿且可以发生形变的薄壁圆筒状结构体。进一步地,固定件230的内齿数量大于从动件220的外齿数量。
由于谐波减速器的钢轮处于固定状态,在波发生器转动时,柔轮随着波发生器发生转动,柔轮在转动过程中,柔轮与钢轮啮合、分离的位置不断发生变化,柔轮的一个齿从与钢轮的一个齿啮合到再一次与钢轮上的这个齿相啮合时,柔轮刚好旋转一周,而此时波发生器旋转了多周。
即当从动件220旋转一周时,主动件210旋转多周,主动件210的转速大于从动件220的转速。主动件210旋转的周数与从动件220旋转的周数之比即为谐波减速器的减速比。当从动件220旋转的周数为1时,主动件210的旋转的周数为m(m>1),则谐波减速器的减速比为m:1。
具体而言,主动件210可以位于第一围壁1322围设形成的中空区域内,从动件220可以位于第一围壁1322围设形成的中空区域内,并可以环设于主动件210的外围,且从动件220可以在主动件210的作用下运动,固定件230环设于从动件220的外围并装配于第一围壁1322上。其中,固定件230可以呈环形,并具有内齿,固定件230固定装配于第一围壁1322的内侧。从动件220可以呈环形,并具有外齿,且从动件220的外齿数量小于固定件230的内齿数量。
如前述,第一围壁1322在轴向X上的高度可以高于第二围壁1323在轴向X上的高度,第一围壁1322在轴向X上凸出于第二围壁1323的部分设有限位部1303,即限位部1303设于第一围壁1322背离承载板1321的一端,该限位部1303用于装配固定件230,并用于对固定件230在轴向X上进行限位。其中,限位部1303大致呈环形台阶状。
从动件220可以包括在轴向X上依次设置的第一从动部221、第二从动部222、以及连接第一从动部221和第二从动部222的从动连接部223。第一从动部221可以呈环形,并具有用于与固定件230啮合的外齿。第二从动部222位于第一从动部221靠近电路板600的一侧,从动连接部223设于第一从动部221和第二从动部222之间。其中,第一从动部221在轴向X上投影于电路板600上的投影环绕于第二从动部222在轴向X上投影于电路板600上的投影的外围,以此在从动连接部223在轴向X上的相背两侧分别形成台阶状的限位结构。
进一步地,第一减速机构200还可包括设于主动件210和从动件220之间的第一轴承240、以及设于从动件220和支撑件150之间的第二轴承250,即第一轴承240可以围绕主动件210设置,且在垂直于轴向X的方向上分别与主动件210和从动件220过盈配合装配。第二轴承250可以围绕于从动件220设置,且在垂直于轴向X的方向上分别与从动件220和支撑件150过盈配合装配。优选地,第一轴承240设于第一从动部221和主动件210之间,第二轴承250设于第二从动部222和第二支撑部152之间。
第一轴承240和第二轴承250分别抵触于从动连接部223,以用于对第一轴承240和第二轴承250在轴向X上进行限位。即主动件210与从动件220间隔设置,二者之间通过第一轴承240实现装配。从动件220与支撑件150间隔设置,二者之间通过第二轴承250实现装配。
可以理解的,主动件210上可以设有与从动连接部223相对应的凸起结构,以与从动连接部223相配合在轴向X上对第一轴承240进行限位。第二支撑部152上可以设有与从动连接部223相对应的台阶状结构,以与从动连接部223相配合在轴向X上对第二轴承250的相对两侧进行限位。其中,第一轴承240为柔性轴承以在主动件210的作用下带动从动件220转动。当然,在其他实施例中,第二轴承250还可以为法兰轴承,使得第二轴承250具有朝向从动件220或者第二支撑部152凸出设置的法兰边,该法兰边可以搭接至从动件220或者第二支撑部152,从而对从动件220或者第二支撑部152在轴向X上进行限位。
在一实施例中,第二从动部222可以具有弯折连接的第一从动壁2221和第二从动壁2222,第一从动壁2221与电路板600相对且间隔设置,第二从动壁2222设于第一从动壁2221背离电路板600的一侧,并连接与从动连接部223。第二轴承250可以围绕于第二从动壁2222设置。
其中,第一从动壁2221可以呈环形,第二从动壁2222设于第一从动壁2221的外环沿。主动件210的一端可以自第一从动壁2221的环形中空区域露出并与电路板600相对设置。
在一实施例中,主动件210可包括主体部211、设于主体部211相对两侧的第一凸部212和第二凸部213,主体部211被配置为用于与第一轴承240过盈配合装配,第一凸部212设于主体部211靠近电路板500的一侧,第二凸部213设于主体部211背离电路板500的一侧。其中,第一凸部211、第二凸部212以及从动件220同轴设置。其中,第一凸部212自主体部211延伸至第一从动壁2221的中空区域,并与第一从动壁2221间隔设置,第二凸部212被配置为用于与动力机构400连接。
进一步地,检测机构500具有第一检测组件510以及第二检测组件520,第一检测组件510部分设于第一输入端201即主动件210,并被配置为用于检测动力机构400的运动信息。第二检测组件520部分设于第一输出端202即从动件220,并被配置为用于检测第二输出端302的运动信息。其中,第二输出端302可以理解为形成驱动装置10的输出端。
第一检测组件510和第二检测组件520均与电路板600电性连接,如此设置,可以利用第一检测组件510和第二检测组件520形成对驱动装置10的输入输出的位置、转速等运动信息进行检测,使得电路板600可以通过对比第一检测组件510和第二检测组件520检测得到的运动信息,对驱动装置10的输入输出的位置、转速等运动进行更为精准的控制,提升了驱动装置10的传动精度和可控性。
可以理解的,运动信息可以是指第二减速机构300的输出端以及动力机构400在转动过程中的转动角度、转动速度以及转动位置等信息。
具体而言,第一检测组件510可以包括设于主动件210上的第一被检测件511、以及设于电路板600上的第一检测件512,第一检测件512与第一被检测件511相对设置。其中,第一检测件512被配置为可以通过第一被检测件511获取动力机构400的运动信息。
其中,第一被检测件511设于主动件210上,并可在主动件210的带动下与主动件210发生同步运动。第一检测件512设于电路板600上,且可以根据第一被检测件511的运动检测得到动力机构400的运动信息。例如,第一被检测件511可以直接固设于主动件210靠近电路板600的一侧,并自第一从动壁2221的中空区域外露以与第一检测件512相对。又如,第一凸部212上设置有安装槽2101,第一被检测件511至少部分嵌设于安装槽2101内,并自第一从动壁2221的中空区域外露以与第一检测件512相对,使得第一被检测件511可以与主动件210发生同步运动。第一检测件512可以设于电路板600靠近主动件210的一侧,使得第一检测件512可以通过第一被检测件511的运动检测得到主动件210的运动信息,也即是动力机构400的运动信息。
其中,第一检测组件510可以为编码器组件,即第一被检测件511可为码盘,第一检测件512可为读头,由此通过第一检测件512来读取第一被检测件511的位置变化,并基于此获取主动件210的运动信息。
第二检测组件520可以包括设于从动件220上的第二被检测件521、以及设于电路板600上的第二检测件522,第二检测件522与第二被检测件521相对设置。其中,第二检测件522被配置为可以通过第二被检测件521获取第二减速机构300的输出端的运动信息。
其中,第二被检测件521设于从动件220上,并可在从动件220的带动下与从动件220发生同步运动。第二检测件522设于电路板600上,且可以根据第二被检测件521的运动检测得到第二减速机构300的输出端的运动信息。例如,第二被检测件521可以固设于从动件220靠近电路板600的一侧,使得第二被检测件521可以与电路板600相对设置并可与从动件220发生同步运动。第二检测件522可以设于电路板600靠近从动件220的一侧,使得第二检测件522可以通过第二被检测件521的运动检测得到从
动件220的运动信息,也即是第二减速机构300的输出端的运动信息。
如前述,第一从动壁2221可以呈环形,第二从动壁2222设于第一从动壁2221的外环沿,第二被检测件521也可以呈环形并环绕于第一从动壁2221的内环沿。优选地,第一从动壁2221的内环沿上设有装配部2102,第二被检测件521套设于装配部2102上实现装配。
其中,第二检测组件520可以为编码器组件,即第二被检测件521也可以是码盘,第二检测件522可以是读头,由此通过第二检测件522来读取第二被检测件521的位置变化,并基于此获取从动件220的运动信息,也即是第二减速机构300的输出端的运动信息。
优选地,如前述在第一输出端202旋转了1周时,第二输出端302旋转了n周,由此通过检测第一输出端202在1周内的任意角度位置即可获取第二输出端302的角度位置,使得第二输出端202的转动量程可以为0~n*360°。基于此,第二检测组件520可以为单圈绝对值编码器。
在其他实施例中,第一检测组件510和第二检测组件520也可以采用光编码器和磁编码器组合的方案来获取相应的运动信息,不作赘述。
即本申请实施例基于驱动装置10的控制需求,使用双编码器分别检测获得驱动装置10的输入端和输出端的转速、位置等运动信息,并通过获取的驱动装置10的输入端和输出端的运动信息来完成对驱动装置10的精确控制。例如,第一检测组件510以单对磁极磁编码器、第二检测组件520以双通道磁环编码器为例,通过第一检测组件510和第二检测组件520配合可以构成机械式多圈编码器,且相对于传统机械式多圈编码器可以避免多级齿轮传动而存在回差累积的问题、多级齿轮传动需要的安装空间较大和传递效率低的问题。
举例说明:从动件220的外齿数为Z1=80,固定件230的内齿数为Z2=81,则第一减速机构200即谐波减速器的传动比为(Z1-Z2)/Z1=-1/80,即主动件210旋转80圈,从动件220旋转1圈,第一减速机构200的第一减速比为80:1。假设第二减速机构300的传动比为-1/10,即第二减速机构的第二减速比为10:1,则通过计算可知主动件210转动80圈,从动件220旋转1圈,第二输出端302旋转8圈。从动件220转动圈数与第二输出端302转动圈数具有固定的比例关系。虽然第一检测组件510和第二检测组件520可以检测到的角度范围均为0~360°,但对于第二输出端302来说却可以检测到的角度量程0~8*360°,即可以实现机械式多圈编码器的检测效果。
进一步地,可以定义从动件220的外齿数为Z1=M,固定件230的内齿数为Z2=M+a,a≥1,则第一减速机构200的传动比为(Z1-Z2)/Z1=-a/M,即第一减速比为M/a,当a=1时,M=m。
定义第二减速比为n/1,其中,M/a>n/1,M>n>1。在从动件220旋转1圈时,主动件210旋转了M/a圈,第二输出端302旋转了n圈,此时,通过第二检测组件520检测从动件220在1周内的任意角度位置,即可获得第二输出端302在0~n*360°的量程内的任意角度位置。
基于谐波减速器的减速机构可获得较大传动比,相对应地可获得较大的量程。由于从动件220与固定件230的内啮合传动方式,故相较于展开式齿轮传动的方式更节省空间。此外第一检测组件510和第二检测组件520还可以获取驱动装置10的转速等信息。
可以理解的,本申请实施例在获取运动信息之前需要对驱动装置10中的输入端、输出端的位置、检测机构500的初始对应位置进行标定。
请参阅图8至图10,图8是图1实施例中驱动装置10沿A-A向的截面结构示意图,图9是图8实施例中第二减速机构300的结构拆分示意图,图10是图8实施例中动力机构400结构拆分示意图。
第二减速机构300可以设置于第一容置腔101内,且第二减速机构300可以用于增大驱动装置10的输出力矩。第二减速机构300可以包括:传动组件310和行星架320。其中,传动组件310可以分别与壳体组件100和动力机构400连接,并被配置为与动力机构400相联动,且传动组件310可以是所述第二减速机构300的第二输入端301。行星架320可以与传动组件310连接,并可在传动组件310的带动下进行转动,且行星架320可以是第二减速机构300的第二输出端302。
当然,在其他实施方式中,可以通过在行星架320上装配诸如输出轴等结构件来形成第二减速机构300的输出端。在本实施例中,第二减速机构300可以采用NW行星减速器方案(N表示内啮合,W表示外啮合),使得第二减速机构300不仅可以增大驱动装置10的输出力矩,还可以使得第二减速机构300的传动比分配更加合理,增大第二减速机构300的强度,延长第二减速机构300的使用寿命。
传动组件310可以与动力机构400连接,且传动组件310可以用于增大驱动装置10的输出力矩。传动组件310可以包括:主齿轮311、内齿轮312以及双联齿轮313。其中,主齿轮311可以设置于第一容置腔101内,且主齿轮311可以与动力机构400连接,并可在动力机构400的驱动下以轴向X为转轴方向进行转动。内齿轮312也可以设置于第一容置腔101内,且内齿轮312还可以围绕主齿轮311设置。双联齿轮313可以与行星架320连接,且双联齿轮313还可以分别与主齿轮311和内齿轮312啮合,使得双联齿轮313可以在主齿轮311的带动下相对于内齿轮312滚动,进而带动行星架320进行转动。
其中,主齿轮311可以是第二减速机构300的第二输入端301。
进一步地,主齿轮311可以设置于内侧壁113背离外侧壁112的一侧,且主齿轮311还可以穿设于行星架320,使得主齿轮311可以在动力机构400的驱动下相对于行星架320转动。例如,主齿轮311的一端可以与行星架320转动连接,另一相对端可以与动力机构400连接,且主齿轮311的中间区域可以设置有相应的齿部,用于与双联齿轮313相啮合,以带动双联齿轮313转动。内齿轮312可以围绕主齿轮311设置,且内齿轮312可以与第一端盖110的内侧壁113连接。同时,由于内齿轮312与双联齿轮313相啮合,为了避免内齿轮312在双联齿轮313的带动下发生周向运动,内齿轮312可以固设于内侧壁113上,从而限制内齿轮312的周向运动,使得双联齿轮313能够相对于内齿轮312滚动。例如,内侧壁113可以围绕内齿轮312设置,且内齿轮312和内侧壁113之间可以设置有限位销钉,该限位销钉可以分别与内齿轮312和内侧壁113相干涉,以限制内齿轮312的周向运动。双联齿轮313可以设置于主齿轮311和内齿轮312之间,且双联齿轮313可以分别与主齿轮311和内齿轮312相啮合。如此,当主齿轮311在动力机构400的驱动下转动时,双联齿轮313则可在主齿轮311的带动下转动。又由于内齿轮312是固设于内侧壁113上的,因此双联齿轮313会相对于内齿轮312发生滚动,从而带动行星架320进行转动。
本申请实施例通过设置主齿轮311与双联齿轮313组成外啮合,内齿轮312与双联齿轮313组成内啮合,从而形成NW行星减速器的方案,不仅可使得驱动装置10的输出力矩更大,还可以使得第二减速机构300的传动比分配更加合理,以提高主齿轮311、内齿轮312以及双联齿轮313的强度,延长主齿轮311、内齿轮312以及双联齿轮313使用寿命。
行星架320可以是第二减速机构300的输出端,且行星架320可以设置于第一容置腔101内,与双联齿轮313连接,并可在双联齿轮313的带动下转动。行星架320可以设置于内侧壁113背离外侧壁112的一侧,且行星架320可以包括:第一行星架321、第二行星架322、转轴323以及固定件324。其中,第一行星架321和第二行星架322可以相对且间隔设置,使得第一行星架321和第二行星架322之间具有间隔空间,以安装双联齿轮313。转轴323可以设置于第一行星架321和第二行星架322之间,且转轴323还可以分别与第一行星架321和第二行星架322连接。双联齿轮313可以与转轴323连接,并可通过转轴323带动第一行星架321和第二行星架322进行转动。固定件324可以插设于第一行星架321和第二行星架322,用于锁紧固定第一行星架321和第二行星架322,以保持第一行星架321和第二行星架322的转动一致性。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。
进一步地,第一行星架321可以设置于第二行星架322背离第二端盖120的一侧,且第一行星架321可以呈圆环状设置,使得主齿轮311可以穿设于第一行星架321。其中,第一行星架321和主齿轮311之间还可以设置有第三轴承330,且第三轴承330可以围绕主齿轮311设置,以提高第一行星架321和主齿轮311转动的同轴度。同时,第三轴承330还可以是法兰轴承,使得第三轴承330可以具有朝向第一行星架321凸出设置的法兰边,且该法兰边还可以搭接至第一行星架321靠近第二行星架322的一侧,从而对第一行星架321在轴向X上的位移进行限制。相应地,主齿轮311可以设置有第一限位件3111,且第一限位件3111可以围绕主齿轮311设置,并设置于第三轴承330背离第一行星架321的一侧,以对第三轴承330在轴向X上的位移进行限制,避免第三轴承330发生轴向窜动。例如,第一限位件3111可以是卡簧,且第一限位件3111可以锁紧于主齿轮311上,以便于第一限位件3111对第三轴承330进行限位。当然,第一限位件3111也可以不仅限于为卡簧,仅需第一限位件3111能够对第三轴承330起到限位作用即可。在本实施例中,第一行星架321可以是第二减速机构300的第二输出端302,也即是整个驱动装置10的输出法兰盘,其可以用于与驱动装置10外的其他部件连接,以带动其他部件实现如升降、旋转或者是振动等功能。
为了进一步提升第一行星架321的转动均匀性,避免第一行星架321在轴向X上位移,限位板140还可以围绕第一行星架321设置,且限位板140和第一行星架321之间可以设置有第四轴承160。其中,第四轴承160可以是交叉滚子轴承,且限位板140的法兰边可以搭接至第四轴承160背离第一行星架321的一侧。同时,第一行星架321也可以设置有朝向第四轴承160凸出的法兰边,且该法兰边可以搭接至第四轴承160靠近第二行星架322的一侧。如此,可以先通过限位板140对第四轴承160在轴向X上的位移进行限制,再通过第四轴承160对第一行星架321在轴向X上的位移进行限制,从而实现对第一行星架321的限位,避免第一行星架321在转动过程中沿轴向X位移。
第二行星架322可以设置于第一行星架321靠近第二端盖120的一侧,且第二行星架322也可以呈圆环状设置,以与第一行星架321相适配,从而便于主齿轮311穿设于第二行星架322。其中,第二行
星架322可以设置有朝向第一行星架321凸出设置的凸台3221,第一行星架321可以设置于凸台3221背离第二行星架322的一侧,使得第一行星架321和第二行星架322可以相对且间隔设置,从而为双联齿轮313的安装提供空间。相应地,由于第一行星架321仅与凸台3221相连接,因此固定件324则可以插设于第一行星架321和凸台3221,以锁紧第一行星架321和第二行星架322,保证第一行星架321和第二行星架322的转动一致性。例如,固定件324可以是螺钉,而第一行星架321和凸台3221可以设置有对应的螺钉孔,从而实现第一行星架321和第二行星架322的固定连接。此外,为了进一步地提高第一行星架321和第二行星架322连接的稳固性,凸台3221的数量可以为三个,且三个凸台3221可以均匀的分布在第二行星架322靠近第一行星架321的一侧。相应地,固定件324的数量也可以为三个,且一个固定件324可以插设于一个凸台3221。当然,凸台3221的数量也可以不仅限于三个,其也可以是两个、四个或者五个,仅需固定件324的数量能够与凸台3221相匹配即可。
转轴323可以设置于第一行星架321和第二行星架322之间,且转轴323还可以分别与第一行星架321和第二行星架322连接,使得双联齿轮313可以通过转轴323带动第一行星架321和第二行星架322进行转动。转轴323的一端可以与第一行星架321连接,另一相对端可以与第二行星架322连接。双联齿轮313可以套设于转轴323上,并可在主齿轮311的带动下相对于转轴323进行转动。由于双联齿轮313还与内齿轮312相啮合,因此,当双联齿轮313相对于转轴323转动时,其还会相对于内齿轮312进行滚动,使得双联齿轮313可以通过转轴323带动第一行星架321和第二行星架322进行转动。其中,转轴323可以插设于第一行星架321和第二行星架322,且转轴323还可以与第二行星架322过盈配合。如此设置,在进行装配时,可以先将双联齿轮313装配至转轴323上,然后再将第一行星架321与转轴323对准进行连接,以提高装配的便利性。此外,转轴323的数量可以为三个,且三个转轴323可以均匀的分布于第二行星架322靠近第一行星架321的一侧。相应地,双联齿轮313的数量也可以为三个,且一个双联齿轮313可以套设于一个转轴323。当然,转轴323的数量也可以不限于三个,仅需双联齿轮313的数量与转轴323的数量相匹配即可。
动力机构400可以设置于第一容置腔101内,且动力机构400可以用于为驱动装置10提供驱动力。动力机构400可以包括定子组件410和转子组件420。其中,定子组件410可以设置于外侧壁112和内侧壁113之间,且定子组件410还可以与电路板600电性连接,并可在通电后产生磁力。转子组件420可以设置于定子组件410和外侧壁112之间,且转子组件420还可以与主齿轮311连接,并可在定子组件410的磁力驱动下转动,从而带动主齿轮311转动。在本实施例中,检测机构500可以通过检测转子组件420的运动信息,来获取动力机构400的运动信息,使得电路板600可以通过比对动力机构400的运动信息和第二减速机构300的输出端的运动信息,对驱动装置10输入输出的位置进行更为精准的控制,提升驱动装置10的传动精度和可控性。
定子组件410可以与转子组件420相对设置,且定子组件410通电后产生磁力以驱动转子组件420进行转动,从而为驱动装置10提供驱动力。定子组件410可以包括:金属件411和线圈412。其中,金属件411可以是由多层硅钢片层叠设置而成,且金属件411可以设置于外侧壁112和内侧壁113之间,并与内侧壁113靠近外侧壁112的一侧连接,以固定在第一容置腔101内。例如,金属件411可以通过粘接或卡接的方式与内侧壁113固定连接。线圈412可以缠绕于金属件411上,且线圈412通电后可变成电磁铁以产生磁力,驱动转子组件420带动主齿轮311进行转动,从而为驱动装置10提供驱动力。在本实施例中,金属件411和线圈412可以与底壁111上的散热片114相对且相邻设置,以便于散热片114对线圈412通电后产生的热量进行传导。
转子组件420可以设置于金属件411和外侧壁112之间,并与金属件411和外侧壁112相对且间隔设置,以便于转子组件420进行转动。转子组件420可以包括:转动架421、永磁体422以及固定板423。
转动架421可设于承载件130背离第二端盖120的一侧,且转动架421可以与主齿轮311连接。固定板423设于转动架421背离承载件130的一侧,并环设于转动架421的外周缘。永磁体422设于固定板423上,并与线圈412相对设置,且永磁体422可在线圈412的磁力驱动下,带动转动架421转动,进而利用转动架421带动主齿轮311转动。其中,永磁体422可设有多个,并以阵列方式等间距地设于固定板423上。进一步地,转动架421还可与主动件210连接,进而可利用转动架421带动主动件210转动。优选地,主齿轮311和主动件210分别与转动架421的相对两侧装配连接,以利用转动架421带动主齿轮311和主动件210同步转动,进而可利用第一检测组件510检测动力机构400的运动信息。
结合参阅图3,转动架421可以包括:第一固定部4211、承载部4212以及第二固定部4213。第一固定部4211被配置为用于连接主齿轮311和主动件210,以便于转动架421带动主齿轮311和主动件210进行同步转动。其中,第一固定部4211可以围绕主齿轮311设置,并与主齿轮311过盈配合,以便于转动架421带动主齿轮311进行转动。第一固定部4211还可以围绕于主动件210的第二凸部213设置,并与主动件210过盈配合,以便于转动架421带动主动件210进行转动。
当然,在其他实施方式中,第一固定部4211也可以通过其他固定方式与主齿轮311、主动件210进行连接,仅需第一固定部4211能够带动主齿轮311、主动件210进行同步转动即可。
第一固定部4211还可以设置于第二行星架322和主齿轮311之间,且第一固定部4211与第二行星架322之间还可以设置有第五轴承340,且第五轴承340可以围绕第一固定部4211设置,以提高主齿轮311、转动架421以及行星架320的转动同轴度。同时,第五轴承340也可以是法兰轴承,使得第五轴承340可以具有朝向第二行星架322凸出设置的法兰边,且该法兰边还可以搭接至第二行星架322背离第一行星架321的一侧,从而对第二行星架322在轴向X上的位移进行限制。相应地,第一固定部4211可以设置有第二限位件42111,且第二限位件42111可以围绕第一固定部4211设置,并设置于第五轴承340背离第一行星架321的一侧,以对第五轴承340在轴向X上的位移进行限制。例如,第二限位件42111可以是第一固定部4211上凸出设置而形成的凸沿,第五轴承340可以设置于凸沿靠近第二行星架322的一侧,从而利用该凸沿对第五轴承340进行限位。
当然,在其他实施方式中,第二限位件42111也可以是卡簧,仅需第二限位件42111能够对第五轴承340起到限位作用即可。
承载部4212可以设置于第一固定部4211背离主齿轮311的一侧,且承载部4212在垂直于轴向X的平面上的投影覆盖于定子组件410在垂直于轴向X的平面上的投影。其中,承载部4212可以环绕于第一固定部4211的外周缘设置,且承载部4212上可以开设有至少一个通孔42121,该通孔42121可以连通第一容置腔101和第二容置腔102,从而可以利用通孔42121进一步提升驱动装置10的散热效率。
第二固定部4213可以设置于承载部4212的外周沿上,且第二固定部4213还可以位于金属件411和外侧壁112之间,其可以用于安装固定板423,使得永磁体422能够与金属件411上的线圈412相对设置。第二固定部4213可以设置于承载部4212背离承载件130的一侧。在本实施例中,第一固定部4211、承载部4212以及第二固定部4213均呈环状设置,且第二固定部4213还可以围绕金属件411设置,以便于永磁体422与线圈412相对设置。同时,第一固定部4211、承载部4212以及第二固定部4213可以是一体结构,三者可以通过相应的一体成型工艺而形成,以提高转动架421的结构强度。此外,固定板423和永磁体422可以通过贴附双面胶的方式进行固定连接。当然,在一些实施例中,固定板423和永磁体422也可以通过其他固定方式进行连接。
如前述,承载板1321的中部区域设有装配孔1302,第一固定部4211还可以设置于承载件130和主动件210之间,即第一固定部4211的一端延伸至装配孔1302内以与主动件210连接。第一固定部4211与承载件130之间还可以设置有第六轴承350,且第六轴承350可以围绕第一固定部4211设置,以提高主动件210、转动架421以及行星架320的转动同轴度。同时,第六轴承350也可以是法兰轴承,使得第六轴承350可以具有朝向承载件130凸出设置的法兰边,且该法兰边还可以搭接至承载件130靠近第一行星架321的一侧,从而对第六轴承350在轴向X上的位移进行限制。相应地,第一固定部4211可以设置有第三限位件42112,且第三限位件42112可以围绕第一固定部4211设置,并设置于第六轴承350靠近第一行星架321的一侧,以对第六轴承350在轴向X上的位移进行限制。例如,第三限位件42112可以是第一固定部4211上凸出设置而形成的凸沿,第六轴承350可以设置于凸沿背离第二行星架322的一侧,从而利用该凸沿对第六轴承350进行限位。进一步地,第一固定部4211与主动件210装配连接的端部设有限位槽42113,主动件210的第二凸部213插设于该限位槽42113以与第一固定部4211实现过盈配合,以便于转动架421带动主动件210进行转动。限位槽42113还可以对主动件210在轴向X上的位移进行限制。
当然,在其他实施方式中,第三限位件42112也可以是卡簧,仅需第三限位件42112能够对第六轴承350起到限位作用即可。
进一步地,由于电路板600设置于第二容置腔102内,动力机构400设置于第一容置腔101内,且线圈412与电路板600电性连接。为了避免连接线圈412和电路板600的导线与转子组件420相接触而影响转子组件420的转动,本申请实施例中的定子组件410进一步还可以包括引出线413和线卡414,线卡414设于转子组件420和外侧壁112之间,以与外侧壁112配合形成可供引出线413穿过的通道,引出线413穿过通道的一端连接线圈412、另一相对端连接电路板600。
例如,引出线413的一端位于定子组件410背离承载件130的一侧,并与该侧的线圈412连接。引出线413自与线圈421连接的位置开始依次穿过底壁111与定子组件410之间的间隙、线卡414与外侧壁112之间的通道、承载件130的镂空区域1301、支撑件150与侧壁122之间的间隙而到达电路板600,进而实现与电路板600的电性连接。
其中,引出线413可以根据需要设置导线的数量,如可以为一根导线,也可以为两根导线或三根导线,不作具体限制。
通过上述方式,当转子组件410转动时,可以同步带动主齿轮311和主动件210转动,此时设于主
动件210和电路板600上的第一检测组件510可以检测得到转子组件410即驱动装置10的输入端的运动信息。而主齿轮311转动可以带动行星架320转动,即实现驱动装置10的输出端的力矩输出,与此同时,主动件210转动可以带动从动件220转动,并经由第二检测组件520可以检测得到从动件220的运动信息,然后基于第一减速机构200和第二减速机构300的减速比即可获得行星架320驱动装置10的输出端的运动信息,即从动件220的运动信息可以表征行星架320驱动装置10的输出端的运动信息。如此,电路板600可以通过比对从动件220和主动件210的运动信息,实现对驱动装置10的输入输出进行更为精准的控制,提升驱动装置10的传动精度和可控性。
在实际装配过程中,首先将第四轴承160与第一端盖110的端面孔同轴装配,第一端盖110的轴肩对第四轴承160进行轴向X限位;将引出线413的一端连接在电路板600上、另一端连接在线圈421上;接着将定子组件410与第一端盖110同轴装配,并且由第一端盖110的内侧壁113对定子组件410进行限位;接着将内齿轮312与定子组件410的内孔同轴装配,两者为过盈配合,并且内齿轮312由第一端盖110的内侧壁113进行限位和定向,保证内齿轮312不发生轴向窜动和周向转动。接下来装配第二减速机构300,在第二行星架322上均布安装多个转轴323,然后对应多个转轴323的位置同轴安装多个双联齿轮313,接着将第三轴承330与第一行星架321同轴安装,且将第三轴承330安装到第一行星架321的孔中,第一行星架321的轴肩对第三轴承330进行限位,然后将已经安装第三轴承330的第一行星架321与已经安装转轴323和双联齿轮313的第二行星架322进行对位安装,通过固定件324将第一行星架321和第二行星架322实现定位安装以完成第二减速机构300的装配。然后将第二减速机构300装配于第一端盖110上,一方面将第一行星架321安装到第四轴承160的轴承孔中,并将第一行星架321的轴肩与第四轴承160内圈下端面接触配合,对第一行星架321进行限位,使其不会发生轴向窜动,另一方面将双联齿轮313在周向上与内齿轮312进行配合,双联齿轮313的齿与内齿轮312的齿正确啮合。接下来安装主齿轮311和转子组件420,主齿轮311与转子组件420要保证同步转动,即将主齿轮311与转子组件420同轴装配,将主齿轮311的一轴端过盈安装在转动架421的孔中,并通过转动架421的轴肩对主齿轮311进行轴向定位,第五轴承340在装配主齿轮311之前先与转动架421同轴装配,并通过转动架421的轴肩对第五轴承340进行限位。将装好的主齿轮311、转子组件420作为整体与第二行星架322同轴装配,一方面将主齿轮311的齿与双联齿轮313的齿均正确啮合,另一方面将主齿轮311的上轴端与第三轴承330的轴孔进行装配,第五轴承340与第二行星架322的孔同轴装配。然后将引出线413从承载件130的镂空区域1301引出再连接到电路板600上;接着将第六轴承350安装到转动架421的下轴端,通过转动架421的轴肩对第六轴承350进行限位,然后将承载件130与第六轴承350同轴装配,同时承载件130的端面与第一端盖110配合,至此完成第二减速机构300以及动力机构400的装配。
接下来将主动件210与第一轴承240同轴装配,然后在将从动件220的内孔安装在第一轴承240外圈,第一轴承240由主动件210、从动件220进行限位。固定件230与承载件130过盈装配在一起,固定件230不发生转动,然后将第二轴承250的内圈与从动件220的输出端外圈装配,第二轴承250可以为标准轴承、深沟球或其他薄型轴承。
然后将第一被检测件511与主动件210的一端轴孔同轴过盈装配固定、粘接固定或者其他固定方式进行固定,将第二被检测件521与从动件220输出轴端过盈装配固定、粘接固定或者其他固定方式进行固定。将支撑件150安装固定在承载件130上,同时完成对第二轴承250的限位,最后将设置有第一检测件512、第二检测件522的电路板600固定安装在支撑件150上。最后将主动件210的一轴端过盈安装在转动架421的轴孔中,以使得主动件210和转动架421同步转动,然后将第二端盖120安装在承载件130上,如此完成驱动装置10的装配。
本申请实施例提供的驱动装置,通过设置动力机构分别与第一减速机构的第一输入端和第二减速机构的第二输入端连接,使得第一输入端和第二输入端能够发生同步转动,且第一输入端和第二输入端的运动信息可以表征驱动装置的输入端的运动信息。进一步通过将第二减速机构的第二输出端配置为用于形成驱动装置的输出端,使得驱动装置可以利用第二减速机构增大输出力矩,以获得更强的驱动力。同时,又通过第一减速机构和设于第一减速机构上的检测机构,检测机构可分别获取主动件即第一输入端和从动件即第一输出端的运动信息,基于第一减速机构和第二减速机构的减速比的对应关系可获取第二减速机构的第二输出端的运动信息,即获取驱动装置的输出端的运动信息,使得驱动装置可以通过比对第一输入端和第一输出端的运动信息,对驱动装置输入输出的位置进行更为精准的控制,提升了驱动装置的传动精度和可控性。
请参阅图11,图11是本申请一些实施例中机器人900的结构示意框图,其中,机器人900可以为在控制系统的控制下,通过前述实施例中的驱动装置10可以完成行走、跑、跳等功能的机器设备。比较典型的一种机器人结构例如为机器狗,也即一种包括机器人主体以及四条腿的机器人结构,当然,本
实施例中的机器人也可以为包括两条、三条或者多条腿的结构,甚至可以是包括一条腿的结构,此处不做具体限定。
机器人900大致包括机器人主体910、以及设于机器人主体910上的控制装置920、信息采集装置930、电源940和指引装置950。其中,机器人主体910可实现行走、跑等移动形态。控制装置920可设于机器人主体910的内部或外部,以用于控制机器人900进行移动,控制装置920还可用于控制信息采集装置930、电源940和指引装置950等的工作状态。可以理解的,控制装置920可以为集成有数据转换模块、接口模块、处理模块等模块的控制电路板,数据转换模块可通过接口模块分别与信息采集装置930和指引装置950连接。接口模块例如可以为满足USB 2.0规范、USB3.0规范及USB3.1规范的USB接口,可包括:Micro USB接口或USB TYPE-C接口。此外,接口模块还可以为信号接口。甚至接口模块还可以为其他任意类型的能够用于串行数据传输的串行接口。数据转换模块用于对通过接口模块从信息采集装置930采集到的数据进行串行化转换,并将转换后的串行数据通过接口模块输出,以对转换后的串行数据进行处理,例如传输给指引装置950或者外部设备等。数据转换模块还用于对通过接口模块接收的串行数据进行转换,以将接收的串行数据转换为与接口模块的接口协议相匹配的接口数据,并将转换后的接口数据通过接口模块传输给指引装置950或者外部设备,以通过接口模块将转换后的接口数据进行输出。处理模块例如可以为应用处理器(Application Processor,AP),用于对接收的数据进行处理,并将处理后的数据(视频数据和/或音频数据)通过控制电路板进行输出。
可以理解的,处理模块例如可以为与机器人900配套的专用设备,或者处理模块还可以为配置有上述模块的电子设备(如智能手机、平板电脑等)。其中电子设备中的处理器(例如CPU或AP等)可以为上述处理模块,通过在电子设备中安装相应的应用程序,使得其处理器可以对通过控制装置920接收的数据进行相应的处理。
控制电路板例如可以被实施为ASIC(Application Specific Integrated Circuit,专用集成电路)数据整合处理芯片,或者还可以实现为FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)等。
信息采集装置930可包括音频数据采集模块、视频数据采集模块/图像数据采集模块及传感数据采集模块。信息采集装置930可通过接口模块与控制装置920连接,并将采集到的数据信息传输至控制装置920。
其中,音频数据采集模块例如可以包括麦克风及音频编解码器(Codec)。音频编解码器对通过麦克风采集到的数据进行音频编码。
视频数据采集模块/图像数据采集模块例如可以包括摄像头,如普通相机的镜头、IR(Infrared Ray,红外线)相机的IR镜头等。
传感数据采集模块例如可以包括接近传感器、姿态传感器以及加速度传感器等。接近传感器(例如第一FPC523上设置的距离传感器,)是代替限位开关等接触式检测方式,以无需接触检测对象进行检测为目的的传感器的总称。能检测对象的移动信息和存在信息转换为电气信号。感应型接近传感器的检测原理是通过外部磁场影响,检测在导体表面产生的涡电流引起的磁性损耗。在检测线圈内使其产生交流磁场,并检测体的金属体产生的涡电流引起的阻抗变化进行检测的方式。
姿态传感器是基于MEMS技术的高性能三维运动姿态测量系统。它包含三轴陀螺仪、三轴加速度计,三轴电子罗盘等运动传感器,通过内嵌的低功耗ARM处理器得到经过温度补偿的三维姿态与方位等数据。利用基于四元数的三维算法和特殊数据融合技术,实时输出以四元数、欧拉角表示的零漂移三维姿态方位数据。
加速度传感器是一种能够测量加速度的传感器。通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。
电源940可通过接口模块与控制装置920连接,用于为机器人900的运动提供电能,以及电源940还被配置为用于为控制装置920、信息采集装置930、以及指引装置950的工作提供电能。
指引装置950可通过接口模块与控制装置920连接,以在控制装置920的控制下执行相应的指引功能。
在一实施例中,机器人900还可包括存储装置960,该存储装置960设于机器人主体910内。存储装置960可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)和/或高速缓存存储单元,还可以进一步包括只读存储单元(ROM)。存储装置960还可以包括具有一组(至少一个)程序模块的程序/实用工具,这样的程序模块包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
在一实施例中,机器人900也可以与一个或多个外部设备(例如手机、电脑等)通信,还可与一个
或者多个使得用户能与该机器人900交互的设备通信,和/或与使得该机器人900能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口进行。并且,机器人900还可以通过网络适配器与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。应当明白,尽管图中未示出,可以结合机器人900使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
本申请实施例提供的驱动装置及具有该驱动装置的机器人,通过比对第一输入端和第一输出端的运动信息,对驱动装置输入输出的位置进行更为精准的控制,提升了驱动装置的传动精度和可控性,进而提升机器人的控制精度。
需要说明的是,术语“包括”和“具有”以及他们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设置固有的其他步骤或单元。
以上所述仅为本申请的部分实施例,并非因此限制本申请的保护范围,凡是利用本申请说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (20)
- 一种驱动装置,其特征在于,所述驱动装置包括:动力机构,被配置为用于形成所述驱动装置的输入端;第一减速机构,具有第一输入端、第一输出端、第一减速比;第二减速机构,具有第二输入端、第二输出端、第二减速比;以及检测机构,具有第一检测组件以及第二检测组件;其中,所述第一减速比大于所述第二减速比,所述动力机构分别与所述第一输入端和所述第二输入端连接,以使得所述第一输入端和所述第二输入端能够发生同步转动;所述第一检测组件部分设于所述第一输入端,并被配置为用于检测所述动力机构的运动信息;所述第二检测组件部分设于所述第一输出端,并被配置为用于检测所述第二输出端的运动信息;所述第二输出端被配置为用于形成所述驱动装置的输出端。
- 根据权利要求1所述的驱动装置,其特征在于,所述第一输出端旋转1周时,所述第一输入端旋转了m周,所述第二输出端旋转了n周;其中,m>n>1,所述第二输出端的转动角度的量程为0~n*360°。
- 根据权利要求1所述的驱动装置,其特征在于,所述第一检测组件包括设于所述第一输入端上的第一被检测件、以及与所述第一被检测件相对设置的第一检测件,所述第一检测件被配置为可通过所述第一被检测件获取所述动力机构的运动信息;所述第二检测组件包括设于所述第一输出端上的第二被检测件、以及与所述第二被检测件相对设置的第二检测件,所述第二检测件被配置为可通过所述第二被检测件获取所述第二输出端的运动信息。
- 根据权利要求3所述的驱动装置,其特征在于,所述第二检测组件为单圈绝对值编码器。
- 根据权利要求3所述的驱动装置,其特征在于,所述第一减速机构与所述动力机构连接,并被配置为与所述动力机构相联动;所述第一减速机构包括主动件和从动件,所述主动件被配置为用于形成所述第一输入端,并与所述动力机构连接以及用于装配所述第一被检测件;所述从动件被配置为用于形成所述第一输出端,并用于装配所述第二被检测件;其中,所述第一减速比为所述主动件与所述从动件的转速的比值;所述驱动装置包括与所述第一减速机构间隔设置的电路板,所述第一检测件设于所述电路板上并与所述第一被检测件相对设置,所述第二检测件设于所述电路板上并与所述第二被检测件相对设置。
- 根据权利要求5所述的驱动装置,其特征在于,所述驱动装置包括壳体组件,所述壳体组件具有第一容置腔和第二容置腔,所述第一容置腔被配置为用于容纳所述第二减速机构、所述动力机构,所述第二容置腔被配置为用于容纳所述第一减速机构、所述检测机构、所述电路板;所述壳体组件包括相对设置的第一端盖和第二端盖、以及设于所述第一端盖和所述第二端盖之间的承载件,所述第一端盖与所述承载件配合围设形成所述第一容置腔,所述第二端盖与所述承载件配合围设形成所述第二容置腔。
- 根据权利要求6所述的驱动装置,其特征在于,所述动力机构包括与所述承载件转动连接的转子组件,所述转子组件被配置为用于带动所述主动件和所述第二输入端进行同步转动;所述承载件包括第一承载部和第二承载部,所述第一承载部设于所述第一端盖和所述第二端盖之间并分别连接所述第一端盖和所述第二端盖,所述第二承载部设于所述第二容置腔内并被配置为用于装配所述第一减速机构。
- 根据权利要求7所述的驱动装置,其特征在于,所述第二承载部包括承载板、以及设于所述承载板背离所述第一端盖的一侧的第一围壁和第二围壁,所述承载板设有装配孔,所述第一围壁设置于所述承载板的外环沿,所述第二围壁设置于所述承载板的内环沿;所述转子组件的一端插设于所述装配孔并通过轴承与所述承载板转动装配。
- 根据权利要求8所述的驱动装置,其特征在于,所述第一围壁凸出于所述承载板的高度大于所述第二围壁凸出于承载板的高度。
- 根据权利要求8所述的驱动装置,其特征在于,所述第一减速机构还包括装配于所述第一围壁上的固定件,所述固定件环设于所述从动件的外围,所述从动件环绕于所述主动件的外围,所述主动件转动时作用于所述从动件使得所述从动件转动;其中,所述固定件具有内齿,所述从动件具有外齿,所述从动件的一个外齿与所述固定件的一个内齿啮合到再一次与所述一个内齿内核时,所述从动件旋转了一周,所述主动件旋转了多周。
- 根据权利要求7所述的驱动装置,其特征在于,所述壳体组件还包括装配于所述第二容置腔内的 支撑件,所述承载件包括连接所述第一承载部和所述第二承载部的连接部,所述第一承载部呈环形并环绕于所述第二承载部的外围,所述连接部设于所述第一承载部和所述第二承载部之间;所述支撑件与所述连接部装配连接并用于装配所述电路板;其中,所述支撑件和所述第二承载部间隔设置,所述支撑件和所述第二端盖之间具有间隙。
- 根据权利要求11所述的驱动装置,其特征在于,所述支撑件包括第一支撑部和第二支撑部,所述第一支撑部用于与所述连接部装配连接,所述第二支撑部用于装配所述电路板;其中,所述第二支撑部通过轴承与所述从动件转动连接。
- 根据权利要求12所述的驱动装置,其特征在于,所述从动件包括具有外齿的第一从动部、以及通过轴承与所述第二支撑部转动装配的第二从动部,所述第一从动部的外齿用于与所述固定件的内齿啮合;其中,所述第一从动部和所述主动件之间设有柔性轴承,所述第二从动部靠近所述电路板的一侧设有所述第二被检测件。
- 根据权利要求8所述的驱动装置,其特征在于,所述主动件包括主体部、以及设于所述主体部相对两侧的第一凸部和第二凸部,所述主体部作用于所述从动件以使得所述从动件转动,所述第一凸部设于所述主体部靠近所述电路板的一侧并被配置为用于装配所述第一被检测件,所述第二凸部设于所述主体部背离所述电路板的一侧并被配置为用于与所述转子组件连接。
- 根据权利要求8所述的驱动装置,其特征在于,所述转子组件包括转动架、设于所述转动架上的固定板、以及设于所述固定板上的永磁体,所述转动架设于所述承载件背离所述第二端盖的一侧,且所述转动架分别与所述主动件和所述第二输入端连接,以用于带动所述主动件和所述第二输入端进行同步转动;所述动力机构还包括定子组件,所述定子组件与所述电路板电性连接并被配置为在通电后产生磁力驱动所述转子组件转动,进而通过所述转动架带动所述主动件和所述第二输入端进行同步转动。
- 根据权利要求15所述的驱动装置,其特征在于,所述第二减速机构包括传动组件和行星架,所述传动组件与所述动力机构连接并被配置为与所述动力机构相联动,所述行星架与所述传动组件连接并可在所述传动组件的带动下进行转动;其中,所述传动组件被配置为用于形成所述第二输入端,所述行星架被配置为用于形成所述第二输出端。
- 根据权利要求16所述的驱动装置,其特征在于,所述传动组件包括主齿轮、内齿轮以及双联齿轮,所述主齿轮与所述转动架连接并可在所述转动架的带动下转动,所述内齿轮围绕所述主齿轮设置,所述双联齿轮分别与所述主齿轮和所述内齿轮啮合,并连接所述行星架;其中,所述内齿轮固定装配于所述第一端盖。
- 根据权利要求17所述的驱动装置,其特征在于,所述行星架包括第一行星架、第二行星架、转轴以及固定件,所述第一行星架和所述第二行星架间隔且相对设置,所述转轴和所述固定件设于所述第一行星架和所述第二行星架之间;其中,所述双联齿轮通过所述转轴带动所述第一行星架和所述第二行星架进行同步转动,所述固定件用于锁紧固定所述第一行星架和所述第二行星架。
- 一种驱动装置,其特征在于,所述驱动装置包括:动力机构,被配置为用于形成所述驱动装置的输入端;谐波减速器,具有第一输入端、第一输出端、第一减速比;行星减速器,具有第二输入端、第二输出端、第二减速比;以及检测机构,具有第一检测组件以及第二检测组件;其中,所述第一减速比大于所述第二减速比,所述动力机构分别与所述第一输入端和所述第二输入端连接,以使得所述第一输入端和所述第二输入端能够发生同步转动;所述第一检测组件部分设于所述第一输入端,并被配置为用于检测所述动力机构的运动信息;所述第二检测组件部分设于所述第一输出端,并被配置为用于检测所述第二输出端的运动信息;所述第二输出端被配置为用于形成所述驱动装置的输出端。
- 一种机器人,其特征在于,所述机器人具有驱动装置;所述驱动装置包括动力机构、第一减速机构、第二减速机构以及检测机构;所述动力机构被配置为用于形成所述驱动装置的输入端;所述第一减速机构具有第一输入端、第一输出端、第一减速比;所述第二减速机构具有第二输入端、第二输出端、第二减速比;所述检测机构具有第一检测组件以及第二检测组件;其中,所述第一减速比大于所述第二减速比,所述动力机构分别与所述第一输入端和所述第二输入端连接,以使得所述第一输入端和所述第二输入端能够发生同步转动;所述第一检测组件部分设于所述第一输入端,并被配置为用于检测所述动力机构的运动信息;所述第二检测组件部分设于所述第一输出端,并被配置为用于检测所述第二输出端的运动信息;所述第二输出端 被配置为用于形成所述驱动装置的输出端。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211167597.X | 2022-09-23 | ||
CN202211167597.XA CN117798884A (zh) | 2022-09-23 | 2022-09-23 | 驱动装置及具有该驱动装置的机器人 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024060808A1 true WO2024060808A1 (zh) | 2024-03-28 |
Family
ID=90420599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/107281 WO2024060808A1 (zh) | 2022-09-23 | 2023-07-13 | 驱动装置以及机器人 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117798884A (zh) |
WO (1) | WO2024060808A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010269412A (ja) * | 2009-05-22 | 2010-12-02 | Kawasaki Heavy Ind Ltd | ロボット装置 |
CN104833505A (zh) * | 2014-02-12 | 2015-08-12 | 天津职业技术师范大学 | 高精度传动误差检测系统 |
CN105389416A (zh) * | 2015-10-16 | 2016-03-09 | 广州机械科学研究院有限公司 | 一种精确求取减速器减速比的方法 |
CN108656115A (zh) * | 2018-05-17 | 2018-10-16 | 黄云汉 | 一种关节式机器人的关节减速机的控制方法及装置 |
CN208645333U (zh) * | 2018-07-26 | 2019-03-26 | 深圳市天博智科技有限公司 | 智能舵机以及机器人 |
CN111113398A (zh) * | 2019-12-30 | 2020-05-08 | 深圳市优必选科技股份有限公司 | 舵机及机器人 |
CN211259501U (zh) * | 2019-12-11 | 2020-08-14 | 西安航天精密机电研究所 | 一种多速比复合输出减速器 |
CN113001533A (zh) * | 2021-03-15 | 2021-06-22 | 哈尔滨工业大学 | 一种四足机器人关节动力单元 |
-
2022
- 2022-09-23 CN CN202211167597.XA patent/CN117798884A/zh active Pending
-
2023
- 2023-07-13 WO PCT/CN2023/107281 patent/WO2024060808A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010269412A (ja) * | 2009-05-22 | 2010-12-02 | Kawasaki Heavy Ind Ltd | ロボット装置 |
CN104833505A (zh) * | 2014-02-12 | 2015-08-12 | 天津职业技术师范大学 | 高精度传动误差检测系统 |
CN105389416A (zh) * | 2015-10-16 | 2016-03-09 | 广州机械科学研究院有限公司 | 一种精确求取减速器减速比的方法 |
CN108656115A (zh) * | 2018-05-17 | 2018-10-16 | 黄云汉 | 一种关节式机器人的关节减速机的控制方法及装置 |
CN208645333U (zh) * | 2018-07-26 | 2019-03-26 | 深圳市天博智科技有限公司 | 智能舵机以及机器人 |
CN211259501U (zh) * | 2019-12-11 | 2020-08-14 | 西安航天精密机电研究所 | 一种多速比复合输出减速器 |
CN111113398A (zh) * | 2019-12-30 | 2020-05-08 | 深圳市优必选科技股份有限公司 | 舵机及机器人 |
CN113001533A (zh) * | 2021-03-15 | 2021-06-22 | 哈尔滨工业大学 | 一种四足机器人关节动力单元 |
Also Published As
Publication number | Publication date |
---|---|
CN117798884A (zh) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021062637A1 (zh) | 集成关节及机器人 | |
WO2021062635A1 (zh) | 关节结构及机器人 | |
KR101657477B1 (ko) | 역각 센서 및 역각 센서를 구비한 로봇 암 | |
CN105865679B (zh) | 转矩角传感器 | |
US10718413B2 (en) | Assembly having joint-connected members and robot including the same | |
WO2003036237A1 (fr) | Codeur de type a rotations multiples | |
US20070281824A1 (en) | Reduction gear unit with rotational position sensor | |
JP6684439B2 (ja) | ロボット | |
KR101503374B1 (ko) | 액츄에이터 모듈 | |
KR101194316B1 (ko) | 중공구동모듈 | |
CN111086022A (zh) | 集成关节及机器人 | |
CN114800602B (zh) | 一种具有柔性元件的紧凑型变刚度关节模组 | |
US11561117B2 (en) | Absolute encoder for detecting rotation angle | |
US11796045B2 (en) | Strain wave gear with encoder integration | |
WO2024060808A1 (zh) | 驱动装置以及机器人 | |
JP2016038353A (ja) | トルク検出器 | |
CN114543846A (zh) | 编码器单元、驱动装置以及机器人 | |
CN104218707A (zh) | 一种高精度大尺寸中空轴系 | |
CN217824611U (zh) | 动力模组及动力设备 | |
CN218220306U (zh) | 一种旋转关节模组 | |
JP6348044B2 (ja) | トルク検出器付き波動歯車減速機 | |
WO2023221050A1 (zh) | 电机、机器人及电机的输出端的位置测量方法 | |
CN101010566B (zh) | 带绝对角度传感器的轴承装置 | |
CN114732524A (zh) | 一种旋转关节模组 | |
JP2004170205A (ja) | 回転角検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23867103 Country of ref document: EP Kind code of ref document: A1 |