WO2024060689A1 - 一种发动机进气管漏气的检测方法及装置 - Google Patents

一种发动机进气管漏气的检测方法及装置 Download PDF

Info

Publication number
WO2024060689A1
WO2024060689A1 PCT/CN2023/098802 CN2023098802W WO2024060689A1 WO 2024060689 A1 WO2024060689 A1 WO 2024060689A1 CN 2023098802 W CN2023098802 W CN 2023098802W WO 2024060689 A1 WO2024060689 A1 WO 2024060689A1
Authority
WO
WIPO (PCT)
Prior art keywords
difference factor
flow
air leakage
throttle
engine
Prior art date
Application number
PCT/CN2023/098802
Other languages
English (en)
French (fr)
Inventor
孙飞
张亚楠
颜丙超
仲韵
王骞
Original Assignee
联合汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合汽车电子有限公司 filed Critical 联合汽车电子有限公司
Publication of WO2024060689A1 publication Critical patent/WO2024060689A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes

Definitions

  • the present invention relates to the technical field of vehicle system control, and in particular to a method and device for detecting air leakage in an engine intake pipe.
  • the air intake system is one of the important components of the gasoline engine. Its main function is to provide sufficient, clean, and cooling fresh air for the combustion process of the gasoline engine.
  • the torque and power of a gasoline engine depend to a certain extent on the quality of fresh air sucked into the cylinder.
  • Quality provides appropriate fuel injection volume to meet the torque and power requirements of the vehicle's driving conditions.
  • patent CN113175382A proposes an air leakage diagnosis method for detecting engine air intake pipelines when the engine is idling.
  • the principle is to use a sensor installed at the air filter outlet to measure the intake air flow, thereby determining the leakage of high and low pressure pipelines. Qi state.
  • This diagnostic strategy has certain limitations (especially for hybrid engines). It can only detect the air leakage status of the engine before the air filter at idle speed. It cannot detect the air leakage status of the intake pipe after the air filter in other driving conditions and after the air filter. detection.
  • Patent CN 113702056 A also proposes a real-time detection method for engine pipeline air leakage.
  • the air-fuel ratio is calculated based on the oxygen sensor signal upstream of the exhaust pipe, and then the actual intake air volume is calculated through the fuel injection volume and air-fuel ratio and is compared with the measured intake air volume. Compare the volume to determine whether the air intake system is leaking.
  • This method can detect the air leakage status of the intake pipe to a certain extent, but it ignores the misdiagnosis caused by the fuel injection deviation, so it also has certain limitations.
  • the present invention provides a method and device for detecting air leakage in an engine intake pipe to solve the above problems.
  • the invention provides a method for detecting air leakage in an engine intake pipe, which includes:
  • the first flow difference factor, the second flow difference factor and the mixture closed-loop difference factor are obtained, and based on the first flow difference factor, the second flow difference factor
  • the flow difference factor and the mixed gas closed-loop difference factor are used to determine whether there is a suspected air leak, and the air leakage detection result is obtained.
  • the first flow difference factor is a flow difference factor between a flow meter and a throttle model
  • the first traffic difference factor is obtained, including:
  • the air flow rate flowing through the throttle valve is obtained through a flow meter, and the ratio between the air flow rate flowing through the throttle valve obtained through the flow meter and the throttle valve flow rate is used as the flow meter and throttle valve model Traffic difference factor.
  • the second flow difference factor is the flow difference factor between the flow meter and the intake manifold pressure sensor system
  • the second traffic difference factor including:
  • the air flow through the throttle valve is obtained through the flow meter, and the air flow through the throttle valve is obtained through the intake manifold pressure sensor system;
  • the ratio between the air flow flowing through the throttle obtained through the flow meter and the air flow passing through the throttle obtained through the intake manifold pressure sensor system is used as the flow difference between the flow meter and the intake manifold pressure sensor system factor.
  • the method is based on the throttle opening, the effective cross-sectional area of the throttle, the pressure upstream of the throttle, the ideal gas constant, the temperature upstream of the throttle, the intake manifold pressure and
  • the throttle flow is calculated based on the flow coefficient of the pressure ratio, including:
  • the throttle flow is calculated using the throttle opening pos thrvlv , the throttle effective cross-sectional area A thrvlv , the throttle upstream pressure p 21 , the ideal gas constant R, the throttle upstream temperature T 21 , the intake manifold pressure p 2 and the flow coefficient ⁇ based on the pressure ratio.
  • the mixture closed-loop difference factor is obtained, including:
  • the first flow difference factor corresponds to a first difference threshold range
  • the second flow difference factor corresponds to a second difference threshold range
  • the closed-loop difference factor corresponds to the third difference threshold range
  • the determination of whether there is a suspected air leak based on the first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor includes:
  • the first flow difference factor is less than the lower limit of the first difference threshold range and the mixing
  • the gas closed-loop difference factor is greater than the upper limit of the third difference threshold range, or the second flow difference factor is less than the lower limit of the second difference threshold range and the mixed gas closed-loop difference factor is greater than the third difference threshold range. If the upper limit is reached, it is determined that gas leakage is suspected;
  • the air leakage detection result is obtained by determining whether a suspected air leakage is based on the first flow difference factor, the second flow difference factor and the mixture closed-loop difference factor. Afterwards, the methods also include:
  • the air leakage detection result is suspected air leakage, detect whether the suspected air leakage fault is a misdiagnosis caused by oil circuit deviation, and if it is a misdiagnosis, resolve the suspected air leakage fault;
  • the engine air leakage fault After the engine air leakage fault is repaired, it is detected whether the first flow difference factor, the second flow difference factor and the mixture closed-loop difference factor are all within the corresponding threshold range within a predetermined time period, and if they are all within If the value is within the corresponding threshold range, the suspected air leakage fault will be eliminated.
  • the automatic fault post-processing of the engine includes:
  • the invention also provides a device for detecting air leakage in the engine intake pipe, which includes:
  • the air leakage detection intervention module is used to determine whether the conditions for air leakage detection in the intake pipeline before the throttle are met based on the system status of the engine;
  • the air leakage determination module is used to obtain the first flow difference factor, the second flow difference factor and the mixture closed-loop difference factor when the conditions for air leakage detection in the intake pipeline in front of the throttle are met, and based on the third
  • the first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor are used to determine whether there is a suspected air leakage, and the air leakage detection result is obtained.
  • the present invention also provides an electronic device, which includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, it implements any of the above methods for detecting air leakage in the engine intake pipe.
  • the present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the present invention provides a method and device for detecting air leakage in an engine intake pipe, wherein the method for detecting air leakage in the engine intake pipe determines whether it is a suspected air leakage based on a first flow difference factor, a second flow difference factor, and a mixed gas closed-loop difference factor.
  • the method can detect the air leakage state of the intake pipe before the throttle valve under different working conditions and identify the leakage in or out of air, thereby avoiding the occurrence of unstable speed or flameout caused by air leakage in the engine intake pipe to a great extent, and improving the robustness of the engine system.
  • Figure 1 is a schematic flow chart 1 of a method for detecting air leakage in an engine intake pipe provided by an embodiment of the present invention
  • Figure 2 is a schematic flow chart 2 of a method for detecting air leakage in an engine intake pipe provided by an embodiment of the present invention
  • Figure 3 is a schematic flowchart three of a method for detecting air leakage in an engine intake pipe provided by an embodiment of the present invention
  • Figure 4 is a schematic flow chart for resolving suspected air leakage faults according to an embodiment of the present invention.
  • Figure 5 is a structural block diagram of a device for detecting air leakage in an engine intake pipe provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present invention.
  • Figure 1 is a schematic flowchart 1 of a method for detecting air leakage in an engine intake pipe provided by an embodiment of the present invention
  • Figure 2 is a schematic flowchart 2 of a method for detecting air leakage in an engine intake pipe provided by an embodiment of the present invention
  • Figure 3 is a schematic diagram of the implementation of the present invention The example provides a flowchart 3 of the method for detecting air leakage in the engine intake pipe.
  • a method for detecting air leakage in an engine intake pipe includes the following steps:
  • the enabling conditions for air leakage diagnosis upstream of the throttle valve are met, that is, whether the conditions for air leakage detection in the intake pipeline in front of the throttle valve are met.
  • the intake pipe before the throttle refers to the entire intake pipe, including air leakage in the intercooler device, air leakage in the intake pipe, carbon canister leakage, PCV pipe leakage, etc.
  • the enabling condition also means that the air intake pipe in front of the throttle cannot be diagnosed for air leakage under any working conditions, such as in an instant. Under normal working conditions, various sensor signals are changing and are not suitable for air leakage diagnosis. Therefore, air leakage detection can only be performed when the working conditions meet certain conditions, and the conditions that the working conditions must meet are the enabling conditions.
  • the conditions for air leakage detection in the intake pipe in front of the throttle mentioned here refer to the overall enabling conditions of the air leakage identification part. Only when these basic conditions are met, air leakage diagnosis will be performed. For example, when the engine has just been started, the engine fails, etc., the entire air leakage identification function will not be enabled.
  • the enabling conditions include but are not limited to: current environmental pressure conditions, current engine water temperature conditions, current engine speed conditions, throttle valve front and rear pressure ratio, intake/exhaust valve lift, whether related sensors and actuators are faulty, etc. If the current environmental pressure conditions, current engine water temperature conditions, current engine speed conditions, throttle valve front and rear pressure ratio, intake/exhaust valve lift, whether related sensors or actuators are faulty, etc. are all within a reasonable range, it means that the current state of the engine meets the conditions for gas leakage identification, and gas leakage detection is started; conversely, if the above conditions are not met, it means that the current engine state is not suitable for gas leakage detection, so gas leakage identification will not be enabled.
  • the flow difference and the mixture closed-loop difference are calculated through different sensors or actuators, and based on the calculated flow difference and the mixture closed-loop difference and the corresponding The threshold is used to diagnose suspected gas leaks, so as to determine whether it is gas leakage or gas leakage.
  • the specific determination process is described below.
  • the method for detecting air leakage in the engine intake pipe can detect whether there is a suspected air leakage based on the first flow difference factor, the second flow difference factor and the mixture closed-loop difference factor, and can detect the air leakage before the throttle under different working conditions. It can detect the air leakage status of the intake pipe and identify the leakage or leakage of air, which can greatly avoid unstable speed or flameout caused by air leakage in the engine intake pipe, and improve the robustness of the engine system.
  • the first flow difference factor is a flow difference factor between a flow meter and a throttle model.
  • the first traffic difference factor is obtained, including:
  • the medium and low speed range is approximately around 1500rpm-3000rpm. In other embodiments, it will be adjusted according to different engines.
  • the specific conditions for determining whether the engine is at medium to low speed or medium to low load include but are not limited to: throttle flow conditions, front and rear throttle pressure ratio conditions, whether it is in a quasi-steady state condition, etc.
  • a certain threshold for example, 20kg/h
  • a certain threshold for example, 0.8
  • the first flow rate is The difference factor is calculated.
  • the throttle opening pos thrvlv the effective cross-sectional area of the throttle A thrvlv , the throttle upstream pressure p 21 , the ideal gas constant R, the throttle upstream temperature T 21 , the intake manifold pressure p 2 and the pressure ratio-based
  • the flow coefficient ⁇ thrvlv is calculated to obtain the throttle flow
  • the second flow difference factor is the flow difference factor between the flow meter and the intake manifold pressure sensor system
  • the second traffic difference factor including:
  • the air flow through the throttle is obtained through the flow meter, and the air flow through the throttle is calculated through the intake manifold pressure sensor system.
  • the medium and high speed range is 2000rpm-4000rpm. In other embodiments, it will be adjusted according to different engines.
  • the air flow calculated through the P system i.e., the intake manifold pressure sensor system
  • the specific conditions for judging that the engine is at medium to high speed include but are not limited to: the current engine speed condition, the intake/exhaust valve lift condition, the front and rear throttle pressure ratio conditions, and whether it is in a quasi-steady state condition, etc.
  • the intake valve lift is greater than 8 mm
  • the front-to-back pressure ratio of the throttle valve is greater than 0.8
  • the engine is in a quasi-steady state condition of medium to high speed
  • the air flow rate flowing through the throttle is obtained through a flow meter.
  • the air flow through the throttle obtained by the intake manifold pressure sensor system
  • the ratio between the flow meter and the intake manifold pressure sensor serves as the system flow difference factor fac HFM_PBased :
  • the method for detecting air leakage in the engine intake pipe provided by the embodiment of the present invention covers most of the driving conditions of the car through the flow difference factor of the flow meter and the throttle model and the flow difference factor of the flow meter and the intake manifold pressure sensor system.
  • the scope of application is wider, and the flow difference factor calculated under different working conditions is also more accurate, improving the accuracy of air leakage diagnosis.
  • the basis for judging that the mixture under the current working conditions satisfies the closed-loop condition includes but is not limited to: the mixture closed-loop signal, whether the mixture closed-loop is in a quasi-steady state condition, etc.
  • the mixture closed-loop difference factor starts to be calculated.
  • the first flow rate difference factor corresponds to a first difference threshold range
  • the second flow rate difference factor corresponds to a second difference threshold range
  • the mixed gas closed loop difference factor corresponds to a third difference threshold range.
  • the determination of whether there is a suspected air leak based on the first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor includes:
  • the state is determined to be suspected gas leakage.
  • the state is judged to be a leak-free state.
  • the method for detecting air leakage in the engine intake pipe sequentially determines the states of the first flow difference factor, the second flow difference factor, and the mixed gas closed-loop difference factor, and comprehensively evaluates whether it is suspected based on the judged status.
  • the air leakage status is also accurate to whether it is a leak or a leak. input, improving the accuracy of air leakage detection.
  • Figure 4 is a schematic flowchart for resolving suspected air leakage faults provided by an embodiment of the present invention; as shown in Figure 4, it is determined based on the first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor whether it is If there is a suspected air leak, after obtaining the air leak test results, the method also includes:
  • the air leakage detection result is a suspected air leakage
  • the system will remove the suspected air leakage fault signal.
  • automatic fault post-processing includes but is not limited to: using the intake manifold pressure sensor system to calculate the air charge; clearing the main charge self-learning value of the intake manifold pressure sensor system based on the flow meter; switching the current intake valve lift to Large lift range, and reduce the VVT overlap angle; eliminate the mixture self-learning deviation caused by air leakage, and perform self-learning based on the intake manifold pressure sensor system; notify the driver of an air leakage failure upstream of the throttle valve in the intake pipe.
  • the above automatic fault post-processing is some fault post-processing operations made at the software control level.
  • the above automatic fault post-processing can largely avoid engine speed fluctuation and flameout, but it will not completely eliminate the suspected air leakage fault.
  • the system will only eliminate the air leakage fault after the air leakage is actually repaired. obstacles, which require human involvement.
  • the air leakage fault After the air leakage fault is further artificially repaired, it is detected whether the first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor are all within the corresponding threshold range within a predetermined time period, and if they are all within If the value is within the corresponding threshold range, the suspected air leakage fault will be eliminated.
  • the engine control system will continue to calculate each difference factor and determine whether it is within the normal threshold range. If the driver receives the air leakage fault signal and repairs the air leakage hole, then each factor will return to the normal threshold range. When After the system detects that each factor is within the normal threshold range within a period of time and a certain number of times, it will automatically resolve the air leakage fault and return to normal status.
  • the method for detecting air leakage in the engine intake pipe can avoid engine stalling or unstable rotation speed through a series of post-fault processing operations.
  • the method for detecting air leakage in the engine intake pipe provided by the present invention is not only suitable for identifying air leakage in internal combustion engines with superchargers, but can also identify air leaks in engine systems without supercharging.
  • the present invention does not apply to this. Make limitations.
  • the mixed gas closed-loop difference factor is calculated under the mixed gas closed-loop condition.
  • the mixed gas closed-loop difference factor can also be calculated through the oxygen sensor signal after the mixed gas closed-loop condition is turned off. The value is used to calculate the mixture deviation, and then combined with other difference factors to determine the air leakage status of the intake pipeline.
  • the flow difference factor between the flow meter and the throttle model and the flow difference factor between the flow meter and the intake manifold pressure sensor system are calculated using the throttle as the reference position.
  • the throttle as the reference position.
  • any point in the air intake pipeline can be used as the reference position, and the calculation principle is similar, and the present invention does not limit this.
  • FIG. 5 is a structural block diagram of a device for detecting air leakage in an engine intake pipe provided by an embodiment of the present invention. As shown in Figure 5, a device for detecting air leakage in an engine intake pipe includes:
  • the air leakage detection intervention module 501 is used to determine whether the conditions for air leakage detection in the intake pipeline before the throttle are met based on the system status of the engine.
  • the enabling conditions for air leakage diagnosis upstream of the throttle valve are met, that is, whether the conditions for air leakage detection in the intake pipeline in front of the throttle valve are met.
  • the intake pipe before the throttle refers to the entire intake pipe, including air leakage in the intercooler device, air leakage in the intake pipe, carbon canister leakage, PCV pipe leakage, etc.
  • the enabling condition also means that the air intake pipeline in front of the throttle is not suitable for air leakage diagnosis under any working conditions. For example, under transient operating conditions, various sensor signals are changing, which is not suitable for air leakage diagnosis. Therefore, air leakage detection can only be performed when the working conditions meet certain conditions, and the conditions that the working conditions must meet are the enabling conditions.
  • enabling conditions include but are not limited to: current ambient pressure conditions, current engine water temperature conditions, current engine speed conditions, front and rear pressure ratios of the throttle, intake/exhaust valve lift, whether related sensors and actuators are faulty, etc. .
  • current environmental pressure conditions, current engine water temperature conditions, current engine speed conditions, front and rear throttle pressure ratios, intake/exhaust valve lifts, whether there are faults in related sensors or actuators, etc. are all within a reasonable range, it means that the engine If the current status meets the conditions for air leakage identification, air leakage detection will be started; conversely, if the above conditions are not met, it means that the current engine status is not suitable for air leakage detection, so air leakage identification will not be enabled.
  • the air leakage determination module 502 is used to obtain the first flow difference factor, the second flow difference factor and the mixture closed-loop difference factor when the conditions for air leakage detection in the intake pipeline before the throttle are met, and based on the The first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor determine whether there is a suspected air leakage and obtain the air leakage detection result.
  • the flow difference and the mixture closed-loop difference are calculated by different sensors or actuators, and the suspected leakage diagnosis is performed based on the calculated flow difference and mixture closed-loop difference and the corresponding thresholds, so as to accurately determine whether it is gas leakage or gas leakage.
  • the specific judgment process is described above.
  • the device for detecting air leakage in the engine intake pipe provided by the embodiment of the present invention can detect whether there is a suspected air leakage based on the first flow difference factor, the second flow difference factor and the mixture closed-loop difference factor, and can detect the front of the throttle valve under different working conditions.
  • the air intake pipe leakage status identify the leakage of air in or out, This greatly avoids unstable speed or stalling caused by air leakage in the engine intake pipe, and improves the robustness of the engine system.
  • Figure 6 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present invention, such as
  • the electronic device may include: a processor (processor) 610, a communications interface (Communications Interface) 620, a memory (memory) 630, and a communications bus 640.
  • the processor 610, the communications interface 620, and the memory 630 communicate through Bus 640 completes communication with each other.
  • the processor 610 can call the logic instructions in the memory 630 to execute a method for detecting air leakage in the engine intake pipe.
  • the method for detecting air leakage in the engine intake pipe includes: judging whether the advance conditions before the throttle are met based on the system status of the engine.
  • the conditions for air leakage detection in the air intake pipeline when the conditions for air leakage detection in the air intake pipeline before the throttle are met, the first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor are obtained, and based on the The first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor are used to determine whether there is a suspected air leakage and obtain the air leakage detection result.
  • the above-mentioned logical instructions in the memory 630 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to perform the method for detecting air leakage in an engine intake pipe provided by the above method.
  • the method for detecting air leakage in the engine intake pipe includes: judging whether the conditions for air leakage detection on the air intake pipe before the throttle are met according to the system status of the engine; and performing air leakage detection on the air intake pipe before the throttle if the conditions are met.
  • the quantity difference factor, the second flow difference factor and the mixed gas closed-loop difference factor are calculated, and based on the first flow difference factor, the second flow difference factor and the mixed gas closed-loop difference factor, it is judged whether there is a suspected air leakage, and the air leakage detection result is obtained.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place. , or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disc, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute various embodiments or methods of certain parts of the embodiments.

Abstract

一种发动机进气管漏气的检测方法,包括:根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件;在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。以及一种发动机进气管漏气的检测装置。本发明能够检测不同工况下节气门前的进气管路漏气状态、识别空气的漏入或漏出,极大程度上避免了因发动机进气管路漏气造成的转速不稳或熄火现象发生,提高了发动机系统的鲁棒性。

Description

一种发动机进气管漏气的检测方法及装置 技术领域
本发明涉及车辆系统控制技术领域,尤其涉及一种发动机进气管漏气的检测方法及装置。
背景技术
进气系统是汽油机的重要组成部分之一,其主要功能是为汽油机燃烧过程提供充足的、清洁的、以及冷却的新鲜空气。汽油机的转矩和功率一定程度上取决于吸入气缸的新鲜空气质量,为了能够精确地控制汽油机燃烧时的空燃比,就必须准确地计算吸入气缸内的新鲜空气质量,这样才能够配合相应的空气质量提供合适的喷油量,用以满足汽车行驶工况的扭矩与功率需求。
随着国家对汽车节能减排的要求逐步提高,汽油机也逐步向着小型化与高效化进行发展,现如今,小排量的增压发动机因其体积小、质量轻、升功率高的特性,已经占据了主要的发动机市场。相比于传统的自然吸气发动机,增压发动机能够进一步提高充气效率从而提升发动机的功率以及转矩,但与此同时,对于增压发动机的结构以及气密性要求也会相应的提高。在汽车正常行驶过程中,若汽油机的进气系统发生一定量的漏气(尤其是带增压功能的汽油机),易发生怠速转速不稳甚至正常加速时熄火现象,这对汽车行驶的安全性来说构成了很大的潜在危险。为了规避上述风险,对汽油机进气管路的漏气诊断方案必不可少。
现如今对汽油机的进气系统漏气诊断方案较少且鲁棒性不高。例如,专利CN113175382A中提出了一种在发动机怠速状态下检测发动机进气管路的漏气诊断方法,其原理是借助安装在空滤出气端的传感器测量进气流量大小,从而判断高低压管路的漏气状态。当进气流量大于第一预设阈值时提示高压管路漏气,当进气流量小于第二预设阈值时提示低压管路漏气。该诊断策略存在一定的局限性(尤其是对于混动发动机),只能检测发动机在怠速状态下空滤前的漏气状态,对于其他行驶工况以及空滤后的进气管路漏气状态无法 检测。
专利CN 113702056 A中同样提出了一种发动机管路漏气实时检测方法,根据排气管上游氧传感器信号计算出空燃比,之后通过喷油量以及空燃比计算实际进气量并与测量进气量对比,借此判断进气系统是否漏气。该方法在一定程度上能够检测出进气管的漏气状态,但忽略了喷油偏差造成的误诊断,因此同样存在一定的局限性。
综上所述,亟需一种能够在不同工况下准确检测节气门前的进气管路的漏气状态,且具有较好鲁棒性的发动机进气管漏气的检测方法。
发明内容
本发明提供一种发动机进气管漏气的检测方法及装置,用以解决上述问题。
本发明提供一种发动机进气管漏气的检测方法,包括:
根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件;
在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。
根据本发明提供的一种发动机进气管漏气的检测方法,所述第一流量差异因子为流量计与节气门模型流量差异因子;
相应地,获取第一流量差异因子,包括:
在发动机处于中低转速或中低负荷的情况下,根据节气门开度、节气门有效截面积、节气门上游压力、理想气体常数、节气门上游温度、进气歧管压力以及基于压比的流量系数计算得到节气门流量;
通过流量计获取流经节气门的空气流量,并将通过流量计获取得到的流经节气门的空气流量与所述节气门流量之间的比值作为流量计与节气门模型 流量差异因子。
根据本发明提供的一种发动机进气管漏气的检测方法,所述第二流量差异因子为流量计与进气歧管压力传感器系统流量差异因子;
相应地,获取第二流量差异因子,包括:
在发动机处于中高转速或中高负荷的情况下,通过流量计获取流经节气门的空气流量,并通过进气歧管压力传感器系统获取流经节气门的空气流量;
将通过流量计获取得到的流经节气门的空气流量与通过进气歧管压力传感器系统获取得到的流经节气门的空气流量之间的比值作为流量计与进气歧管压力传感器系统流量差异因子。
根据本发明提供的一种发动机进气管漏气的检测方法,所述根据节气门开度、节气门有效截面积、节气门上游压力、理想气体常数、节气门上游温度、进气歧管压力以及基于压比的流量系数计算得到节气门流量,包括:
利用节气门开度posthrvlv、节气门有效截面积Athrvlv、节气门上游压力p21、理想气体常数R、节气门上游温度T21、进气歧管压力p2以及基于压比的流量系数ψ计算得到节气门流量
根据本发明提供的一种发动机进气管漏气的检测方法,获取混合气闭环差异因子,包括:
在当前工况下的混合气满足闭环条件的情况下,计算混合气闭环偏差长期自学习修正系数与混合气闭环偏差快速自学习修正系数之间的乘积,将计算得到的乘积作为混合气闭环差异因子。
根据本发明提供的一种发动机进气管漏气的检测方法,所述第一流量差异因子对应于第一差异阈值范围,所述第二流量差异因子对应于第二差异阈值范围,所述混合气闭环差异因子对应于第三差异阈值范围;
相应地,所述基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,包括:
在所述第一流量差异因子小于所述第一差异阈值范围的下限且所述混合 气闭环差异因子大于所述第三差异阈值范围的上限,或所述第二流量差异因子小于所述第二差异阈值范围的下限且所述混合气闭环差异因子大于所述第三差异阈值范围的上限的情况下,判定疑似气体漏入;
在所述第一流量差异因子大于所述第一差异阈值范围的上限且所述混合气闭环差异因子小于所述第三差异阈值范围的下限,或所述第二流量差异因子大于所述第二差异阈值范围的上限且所述混合气闭环差异因子小于所述第三差异阈值范围的下限的情况下,判定疑似气体漏出;
在所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子均处于对应的阈值范围内时,判定不漏气。
根据本发明提供的一种发动机进气管漏气的检测方法,所述基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果之后,方法还包括:
在漏气检测结果为疑似漏气的情况下,检测疑似漏气故障是否为因油路偏差造成的误诊断,并在为误诊断的情况下,解除疑似漏气故障;
在漏气检测结果为疑似漏气且疑似漏气故障不是误诊断的情况下,对发动机进行自动故障后处理;
在对发动机的漏气故障完成修复之后,检测所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子是否在预定的时间周期内均处于对应的阈值范围内,并在均处于对应的阈值范围内的情况下,解除疑似漏气故障。
根据本发明提供的一种发动机进气管漏气的检测方法,所述对发动机进行自动故障后处理,包括:
利用进气歧管压力传感器系统计算充气量;
清除基于流量计的进气歧管压力传感器系统主充自学习值;将进气门当前升程切换至大升程区间,并减少VVT重叠角;
清除因漏气导致的混合气自学习偏差,并基于进气歧管压力传感器系统进行自学习;
通知驾驶员进气管路节气门上游出现漏气故障。
本发明还提供一种发动机进气管漏气的检测装置,包括:
漏气检测介入模块,用于根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件;
漏气判断模块,用于在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如上述任一种发动机进气管漏气的检测方法。
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一种发动机进气管漏气的检测方法。
本发明提供的发动机进气管漏气的检测方法及装置,其中,发动机进气管漏气的检测方法,根据第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,该方法能够检测不同工况下节气门前的进气管路漏气状态、识别空气的漏入或漏出,极大程度上避免了因发动机进气管路漏气造成的转速不稳或熄火现象发生,提高了发动机系统的鲁棒性。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的发动机进气管漏气的检测方法的流程示意图一;
图2是本发明实施例提供的发动机进气管漏气的检测方法的流程示意图二;
图3是本发明实施例提供的发动机进气管漏气的检测方法的流程示意图三;
图4是本发明实施例提供的疑似漏气故障解除的流程示意图;
图5是本发明实施例提供的发动机进气管漏气的检测装置的结构框图;
图6是本发明实施例提供的一种电子设备的实体结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例提供的发动机进气管漏气的检测方法的流程示意图一;图2是本发明实施例提供的发动机进气管漏气的检测方法的流程示意图二;图3是本发明实施例提供的发动机进气管漏气的检测方法的流程示意图三。
如图1、2以及3所示,一种发动机进气管漏气的检测方法,包括如下步骤:
S101,根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件。
具体地,根据发动机控制系统反馈的系统状态判断是否满足节气门上游漏气诊断的使能条件,即是否满足节气门前的进气管路进行漏气检测的条件。此处,节气门前的进气管路(也即节气门上游)是指整个进气管路,包括中冷装置漏气、进气管路漏气、碳罐漏气、PCV管路漏气等等。使能条件又是指节气门前的进气管路并不是在任意工况下都能够进行漏气诊断,例如在瞬 态工况下,各种传感器信号都在变化,并不适合漏气诊断,因此在工况满足一定的条件时才能进行漏气检测,而其中工况所要满足的条件即为使能条件。
需要说明的是,此处提到的节气门前的进气管路进行漏气检测的条件是指漏气识别部分总的使能条件,只有满足这些基本条件后,才会进行漏气诊断。例如发动机刚启动、发动机故障等情况下,不会对整个漏气识别功能进行使能。
更具体地,使能条件包括但不仅限于:当前环境压力条件、当前发动机水温条件、当前发动机转速条件、节气门前后压力比、进/排气门升程、相关传感器和执行器是否存在故障等。在当前环境压力条件、当前发动机水温条件、当前发动机转速条件、节气门前后压力比、进/排气门升程、相关传感器或执行器是否存在故障等都处于合理范围内的情况下,说明发动机当前状态满足漏气识别的条件,则开始进行漏气检测;反之,若上述条件不满足,则说明当前发动机状态不适合进行漏气检测,因此不会对漏气识别使能。
S102,在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。
具体地,在进气管路节气门上游漏气诊断使能条件满足的情况下,通过不同传感器或执行器计算流量差异以及混合气闭环差异,基于计算得到的流量差异以及混合气闭环差异以及相应的阈值进行疑似漏气诊断,从而精确到到底是气体漏出还是气体漏入,具体判定过程参见下文描述。
本发明实施例提供的发动机进气管漏气的检测方法,通过根据第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,能够检测不同工况下节气门前的进气管漏气状态、识别空气的漏入或漏出,极大程度上避免了因发动机进气管路漏气造成的转速不稳或熄火现象发生,提高了发动机系统的鲁棒性。
进一步地,所述第一流量差异因子为流量计与节气门模型流量差异因子。
相应地,获取第一流量差异因子,包括:
在发动机处于中低转速或中低负荷的情况下,根据节气门开度、节气门有效截面积、节气门上游压力、理想气体常数、节气门上游温度、进气歧管压力以及基于压比的流量系数计算得到节气门流量。
其中,在发动机处于中低转速或处于中低负荷这一工况时,节气门流量模型的计算精度较高。需要说明的是,在本实施例中,中低转速区间大致在1500rpm-3000rpm左右,在其他实施例中,根据不同的发动机会有所调整。
具体判定发动机处于中低转速或中低负荷的条件包括但不仅限于:节气门流量条件、节气门前后压比条件、是否处于准稳态条件等。示例性地,当节气门流量大于一定阈值(例如为20kg/h)且当前节气门前后压比小于一定阈值(例如0.8),同时发动机处于中低转速的准稳态条件时,对第一流量差异因子进行计算。
具体地,利用节气门开度posthrvlv、节气门有效截面积Athrvlv、节气门上游压力p21、理想气体常数R、节气门上游温度T21、进气歧管压力p2以及基于压比的流量系数ψthrvlv计算得到节气门流量
通过流量计获取流经节气门的空气流量并将通过流量计获取得到的流经节气门的空气流量与所述节气门流量之间的比值作为流量计与节气门模型流量差异因子facHFM_Thrvlv
进一步地,所述第二流量差异因子为流量计与进气歧管压力传感器系统流量差异因子;
相应地,获取第二流量差异因子,包括:
在发动机处于中高转速或处于中高负荷的情况下,通过流量计获取流经节气门的空气流量,并通过进气歧管压力传感器系统计算得到的流经节气门处的流量。
需要说明的是,在本实施例中,中高转速范围为2000rpm-4000rpm,在其 他实施例中,根据不同的发动机会有所调整。
其中,在发动机处于中高转速这一工况下,通过P系统(即进气歧管压力传感器系统)计算的空气流量较为精确,同时与上述中低速工况区间形成互补,从而能够涵盖汽车行驶时的大部分工况。发动机处于中高转速具体的判断条件包括但不仅限于:发动机当前转速条件、进/排气门升程条件、节气门前后压比条件、是否处于准稳态条件等。
示例性地,当前发动机转速处于2000-4000rpm,进气门升程大于8mm,节气门前后压比大于0.8且发动机处于中高转速准稳态条件下,计算第二流量差异因子。
将通过流量计获取得到的流经节气门的空气流量与通过进气歧管压力传感器系统获取得到的流经节气门的空气流量之间的比值作为流量计与进气歧管压力传感器系统流量差异因子facHFM_PBased
本发明实施例提供的发动机进气管漏气的检测方法,通过流量计与节气门模型流量差异因子与流量计与进气歧管压力传感器系统流量差异因子来覆盖汽车行驶时的大部分工况,适用范围更广,且在不同工况下计算得到的流量差异因子也更为精确,提升了漏气诊断的准确性。
进一步地,获取混合气闭环差异因子,包括:
在当前工况下的混合气满足闭环条件的情况下,计算混合气闭环偏差长期自学习修正系数facLamCtrlSlow与混合气闭环偏差快速自学习修正系数facLamCtrlFast之间的乘积,将计算得到的乘积作为混合气闭环差异因子facLamCtrl
facLamCtrl=facLamCtrlSlow*facLamCtrlFast
其中,当前工况下的混合气满足闭环条件的判断依据包括但不仅限于:混合气闭环信号、混合气闭环是否处于准稳态条件等。
示例性地,当混合气控制进入闭环状态,且混合气闭偏差修正系数处于准稳态条件时,开始对混合气闭环差异因子进行计算。
进一步地,所述第一流量差异因子对应于第一差异阈值范围,所述第二流量差异因子对应于第二差异阈值范围,所述混合气闭环差异因子对应于第三差异阈值范围。
相应地,所述基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,包括:
在所述第一流量差异因子小于所述第一差异阈值范围的下限且所述混合气闭环差异因子大于所述第三差异阈值范围的上限,或所述第二流量差异因子小于所述第二差异阈值范围的下限且所述混合气闭环差异因子大于所述第三差异阈值范围的上限的情况下,判定疑似气体漏入。
具体地,若流量计与节气门模型流量差异因子facHFM_Thrvlv或流量计与P系统流量差异因子facHFM_PBased小于其对应阈值范围下限且混合气闭环差异因子facLamCtrl大于其对应的阈值范围上限,则判断该状态为疑似气体漏入。
在所述第一流量差异因子大于所述第一差异阈值范围的上限且所述混合气闭环差异因子小于所述第三差异阈值范围的下限,或所述第二流量差异因子大于所述第二差异阈值范围的上限且所述混合气闭环差异因子小于所述第三差异阈值范围的下限的情况下,判定疑似气体漏出。
具体地,若流量计与节气门模型流量差异因子facHFM_Thrvlv或流量计与P系统流量差异因子facHFM_PBased大于其对应阈值范围上限且混合气闭环差异因子facLamCtrl小于其对应的阈值范围下限,则判断该状态为疑似气体漏出。
在所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子均处于对应的阈值范围内时,判定不漏气。
具体地,若流量计与节气门模型流量差异因子或流量计与P系统流量差异因子以及混合气闭环差异因子均处于其对应阈值范围内,则判断该状态为不漏气状态。
本发明实施例提供的发动机进气管漏气的检测方法,通过依次判断第一流量差异因子、第二流量差异因子以及混合气闭环差异因子所处的状态,并根据判断到状态综合评估是否为疑似漏气状态,还精确到了是为漏出还是漏 入,提升了漏气检测的准确性。
图4是本发明实施例提供的疑似漏气故障解除的流程示意图;如图4所述,在所述基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果之后,方法还包括:
在漏气检测结果为疑似漏气的情况下,检测疑似漏气故障是否为因油路偏差造成的误诊断,并在为误诊断的情况下,解除疑似漏气故障。
具体地,若系统依然检测到各因子超过其对应的阈值范围,则说明不是因为漏气原因而是由于油路偏差误触发了漏气故障。基于以上判断,系统将解除疑似漏气故障信号。
在漏气检测结果为疑似漏气且疑似漏气故障不是误诊断的情况下,对发动机进行自动故障后处理。
其中,自动故障后处理包括但不限于:利用进气歧管压力传感器系统计算充气量;清除基于流量计的进气歧管压力传感器系统主充自学习值;将进气门当前升程切换至大升程区间,并减少VVT重叠角;清除因漏气导致的混合气自学习偏差,并基于进气歧管压力传感器系统进行自学习;通知驾驶员进气管路节气门上游出现漏气故障。
具体地,(1)当疑似漏气信号置位时,立即将发动机切换为P系统(这么切换的原因是P系统利用进气歧管压力传感器系统的歧管压力计算空气充量,一定程度上避免了节气门前漏气带来的误差,从而使得进气量的计算在某些工况下趋于正常水平)以保证进气量计算的准确性;(2)清除基于流量计的P路主充自学习值并关闭该自学习功能;(3)针对不同系统(连续式VVL或分级式VVL等),切换至进气门大升程区间并减少VVT重叠角,尽量保证P系统计算的准确性;(4)清除可能由漏气导致的混合气自学习偏差,并基于P系统进行自学习;(5)提示驾驶员进气管路节气门上游漏气故障。
上述自动故障后处理均是从软件控制层面作出的一些故障后处理操作,通过上述自动故障后处理能够很大程度上避免发动机转速波动和熄火,但并不会完全解除疑似漏气故障,只有在漏气真正被修复后系统才会解除漏气故 障,其需要人为参与其中。
在人为地对漏气故障进一步修复之后,检测所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子是否在预定的时间周期内均处于对应的阈值范围内,并在均处于对应的阈值范围内的情况下,解除疑似漏气故障。
具体地,发动机控制系统将持续计算各差异因子并判断其是否处于正常阈值范围内,若驾驶员接收到漏气故障信号后修复了漏气孔,此时各因子将恢复至正常阈值范围,当系统在一段时间、一定次数内检测到各因子均处于正常的阈值范围后,会自动解除漏气故障,并恢复正常状态。
本发明实施例提供的发动机进气管漏气的检测方法,通过一系列故障后处理操作,可以避免发动机熄火或转速不稳情况发生。通过进一步检测第一流量差异因子、第二流量差异因子以及混合气闭环差异因子是否均处于对应的阈值范围内,来确定漏气故障是否可以解除,并检测漏气故障原因是否为油路偏差造成的误诊断,进一步提高了系统的鲁棒性。
需要说明的是,本发明提供的发动机进气管漏气的检测方法不仅适用于带有增压器的内燃机漏气识别,对于不带增压的发动机系统同样可以识别漏气,本发明对此不做限定。
另外,在本实施例中混合气闭环差异因子是在混合气闭环条件下计算的,在本发明的其他实施例中,混合气闭环差异因子在关闭混合气闭环条件后,还能够通过氧气传感器信号值计算出混合气偏差,从而结合其他差异因子判断进气管路的漏气状况。
除此之外,在本实施例中流量计与节气门模型流量差异因子以及流量计与进气歧管压力传感器系统流量差异因子都是以节气门处作为参考位置来计算的。但在实际情况下,可将进气管路中的任意点作为参考位置,其计算原理相似,本发明对此不做限定。
图5是本发明实施例提供的发动机进气管漏气的检测装置的结构框图,如图5所示,一种发动机进气管漏气的检测装置,包括:
漏气检测介入模块501,用于根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件。
具体地,根据发动机控制系统反馈的系统状态判断是否满足节气门上游漏气诊断的使能条件,即是否满足节气门前的进气管路进行漏气检测的条件。此处,节气门前的进气管路(也即节气门上游)是指整个进气管路,包括中冷装置漏气、进气管路漏气、碳罐漏气、PCV管路漏气等等。使能条件又是指节气门前的进气管路并不是在任意工况下都能够进行漏气诊断,例如在瞬态工况下,各种传感器信号都在变化,并不适合漏气诊断,因此在工况满足一定的条件时才能进行漏气检测,而其中工况所要满足的条件即为使能条件。
更具体地,使能条件包括但不仅限于:当前环境压力条件、当前发动机水温条件、当前发动机转速条件、节气门前后压力比、进/排气门升程、相关传感器和执行器是否存在故障等。在当前环境压力条件、当前发动机水温条件、当前发动机转速条件、节气门前后压力比、进/排气门升程、相关传感器或执行器是否存在故障等都处于合理范围内的情况下,说明发动机当前状态满足漏气识别的条件,则开始进行漏气检测;反之,若上述条件不满足,则说明当前发动机状态不适合进行漏气检测,因此不会对漏气识别使能。
漏气判断模块502,用于在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。
具体地,在进气管路节气门上游漏气诊断使能条件满足的情况下,通过不同传感器或执行器计算流量差异以及混合气闭环差异,基于计算得到的流量差异以及混合气闭环差异以及相应的阈值进行疑似漏气诊断,从而精确到到底是气体漏出还是气体漏入,具体判定过程参见上文描述。
本发明实施例提供的发动机进气管漏气的检测装置,通过根据第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,能够检测不同工况下节气门前的进气管漏气状态、识别空气的漏入或漏出, 极大程度上避免了因发动机进气管路漏气造成的转速不稳或熄火现象发生,提高了发动机系统的鲁棒性。
图6是本发明实施例提供的一种电子设备的实体结构示意图,如
图6所示,该电子设备可以包括:处理器(processor)610、通信接口(Communications Interface)620、存储器(memory)630和通信总线640,其中,处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信。处理器610可以调用存储器630中的逻辑指令,以执行发动机进气管漏气的检测方法,所述发动机进气管漏气的检测方法,包括:根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件;在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。
此外,上述的存储器630中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述方法所提供的发动机进气管漏气的检测方法,所述发动机进气管漏气的检测方法,包括:根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件;在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流 量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种发动机进气管漏气的检测方法,其特征在于,包括:
    根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件;
    在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。
  2. 根据权利要求1所述的发动机进气管漏气的检测方法,其特征在于,所述第一流量差异因子为流量计与节气门模型流量差异因子;
    所述第一流量差异因子的获取包括:
    在发动机处于中低转速或中低负荷的情况下,根据节气门开度、节气门有效截面积、节气门上游压力、理想气体常数、节气门上游温度、进气歧管压力以及基于压比的流量系数计算得到节气门流量;
    通过流量计获取流经节气门的空气流量,并将通过流量计获取得到的流经节气门的空气流量与所述节气门流量之间的比值作为所述流量计与节气门模型流量差异因子。
  3. 根据权利要求2所述的发动机进气管漏气的检测方法,其特征在于,所述第二流量差异因子为流量计与进气歧管压力传感器系统流量差异因子;
    所述第二流量差异因子的获取包括:
    在发动机处于中高转速或中高负荷的情况下,通过流量计获取流经节气门的空气流量,并通过进气歧管压力传感器系统获取流经节气门的空气流量;
    将通过流量计获取得到的流经节气门的空气流量与通过进气歧管压力传感器系统获取得到的流经节气门的空气流量之间的比值作为所述流量计与进气歧管压力传感器系统流量差异因子。
  4. 根据权利要求1所述的发动机进气管漏气的检测方法,其特征在于, 所述根据节气门开度、节气门有效截面积、节气门上游压力、理想气体常数、节气门上游温度、进气歧管压力以及基于压比的流量系数计算得到节气门流量,包括:
    利用节气门开度posthrvlv、节气门有效截面积Athrvlv、节气门上游压力p21、理想气体常数R、节气门上游温度T21、进气歧管压力p2以及基于压比的流量系数ψthrvlv计算得到节气门流量
  5. 根据权利要求1所述的发动机进气管漏气的检测方法,其特征在于,所述混合气闭环差异因子的获取包括:
    在当前工况下的混合气满足闭环条件的情况下,计算混合气闭环偏差长期自学习修正系数与混合气闭环偏差快速自学习修正系数之间的乘积,将计算得到的乘积作为所述混合气闭环差异因子。
  6. 根据权利要求1所述的发动机进气管漏气的检测方法,其特征在于,所述第一流量差异因子对应于第一差异阈值范围,所述第二流量差异因子对应于第二差异阈值范围,所述混合气闭环差异因子对应于第三差异阈值范围;
    相应地,所述基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,包括:
    在所述第一流量差异因子小于第一差异阈值范围的下限且所述混合气闭环差异因子大于第三差异阈值范围的上限,或所述第二流量差异因子小于第二差异阈值范围的下限且所述混合气闭环差异因子大于所述第三差异阈值范围的上限的情况下,判定疑似气体漏入;
    在所述第一流量差异因子大于所述第一差异阈值范围的上限且所述混合气闭环差异因子小于所述第三差异阈值范围的下限,或所述第二流量差异因子大于所述第二差异阈值范围的上限且所述混合气闭环差异因子小于所述第三差异阈值范围的下限的情况下,判定疑似气体漏出;
    在所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子均处于对应的阈值范围内时,判定不漏气。
  7. 根据权利要求1-6任一所述的发动机进气管漏气的检测方法,其特征在于,在所述基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果之后,所述检测方法还包括:
    在所述漏气检测结果为疑似漏气的情况下,检测疑似漏气故障是否为因油路偏差造成的误诊断,并在为误诊断的情况下,解除疑似漏气故障;
    在所述漏气检测结果为疑似漏气且疑似漏气故障不是误诊断的情况下,对发动机进行自动故障后处理;
    在对发动机的漏气故障完成修复之后,检测所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子是否在预定的时间周期内均处于对应的阈值范围内,并在均处于对应的阈值范围内的情况下,解除疑似漏气故障。
  8. 根据权利要求7所述的发动机进气管漏气的检测方法,其特征在于,所述对发动机进行自动故障后处理,包括:
    利用进气歧管压力传感器系统计算充气量;
    清除基于流量计的进气歧管压力传感器系统主充自学习值;
    将进气门当前升程切换至大升程区间,并减少VVT重叠角;
    清除因漏气导致的混合气自学习偏差,并基于进气歧管压力传感器系统进行自学习;
    通知驾驶员进气管路节气门上游出现漏气故障。
  9. 一种发动机进气管漏气的检测装置,其特征在于,包括:
    漏气检测介入模块,用于根据发动机的系统状态量判断是否满足节气门前的进气管路进行漏气检测的条件;
    漏气判断模块,用于在满足节气门前的进气管路进行漏气检测的条件的情况下,获取第一流量差异因子、第二流量差异因子以及混合气闭环差异因子,并基于所述第一流量差异因子、第二流量差异因子以及混合气闭环差异因子判断是否为疑似漏气,获得漏气检测结果。
  10. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至8任一项所述发动机进气管漏气的检测方法。
  11. 一种非暂态计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述发动机进气管漏气的检测方法。
PCT/CN2023/098802 2022-09-22 2023-06-07 一种发动机进气管漏气的检测方法及装置 WO2024060689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211158622.8 2022-09-22
CN202211158622.8A CN115597793A (zh) 2022-09-22 2022-09-22 一种发动机进气管漏气的检测方法及装置

Publications (1)

Publication Number Publication Date
WO2024060689A1 true WO2024060689A1 (zh) 2024-03-28

Family

ID=84845483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098802 WO2024060689A1 (zh) 2022-09-22 2023-06-07 一种发动机进气管漏气的检测方法及装置

Country Status (2)

Country Link
CN (1) CN115597793A (zh)
WO (1) WO2024060689A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115597793A (zh) * 2022-09-22 2023-01-13 联合汽车电子有限公司(Cn) 一种发动机进气管漏气的检测方法及装置
CN117419858A (zh) * 2023-12-19 2024-01-19 潍柴动力股份有限公司 一种发动机进气侧的漏气检测方法及其漏气检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999781A (en) * 1989-07-17 1991-03-12 General Motors Corporation Closed loop mass airflow determination via throttle position
JPH05163993A (ja) * 1991-12-10 1993-06-29 Japan Electron Control Syst Co Ltd 内燃機関におけるブローバイガス発生検出装置及び燃料供給系異常診断装置
WO2006114393A1 (de) * 2005-04-28 2006-11-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zur lokalisation von fehlerbehafteten komponenten oder leckagen im ansaugtrakt einer brennkraftmaschine
JP2010071251A (ja) * 2008-09-22 2010-04-02 Hitachi Automotive Systems Ltd エンジンの制御装置
CN107366580A (zh) * 2016-05-12 2017-11-21 丰田自动车株式会社 用于内燃机的进气系统的异常诊断装置和异常诊断方法
CN107842432A (zh) * 2016-09-19 2018-03-27 罗伯特·博世有限公司 用于识别进气管中的泄漏的方法
CN115597793A (zh) * 2022-09-22 2023-01-13 联合汽车电子有限公司(Cn) 一种发动机进气管漏气的检测方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999781A (en) * 1989-07-17 1991-03-12 General Motors Corporation Closed loop mass airflow determination via throttle position
JPH05163993A (ja) * 1991-12-10 1993-06-29 Japan Electron Control Syst Co Ltd 内燃機関におけるブローバイガス発生検出装置及び燃料供給系異常診断装置
WO2006114393A1 (de) * 2005-04-28 2006-11-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zur lokalisation von fehlerbehafteten komponenten oder leckagen im ansaugtrakt einer brennkraftmaschine
JP2010071251A (ja) * 2008-09-22 2010-04-02 Hitachi Automotive Systems Ltd エンジンの制御装置
CN107366580A (zh) * 2016-05-12 2017-11-21 丰田自动车株式会社 用于内燃机的进气系统的异常诊断装置和异常诊断方法
CN107842432A (zh) * 2016-09-19 2018-03-27 罗伯特·博世有限公司 用于识别进气管中的泄漏的方法
CN115597793A (zh) * 2022-09-22 2023-01-13 联合汽车电子有限公司(Cn) 一种发动机进气管漏气的检测方法及装置

Also Published As

Publication number Publication date
CN115597793A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2024060689A1 (zh) 一种发动机进气管漏气的检测方法及装置
US8844343B2 (en) Apparatus for diagnosing exhaust gas recirculation and method thereof
US5698780A (en) Method and apparatus for detecting a malfunction in an intake pressure sensor of an engine
JP2009024677A (ja) 内燃機関の制御装置
US9759165B2 (en) Internal combustion engine
CN102840060B (zh) 用于内燃机的egr控制器
US9670860B2 (en) Abnormality diagnosing apparatus of intake air temperature sensor, and abnormality diagnosing method
US6427527B1 (en) Diagnostic method of determining causes of faults in the formation of an air/fuel mixture for an internal combustion engine
WO2008090998A1 (ja) 内燃機関の制御装置
CN109113897A (zh) 一种车辆燃油蒸发泄漏诊断装置及其诊断方法
JP5246298B2 (ja) 内燃機関の吸気漏洩診断装置
JP5660323B2 (ja) 内燃機関のegr制御装置
JP2017180416A (ja) エンジンの制御装置
CN113217234B (zh) Egr系统的低流量故障诊断方法、系统及可读存储介质
JP3721671B2 (ja) 車両用故障診断装置
WO2008007720A1 (fr) Dispositif de détermination de défaillance et dispositif de sécurité pour un système de moteur à combustion interne
JP2015209765A (ja) エンジン制御装置
CN113250864B (zh) Egr流量诊断方法、诊断系统及汽车
JP2011085081A (ja) エンジンの失火判定方法
JP2019085905A (ja) 内燃機関の制御装置
JPWO2011111171A1 (ja) 内燃機関の制御装置
JP2009191650A (ja) 内燃機関の制御装置
CN112145325B (zh) 发动机进气系统管路诊断方法
CN111852653B (zh) 曲轴箱通风管路的诊断装置及诊断方法
JP2017048776A (ja) 過給機付き内燃機関の異常診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866985

Country of ref document: EP

Kind code of ref document: A1