WO2021062637A1 - 集成关节及机器人 - Google Patents
集成关节及机器人 Download PDFInfo
- Publication number
- WO2021062637A1 WO2021062637A1 PCT/CN2019/109471 CN2019109471W WO2021062637A1 WO 2021062637 A1 WO2021062637 A1 WO 2021062637A1 CN 2019109471 W CN2019109471 W CN 2019109471W WO 2021062637 A1 WO2021062637 A1 WO 2021062637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reducer
- torque sensor
- integrated joint
- motor shaft
- housing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/12—Programme-controlled manipulators characterised by positioning means for manipulator elements electric
Definitions
- This application belongs to the technical field of humanoid service robots, and relates to an integrated joint and a robot with the integrated joint.
- robots with force perception have more advantages than robots with pure position control: for example, a collaborative robotic arm can complete a task with humans, and stop immediately when contact occurs, ensuring personnel safety; force control mode also allows the robot to go Do more delicate work, such as surface polishing, deburring and flexible assembly; drag teaching can also be realized, which greatly shortens the development cycle; of course, the realization of joint torque control can optimize the motion state of the robot.
- Joint force feedback mainly includes current detection, series elastic actuator (SEA) and torque sensor.
- the current detection method is limited to the complexity of the friction model of the joint transmission link. Due to the large difference in the reverse drive characteristics of different transmission mechanisms, the relationship between the motor current and the joint output torque cannot be established accurately; while the SEA method is due to the transmission system.
- the introduction of elastic links in the system reduces the rigidity of the system, increases the difficulty of control, and even affects the stability of the system.
- the purpose of the embodiments of the present application is to provide an integrated joint to solve the technical problems that the existing robot joints cannot accurately establish the relationship between the motor current and the joint output torque, and the system stiffness decreases and affects the stability of the system.
- an integrated joint including:
- a motor assembly which includes a motor shaft rotatably mounted on the housing;
- the output part is connected with the reducer and is driven to rotate by the reducer;
- a first bearing which supports the output end of the reducer on the housing
- a torque sensor connected to the reducer and the output member, and used to detect the torque received by the output member
- the driving board is electrically connected with the motor assembly and the torque sensor.
- the output member is provided with a hollow tube coaxially
- the motor shaft is a hollow shaft
- the hollow tube passes through the motor shaft
- the housing is provided with a back cover, so One end of the hollow tube away from the output member is supported on the rear cover.
- the speed reducer is a harmonic speed reducer
- the harmonic speed reducer includes a wave generator driven to rotate by the motor shaft, a flexspline driven by the wave generator to be flexibly deformed, and The rigid wheel is meshed with the flexible wheel, the rigid wheel serves as the output end of the harmonic reducer, and the rigid wheel is supported on the housing through the first bearing.
- the wave generator is installed on the motor shaft through an expansion sleeve and an expansion sleeve pressing plate, the expansion sleeve is installed on a side of the wave generator facing the motor shaft, and the expansion sleeve
- the pressure plate is fixed on the rigid wheel and pushes the expansion sleeve along the axial direction of the motor shaft, so that the expansion sleeve respectively compresses the wave generator and the motor shaft in the radial direction.
- the inner ring of the first bearing is mounted on the outer peripheral surface of the rigid wheel and is pressed on the rigid wheel by an inner ring gland, and the outer ring of the first bearing is mounted on the shell The body is pressed tightly on the shell through an outer ring gland.
- a first sealing ring is provided between the outer ring gland and the housing, a second sealing ring is provided between the outer ring gland and the rigid wheel, and the rigid wheel A third sealing ring is provided between the inner peripheral surface of the output member and the outer peripheral surface of the output member.
- the reducer is any one of a harmonic reducer, a worm gear reducer, a planetary reducer or a cycloid reducer.
- the torque sensor includes a substrate and a sensing element mounted on the substrate; the substrate includes an inner ring portion, an outer ring portion located outside the inner ring portion, and connected to the inner ring portion
- the sensing element is installed on the sensitive beam between the outer ring portion and the sensitive beam; the inner ring portion is fixed on the reducer, and the outer ring portion is fixed on the housing.
- At least two through grooves are distributed in the circumferential direction of the substrate, and the through grooves include an arc-shaped through groove and two radial through grooves respectively connected to both ends of the arc-shaped through groove.
- the sensitive beam is formed in the area between the two adjacent radial through grooves of the two adjacent through grooves on the substrate.
- the torque sensor is a strain gauge type torque sensor, a magnetoelastic type torque sensor, a photoelectric torque sensor or a capacitive torque sensor.
- the driving board is arranged at a position where the housing is away from the torque sensor, and the cables of the torque sensor pass through the housing in turn and then are electrically connected to the driving board.
- the motor assembly further includes a stator fixed on the housing and a rotor fixed on the motor shaft and matched with the stator, an end cover is installed on the housing, and the motor The shaft is supported by the housing through a second bearing, and the motor shaft is supported by the end cover through a third bearing.
- the integrated joint further includes a motor end position feedback component for detecting the rotational position of the motor shaft and/or an output end position feedback component for detecting the rotational position of the output member.
- the torque sensor is connected between the housing and the reducer.
- a robot including the above-mentioned integrated joint.
- the integrated joints use a motor assembly, a reducer, an output member, a first bearing, a torque sensor, and a driving board.
- the housing is used as a fixed end, the drive board controls the work of the motor assembly, controls the motor shaft to output power to the reducer, and the reducer is connected to the output part to allow the output part to output rotation.
- the output end of the reducer is supported on the housing through the first bearing.
- the torque sensor is connected with the reducer and the output part. The torque received by the output part acts on the torque sensor through the reducer.
- the detected torque of the torque sensor is the torque received by the output part. There is no need to consider the flexibility and friction of the intermediate transmission link.
- the integrated joint has the characteristics of strong versatility, high integration, and modular structure design, which avoids the complexity of the friction model of the joint transmission link when the existing current detection method is used, so as to accurately establish the relationship between the motor current and the joint output torque , It also avoids the situation that the rigidity of the system is reduced by using the existing SEA method to introduce elastic links.
- Figure 1 is a three-dimensional assembly diagram of an integrated joint provided by an embodiment of the application.
- Figure 2 is a side view of the integrated joint of Figure 1;
- Figure 3 is a cross-sectional view of the integrated joint of Figure 2 along the line A-A;
- Figure 4 is a side view of the reducer used in the integrated joint of Figure 3;
- Figure 5 is a cross-sectional view of the integrated joint of Figure 4 along the line B-B;
- Fig. 6 is a three-dimensional exploded view of the integrated joint of Fig. 3;
- FIG. 7 is a front view of the torque sensor used in the integrated joint of FIG. 3;
- Fig. 8 is a side view of the motor assembly used in the integrated joint of Fig. 3;
- Figure 9 is a cross-sectional view of the motor assembly of Figure 8 along line C-C;
- Fig. 10 is a three-dimensional exploded view of the motor assembly of Fig. 8;
- Fig. 11 is a perspective exploded view of the output terminal position feedback assembly used in the motor assembly of Fig. 3;
- Figure 12 is a three-dimensional assembly diagram of a robot provided by an embodiment of the application.
- FIG. 13 is a three-dimensional assembly diagram of a robot provided by another embodiment of the application.
- FIG. 14 is a three-dimensional assembly diagram of a robot provided by another embodiment of the application.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, "a plurality of” means two or more than two, unless otherwise specifically defined.
- the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
- it may be a fixed connection or a fixed connection.
- the specific meanings of the above-mentioned terms in the embodiments of the present application can be understood according to specific circumstances.
- the embodiment of the present application provides an integrated joint, which can be applied to joints of robots or joint joints of other devices, can drive joints to rotate, and realize torque detection at the joints.
- the integrated joint includes a housing 11, a motor assembly 20, a reducer 30, an output member 40, a first bearing 50, a torque sensor 60, and a drive plate 70.
- the motor assembly 20 includes a motor shaft 21 rotatably mounted on the housing 11.
- the reducer 30 is driven by the motor shaft 21, and the function of the reducer 30 is to reduce the rotation speed output by the motor assembly 20 to increase the output torque.
- the output member 40 is connected to the reducer 30 and is driven to rotate by the reducer 30.
- the first bearing 50 supports the output end of the reducer 30 on the housing 11.
- the torque sensor 60 is used to detect the torque received by the output member 40, and the torque sensor 60 is connected to the reducer 30 and the output member 40.
- the driving board 70 is electrically connected to the motor assembly 20 and the torque sensor 60, and the driving board 70 is used to control the operation of the motor assembly 20.
- the integrated joint provided by the present application adopts the motor assembly 20, the reducer 30, the output member 40, the first bearing 50, the torque sensor 60 and the drive plate 70.
- the housing 11 serves as a fixed end, and the drive board 70 controls the operation of the motor assembly 20, controls the motor shaft 21 to output power to the reducer 30, and the reducer 30 is connected to the output member 40 to allow the output member 40 to output rotation.
- the output end of the reducer 30 is supported on the housing 11 through the first bearing 50.
- the torque sensor 60 is connected to the reducer 30 and the output member 40.
- the torque received by the output member 40 acts on the torque sensor 60 through the reducer 30.
- the detected torque of the torque sensor 60 is the torque received by the output member 40 without considering the intermediate transmission link.
- Influencing factors such as flexibility and friction, directly measure the torque value of the output member 40, which is more accurate, reliable and effective, and ensures the rigidity and stability of the system.
- the integrated joint has the characteristics of strong versatility, high integration, and modular structure design, which avoids the complexity of the friction model of the joint transmission link when the existing current detection method is used, so as to accurately establish the relationship between the motor current and the joint output torque , It also avoids the situation that the rigidity of the system is reduced by using the existing SEA method to introduce elastic links.
- the torque detected by the torque sensor 60 is the torque around the direction perpendicular to the axis of rotation of the output member 40.
- the output member 40, the reducer 30 and the torque sensor 60 are sequentially connected, and the torque received by the output member 40 acts on the output member 40 through the reducer 30.
- the torque sensor 60 and the detected torque of the torque sensor 60 are the torque received by the output member 40.
- the torque sensor 60 is connected between the housing 11 and the reducer 30. In this way, it is easy to assemble the torque sensor 60, so that the overall structure is compact, and the torque received by the output member 40 passes through the reducer. 30 acts on the torque sensor 60, and the torque sensor 60 detects the torque.
- the torque sensor 60 and the reducer 30 can be arranged in the housing 11, so that the torque sensor 60 and the reducer 30 can be protected, and the output member 40 is located outside the housing 11 to connect to other structures.
- the output member 40 is provided with a hollow tube 42 coaxially, the motor shaft 21 is a hollow shaft, and the hollow tube 42 is disposed through the motor shaft 21.
- the output member 40 serves as an output interface for connecting with external equipment, and the output member 40 is disposed at one end of the housing 11 in the axial direction.
- the output end of the reducer 30 may be fixed to the output member 40 by fasteners.
- the output member 40 may be in the shape of a disc, which has an opening 41, a hollow tube 42 is connected to the opening 41 of the output member 40, and the hollow tube 42 passes through the housing 11 and the rear cover 12 described below to facilitate the insertion of the hollow tube 42 Cables or other objects are threaded inside.
- a sealing ring 44 is provided between the inner wall of the opening 41 of the output member 40 and the outer peripheral surface of the hollow tube 42 so that the integrated joint has a certain degree of waterproofness.
- a rear cover 12 is installed on the side of the housing 11 facing away from the reducer 30, and an end of the hollow tube 42 away from the output member 40 is supported on the rear cover 12.
- one end of the hollow tube 42 is supported by the rear cover 12 through a deep groove ball bearing 121 to reduce the friction between the output member 40 and the rear cover 12.
- a back cover 12 is installed on the housing 11, and other devices can be arranged in the back cover 12 to protect it, and form a modular structure as a whole, thereby facilitating the application of the force control structure At the joints of the robot.
- the driving board 70, the motor end position feedback assembly 80 and the output end position feedback assembly 90 described below can be installed in the rear cover 12, which is easy to assemble and has a compact structure.
- the rear cover 12 can be fixed to the motor end cover 13 described below, which is easy to assemble.
- the driving board 70 has a hollow structure to realize the hollow wiring of the integrated joint as a whole.
- the reducer 30 is a harmonic reducer.
- the harmonic reducer has the advantages of simple and compact structure, convenient assembly, high reduction ratio, small size, and high transmission accuracy.
- the reducer 30 includes a wave generator 31 driven to rotate by the motor shaft 21, a flexspline 32 driven by the wave generator 31 to be flexibly deformed, and a rigid wheel 33 meshed with the flexspline 32.
- the rigid wheel 33 serves as the harmonic reducer. At the output end, the rigid wheel 33 is supported on the housing 11 through the first bearing 50.
- the flexspline 32 includes a cylindrical portion 321 and an annular portion 322 extending in the radial direction from an edge of the cylindrical portion 321, and the cylindrical portion 321 has an outer ring gear.
- the rigid wheel 33 has an inner gear ring, and the inner gear ring meshes with the outer gear ring.
- the wave generator 31 includes a cam 311 and a flexible bearing 312 arranged outside the cam 311. The radial length of the cam 311 is different, and the flexible bearing 312 is arranged between the cylindrical portion 321 and the cam 311.
- the cylindrical part 321 of the flexspline 32 is sleeved outside the flexible bearing 312 of the wave generator 31, and the annular part 322 of the flexspline 32 is connected to the torque sensor 60.
- the motor assembly 20 drives the wave generator 31 to rotate at a high speed and a small torque.
- the cylindrical part 321 of the flexspline 32 is flexibly deformed.
- the outer ring gear of the cylindrical part 321 and the inner ring gear of the rigid wheel 33 In meshing transmission, the rigid wheel 33 is connected to the output member 40, and the rigid wheel 33 performs low-speed rotation and high torque output.
- the annular portion 322 is formed to extend radially inwardly from one end edge of the cylindrical portion 321. This structure is easy to shape and is convenient for connecting the annular portion 322 to the torque sensor 60.
- the structure of the harmonic reducer includes but is not limited to standard type, flat type, hollow type, top hat type, three-component, etc., which belong to the prior art, and the specific structure is set as required.
- the wave generator 31 is installed on the motor shaft 21 through the expansion sleeve 211 and the expansion sleeve pressing plate 212, and the expansion sleeve 211 is installed on the side of the wave generator 31 facing the motor shaft 21.
- the expansion sleeve pressing plate 212 is fixed on the rigid wheel 33 and pushes the expansion sleeve 211 along the axial direction of the motor shaft 21 so that the expansion sleeve 211 respectively presses the wave generator 31 and the motor shaft 21 in the radial direction.
- the expansion sleeve 211 is a wedge-shaped structure, and the expansion sleeve 211 is compressed by the expansion sleeve pressing plate 212, so that the motor shaft 21 is fixedly connected with the wave generator 31 in the harmonic reducer, so as to realize the torque input of the motor shaft 21 to the harmonic reducer.
- the expansion sleeve pressing plate 212 can be fixed to the cam 311 of the wave generator 31 by a fastener 213.
- the first bearing 50 is a bearing that can withstand bending moments. Because the torque sensor 60 is connected to the reducer 30 and the reducer 30 is connected to the output member 40, neither the torque sensor 60 nor the reducer 30 can bear the bending moment or the bending moment will bring adverse effects.
- the first bearing 50 may be a four-point contact bearing, and the four-point contact bearing can bear bidirectional axial load and moment load.
- the inner ring of the first bearing 50 is mounted on the outer peripheral surface of the rigid wheel 33 and pressed against the rigid wheel 33 by the inner ring gland 34, and the outer ring of the first bearing 50 It is installed on the shell 11 and pressed against the shell 11 by the outer ring gland 35.
- the above solution is easy to assemble, so that the first bearing 50 can be reliably assembled to a predetermined position, so that the output member 40 can rotate freely.
- the inner ring gland 34 can be fixed on the output end of the reducer 30 by fasteners, and the outer ring gland 35 can be fixed on the housing 11 by fasteners.
- a proper amount of grease needs to be applied to the movement pair.
- a first sealing ring 36 is provided between the outer ring gland 35 and the housing 11, and a second sealing ring 37 is provided between the outer ring gland 35 and the rigid wheel 33.
- a third sealing ring 38 is provided between the inner peripheral surface of the rigid wheel 33 and the outer peripheral surface of the output member 40.
- the second seal ring 37 is a dynamic seal
- the first seal ring 36 and the third seal ring 38 are static seals.
- the first sealing ring 36 may be an O-shaped sealing ring, and the end surface of the outer ring gland 35 is provided with a first mounting groove 351 for mounting the first sealing ring 36.
- the second sealing ring 37 may be a star-shaped sealing ring, and the inner peripheral surface of the outer ring gland 35 is provided with a second mounting groove 352 for mounting the second sealing ring 37.
- the third sealing ring 38 may be an O-shaped sealing ring, and the outer peripheral surface of the output member 40 is provided with a third mounting groove 43 for mounting the third sealing ring 38.
- the reducer 30 is a harmonic reducer, a worm gear reducer, a planetary reducer or a cycloid reducer.
- the above-mentioned reducer 30 can all realize low-speed rotation and high torque output, which can be specifically set as required.
- the torque sensor 60 includes a substrate 61 and a sensing element (not shown) mounted on the substrate 61; the substrate 61 includes an inner ring portion 611, located in the inner ring portion 611 The outer ring portion 612, and the sensitive beam 613 connected between the inner ring portion 611 and the outer ring portion 612, the sensing element is installed on the sensitive beam 613; the inner ring portion 611 is fixed on the reducer 30, and the outer ring portion 612 Fixed on the housing 11. This solution can realize the detection of the torque received by the output member 40.
- the inner ring portion 611 of the base plate 61 is fixed to the reducer 30, and the outer ring portion 612 of the base plate 61 is fixed to the housing 11.
- the torque of the output member 40 acts on the sensitive beam 613 of the torque sensor 60 through the reducer 30, and the sensitive beam 613
- the sensor element of the sensor will detect the deformation, and the electrical signal of the sensor element can be converted into a torque value.
- the detected torque of the torque sensor 60 is the torque received by the output member 40.
- the sensing element may be a strain gauge, and the strain gauge is attached to the sensitive beam 613 of the substrate 61, and the deformation of the sensitive beam 613 can be detected and then converted into the received torque.
- housing 11 and the outer ring portion 612 of the base plate 61 may be fixedly connected by fasteners.
- the ring portion 322 of the flexspline 32 and the inner ring portion 611 of the base plate 61 can be fixedly connected by a fastener 62.
- At least four sensitive beams 613 are uniformly distributed on the substrate 61, which facilitates the arrangement of multiple sensing elements to accurately detect the deformation of the sensitive beams 613 and convert to obtain accurate torque.
- the substrate 61 has at least two through grooves 614 distributed in the circumferential direction.
- the through grooves 614 include an arc-shaped through groove 6141 and two radial through grooves 6142 respectively connected to both ends of the arc-shaped through groove 6141.
- a sensitive beam 613 is formed in the area between the two adjacent radial through grooves 6142 of the two adjacent through grooves 614 on the substrate 61.
- the structure is easy to process, forming the structure of the inner ring portion 611, the outer ring portion 612 and the sensitive beam 613.
- the arc-shaped through slot 6141 extends with the center of the inner ring portion 611 as the center.
- the beam 613 is deformed to obtain a moment, which is convenient for detecting the deformation of the sensitive beam 613.
- the radial through slot 6142 extends from the end of the arc-shaped through slot 6141 toward the center of the inner ring portion 611. This structure is easy to shape and facilitates the formation of the structure of the inner ring portion 611, the outer ring portion 612, and the sensitive beam 613.
- the torque sensor 60 is a strain gauge type torque sensor, a magnetoelastic type torque sensor, a photoelectric type torque sensor, or a capacitance type torque sensor.
- the above-mentioned torque sensor 60 belongs to the prior art, can realize torque detection, and can be set as required.
- the driving board 70 is provided at a position where the housing 11 is away from the torque sensor 60, and the cables of the torque sensor 60 pass through the housing 11 in turn and are electrically connected to the driving board 70.
- the torque signal feedback of the torque sensor 60 is realized, and the protection of the cable is realized.
- the housing 11 is provided with a cable groove 111 for the cable to pass through, which is convenient for cable assembly. Furthermore, after the cable passes through the housing 11, it passes through the end cover 13 and then connects to the drive board 70, which is convenient for cable connection.
- the motor assembly 20 further includes a stator 22 fixed to the housing 11 and a rotor 23 fixed on the motor shaft 21 and matched with the stator 22, and the housing An end cover 13 is installed on the body 11, the motor shaft 21 is supported on the housing 11 via a second bearing 24, and the motor shaft 21 is supported on the end cover 13 via a third bearing 25.
- This structure is easy to assemble, allowing the motor assembly 20 to form an independent part.
- the stator 22 When the windings of the stator 22 are energized, the stator 22 generates a varying electromagnetic field, the rotor 23 rotates and drives the motor shaft 21 to rotate.
- the second bearing 24 and the third bearing 25 may be deep groove ball bearings to reduce the friction between the motor shaft 21 and the housing 11 and the end cover 13.
- a fourth sealing ring 26 is provided between the inner wall of the through hole of the end cover 13 and the outer ring of the third bearing 25 to eliminate the gap between the outer ring of the third bearing 25 and the end cover 13. Clearance and vibration reduction.
- the inner wall of the through hole of the end cover 13 is provided with a fourth mounting groove 131 for mounting the fourth sealing ring 26.
- the motor assembly 20 can be a split motor, a permanent magnet synchronous motor, a brushless DC motor or other motors, as long as it can output power, and can be selected as required.
- the integrated joint further includes a motor end position feedback component 80 for detecting the rotation position of the motor shaft 21.
- a motor end position feedback component 80 for detecting the rotation position of the motor shaft 21.
- the motor end position feedback assembly 80 is located on one side of the end cover 13, so that the overall structure is compact.
- the motor end position feedback component 80 may be a multi-turn incremental encoder, which can accurately detect the rotation position of the motor shaft 21.
- the motor-end position feedback component 80 includes a motor encoder reading head 81 provided on the end cover 13 and a motor encoder grating 82 fixed to the motor shaft 21, and the motor encoder reading head 81 has a transmitting end With the receiving end, the motor encoder grating 82 is located between the two, and the motor encoder reading head 81 cooperates with the motor encoder grating 82 to realize the motor position feedback.
- the motor end position feedback assembly 80 has a hollow structure, which is convenient for the hollow tube 42 to pass through.
- the integrated joint further includes an output end position feedback component 90 for detecting the rotational position of the output member 40.
- the output end position feedback component 90 may adopt a single-turn absolute encoder, which can accurately detect the rotational position of the output member 40.
- the output position feedback component 90 includes an encoder magnetic ring 91 and an encoder processing circuit 92.
- a mounting seat 93 is fixed on the hollow tube 42, and the encoder magnetic ring 91 is mounted on the mounting seat 93.
- a support 94 is fixed on the end cover 13, and the encoder processing circuit 92 is installed on the support 94.
- the motor-end position feedback component 80 and the output-end position feedback component 90 are the same or different. They are photoelectric encoders, magnetic encoders, capacitive encoders, resolvers, and potentiometers. one of them.
- the above-mentioned components belong to the prior art, which can realize the detection of the angular position and be set as required.
- a robot including the above-mentioned integrated joint.
- Applying the above-mentioned integrated joints to a robot and realizing torque feedback at each joint can achieve a more precise force control effect and ensure the rigidity and stability of the system.
- the robot may be a multi-degree-of-freedom manipulator, a leg-footed robot, a wheeled robot, and the like.
- the above-mentioned joint structure is applicable to any robot with joints.
- the robot is a six-degree-of-freedom manipulator 200, and the above-mentioned joint structure is integrated and applied as each joint of the manipulator.
- the robot is a humanoid robot 300, and the above-mentioned joint structure is used as the joints of the humanoid robot 300 for integrated application, including but not limited to the ankle joints, knee joints, hip joints, and torso of the legs.
- the robot is a quadruped robot 400, and the above-mentioned joint structure is used as a joint of the quadruped robot 400 for integrated application.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
集成关节包括电机组件(20)、减速机(30)、输出件(40)、第一轴承(50)、力矩传感器(60)及驱动板(70),壳体(11)作为固定端,驱动板(70)控制电机组件(20)工作,控制电机轴(21)将动力输出至减速机(30),减速机(30)连接至输出件(40),让输出件(40)输出转动,减速机(30)输出端通过第一轴承(50)支承在壳体(11)上,力矩传感器(60)与减速机(30)及输出件(40)相连,输出件(40)所受力矩经过减速机(30)作用于力矩传感器(60),力矩传感器(60)检测力矩就是输出件(40)所受力矩,无需考虑中间传动环节的柔性、摩擦等影响因素,直接测量输出件(40)的力矩值,更加准确、可靠、有效,确保系统刚度与稳定性。该集成关节属于类人形服务机器人技术领域,将上述集成关节应用于机器人,在各关节处实现力矩反馈,可以实现更精确的力控效果。
Description
本申请属于类人形服务机器人技术领域,涉及集成关节及具有该集成关节的机器人。
在机器人领域,具有力感知的机器人相对于单纯的位置控制的机器人更具有优势:比如协作机械臂与人共同完成一项任务,发生碰触即刻停止,保证人员安全;力控模式也允许机器人去做更精细的工作,比如表面打磨、去毛刺及柔性装配等;也可以实现拖动示教,极大缩短开发周期;当然更重要的是实现关节力矩控制可以优化机器人的运动状态。
目前通常在机械臂末端安装六维力/力矩传感器,来直接获取外界环境作用力,但无法做全身的力检测,而在各关节处实现力反馈,可以实现更精确的力控效果。关节力反馈主要有电流检测、串联弹性驱动器(SEA)及力矩传感器等方法。电流检测法局限在关节传动环节的摩擦模型的复杂性,由于不同的传动机构的反驱特性差异较大,所以并不能准确地建立电机电流与关节输出力矩的关系;而SEA方法由于在传动系中引入弹性环节,使得系统刚度下降,加大了控制难度,甚至会影响系统稳定性。
发明概述
本申请实施例的目的在于提供一种集成关节,以解决现有机器人关节不能准确地建立电机电流与关节输出力矩的关系、系统刚度下降且影响系统稳定性的技术问题。
问题的解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种集成关节,包括:
壳体;
电机组件,其包括转动安装于所述壳体上的电机轴;
减速机,其由所述电机轴驱动;
输出件,与减速机相连并由所述减速机驱动转动;
第一轴承,其支承所述减速机的输出端在所述壳体上;
力矩传感器,与所述减速机及所述输出件相连,用于检测所述输出件的所受力矩;以及
驱动板,其与所述电机组件、所述力矩传感器电连接。
在一个实施例中,所述输出件同轴设置有中空管,所述电机轴为空心轴,所述中空管穿过所述电机轴设置,所述壳体上安装有后盖,所述中空管远离于所述输出件的一端支承于所述后盖上。
在一个实施例中,所述减速机为谐波减速机,所述谐波减速机包括由所述电机轴驱动转动的波发生器、由所述波发生器驱动柔性变形的柔轮,以及与所述柔轮相啮合的刚轮,所述刚轮作为所述谐波减速机的输出端,所述刚轮通过所述第一轴承支承于所述壳体上。
在一个实施例中,所述波发生器通过胀套与胀套压板安装于所述电机轴,所述胀套安装于所述波发生器朝向于所述电机轴的一侧,所述胀套压板固定于所述刚轮上并沿所述电机轴的轴向推顶所述胀套,以使所述胀套沿径向分别压紧所述波发生器与所述电机轴。
在一个实施例中,所述第一轴承的内圈安装于所述刚轮外周面并通过内圈压盖压紧在所述刚轮上,所述第一轴承的外圈安装于所述壳体上并通过外圈压盖压紧在所述壳体上。
在一个实施例中,所述外圈压盖与所述壳体之间设有第一密封圈,所述外圈压盖与所述刚轮之间设有第二密封圈,所述刚轮的内周面与所述输出件外周面之间设有第三密封圈。
在一个实施例中,所述减速机为谐波减速机、蜗轮蜗杆减速机、行星减速机或者摆线针减速机的任意一种。
在一个实施例中,所述力矩传感器包括基板及安装于所述基板的感应元件;所 述基板包括内环部、位于所述内环部以外的外环部,以及连接于所述内环部与所述外环部之间的敏感梁,所述感应元件安装于所述敏感梁上;所述内环部固定于所述减速机上,所述外环部固定于所述壳体上。
在一个实施例中,所述基板周向分布有至少两条贯通槽,所述贯通槽包括弧形通槽及两条分别连通于所述弧形通槽的两端的径向通槽,所述基板上相邻两条所述贯通槽中相靠近的两条所述径向通槽之间的区域形成所述敏感梁。
在一个实施例中,所述力矩传感器为应变片型力矩传感器、磁弹性型力矩传感器、光电型力矩传感器或者电容型力矩传感器。
在一个实施例中,所述驱动板设在所述壳体背离于所述力矩传感器处,所述力矩传感器的线缆依次穿过所述壳体后电连接于所述驱动板。
在一个实施例中,所述电机组件还包括固定在所述壳体的定子以及固定在所述电机轴上且与所述定子配合的转子,所述壳体上安装有端盖,所述电机轴通过第二轴承支承于所述壳体,所述电机轴通过第三轴承支承于所述端盖。
在一个实施例中,所述集成关节还包括用于检测所述电机轴的转动位置的电机端位置反馈组件和/或用于检测所述输出件的转动位置的输出端位置反馈组件。
在一个实施例中,所述力矩传感器连接于所述壳体与所述减速机之间。
第二方面,提供了一种机器人,包括上述的集成关节。
本申请实施例提供的集成关节及机器人的有益效果在于:集成关节采用了电机组件、减速机、输出件、第一轴承、力矩传感器及驱动板。壳体作为固定端,驱动板控制电机组件工作,控制电机轴将动力输出至减速机,减速机连接至输出件,让输出件输出转动。其中,减速机的输出端通过第一轴承支承在壳体上。力矩传感器与减速机及输出件相连,输出件的所受力矩经过减速机作用于力矩传感器,力矩传感器的检测力矩就是输出件的所受力矩,无需考虑中间传动环节的柔性、摩擦等影响因素,直接测量输出件的力矩值,更加准确、可靠、有效,确保系统刚度与稳定性。该集成关节具有通用性强、集成度高、结构设计模块化特点,避免了采用现有电流检测法时关节传动环节的摩擦模型的复杂性,从而能够准确地建立电机电流与关节输出力矩的关系,还避免了采用现有SEA方法引入弹性环节使得系统刚度下降的情况。将上述集成关节应用于机器人 ,在各关节处实现力矩反馈,可以实现更精确的力控效果,确保系统刚度与稳定性。
发明的有益效果
对附图的简要说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的集成关节的立体装配图;
图2为图1的集成关节的侧视图;
图3为图2的集成关节的沿A-A线的剖视图;
图4为图3的集成关节中应用的减速机的侧视图;
图5为图4的集成关节的沿B-B线的剖视图;
图6为图3的集成关节的立体分解图;
图7为图3的集成关节中应用的力矩传感器的主视图;
图8为图3的集成关节中应用的电机组件的侧视图;
图9为图8的电机组件的沿C-C线的剖视图;
图10为图8的电机组件的立体分解图;
图11为图3的电机组件中应用的输出端位置反馈组件的立体分解图;
图12为本申请实施例提供的机器人的立体装配图;
图13为本申请另一实施例提供的机器人的立体装配图;
图14为本申请另一实施例提供的机器人的立体装配图。
发明实施例
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的 具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请实施例的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
请参阅图1至图3,本申请实施例提供一种集成关节,可应用于机器人的关节处或其它装置关节连接处,能驱动关节转动,并实现关节处的力矩检测。集成关节包括壳体11、电机组件20、减速机30、输出件40、第一轴承50、力矩传感器60、驱动板70。电机组件20包括转动安装于壳体11上的电机轴21。减速机30由电机轴21驱动,减速机30的作用是将电机组件20输出的转速降低以将输出的力矩提升。输出件40连接于减速机30并由减速机30驱动转动。第一轴承50支承减速机30的输出端在壳体11上。力矩传感器60用于检测输出件40的所受力矩,力矩传感器60与减速机30及输出件40相连。驱动板70与电机组件20、力矩传感器60电连接,驱动板70用于控制电机组件20工作。
本申请提供的集成关节,与现有技术相比,该集成关节采用了电机组件20、减速机30、输出件40、第一轴承50、力矩传感器60及驱动板70。壳体11作为固定端,驱动板70控制电机组件20工作,控制电机轴21将动力输出至减速机30,减 速机30连接至输出件40,让输出件40输出转动。其中,减速机30的输出端通过第一轴承50支承在壳体11上。力矩传感器60与减速机30及输出件40相连,输出件40的所受力矩经过减速机30作用于力矩传感器60,力矩传感器60的检测力矩就是输出件40的所受力矩,无需考虑中间传动环节的柔性、摩擦等影响因素,直接测量输出件40的力矩值,更加准确、可靠、有效,确保系统刚度与稳定性。该集成关节具有通用性强、集成度高、结构设计模块化特点,避免了采用现有电流检测法时关节传动环节的摩擦模型的复杂性,从而能够准确地建立电机电流与关节输出力矩的关系,还避免了采用现有SEA方法引入弹性环节使得系统刚度下降的情况。
具体地,力矩传感器60检测的力矩是绕垂直于输出件40转动轴线的方向的力矩,输出件40、减速机30与力矩传感器60依次连接,输出件40的所受力矩经过减速机30作用于力矩传感器60,力矩传感器60的检测力矩就是输出件40的所受力矩。
在本申请另一实施例中,力矩传感器60连接于壳体11与减速机30之间,采用这样的方式容易装配力矩传感器60,使得整体结构紧凑,而且输出件40的所受力矩经过减速机30作用于力矩传感器60,由力矩传感器60检测力矩。力矩传感器60与减速机30可以设在壳体11内,这样能够对力矩传感器60与减速机30进行保护,而输出件40位于壳体11的外部以连接其它结构。
请参阅图3,在本申请另一实施例中,输出件40同轴设置有中空管42,电机轴21为空心轴,中空管42穿过电机轴21设置。输出件40作为输出接口,用于与外部设备连接,输出件40设置于壳体11沿轴向的一端。减速机30的输出端可以通过紧固件固定于输出件40。输出件40可以呈盘状,其具有开口41,中空管42连接至输出件40开口41处,并且中空管42穿过壳体11与下述的后盖12,便于在中空管42内穿设线缆或其它物件。进一步地,输出件40开口41内壁与中空管42外周面之间设有密封圈44,使得集成关节具有一定的防水性。
在本申请另一实施例中,壳体11背向于减速机30的一侧安装有后盖12,中空管42远离于输出件40的一端支承于后盖12上。优选地,中空管42的一端通过深沟球轴承121支承于后盖12,降低输出件40与后盖12间的摩擦力。
在本申请另一实施例中,壳体11上安装有后盖12,可以在后盖12内布置其它器件以对其进行保护,并让整体形成一个模块化结构,进而便于将力控结构应用于机器人的关节处。进一步地,驱动板70与下述的电机端位置反馈组件80、输出端位置反馈组件90可以安装于后盖12内,容易装配,结构紧凑。具体地,后盖12可以固定于下述的电机端盖13,容易装配。驱动板70为中空结构,以实现集成关节整体的中空走线。
请参阅图3至图6,在本申请另一实施例中,减速机30为谐波减速机,谐波减速机具有结构简单紧凑、装配方便、高减速比、体积小、传动精度高的优点。减速机30包括由电机轴21驱动转动的波发生器31、由波发生器31驱动柔性变形的柔轮32,以及与柔轮32相啮合的刚轮33,刚轮33作为谐波减速机的输出端,刚轮33通过第一轴承50支承于壳体11上。具体地,柔轮32包括筒状部321及于筒状部321的一边缘沿径向延伸形成的环形部322,筒状部321具有外齿圈。刚轮33具有内齿圈,内齿圈与外齿圈相啮合。波发生器31包括凸轮311及设于凸轮311外的柔性轴承312,凸轮311的径向长度不同,柔性轴承312设于筒状部321与凸轮311之间。柔轮32的筒状部321套设于波发生器31的柔性轴承312外,柔轮32的环形部322连接至力矩传感器60上。电机组件20驱动波发生器31进行高速小力矩旋转,在波发生器31的作用下,柔轮32筒状部321产生柔性变形,筒状部321的外齿圈与刚轮33的内齿圈啮合传动,刚轮33连接于输出件40,刚轮33进行低速旋转大力矩输出。进一步地,环形部322于筒状部321的一端边缘沿径向向内延伸形成,该结构容易成型,便于将环形部322连接至力矩传感器60上。
在本申请另一实施例中,谐波减速机的结构形式包括但不限于标准型、扁平型、中空型、礼帽型及三组件等,这些均属于现有技术,具体结构按需设置。
请参阅图3,在本申请另一实施例中,波发生器31通过胀套211与胀套压板212安装于电机轴21,胀套211安装于波发生器31朝向于电机轴21的一侧,胀套压板212固定于刚轮33上并沿电机轴21的轴向推顶胀套211,以使胀套211沿径向分别压紧波发生器31与电机轴21。胀套211为楔形结构,通过胀套压板212压紧胀套211,使得电机轴21与谐波减速机中的波发生器31固连,实现电机轴21向谐波减速机的力矩输入。具体地,胀套压板212可通过紧固件213固定于波发生器31的 凸轮311上。
在本申请另一实施例中,第一轴承50为可承受弯矩的轴承。因为力矩传感器60与减速机30连接,减速机30与输出件40连接,力矩传感器60与减速机30均不可承受弯矩或弯矩会带来不良影响。具体地,第一轴承50可以是四点接触轴承,四点接触轴承可承受双向的轴向载荷以及力矩载荷。
请参阅图3,在本申请另一实施例中,第一轴承50的内圈安装于刚轮33外周面并通过内圈压盖34压紧在刚轮33上,第一轴承50的外圈安装于壳体11上并通过外圈压盖35压紧在壳体11上。上述方案容易装配,让第一轴承50可靠地装配到预定位置,进而让输出件40自如旋转。具体地,内圈压盖34可通过紧固件固定在减速机30的输出端上,外圈压盖35可通过紧固件固定在壳体11上。
在本申请另一实施例中,为保证减速机30正常工作,需在其运动副处涂适量润滑脂。为避免润滑脂溢出,外圈压盖35与壳体11之间设有第一密封圈36,外圈压盖35与刚轮33之间设有第二密封圈37。刚轮33的内周面与输出件40外周面之间设有第三密封圈38。其中,第二密封圈37为动密封,第一密封圈36与第三密封圈38为静密封。具体地,第一密封圈36可以是O型密封圈,外圈压盖35的端面设有第一安装槽351以安装第一密封圈36。第二密封圈37可以是星型密封圈,外圈压盖35的内周面设有第二安装槽352以安装第二密封圈37。第三密封圈38可以是O型密封圈,输出件40的外周面设有第三安装槽43以安装第三密封圈38。
在本申请另一实施例中,减速机30为谐波减速机、蜗轮蜗杆减速机、行星减速机或者摆线针减速机。上述减速机30均能实现低速旋转大力矩输出,具体按需设置。
请参阅图3、图7,在本申请另一实施例中,力矩传感器60包括基板61及安装于基板61的感应元件(图未示);基板61包括内环部611、位于内环部611以外的外环部612,以及连接于内环部611与外环部612之间的敏感梁613,感应元件安装于敏感梁613上;内环部611固定于减速机30上,外环部612固定于壳体11上。该方案能实现输出件40的所受力矩的检测。基板61内环部611固定于减速机30,而基板61外环部612固定于壳体11,输出件40的所受力矩经过减速机30作用于力矩传感器60的敏感梁613,敏感梁613上的感应元件将会检测变形,获知感应元 件的电信号即可转换为力矩值,力矩传感器60的检测力矩就是输出件40的所受力矩。具体地,感应元件可以为应变片,将应变片贴设于基板61的敏感梁613,可检测出敏感梁613的变形,进而转换为所受力矩。
进一步地,壳体11与基板61外环部612可通过紧固件固定连接。在采用谐波减速机时,柔轮32环形部322与基板61内环部611可采用紧固件62固定连接。
请参阅图7,在本申请另一实施例中,基板61上均布有至少四个敏感梁613,便于布置多个感应元件,以精确检测敏感梁613的变形量进而转换得到精确的力矩。
在本申请另一实施例中,基板61周向分布有至少两条贯通槽614,贯通槽614包括弧形通槽6141及两条分别连通于弧形通槽6141的两端的径向通槽6142,基板61上相邻两条贯通槽614中相靠近的两条径向通槽6142之间的区域形成敏感梁613。该结构容易加工,形成内环部611、外环部612与敏感梁613的结构,弧形通槽6141以内环部611中心为圆心延伸设置,通过在敏感梁613处贴设感应元件以检测敏感梁613变形进而得到力矩,便于检测敏感梁613变形。进一步地,径向通槽6142于弧形通槽6141的端部向内环部611中心延伸设置,该结构容易成型,便于形成内环部611、外环部612与敏感梁613的结构。
请参阅图3,在本申请另一实施例中,力矩传感器60为应变片型力矩传感器、磁弹性型力矩传感器、光电型力矩传感器或者电容型力矩传感器。上述力矩传感器60均属于现有技术,能实现力矩检测,按需设置。
在本申请另一实施例中,驱动板70设在壳体11背离于力矩传感器60处,力矩传感器60的线缆依次穿过壳体11后电连接于驱动板70。实现力矩传感器60的力矩信号反馈,实现线缆的保护。具体地,壳体11设有供线缆穿过的走线槽111,便于线缆装配。进一步地,线缆穿过壳体11后还要穿过端盖13再与驱动板70连接,便于线缆连接。
请参阅图3、图8至图10,在本申请另一实施例中,电机组件20还包括固定在壳体11的定子22以及固定在电机轴21上且与定子22配合的转子23,壳体11上安装有端盖13,电机轴21通过第二轴承24支承于壳体11,电机轴21通过第三轴承25支承于端盖13。该结构容易装配,让电机组件20形成一个独立部件。当定子22 的绕组通电时,定子22产生变化的电磁场,转子23转动并带动电机轴21转动。具体地,第二轴承24与第三轴承25可以为深沟球轴承,降低电机轴21与壳体11、端盖13间的摩擦力。
请参阅图3、图9,进一步地,端盖13过孔内壁与第三轴承25的外圈之间设有第四密封圈26,消除第三轴承25的外圈与端盖13之间的间隙并减振。具体地,端盖13过孔内壁设有第四安装槽131以安装第四密封圈26。
在本申请另一实施例中,电机组件20可以为分体式电机、永磁同步电机、直流无刷电机或其它电机,只要能输出动力即可,按需选用。
请参阅图3,在本申请另一实施例中,集成关节还包括用于检测电机轴21的转动位置的电机端位置反馈组件80。通过检测电机轴21的转动位置,实现电机轴21的位置反馈。具体地,电机端位置反馈组件80位于端盖13的一侧,使得整体结构紧凑。电机端位置反馈组件80可以为多圈增量式编码器,能精确检测电机轴21的转动位置。
在本申请另一实施例中,电机端位置反馈组件80包括设于端盖13的电机编码器读数头81及固定于电机轴21的电机编码器光栅82,电机编码器读数头81具有发射端与接收端,电机编码器光栅82位于两者之间,电机编码器读数头81与电机编码器光栅82配合,实现电机位置反馈。电机端位置反馈组件80为中空式结构,便于中空管42穿过。
请参阅图3,在本申请另一实施例中,集成关节还包括用于检测输出件40的转动位置的输出端位置反馈组件90。通过检测输出件40的转动位置,并反馈至驱动板70,以控制电机组件20以精确的低速旋转大力矩输出。具体地,输出端位置反馈组件90可以采用单圈绝对式编码器,能精确检测输出件40的转动位置。
在本申请另一实施例中,同时采用电机端位置反馈组件80与输出端位置反馈组件90时,形成双反馈,能更精确控制电机组件20工作。
请参阅图3、图11,在本申请另一实施例中,输出端位置反馈组件90包括编码器磁环91和编码器处理电路92。为了便于编码器磁环91和编码器处理电路92的安装,中空管42上固定有安装座93,编码器磁环91安装在安装座93。端盖13上固定有支座94,编码器处理电路92安装在支座94上。当输出件40旋转时带动中 空管42旋转,进而带动编码器磁环91旋转,实现输出件40的位置反馈。
在本申请另一实施例中,电机端位置反馈组件80与输出端位置反馈组件90相同或不同,分别为光电式编码器、磁式编码器、电容式编码器、旋转变压器、电位计中的其中一种。上述元器件均属于现有技术,能实现角度位置的检测,按需设置。
在本申请另一实施例中,提供一种机器人,包括上述的集成关节。将上述集成关节应用于机器人,在各关节处实现力矩反馈,可以实现更精确的力控效果,确保系统刚度与稳定性。
具体地,机器人可以为多自由度机械臂、腿足式机器人、轮式机器人等。只要是具有关节的机器人均适用上述关节结构。
请参阅图12,在本申请另一实施例中,机器人为六自由度机械臂200,上述关节结构作为机械臂的各个关节来集成应用。
请参阅图13,在本申请另一实施例中,机器人为人形机器人300,上述关节结构作为人形机器人300的关节来集成应用,包括但不限于腿部的踝关节、膝关节、髋关节,躯干部的腰关节,以及手臂中的肩关节、肘关节、腕关节等。
请参阅图14,在本申请另一实施例中,机器人为四足机器人400,上述关节结构作为四足机器人400的关节来集成应用。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (15)
- 集成关节,其特征在于,包括:壳体;电机组件,其包括转动安装于所述壳体上的电机轴;减速机,其由所述电机轴驱动;输出件,与减速机相连并由所述减速机驱动转动;第一轴承,其支承所述减速机的输出端在所述壳体上;力矩传感器,与所述减速机及所述输出件相连,用于检测所述输出件的所受力矩;以及驱动板,其与所述电机组件、所述力矩传感器电连接。
- 如权利要求1所述的集成关节,其特征在于,所述输出件同轴设置有中空管,所述电机轴为空心轴,所述中空管穿过所述电机轴设置,所述壳体上安装有后盖,所述中空管远离于所述输出件的一端支承于所述后盖上。
- 如权利要求1所述的集成关节,其特征在于,所述减速机为谐波减速机,所述谐波减速机包括由所述电机轴驱动转动的波发生器、由所述波发生器驱动柔性变形的柔轮,以及与所述柔轮相啮合的刚轮,所述刚轮作为所述谐波减速机的输出端,所述刚轮通过所述第一轴承支承于所述壳体上。
- 如权利要求3所述的集成关节,其特征在于,所述波发生器通过胀套与胀套压板安装于所述电机轴,所述胀套安装于所述波发生器朝向于所述电机轴的一侧,所述胀套压板固定于所述刚轮上并沿所述电机轴的轴向推顶所述胀套,以使所述胀套沿径向分别压紧所述波发生器与所述电机轴。
- 如权利要求3所述的集成关节,其特征在于,所述第一轴承的内圈安装于所述刚轮外周面并通过内圈压盖压紧在所述刚轮上,所述第一轴承的外圈安装于所述壳体上并通过外圈压盖压紧在所述壳体上。
- 如权利要求5所述的集成关节,其特征在于,所述外圈压盖与所述壳体之间设有第一密封圈,所述外圈压盖与所述刚轮之间设有第二密封圈,所述刚轮的内周面与所述输出件外周面之间设有第三密封圈。
- 如权利要求1所述的集成关节,其特征在于,所述减速机为谐波减速机、蜗轮蜗杆减速机、行星减速机或者摆线针减速机的任意一种。
- 如权利要求1至7任一项所述的集成关节,其特征在于,所述力矩传感器包括基板及安装于所述基板的感应元件;所述基板包括内环部、位于所述内环部以外的外环部,以及连接于所述内环部与所述外环部之间的敏感梁,所述感应元件安装于所述敏感梁上;所述内环部固定于所述减速机上,所述外环部固定于所述壳体上。
- 如权利要求8所述的集成关节,其特征在于,所述基板周向分布有至少两条贯通槽,所述贯通槽包括弧形通槽及两条分别连通于所述弧形通槽的两端的径向通槽,所述基板上相邻两条所述贯通槽中相靠近的两条所述径向通槽之间的区域形成所述敏感梁。
- 如权利要求1至7任一项所述的集成关节,其特征在于,所述力矩传感器为应变片型力矩传感器、磁弹性型力矩传感器、光电型力矩传感器或者电容型力矩传感器。
- 如权利要求1至7任一项所述的集成关节,其特征在于,所述驱动板设在所述壳体背离于所述力矩传感器处,所述力矩传感器的线缆依次穿过所述壳体后电连接于所述驱动板。
- 如权利要求1至7任一项所述的集成关节,其特征在于,所述电机组件还包括固定在所述壳体的定子以及固定在所述电机轴上且与所述定子配合的转子,所述壳体上安装有端盖,所述电机轴通过第二轴承支承于所述壳体,所述电机轴通过第三轴承支承于所述端盖。
- 如权利要求1至7任一项所述的集成关节,其特征在于,所述集成关节还包括用于检测所述电机轴的转动位置的电机端位置反馈组件和/或用于检测所述输出件的转动位置的输出端位置反馈组件。
- 如权利要求1至7任一项所述的集成关节,其特征在于,所述力矩传感器连接于所述壳体与所述减速机之间。
- 机器人,其特征在于,包括如权利要求1至14任一项所述的集成关节。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/109471 WO2021062637A1 (zh) | 2019-09-30 | 2019-09-30 | 集成关节及机器人 |
CN201980064179.8A CN112888535B (zh) | 2019-09-30 | 2019-09-30 | 集成关节及机器人 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/109471 WO2021062637A1 (zh) | 2019-09-30 | 2019-09-30 | 集成关节及机器人 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021062637A1 true WO2021062637A1 (zh) | 2021-04-08 |
Family
ID=75337631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/109471 WO2021062637A1 (zh) | 2019-09-30 | 2019-09-30 | 集成关节及机器人 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112888535B (zh) |
WO (1) | WO2021062637A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113829383A (zh) * | 2021-10-28 | 2021-12-24 | 上海宇航系统工程研究所 | 一种驱动关节 |
CN114311016A (zh) * | 2022-02-16 | 2022-04-12 | 深圳市越疆科技有限公司 | 关节模组的密封结构、关节模组、机械臂和机器人 |
CN114932575A (zh) * | 2022-04-28 | 2022-08-23 | 北京交通大学 | 用于外骨骼关节驱动的紧凑型大扭矩关节模组 |
CN115285251A (zh) * | 2021-09-30 | 2022-11-04 | 深圳鹏行智能研究有限公司 | 动力模组和动力设备 |
CN115958626A (zh) * | 2023-02-10 | 2023-04-14 | 武汉理工大学 | 一种大负载机器人关节结构 |
CN117182960A (zh) * | 2023-11-07 | 2023-12-08 | 睿尔曼智能科技(北京)有限公司 | 一种一体化关节及机械臂 |
CN117245687A (zh) * | 2023-11-17 | 2023-12-19 | 江西炬龙精密科技有限公司 | 基于行星滚柱丝杠副的柔性直线机器人关节及使用方法 |
CN117921736A (zh) * | 2024-03-25 | 2024-04-26 | 中国科学院长春光学精密机械与物理研究所 | 基于变刚度关节的可重构机械臂 |
CN118572934A (zh) * | 2024-07-31 | 2024-08-30 | 沈阳航天新光集团有限公司 | 一种水下双自由度一体化电机 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114732667A (zh) * | 2022-03-28 | 2022-07-12 | 上海电气集团股份有限公司 | 一种应用于康复机器人的变阻抗装置 |
CN117532595B (zh) * | 2023-12-27 | 2024-07-19 | 广东灵锶智能科技有限公司 | 一种谐波减速关节模组及机器人 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102744731A (zh) * | 2012-07-19 | 2012-10-24 | 北京理工大学 | 一体化旋转关节和确定一体化旋转关节零位的方法 |
KR101293497B1 (ko) * | 2012-05-10 | 2013-08-07 | 전자부품연구원 | 1축 관절 모듈 |
CN106239554A (zh) * | 2016-10-10 | 2016-12-21 | 中国科学院宁波材料技术与工程研究所 | 一种可变刚度的传导机构以及机器人关节 |
CN108381598A (zh) * | 2018-03-28 | 2018-08-10 | 中国科学院宁波材料技术与工程研究所 | 一种机器人智能驱动关节和机器人 |
CN108527352A (zh) * | 2018-04-18 | 2018-09-14 | 王潇 | 一种机器人的机械臂 |
CN108662089A (zh) * | 2018-06-26 | 2018-10-16 | 深圳市零差云控科技有限公司 | 伺服减速机及应用该伺服减速机的机器人减速关节 |
CN108839042A (zh) * | 2018-07-23 | 2018-11-20 | 清华大学 | 驱控一体模块化驱动装置 |
CN110171016A (zh) * | 2019-05-22 | 2019-08-27 | 西安电子科技大学 | 一种基于高速串行通信的完全模块化柔性关节 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104029216B (zh) * | 2014-06-11 | 2016-02-24 | 哈尔滨工业大学 | 具有张力和关节位置反馈的机器人关节用挠性驱动单元 |
CN109445416A (zh) * | 2018-10-31 | 2019-03-08 | 中国科学院合肥物质科学研究院 | 一种多传感器融合的高集成关节控制系统 |
CN210678773U (zh) * | 2019-09-30 | 2020-06-05 | 深圳市优必选科技股份有限公司 | 集成关节及机器人 |
-
2019
- 2019-09-30 WO PCT/CN2019/109471 patent/WO2021062637A1/zh active Application Filing
- 2019-09-30 CN CN201980064179.8A patent/CN112888535B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101293497B1 (ko) * | 2012-05-10 | 2013-08-07 | 전자부품연구원 | 1축 관절 모듈 |
CN102744731A (zh) * | 2012-07-19 | 2012-10-24 | 北京理工大学 | 一体化旋转关节和确定一体化旋转关节零位的方法 |
CN106239554A (zh) * | 2016-10-10 | 2016-12-21 | 中国科学院宁波材料技术与工程研究所 | 一种可变刚度的传导机构以及机器人关节 |
CN108381598A (zh) * | 2018-03-28 | 2018-08-10 | 中国科学院宁波材料技术与工程研究所 | 一种机器人智能驱动关节和机器人 |
CN108527352A (zh) * | 2018-04-18 | 2018-09-14 | 王潇 | 一种机器人的机械臂 |
CN108662089A (zh) * | 2018-06-26 | 2018-10-16 | 深圳市零差云控科技有限公司 | 伺服减速机及应用该伺服减速机的机器人减速关节 |
CN108839042A (zh) * | 2018-07-23 | 2018-11-20 | 清华大学 | 驱控一体模块化驱动装置 |
CN110171016A (zh) * | 2019-05-22 | 2019-08-27 | 西安电子科技大学 | 一种基于高速串行通信的完全模块化柔性关节 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115285251B (zh) * | 2021-09-30 | 2024-05-31 | 深圳鹏行智能研究有限公司 | 动力模组和动力设备 |
CN115285251A (zh) * | 2021-09-30 | 2022-11-04 | 深圳鹏行智能研究有限公司 | 动力模组和动力设备 |
CN113829383A (zh) * | 2021-10-28 | 2021-12-24 | 上海宇航系统工程研究所 | 一种驱动关节 |
CN113829383B (zh) * | 2021-10-28 | 2024-04-16 | 上海宇航系统工程研究所 | 一种驱动关节 |
CN114311016A (zh) * | 2022-02-16 | 2022-04-12 | 深圳市越疆科技有限公司 | 关节模组的密封结构、关节模组、机械臂和机器人 |
CN114932575B (zh) * | 2022-04-28 | 2024-03-12 | 北京交通大学 | 用于外骨骼关节驱动的紧凑型大扭矩关节模组 |
CN114932575A (zh) * | 2022-04-28 | 2022-08-23 | 北京交通大学 | 用于外骨骼关节驱动的紧凑型大扭矩关节模组 |
CN115958626A (zh) * | 2023-02-10 | 2023-04-14 | 武汉理工大学 | 一种大负载机器人关节结构 |
CN117182960B (zh) * | 2023-11-07 | 2024-01-19 | 睿尔曼智能科技(北京)有限公司 | 一种一体化关节及机械臂 |
CN117182960A (zh) * | 2023-11-07 | 2023-12-08 | 睿尔曼智能科技(北京)有限公司 | 一种一体化关节及机械臂 |
CN117245687A (zh) * | 2023-11-17 | 2023-12-19 | 江西炬龙精密科技有限公司 | 基于行星滚柱丝杠副的柔性直线机器人关节及使用方法 |
CN117245687B (zh) * | 2023-11-17 | 2024-02-27 | 江西炬龙精密科技有限公司 | 基于行星滚柱丝杠副的柔性直线机器人关节及使用方法 |
CN117921736A (zh) * | 2024-03-25 | 2024-04-26 | 中国科学院长春光学精密机械与物理研究所 | 基于变刚度关节的可重构机械臂 |
CN118572934A (zh) * | 2024-07-31 | 2024-08-30 | 沈阳航天新光集团有限公司 | 一种水下双自由度一体化电机 |
Also Published As
Publication number | Publication date |
---|---|
CN112888535B (zh) | 2022-05-27 |
CN112888535A (zh) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021062637A1 (zh) | 集成关节及机器人 | |
WO2021062635A1 (zh) | 关节结构及机器人 | |
CN210678773U (zh) | 集成关节及机器人 | |
CN111086022A (zh) | 集成关节及机器人 | |
JP7288926B2 (ja) | 脚付きロボット用のねじアクチュエータ | |
JP7303840B2 (ja) | 脚付きロボット用の一体化された過負荷保護を有する伝動装置 | |
WO2021062636A1 (zh) | 机器人及其集成关节 | |
US9321172B2 (en) | Modular rotational electric actuator | |
EP0093888B1 (en) | Electric actuator | |
CN111113476A (zh) | 关节结构及机器人 | |
CN107186751B (zh) | 一种协作机器人模块化球关节 | |
JP2021182862A (ja) | 脚付きロボット用のモーターおよびコントローラ一体化 | |
CN108372516A (zh) | 机器人关节及机器人 | |
KR101194316B1 (ko) | 중공구동모듈 | |
CN207402804U (zh) | 一种模块化六轴机械臂 | |
US11796045B2 (en) | Strain wave gear with encoder integration | |
CN210678771U (zh) | 关节结构及机器人 | |
CN114800602B (zh) | 一种具有柔性元件的紧凑型变刚度关节模组 | |
CN113400341A (zh) | 一种协作机器人用的模块化关节及关节组件 | |
CN217967079U (zh) | 机器人关节及机器人 | |
CN218220306U (zh) | 一种旋转关节模组 | |
CN216682261U (zh) | 模块化关节及机器人系统 | |
CN106369112B (zh) | 驱动装置 | |
CN111645773A (zh) | 多足机器人腿部总成 | |
CN114732524A (zh) | 一种旋转关节模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19947624 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19947624 Country of ref document: EP Kind code of ref document: A1 |