WO2024060518A1 - 一种冲击波球囊导管装置 - Google Patents

一种冲击波球囊导管装置 Download PDF

Info

Publication number
WO2024060518A1
WO2024060518A1 PCT/CN2023/079491 CN2023079491W WO2024060518A1 WO 2024060518 A1 WO2024060518 A1 WO 2024060518A1 CN 2023079491 W CN2023079491 W CN 2023079491W WO 2024060518 A1 WO2024060518 A1 WO 2024060518A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
catheter
assembly
power supply
electrode assembly
Prior art date
Application number
PCT/CN2023/079491
Other languages
English (en)
French (fr)
Inventor
江挺益
刘广志
朱备备
肖鹏
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2024060518A1 publication Critical patent/WO2024060518A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22025Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement applying a shock wave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22062Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22069Immobilising; Stabilising

Definitions

  • the present application relates to the technical field of medical devices, and specifically to a shock wave balloon catheter device.
  • a shock wave balloon catheter device For vascular calcification lesions, a shock wave balloon catheter device is provided; during treatment, the balloon on the catheter is advanced to the vascular calcification area; the balloon is then inflated and pressurized with liquid; the electrode pair in the balloon is A high-voltage pulse is applied to cause the electrode pair to discharge to generate a shock wave in the liquid; the shock wave hits the balloon wall to rupture the calcified plaque; after the calcified plaque ruptures, the balloon can be further expanded to open the vessel.
  • the catheter is used to carry the balloon to move in the vessel, so the catheter needs to have good passability in the vessel.
  • Embodiments of the present application provide a shock wave balloon catheter device with good passability in blood vessels.
  • a shock wave balloon catheter device including a catheter, a balloon sealed around the periphery of the catheter, and an electrode assembly disposed in the balloon, and the balloon can be filled with liquid;
  • the electrode assembly includes a first electrode, a first intermediate electrode unit, and a second electrode; the first electrode, the first intermediate electrode unit, and the second electrode are arranged at intervals along the circumferential direction of the catheter; the third electrode There is a gap between one electrode and the first middle electrode unit and form an electrode pair; there is a gap between the first middle electrode unit and the second electrode and form an electrode pair; when the first electrode and the When a voltage is applied between the second electrodes, each of the electrode pairs is configured to form a discharge arc in the liquid to allow current to pass through the first electrode, the first middle electrode unit, and the third electrode unit in sequence.
  • Two electrodes are configured to form a discharge arc in the liquid to allow current to pass through the first electrode, the first middle electrode unit, and the third electrode unit in sequence.
  • the first electrode, the first middle electrode unit and the second electrode are arranged at intervals along the circumference of the catheter, and a discharge arc is formed between the first electrode, the first middle electrode unit and the second electrode, so the outer circumference of the catheter only A single layer of electrodes is arranged so that the catheter has good passability in the vessel.
  • Figure 1 is a schematic structural diagram of a shock wave balloon catheter device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a cross-section of an electrode assembly provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a cross-section of an electrode assembly provided by another embodiment of the present application.
  • Figure 4 is an isometric view of the assembly of the catheter and electrode assembly according to the embodiment of Figure 3 of the present application;
  • FIG. 5 is a schematic structural diagram of a shock wave balloon catheter device provided by another embodiment of the present application.
  • Figure 6 is a schematic structural diagram of the catheter, electrode assembly and positioning sheath provided by one embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a catheter, an electrode assembly and a positioning sheath provided by another embodiment of the present application.
  • Figure 8 is a schematic cross-sectional structural diagram of a positioning sheath provided by another embodiment of the present application.
  • Figure 9 is a partial cross-sectional structural diagram of an electrode assembly with an insulating medium provided by an embodiment of the present application.
  • Figure 10 is a partial cross-sectional structural diagram of an electrode assembly with an insulating medium provided by another embodiment of the present application.
  • Figure 11 is a radial view of an electrode assembly with an insulating medium provided by another embodiment of the present application.
  • Figure 12 is a partial cross-sectional schematic diagram of an electrode assembly provided by another embodiment of the present application.
  • Figure 13 is a partial cross-sectional schematic diagram of an electrode assembly provided by another embodiment of the present application.
  • Figure 14 is a partial cross-sectional schematic diagram of an electrode assembly provided by another embodiment of the present application.
  • Figure 15 is a schematic diagram of the connection structure of the second electrode component, the first electrical component and the first wire according to an embodiment of the present application;
  • Figure 16 is a schematic cross-sectional view of the first electrical component and the first conductor provided by an embodiment of the present application
  • Figure 17 is a schematic cross-sectional view of the first electrical component and the first wire provided by another embodiment of the present application.
  • Figure 18 is a schematic cross-sectional view of the first electrical component and the first wire provided by another embodiment of the present application.
  • Figure 19 is a schematic diagram of the connection between the pulse voltage generator and the electrode assembly provided by one embodiment of the present application.
  • Figure 20 is a schematic cross-sectional view of the first electrical component, the first conductor and the second conductor provided by an embodiment of the present application;
  • Figure 21 is a schematic structural diagram of an electrode assembly in cross section according to another embodiment of the present application.
  • shock wave balloon catheter device according to the embodiment of this specification will be explained and described below with reference to FIGS. 1 to 21 .
  • the same reference numerals represent the same components.
  • detailed descriptions of the same components in different embodiments are omitted, and the descriptions of the same components can be referred to and quoted from each other.
  • the shock wave balloon catheter device includes a catheter, a balloon sealed around the periphery of the catheter, and at least one electrode pair disposed in the balloon; the balloon can be filled with liquid; each electrode pair includes a first electrode and a second electrode. Electrode; when a voltage is applied between the first electrode and the second electrode, the liquid in the balloon between the first electrode and the second electrode forms a plasma arc, thereby generating a plasma arc in the liquid. Bubbles that expand and collapse, creating a mechanical shock wave in the balloon that is mechanically conducted through the fluid and balloon to exert mechanical force or pressure to cause any calcification on or in the vasculature wall The plaque splits apart.
  • the balloon in the depressurized state should first be delivered to the calcified lesion, and the balloon should be pressurized to ensure close fit with the blood vessel wall; then, the balloon should be inserted between the first electrode and the second electrode.
  • a voltage is applied between the first electrode and the second electrode, and the liquid in the balloon forms a discharge shock wave.
  • the shock wave impacts and destroys calcified lesions, leading to calcified rupture of the intima and media.
  • the modification effect of calcified lesions can be judged by evaluating the symmetrical expansion of the balloon.
  • the shock wave balloon catheter device efficiently and safely destroys superficial and deep calcifications, thereby significantly improving vascular compliance.
  • This device is not only effective for superficial calcifications and deep calcifications, but also has a therapeutic effect on eccentric lesions and non-eccentric lesions, reducing the risk of complications such as dissection and perforation.
  • the balloon is carried through the catheter to move in the vessel.
  • the vascular path has developed severe stenosis or even complete occlusion. Therefore, it is necessary to reduce the cross-sectional area of the catheter as much as possible and improve the flexibility of the catheter. , so that it has good passability in the blood vessels.
  • the first electrode and the second electrode are radially stacked and installed on the catheter, and in order to prevent the first electrode and the second electrode from being connected and short-circuited, another electrode is required between the first electrode and the second electrode.
  • two layers of electrodes and a layer of insulating medium are superimposed on the outer wall of the catheter, making the cross-sectional area where the electrode pair is located larger and less flexible, making it difficult to penetrate severely stenotic lesions or completely occluded lesions.
  • the blood vessels have poor permeability.
  • the shock wave balloon catheter device includes a catheter 1, a balloon 2 sealed around the periphery of the catheter 1, and a balloon 2 disposed inside the balloon 2. At least one electrode assembly 3; the balloon 2 can be filled with liquid.
  • the liquid includes but is not limited to water, saline, contrast media and mixtures thereof.
  • the number of electrode assemblies 3 is at least 2, and the at least 2 electrode assemblies 3 are arranged at intervals along the axial direction of the catheter 1 so that multiple electrode assemblies 3 in the balloon 2 A discharge shock wave is generated at the location to destroy the calcified area more efficiently.
  • the electrode assembly includes a first electrode 301, a first intermediate electrode unit and a second electrode 303; the first electrode 301, the first intermediate electrode unit and the second electrode 303 are sequentially formed along the circumferential direction of the catheter 1 Arranged at intervals; there is a gap between the first electrode 301 and the first middle electrode unit and form an electrode pair; there is a gap between the first middle electrode unit and the second electrode 303 and form an electrode pair; when When a voltage is applied between the first electrode 301 and the second electrode 303, each of the electrode pairs is configured to form a discharge arc in the liquid, respectively, to allow current to pass through the first electrode 301, the first intermediate electrode unit and the second electrode 303.
  • applying a voltage between the first electrode 301 and the second electrode 303 means that there is a potential difference between the first electrode 301 and the second electrode 303; specifically, it can be Among the first electrode 301 and the second electrode 303, one is directly connected to the positive electrode of the power supply through a wire, and the other is directly connected to the negative electrode of the power supply through a wire; or the first electrode 301 and/or the second electrode 303 are connected to
  • the conductive path of the power supply is provided with conductive devices such as resistors, electrode pairs, and capacitors.
  • the first middle electrode unit includes a first middle electrode, a second middle electrode, ..., an Nth middle electrode, N ⁇ 1; the first electrode, the first middle electrode, the second middle electrode Electrodes,..., the Nth middle electrode, and the second electrode are arranged at intervals along the circumferential direction of the catheter; wherein the first electrode and the first middle electrode have a gap and form an electrode pair; the i-th middle electrode and The i+1th middle electrode has a gap and forms an electrode pair, 1 ⁇ i ⁇ N-1; the Nth middle electrode and the second electrode have a gap and forms an electrode pair; when the first electrode and the When a voltage is applied between the second electrodes, each of the electrode pairs is configured to form a discharge arc in the liquid, allowing current to pass through the first electrode, the first middle electrode, the second middle electrode in sequence.
  • the definition of the first, second..., and Nth intermediate electrode means to define a sequence of continuous natural numbers, which is used to describe the naming method of multiple intermediate electrodes when there are multiple intermediate electrodes; therefore This does not exclude an embodiment in which the first intermediate electrode unit has only one first intermediate electrode.
  • the first intermediate electrode, the second intermediate electrode, ..., and the N-th intermediate electrode are neither connected to the ground through wires nor connected to the power supply through wires.
  • the first middle electrode unit includes a first middle electrode; each electrode assembly 3 includes a first electrode 301 , a first middle electrode 302 and a second electrode 303 .
  • An electrode 301 , a first intermediate electrode 302 and a second electrode 303 are arranged at intervals along the circumference of the catheter 1 .
  • the cross-sectional shapes of the first electrode 301 , the first middle electrode 302 and the second electrode 303 are all arc-shaped, so that the inner wall of the first electrode 301 is in contact with the inner wall of the first middle electrode 302
  • the inner walls are respectively attached to the outer walls of the conduit 1, making the connection more stable and reducing the cross-sectional size.
  • the first electrode 301, the first intermediate electrode 302 and the second electrode 303 are arranged at intervals along the circumferential direction of the catheter 1; the first electrode 301 and the first intermediate electrode 302 form an electrode pair; The first intermediate electrode 302 and the second electrode 303 form an electrode pair; when a voltage is applied between the first electrode 301 and the second electrode 303, the electrode pair is configured to be in the liquid respectively.
  • a discharge arc is formed in the electrode to allow current to pass through the first electrode 301 , the first middle electrode 302 and the second electrode 303 in sequence.
  • each electrode assembly 3 includes a first electrode 301, a first intermediate electrode 302, a Two middle electrodes and a second electrode 303.
  • the first electrode 301, the first middle electrode 302, the second middle electrode and the second electrode 303 are arranged at intervals along the circumferential direction of the catheter 1.
  • the first electrode 301 and the first middle electrode 302 form an electrode pair; the first middle electrode 302 and the second middle electrode form an electrode pair; the second middle electrode and the second electrode 303 form Electrode pair; when a voltage is applied between the first electrode 301 and the second electrode 303, the electrode pair is configured to form a discharge arc in the liquid respectively to allow current to pass through the first electrode in sequence 301.
  • the first intermediate electrode 302, the second intermediate electrode and the second electrode 303 are examples of the first electrode pair.
  • the first electrode 301 includes a first end 3011 located at one circumferential end of the catheter 1 and a second end 3012 located at the other circumferential end of the catheter 1;
  • the first middle electrode 302 includes a The third end 3021 at one circumferential end of the catheter 1 and the fourth end 3022 at the other circumferential end of the catheter 1;
  • the second electrode 303 includes a fifth end 3031 at one circumferential end of the catheter 1 , and a sixth end 3032 located at the other circumferential end of the conduit;
  • the second end 3012 is adjacent to the third end 3021 and defines a gap 305;
  • the fourth end 3022 and the The fifth end 3031 is adjacent and defines a gap 305 .
  • the arc angles of the first electrode 301, the first middle electrode 302 and the second electrode 303 may be the same or different.
  • the arc angles of the first electrode 301, the first middle electrode 302 and the second electrode 303 are all 100°; or the arc angle of the first electrode 301 is 120°, and the arc angle of the first middle electrode 302 is 120°.
  • the arc angle with the second electrode 303 is 100°.
  • the lengths of the first electrode 301, the first middle electrode 302 and the second electrode 303 along the axial direction of the catheter 1 may be the same or different; they may be located at least partially in the same interval in the axial direction.
  • the first electrode 301, the first intermediate electrode 302 and the second electrode 303 are arranged at intervals along the circumference of the catheter 1; therefore, only a single layer of electrodes is arranged on the outer periphery of the catheter 1, with a small cross-sectional area and good flexibility. , so that the catheter 1 has good passability in the blood vessel; and the two gaps 305 are in a series relationship, so that during each application of the pulse voltage, the two gaps 305 can form a discharge arc.
  • the first end 3011 is adjacent to the sixth end 3032.
  • the first end 3011 and the sixth end 3032 are close to each other and a voltage is applied between the first electrode 301 and the second electrode 303, the first end 3011 and the sixth end 3032 are If the sixth end 3032 forms a discharge arc, it may cause the two gaps 305 to be unable to form discharge, affecting the stability of the discharge positions and the number of discharge positions.
  • the distance between the first end 3011 and the sixth end 3032 is configured to be such that when the first end 3011 is adjacent to the sixth end 3032, When a voltage is applied between the electrode 301 and the second electrode 303, the first end 3011 and the sixth end 3032 do not form a discharge arc.
  • the arc angles of the first electrode 301, the first middle electrode 302, and the second electrode 303 are all 100°, and the corresponding central angles of the two gaps 305 are 5°.
  • the gaps 305 are small enough.
  • a discharge shock wave can be formed; then the central angle between the first end 3011 and the sixth end 3032 is 50°, because the distance between the first end 3011 and the sixth end 3032 is relatively small. Far, no discharge arc is formed between the first end 3011 and the sixth end 3032.
  • an insulating shielding medium is provided between the first end 3011 and the sixth end 3032.
  • the insulating shielding medium is configured to fill the entire area between the first end 3011 and the sixth end 3032, so that there is no space between the first end 3011 and the sixth end 3032. liquid, when a voltage is applied between the first electrode and the second electrode, no discharge arc is formed between the first end 3011 and the sixth end 3032 .
  • the electrode assembly 3 further includes a second intermediate electrode unit.
  • the first electrode 301, the first intermediate electrode unit, the second electrode 303 and the second intermediate electrode unit are sequentially arranged at intervals along the circumference of the conduit 1; there is a gap between the first electrode 301 and the second intermediate electrode unit and form an electrode pair; there is a gap between the second intermediate electrode unit and the second electrode 303 and form an electrode pair; when a voltage is applied between the first electrode 301 and the second electrode 303, the electrode pair is configured to form a discharge arc respectively to allow current to pass through the first electrode 301, the second intermediate electrode unit and the second electrode 303 in sequence.
  • the number of electrodes of the second intermediate electrode unit may be the same as or different from the number of electrodes of the first intermediate electrode unit, and the present application does not limit this; when the second intermediate electrode unit has multiple intermediate electrodes, the multiple intermediate electrodes are spaced apart along the circumference of the conduit.
  • the second middle electrode unit includes a first middle electrode A304;
  • the first middle electrode A304 includes a seventh end portion 3041 located at one circumferential end of the catheter 1, and a seventh end portion 3041 located at one circumferential end of the catheter 1.
  • the eighth end 3042 at the other end; the sixth end 3032 is adjacent to the seventh end 3041 and defines a gap 305; the eighth end 3042 is adjacent to the first end 3011 and A gap 305 is defined; when a voltage is applied between the first electrode 301 and the second electrode 303, the first electrode 301 and the second electrode are configured to form a discharge arc in the gap 305. , forming two parallel current loops.
  • each electrode assembly 3 has four discharge positions, which generates a larger number of shock waves, which is beneficial to the fragmentation of calcified plaques.
  • the gap between one of the electrode assemblies 3 that can form a discharge shock wave and the gap between the other of the electrode assemblies 3 that can form a discharge shock wave are along the circumferential direction of the catheter 1 Spaced arrangement. This configuration makes the shock wave applied at the lesion location more dispersed, which is beneficial to the fragmentation of calcified plaques.
  • the outer wall of the catheter 1 is provided with a circumferentially extending installation groove; the electrode assembly 3 is disposed in the installation groove, as shown in Figure 1 .
  • the shock wave balloon catheter device further includes a positioning member; the positioning member is used to maintain the relative position between the electrode assembly 3 and the catheter 1 .
  • the positioning member is an adhesive layer, and the electrode components 3 are respectively bonded to the catheter 1 through the adhesive layer.
  • the positioning parts are positioning pins, positioning bolts, positioning screws, rivets and other equivalent structures.
  • the electrode assembly 3 is fixed to the catheter 1 through the positioning pins, positioning bolts, positioning screws, rivets and other equivalent structures.
  • multiple electrodes of the electrode assembly 3 can also be fixedly connected together through the positioning pins, positioning bolts, positioning screws, rivets and other equivalent structures.
  • the positioning member is a mortise-and-tenon structure, an interference fit structure, and other equivalent structures.
  • the electrode assembly 3 is respectively fixed on the catheter 1, and also The multiple motors of the electrode assembly 3 can be fixedly connected together through the mortise and tenon structure, interference fit structure and other equivalent structures.
  • the positioning member includes a positioning sheath 4 of insulating material disposed around the periphery of the electrode assembly 3, as shown in FIG. 5 .
  • the positioning sheath 4 is formed by thermoplastic.
  • the electrode assembly 3 is wrapped and fixed on the catheter 1 through the thermoplastic positioning sheath 4, which can effectively prevent the electrode assembly 3 from falling off the catheter 1 due to various factors during the operation. And the electrode assembly 3 is displaced relative to the catheter 1, which improves the safety and reliability of the device.
  • the positioning sheath 4 is provided with a plurality of first discharge holes 401 ; each first discharge hole 401 is located outside the one of the gaps 305 .
  • the first discharge hole 401 is used to allow the liquid in the balloon 2 to enter the gap 305, and after the liquid in the gap 305 generates bubbles through electrode discharge, the shock wave energy generated by the bubbles can pass through the first discharge hole. 401 reaches the balloon 2 wall.
  • the positioning sheath in this embodiment can also be used to select the discharge position.
  • the positioning sheath between the first electrode and the second electrode does not have an opening, the first The end 3011 and the sixth end 3032 are isolated by the positioning sheath and are not in contact with liquid; therefore, no arc discharge will occur between the first end 3011 and the sixth end 3032, and the positioning sheath It plays the role of insulation and shielding medium.
  • one positioning sheath 4 is covered on the outside of each electrode assembly 3; or, as shown in Figure 7 As shown, one positioning sheath 4 covers the outside of at least two electrode assemblies 3; further, one positioning sheath 4 is made by thermoplastic molding to cover all the electrode assemblies 3 on the catheter 1 outside.
  • the cross section of the position where the electrode assembly 3 is located includes the catheter 1, the electrode assembly 3 sleeved on the outer periphery of the catheter 1, and the positioning sheath 4 sleeved on the outer periphery of the electrode assembly 3.
  • the diameter of the cross section at this position i.e.
  • the outer wall diameter of the positioning sheath 4 can be less than 1.2mm, and has good passability in the blood vessels; the thickness of the positioning sheath 4 through thermoplastic molding can be as low as 0.01mm, so the positioning sheath 4 While the electrode assembly 3 is effectively fixed, the impact on the cross-sectional size of the catheter 1 is extremely low.
  • the positioning sheath 4 is provided with a first discharge opening, a second discharge opening, a third discharge opening, and a fourth discharge opening;
  • the first discharge opening is located outside the outer wall of the first electrode 301, so that part of the outer wall of the first electrode 301 leaks out to form the first discharge area 306;
  • the second discharge opening and the third discharge opening are discretely distributed in Outside the outer wall of the first intermediate electrode 302, the second discharge opening allows the first part of the outer wall of the first intermediate electrode 302 to leak out to form a second discharge area 307, and the third discharge opening allows the first intermediate electrode 302 to leak out.
  • the second part of the outer wall of the electrode 302 leaks out to form the third discharge area 308; the fourth discharge opening is located outside the outer wall of the second electrode 303, so that part of the outer wall of the second electrode 303 leaks out to form the fourth discharge area 309. ;
  • the first discharge area 306 of the first electrode 301 and the second discharge area 307 of the first intermediate electrode 302 constitute the electrode pair;
  • the third discharge of the first intermediate electrode 302 Region 308 and the fourth discharge region 309 of the second electrode 303 constitute the electrode pair.
  • the positioning sheath 4 isolates the gaps between the electrodes in the electrode assembly 3 from the liquid, leaving only the first discharge area 306, the second discharge area 307, and the third discharge area.
  • the electrode pairs can respectively form discharge arcs in the liquid; the first discharge area 306 and the second discharge area 307
  • the outer wall of the first electrode 301 in this application refers to the circumferential outer wall of the first electrode 301 and the outer walls on both sides of the first electrode 301 along the axial direction of the catheter 1; the same applies to the outer walls of other electrodes. .
  • the positioning sheath 4 of this embodiment can also be used to select the discharge position.
  • the gap between the first electrode 301 and the second electrode 303 is isolated by the positioning sheath 4, No contact with liquid; and the distance between the first discharge area 306 and the fourth discharge area 309 is far enough that arc discharge will not occur; therefore, no arc discharge will occur between the first electrode 301 and the second electrode 303 Arc discharge, positioning sheath 4 plays the role of insulating shielding medium.
  • the positioning sheath 4 is provided with a first discharge opening, a second discharge opening, a third discharge opening, a fourth discharge opening, a fifth discharge opening, The sixth discharge opening, the seventh discharge opening, and the eighth discharge opening; the first discharge opening and the eighth discharge opening are discretely distributed outside the outer wall of the first electrode 301, and the first discharge opening allows all The first part of the outer wall of the first electrode 301 leaks out to form the first discharge area 306, and the eighth discharge opening causes the second part of the outer wall of the first electrode 301 to leak out to form the eighth discharge area; the second discharge opening and the The third discharge openings are discretely distributed outside the outer wall of the first intermediate electrode 302, and the second discharge openings allow the first part of the outer wall of the first intermediate electrode 302 to leak out to form a second discharge area 307.
  • the discharge opening causes the second portion of the outer wall of the first intermediate electrode 302 to leak out to form the third discharge area 308; the fourth discharge opening and the fifth discharge opening are discretely distributed outside the outer wall of the second electrode 303, The fourth discharge opening causes the first portion of the outer wall of the second electrode 303 to leak out to form a fourth discharge area 309, and the fifth discharge opening causes the second portion of the outer wall of the second electrode 303 to leak out to form a fifth discharge area;
  • the sixth discharge opening and the seventh discharge opening are discretely distributed outside the outer wall of the first intermediate electrode A304.
  • the sixth discharge opening causes the first part of the outer wall of the first intermediate electrode A304 to leak out to form a sixth discharge opening.
  • the seventh discharge opening causes the second part of the outer wall of the first middle electrode A304 to leak out to form a seventh discharge area; the first discharge area 306 of the first electrode 301 and the first middle electrode
  • the second discharge area 307 of 302 forms an electrode pair; the third discharge area 308 of the first intermediate electrode 302 and the fourth discharge area 309 of the second electrode 303 form an electrode pair;
  • the fifth discharge area of the two electrodes 303 and the sixth discharge area of the first intermediate electrode A304 form an electrode pair; the seventh discharge area of the first intermediate electrode A304 and the first electrode 301
  • the eighth discharge region constitutes an electrode pair.
  • the tube body of the catheter 1 is provided with a circumferentially extending inner tube cavity; the electrode assembly is embedded in the inner tube cavity; the inner tube cavity constitutes the positioning member, The relative position between the electrode assembly 3 and the catheter 1 can be maintained; and the first electrode 301, the first intermediate electrode 302 and the second electrode 303 are respectively embedded in the tube body. Further reduce the size of the cross section of the catheter 1 where the electrode assembly 3 is located.
  • a second discharge hole is provided on the outer wall of the conduit; the second discharge hole is located at the gap 305 .
  • the second discharge hole 101 is used to allow the liquid in the balloon 2 to enter the gap 305, and after the liquid in the gap 305 generates bubbles through electrode discharge, the shock wave energy generated by the bubbles can pass through the second discharge hole. 101 reaches the balloon 2 wall.
  • the positioning member may also be a combination of the above embodiments.
  • the gap 305 separates the first electrode 301, the first intermediate electrode 302 and the second electrode 303; the positioning member is used to maintain the electrode assembly 3 and the catheter 1 The relative positions between them can keep the first electrode 301, the first middle electrode 302 and the second electrode 303 in a separated state. Therefore, it is not necessary to provide an insulating medium at the gap 305 .
  • the distance of the gap 305 is small.
  • the first electrode 301, the first intermediate electrode 302 or the second electrode 303 may not be firmly fixed. , or due to the bending of the catheter 1, the relative positions of the first electrode 301, the first intermediate electrode 302 and the second electrode 303 change, resulting in the first electrode 301, the first The middle electrode 302 and the second electrode 303 are in contact and short-circuited. This situation needs to be avoided. Therefore, in an optional embodiment, an insulating medium 5 is provided at the gap 305 to prevent contact between the first electrode 301, the first middle electrode 302 and the second electrode 303, and improve the performance of the device. reliability.
  • the insulating medium 5 is configured to occupy part of the space of the gap 305 , and not all of the space of the gap 305 is occupied by the insulating medium 5 ; that is, the volume of the insulating medium 5 at the gap 305 is smaller than the volume of the gap 305.
  • the insulating medium 5 at the gap 305 between the second end 3012 and the third end 3021 is in contact with the second end 3012, and the contact area between the two is smaller than the The surface area of the second end 3012; the insulating medium 5 at the gap 305 between the second end 3012 and the third end 3021 is in contact with the third end 3021, and both The contact area is smaller than the surface area of the third end 3021.
  • the insulating medium 5 at the gap 305 between the second end 3012 and the third end 3021 is fixedly connected to the second end 3012.
  • the method is not limited in this application, and fixed structures such as bonding, screws, and tenons can be used. The same applies below; the insulation at the gap 305 between the second end 3012 and the third end 3021
  • the medium 5 is fixedly connected to the third end 3021; in this embodiment, the first electrode 301 and the first middle electrode 302 are fixedly connected through the insulating medium 5 at the gap 305, so that the first electrode The positions of 301 and the first intermediate electrode 302 on the catheter 1 are more firm and stable.
  • the first electrode 301 , the first middle electrode 302 and the second electrode 303 form an integral body on the catheter 1 , the position is more firm and stable, and can effectively prevent the first electrode 301, the first intermediate electrode 302 and the second electrode 303 from falling off the catheter 1.
  • the width of the insulating medium 5 along the radial direction of the conduit 1 is less than
  • the width of the second end 3012 and the width of the insulating medium 5 along the radial direction of the conduit 1 are smaller than the width of the third end 3021; and the insulating medium 5 is located near the outer wall of the conduit 1. side.
  • the part of the gap 305 on the side radially away from the outer wall of the catheter 1 is filled with liquid that can generate bubbles.
  • the shock wave energy generated by the bubbles can reach the balloon 2 without any obstacles. wall.
  • the insulating medium 5 at other gaps 305 may also adopt a similar structure, which will not be described again here.
  • the length of the insulating medium 5 along the axial direction of the conduit 1 is smaller than the second end.
  • the length of the insulating medium 5 along the axial direction of the conduit 1 is less than the length of the third end 3021 .
  • the insulating medium 5 can be disposed at the central position of the gap 305 along the axial direction of the conduit 1, or can be disposed close to any side of the axial direction.
  • part of the space of the gap 305 along the axial direction of the catheter 1 is filled with liquid that can generate bubbles, and the shock wave energy generated by the bubbles can reach the wall of the balloon 2 without any obstacles.
  • the insulating medium 5 at other gaps 305 can also adopt a similar structure, which will not be described again here.
  • the insulating medium 5 includes a first insulating strip and a second insulating strip.
  • the first insulating strip and the second insulating strip are arranged at radial intervals along the conduit 1, then the space between the first insulating strip and the second insulating strip It is a liquid that can generate bubbles, and the shock wave energy generated by the bubbles can reach the wall of the balloon 2; or as shown in Figure 11, the first insulating strip 501 and the second insulating strip 502 are arranged at intervals along the axial direction of the catheter 1, then The space between the first insulating strip 501 and the second insulating strip 502 is filled with liquid that can generate bubbles, and the shock wave energy generated by the bubbles can reach the wall of the balloon 2 without any obstacles.
  • the insulating medium 5 at other gaps 305 may also adopt a similar structure, which will not be described again here.
  • the second end 3012 is provided with an axis along the axis.
  • the shapes of the protruding portion on the second end portion 3012 and the groove on the third end portion 3021 are adaptively matched, and they can both be triangular, trapezoidal, or arc-shaped.
  • the gap 305 extending in the axial or radial direction is defined between the protrusion on the second end 3012 and the groove on the third end 3021 .
  • the area of the second end 3012 that contacts the insulating medium 5 is located outside the protrusion; the area of the third end 3021 that contacts the insulating medium 5 is located outside the groove.
  • the insulating medium 5 at other gaps 305 may also adopt a similar structure, which will not be described again here.
  • the insulating medium 5 occupies the entire space of the gap 305 between the first electrode 301 and the first middle electrode 302, then the first electrode 301 and the first middle electrode 302 are The first middle electrode 302 is configured such that when a voltage is applied between the first electrode 301 and the second electrode 303, the outer wall of the first electrode 301 and the outer wall of the first middle electrode 302 A discharge arc occurs.
  • the insulating medium 5 is fixedly connected to the second end 3012, the insulating medium 5 is fixedly connected to the third end 3021, and the first electrode 301 is connected to the The first intermediate electrodes 302 are connected together.
  • the first electrode 301 , the first intermediate electrode 302 and the second electrode 303 can be connected together through the insulating medium 5 to form a closed ring shape to prevent the electrode assembly 3 from falling off the catheter 1 .
  • the cooperation between the protruding portion and the groove increases the area of adjacent end faces for discharge, which is conducive to the generation of discharge between adjacent end faces of the electrodes.
  • a developing ring 7 is installed on the outside of the catheter 1 .
  • the developing ring 7 is located inside the balloon 2 and is used to mark the position of the balloon 2 in the human body through the imaging system.
  • the developing ring 7 is located in an area outside the electrode assembly 3 and is not placed overlying the electrode assembly 3 to prevent the local cross-sectional size of the catheter 1 from being excessively large.
  • an optional embodiment provided by this application is that the first electrode 301 of each electrode assembly 3 is electrically connected to the same first power supply terminal of the pulse voltage generator 6 on; the second electrode 303 of each electrode assembly 3 is electrically connected to the same second power supply terminal of the pulse voltage generator 6; the pulse voltage generator 6 is used to provide the electrode assembly 3 with Pulse voltage; among the first power supply terminal and the second power supply terminal, one is the positive pole of the power supply and the other is the negative pole of the power supply.
  • the electrode assembly 3 supplies pulse voltage through a pulse voltage generator 6;
  • the pulse voltage generator 6 includes multiple power supply units, each of the power supply units is connected to one of the electrodes.
  • Component 3 corresponds to and forms a power supply loop;
  • each power supply unit includes a first power supply terminal and a second power supply terminal; among the first power supply terminal and the second power supply terminal, one is the positive pole of the power supply and the other is the power supply terminal.
  • Negative electrode; the first power supply terminal of each power supply circuit is electrically connected to the first electrode 301 of the corresponding electrode assembly 3;
  • the second power supply terminal of each power supply circuit is electrically connected to the corresponding on the second electrode 303 of one of the electrode assemblies 3 .
  • each electrode assembly 3 is powered through an independent power supply circuit, and the working state of each electrode assembly 3 can be controlled individually.
  • At least one of the electrode components 3 includes a first electrode component and a second electrode component; the second electrode of the first electrode component is electrically connected to the second electrode component the first electrode; when a voltage is applied between the first electrode of the first electrode assembly and the second electrode of the second electrode assembly, each of the electrode pairs is configured to Discharge arcs are formed in the liquid respectively to allow current to pass through the first electrode of the first electrode assembly, the first middle electrode unit of the first electrode assembly, and the first electrode unit of the first electrode assembly in sequence. a second electrode, the first electrode of the second electrode assembly, the first middle electrode unit of the second electrode assembly, and the second electrode of the second electrode assembly.
  • the number of electrode assemblies may be greater. At least one of the electrode assemblies includes a first electrode assembly, a second electrode assembly, ..., a Y-th electrode assembly; wherein Y ⁇ 3;
  • the second electrode 303 of the k-th electrode assembly is electrically connected to the first electrode of the k+1-th electrode assembly; where 1 ⁇ k ⁇ Y-1;
  • the electrode pairs of each electrode assembly 3 form a discharge arc to allow current flow Pass through the first electrode assembly, the second electrode assembly, ..., the Nth electrode assembly in sequence.
  • the number of the electrode assemblies 3 is at least two, and the at least two electrode assemblies 3 include a distal electrode assembly 3a and a proximal electrode assembly 3b; the proximal electrode assembly 3b is located at the Between the pulse voltage generator 6 and the distal electrode assembly 3a; the pulse voltage generator is used to provide pulse voltage for the electrode assembly.
  • the distal electrode assembly 3a and the proximal electrode assembly 3b are used to distinguish the two electrode assemblies 3 through the relative positional relationship between the two electrode assemblies 3.
  • neither the distal electrode assembly 3a nor the proximal electrode assembly 3b specifically refers to a certain electrode assembly 3, and two of the electrode assemblies 3 are optional, Both can be called the distal electrode assembly 3a and the proximal electrode assembly 3b.
  • the device further includes a first wire 801; the first wire 801 is electrically connected between the pulse voltage generator 6 and the distal electrode assembly 3a.
  • first wire 801 When the first wire 801 is laid along the extension direction of the catheter 1, it must pass through the section where the proximal electrode is located along the axial direction of the catheter 1, and the first wire 801 must be located in the section where the proximal electrode is located along the axial direction of the catheter 1.
  • Part of the first conductor 801 is defined as a first proximal overlapping segment 801b.
  • the first proximal overlapping section 801b is stacked on the outer wall of the proximal electrode assembly 3b.
  • the first wire 801 will cause the outer contour cross-sectional area at the proximal electrode assembly 3b to increase, reducing the passability and compliance of the catheter 1.
  • the first proximal overlapping section 801b is disposed in the gap 305 of the proximal electrode assembly 3b, or the first proximal overlapping section is disposed in the gap 305 of the proximal electrode assembly 3b. between the first end surface and the sixth end surface of the proximal electrode assembly.
  • the first wire 801 occupies space at the proximal electrode assembly 3b and causes the outer contour cross-sectional area at the proximal electrode assembly 3b to increase.
  • the catheter 1 is in the vessel. Has better passability.
  • the first proximal overlapping section 801b when the first proximal overlapping section 801b is disposed within the gap 305 of the proximal electrode assembly 3b, it can be used to maintain insulating isolation between electrodes of the proximal electrode assembly 3b.
  • the first proximal overlapping section 801b is disposed in the gap 305 of any one of the electrode pairs of the proximal electrode assembly 3b; the first proximal overlapping section 801b and the proximal electrode assembly
  • the first end 3011 of 3b is fixedly connected. This application does not limit the fixing method between the two.
  • Fixing structures such as bonding and buckling can be used; the first proximal overlapping section 801b and the The fourth end 3022 of the proximal electrode assembly 3b is fixedly connected.
  • the first electrode 301 of the proximal electrode assembly 3b and the first middle electrode 302 are fixedly connected through the first proximal overlapping section 801b at the gap 305, so that the first electrode The positions of 301 and the first intermediate electrode 302 on the catheter 1 are more firm and stable.
  • the first wire 801 is difficult to embed because the gap 305 is too small. Therefore, as shown in FIG. 16, when the first end surface and the sixth end surface of the proximal electrode assembly 3b
  • the distance between the first end face and the sixth end face is configured such that when a discharge arc is not formed when a voltage is applied between the first electrode and the second electrode, the first end face and the sixth end face are The space between the sixth end surfaces is relatively large, and the first proximal overlapping section is disposed between the first end surface and the sixth end surface of the proximal electrode assembly.
  • the gap 305 of the proximal electrode assembly 3b is provided with an insulating medium 5; then the insulating medium 5 and the first proximal overlapping section 801b are located in the proximal electrode assembly 3b. located in the same gap; when only one of the two gaps 305 of the proximal electrode assembly 3b is provided with an insulating medium 5, then the insulating medium 5 and the first proximal overlapping section 801b are located at Different gaps305.
  • the width of the insulating medium 5 along the radial direction of the conduit 1 is smaller than the width of the second end 3012, and the width of the insulating medium 5 along the radial direction of the conduit 1 is smaller than the width of the second end 3012.
  • the width of the third end portion 3021; and the insulating medium 5 is located between the first proximal overlapping section 801b and the outer wall of the catheter 1.
  • the length of the insulating medium 5 along the axial direction of the conduit 1 is less than the length of the second end 3012 , and the length of the insulating medium 5 along the axial direction of the conduit 1 is less than the length of the third end.
  • the length of the portion 3021; and the insulating medium 5 is provided with a channel penetrating along the axial direction of the catheter 1; the first proximal overlapping section 801b is provided in the channel.
  • the insulating medium 5 includes a first insulating strip 501 and a second insulating strip 502; wherein the first insulating strip 501 and the second insulating strip 502 are radially spaced apart along the catheter 1, and the first proximal overlapping section 801b is located between the first insulating strip 501 and the second insulating strip 502; or the first insulating strip 501 and the second insulating strip 502 are axially spaced apart along the catheter 1, and the first insulating strip 501 and the second insulating strip 502 are respectively provided with a channel passing through the axial direction of the catheter 1; the first proximal overlapping section 801b is arranged in the channel between the first insulating strip 501 and the second insulating strip 502.
  • the second end 3012 is provided with a protrusion; the third end 3021 is provided with a groove at a corresponding position; the second end 3012 is in contact with the The area of the insulating medium 5 is located outside the bulge; the area on the third end 3021 that contacts the insulating medium 5 is located outside the groove; the first proximal overlapping section 801b is located outside the groove. between the protrusion and the groove.
  • the distal electrode assembly 3a and the proximal electrode assembly 3b can be electrically connected to the pulse voltage generator 6 through an independent power supply circuit; they can also share a power supply circuit, and the distal electrode assembly 3a can be electrically connected to the pulse voltage generator 6 through an independent power supply circuit.
  • the proximal electrode assembly 3b is connected in series to the pulse voltage generator 6 .
  • the pulse voltage generator is connected to the The lead between the device 6 and the distal electrode assembly 3a also includes a second lead 802; the second lead 802 includes a second proximal overlapping section, and the second proximal overlapping section is located at the proximal end.
  • the electrode is within the interval along the axial direction of the catheter 1; the first wire 801 is electrically connected between the pulse voltage generator 6 and the first electrode 301 of the distal electrode assembly 3a; the second wire 802 is electrically connected between the pulse voltage generator 6 and the second electrode 303 of the distal electrode assembly 3a, and the first electrode 301 and the second electrode 303 of the distal electrode assembly 3a Among them, one is electrically connected to the anode of the pulse voltage generator 6 , and the other is electrically connected to the cathode of the pulse voltage generator 6 .
  • one of the first electrode 301 and the second electrode 303 of the proximal electrode assembly 3b is electrically connected to the anode of the pulse voltage generator 6 through a wire, and the other is electrically connected to the anode of the pulse voltage generator 6 through a wire. cathode.
  • first proximal overlapping section 801b and the second proximal overlapping section are located in the same gap, or as shown in Figure 20, the first proximal overlapping section 801b and the second proximal overlapping section The end overlapping segments are located in different gaps.
  • the first wire 801 is electrically connected to the axial end surface of the first electrode 301 of the distal electrode assembly 3a close to the pulse voltage generator 6;
  • Two wires 802 are electrically connected to the axial end surface of the second electrode 303 of the distal electrode assembly 3a close to the pulse voltage generator 6; therefore, the first wire 801 and the second wire 802 are
  • the distal electrode assembly 3a has no overlapping section in the axial direction.
  • the first wire 801 is electrically connected to the axial end surface of the first electrode 301 on the side away from the pulse voltage generator 6 of the distal electrode assembly 3a
  • the second wire 802 is electrically connected to the axial end surface of the first middle electrode 302 of the distal electrode assembly 3 a on the side away from the pulse voltage generator 6 .
  • the first wire 801 includes a first distal overlapping section, which is located in the interval where the distal electrode assembly 3a is located along the axial direction of the catheter 1;
  • the second wire 802 It includes a second distal overlapping section, the second distal overlapping section is located in the interval where the distal electrode assembly 3a is located along the axial direction of the catheter 1;
  • the arrangement of the first distal overlapping section and the second distal overlapping section includes:
  • the first distal overlapping section is disposed in one of the gaps 305 of the distal electrode assembly 3a; the second distal overlapping section is disposed in another of the distal electrode components 3a. within the gap 305.
  • This embodiment allows the gap 305 of the distal electrode assembly 3a to maintain insulation isolation, and the reliability of the device is higher.
  • the The wires include a third wire; the second electrode 303 of the proximal electrode assembly 3b is electrically connected to the pulse voltage generator 6 through the third wire; the first electrode 301 of the proximal electrode assembly 3b The second electrode 303 of the distal electrode assembly 3a is electrically connected through a fourth wire; the first electrode 301 of the distal electrode assembly 3a is electrically connected to the pulse voltage generator through the first wire 801 6.
  • a discharge arc is generated in the gap 305 of the distal electrode assembly 3a and the proximal electrode assembly 3b, and a current Sequentially flows through the first electrode 301 of the distal electrode assembly 3a, the first middle electrode 302 of the distal electrode assembly 3a, the second electrode 303 of the distal electrode assembly 3a, and the The first electrode 301 of the proximal electrode assembly 3a, the first middle electrode 302 of the proximal electrode assembly 3a, and the second electrode 303 of the proximal electrode assembly 3a.
  • the electrode assembly 3 shown in Figure 21 includes a first electrode 301, a first middle electrode 302 and a second electrode 303; the first electrode 301 includes a first end 3011 located at one circumferential end of the catheter 1, and a The second end 3012 at the other circumferential end of the catheter 1; the first intermediate electrode 302 includes a third end 3021 located at one circumferential end of the catheter 1, and a third end 3021 located at the other circumferential end of the catheter 1.
  • the second electrode 303 includes a fifth end 3031 located at one circumferential end of the catheter 1, and a sixth end 3032 located at the other circumferential end of the catheter; the second end 3012
  • the fourth end 3022 is adjacent to the third end 3021 and defines a gap 305
  • the fourth end 3022 is adjacent to the fifth end 3031 and defines a gap 305 .
  • the two gaps 305 are basically symmetrically distributed relative to the center of the conduit 1; specifically, the value of the central angle between any point in one gap 305 and any point in the other gap 305 relative to the center of the conduit 1 is The range is 160° to 200°.
  • the four gaps 305 of an electrode assembly 3 are also substantially evenly distributed along the circumferential direction of the catheter 1 . When the number of gaps 305 is other values, the distribution of gaps 305 is the same as in the above embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种冲击波球囊导管装置,包括导管(1)、密封围绕在导管(1)外周的球囊(2)和设置在球囊(2)内的至少一个电极组件(3);每个电极组件(3)包括第一电极(301)、第一中间电极单元和第二电极(303);第一电极(301)、第一中间电极单元和第二电极(303)沿导管(1)周向依次间隔布置;第一电极(301)与第一中间电极单元构成电极对;第一中间电极单元与第二电极(303)构成电极对;当在第一电极(301)与第二电极(303)之间施加电压时,电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过第一电极(301)、第一中间电极单元与第二电极(303)。导管(1)外周仅布置了单层电极以形成放电电弧,使得导管(1)在脉管中具有良好的通过性。

Description

一种冲击波球囊导管装置 技术领域
本申请涉及医疗器械技术领域,具体涉及一种冲击波球囊导管装置。
背景技术
随着心脏病患者年龄的增长和疾病的进展,外周血管及冠状动脉中的斑块会逐渐钙化。这种骨状结构类似物会造成脉管狭窄,降低脉管血流量,最终可能导致脉管完全闭塞。
针对脉管钙化病灶,提供了一种冲击波球囊导管装置;在治疗时,导管上的球囊被推进至脉管钙化区域;然后用液体对球囊膨胀加压;向球囊中的电极对施加高压脉冲,使电极对放电在液体中产生冲击波;冲击波撞击球囊壁,使钙化斑块破裂;钙化斑块破裂后,球囊可以进一步膨胀以打通脉管。
上述冲击波球囊导管装置中,通过导管携带球囊在脉管中移动,因此需要导管在脉管中具有良好的通过性。
发明内容
本申请的实施例提供了一种冲击波球囊导管装置,在脉管中具有良好的通过性。
在本申请的一个实施例中,提供了一种冲击波球囊导管装置,包括导管、密封围绕在导管外周的球囊和设置在球囊内的电极组件,所述球囊内可填充液体;所述电极组件包括第一电极、第一中间电极单元和第二电极;所述第一电极、所述第一中间电极单元与所述第二电极沿所述导管周向依次间隔布置;所述第一电极与所述第一中间电极单元之间具有间隙且构成电极对;所述第一中间电极单元与所述第二电极之间具有间隙且构成电极对;当在所述第一电极与所述第二电极之间施加电压时,每个所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极、所述第一中间电极单元、所述第二电极。
本申请提供的实施例,第一电极、第一中间电极单元和第二电极沿导管周向间隔布置,第一电极、第一中间电极单元和第二电极之间形成放电电弧,因此导管外周仅布置了单层电极,使得导管在脉管中具有良好的通过性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动力的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一个实施例提供的冲击波球囊导管装置的结构示意图;
图2为本申请一个实施例提供的电极组件横截面处的结构示意图;
图3为本申请另一个实施例提供的电极组件横截面处的结构示意图;
图4为本申请图3实施例的导管与电极组件的装配轴测图;
图5为本申请另一个实施例提供的冲击波球囊导管装置的结构示意图;
图6为本申请一个实施例提供的导管、电极组件及定位护套的结构示意图;
图7为本申请另一个实施例提供的导管、电极组件及定位护套的结构示意图;
[根据细则91更正 21.03.2023]
图8为本申请另一个实施例提供的定位护套的横截面结构示意图;
图9为本申请一个实施例提供的具有绝缘介质的电极组件的局部横截面结构示意图;
图10为本申请另一个实施例提供的具有绝缘介质的电极组件的局部横截面结构示意图;
图11为本申请另一个实施例提供的具有绝缘介质的电极组件的径向视图;
图12为本申请另一个实施例提供的电极组件的局部横截面示意图;
图13为本申请另一个实施例提供的电极组件的局部横截面示意图;
图14为本申请另一个实施例提供的电极组件的局部横截面示意图;
图15为本申请一个实施例提供的第二电极组件、所述第一电组件与第一导线的连接结构示意图;
图16为本申请一个实施例提供的第一电组件与第一导线的横截面示意图;
图17为本申请另一个实施例提供的第一电组件与第一导线的横截面示意图;
图18为本申请另一个实施例提供的第一电组件与第一导线的横截面示意图;
图19为本申请一个实施例提供的脉冲电压发生器与电极组件的连接示意图;
图20为本申请一个实施例提供的第一电组件与第一导线及第二导线的横截面示意图;
图21为本申请另一个实施例提供的电极组件横截面处的结构示意图。
附图标记说明:1、导管;101、第二放电孔;2、球囊;3、电极组件;3a、远端电极组件;3b、近端电极组件;301、第一电极;302、第一中间电极;303、第二电极;304、第一中间电极A;3011、第一端部;3012、第二端部;3021、第三端部;3022、第四端部;3031、第五端部;3032、第六端部;3041、第七端部;3042、第八端部;305、间隙;306、第一放电区;307、第二放电区;308、第三放电区;309、第四放电区;4、定位护套;401、第一放电孔;5、绝缘介质;501、第一绝缘条;502、第二绝缘条;6、脉冲电压发生器;7、显影环;801、第一导线;801b、第一近端重叠段;802、第二导线。
具体实施方式
下面将结合附图和具体实施方式,对本发明的技术方案作详细说明,应理解这些实施方式仅用于说明本发明而不用于限制范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所限定的范围内。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
下面将结合图1至图21对本说明书实施例的冲击波球囊导管装置进行解释和说明。需要说明的是,在本发明的实施例中,相同的附图标记表示相同的部件。而为了简洁,在不同的实施例中,省略对相同部件的详细说明,且相同部件的说明可互相参照和引用。
随着心脏病患者年龄的增长和疾病的进展,外周血管及冠状动脉中的斑块会逐渐钙化。这种骨状结构类似物会造成脉管狭窄,降低脉管血流量,最终可能导致脉管完全闭塞。
冲击波球囊导管装置适应症包括介入治疗血管钙化病变。冲击波球囊导管装置包括导管、密封围绕在导管外周的球囊和设置在球囊内的至少一个电极对;所述球囊内能填充液体;每个所述电极对包括第一电极和第二电极;当在所述第一电极与所述第二电极之间施加电压时,所述第一电极与所述第二电极之间在球囊内的液体形成等离子体电弧,从而在液体内生成气泡,该气泡会膨胀和崩塌,继而在气囊中形成机械冲击波,该机械冲击波通过液体及球囊机械地传导以施加机械力或压力以使脉管系统壁上或脉管系统壁中的任何钙化斑块分裂开。
在该装置临床工作时,应首先将泄压状态的球囊递送至钙化病变部位,将球囊加压以确保与血管壁紧密贴合;然后向所述第一电极与所述第二电极之间施加电压,所述第一电极与所述第二电极之间在球囊内的液体形成放电冲击波。冲击波冲击并破坏钙化病变,导致内膜和中膜钙化断裂。可通过评估球囊对称膨胀情况来判断钙化病变的修饰效果。
冲击波球囊导管装置以高效和安全地破坏浅表与深层钙化,从而明显地改善血管顺应性。该器械不仅对浅层钙化和深层钙化均有效,同时对于偏心性病变和非偏心病变亦具有治疗作用,降低夹层和穿孔等并发症的风险。
上述冲击波球囊导管装置中,通过导管携带球囊在脉管中移动,在一些情况下脉管路径已发生严重狭窄的病变甚至完全闭塞病变,因此需要尽量降低导管横截面积,提高导管的柔顺性,以使其在脉管中具有良好的通过性。
在一个可选实施例中,第一电极与第二电极沿径向层叠安装在导管上,并且为了阻止第一电极与第二电极连通短路,还需要在第一电极与第二电极之间再叠加一层绝缘介质。这样的构造,在导管外壁叠加设置了两层电极及一层绝缘介质,使得所述电极对所在位置的横截面面积较大,柔顺性不好,难以穿过发生严重狭窄的病变或完全闭塞病变的脉管,通过性较差。
本申请提供的冲击波球囊导管装置的一个可选实施例,如图1所示,所述冲击波球囊导管装置包括导管1、密封围绕在导管1外周的球囊2和设置在球囊2内的至少一个电极组件3;所述球囊2内能填充液体。其中所述液体包括但不限于水,盐水,造影剂及其混合物。
可选的,本实施例中所述电极组件3的数量为至少2个,且至少2个所述电极组件3之间沿所述导管1的轴向间隔布置,使得球囊2内的多个位置产生放电冲击波,更加高效的破坏钙化区域。
所述电极组件包括第一电极301、第一中间电极单元和第二电极303;所述第一电极301、所述第一中间电极单元与所述第二电极303沿所述导管1周向依次间隔布置;所述第一电极301与所述第一中间电极单元之间具有间隙且构成电极对;所述第一中间电极单元与所述第二电极303之间具有间隙且构成电极对;当在所述第一电极301与所述第二电极303之间施加电压时,每个所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极301、所述第一中间电极单元、所述第二电极303。
其中,在所述第一电极301与所述第二电极303之间施加电压,指的是使得所述第一电极301与所述第二电极303之间存在电势差;具体的,可以是所述第一电极301与所述第二电极303中,一者通过导线直接连接电源正极,另一者通过导线直接连接电源负极;或者所述第一电极301和/或所述第二电极303,连接电源的导电路径上设置有电阻、电极对、电容等导电器件。
具体的,所述第一中间电极单元包括第一中间电极、第二中间电极、…、第N中间电极,N≥1;所述第一电极、所述第一中间电极、所述第二中间电极、…、所述第N中间电极、所述第二电极沿导管周向依次间隔布置;其中,所述第一电极与所述第一中间电极具有间隙且构成电极对;第i中间电极与第i+1中间电极具有间隙且构成电极对,1≤i≤N-1;所述第N中间电极与所述第二电极具有间隙且构成电极对;当在所述第一电极与所述第二电极之间施加电压时,每个所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极、所述第一中间电极、所述第二中间电极、…、所述第N中间电极、所述第二电极。本实施例中,关于中间电极的第一、第二…、第N的限定,其含义是限定连续自然数序列,用以表述具备多个中间电极的情况下,多个中间电极的命名方式;因此并不排除所述第一中间电极单元仅有一个第一中间电极的实施例。
本实施例中,所述第一中间电极、所述第二中间电极、…、所述第N中间电极,均既不通过导线接地,也不通过导线连接电源。
如图2所示的实施例中,所述第一中间电极单元包括第一中间电极;每个所述电极组件3包括第一电极301、第一中间电极302和第二电极303,所述第一电极301、第一中间电极302和第二电极303沿所述导管1周向间隔布置。可选的,所述第一电极301、第一中间电极302和第二电极303的横截面形状均为圆弧状,并使得所述第一电极301的内壁与所述第一中间电极302的内壁分别贴合在所述导管1的外壁上,连接更加稳定,且降低了横截面尺寸。所述第一电极301、所述第一中间电极302和所述第二电极303沿所述导管1周向依次间隔布置;所述第一电极301与所述第一中间电极302构成电极对;所述第一中间电极302与所述第二电极303构成电极对;当在所述第一电极301与所述第二电极303之间施加电压时,所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极301、所述第一中间电极302与所述第二电极303。
可以理解的是,所述第一中间电极单元中中间电极的数量并不仅限于本实施例;例如N=2,则每个所述电极组件3包括第一电极301、第一中间电极302、第二中间电极和第二电极303,所述第一电极301、第一中间电极302、第二中间电极和第二电极303沿所述导管1周向间隔布置。所述第一电极301与所述第一中间电极302构成电极对;所述第一中间电极302与所述第二中间电极构成电极对;所述第二中间电极与所述第二电极303构成电极对;当在所述第一电极301与所述第二电极303之间施加电压时,所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极301、所述第一中间电极302、所述第二中间电极与所述第二电极303。
所述第一电极301包括位于所述导管1周向一端的第一端部3011,以及位于所述导管1周向另一端的第二端部3012;所述第一中间电极302包括位于所述导管1周向一端的第三端部3021,以及位于所述导管1周向另一端的第四端部3022;所述第二电极303包括位于所述导管1周向一端的第五端部3031,以及位于所述导管周向另一端的第六端部3032;所述第二端部3012与所述第三端部3021相邻且限定形成间隙305;所述第四端部3022与所述第五端部3031相邻且限定形成间隙305。
圆弧状的所述第一电极301、第一中间电极302和第二电极303,其圆弧角可以相同,也可以不同。例如,所述第一电极301、第一中间电极302和第二电极303的圆弧角均为100°;或者所述第一电极301的圆弧角为120°,所述第一中间电极302和第二电极303的圆弧角为100°。
所述第一电极301、第一中间电极302和第二电极303沿导管1轴向的长度可以相同,也可以不同;两者在轴向上至少部分位于同一区间即可。
当在所述第一电极301与所述第二电极303之间施加脉冲电压时,所述第一电极301与所述第二电极303之间形成电位差,并且被配置为在所述间隙305形成放电电弧,以允许电流依次通过所述第一电极301、所述第一中间电极302与所述第二电极303。在向所述第一电极301与所述第二电极303之间施加脉冲电压时,所述球囊2内需填充有液体。
上述实施例,沿导管1周向间隔布置第一电极301、所述第一中间电极302与所述第二电极303;因此导管1外周仅布置了单层电极,横截面积小,柔顺性良好,使得导管1在脉管中具有良好的通过性;并且两个所述间隙305为串联关系,使得在每个施加脉冲电压过程中,两个所述间隙305均能形成放电电弧。
在一个可选实施例中,所述第一端部3011与所述第六端部3032相邻。当所述第一端部3011与所述第六端部3032距离较近,在所述第一电极301与所述第二电极303之间施加电压时,所述第一端部3011与所述第六端部3032形成了放电电弧,则有可能导致两个所述间隙305不能形成放电,影响了放电位置的稳定性,以及放电位置数量。
所述第一端部3011与所述第六端部3032相邻时,可选的,所述第一端部3011与所述第六端部3032的距离被配置为,当在所述第一电极301与所述第二电极303之间施加电压时,所述第一端部3011与所述第六端部3032不形成放电电弧。例如,所述第一电极301、所述第一中间电极302、所述第二电极303的圆弧角均为100°,两个间隙305对应的圆心角为5°,所述间隙305足够小可形成放电冲击波;则所述第一端部3011与所述第六端部3032之间的圆心角为50°,由于所述第一端部3011与所述第六端部3032之间距离较远,所述第一端部3011与所述第六端部3032之间不形成放电电弧。
所述第一端部3011与所述第六端部3032相邻时,可选的,所述第一端部3011与所述第六端部3032之间设置有绝缘屏蔽介质。所述绝缘屏蔽介质被配置为填充了所述第一端部3011与所述第六端部3032之间的全部区域,使得所述第一端部3011与所述第六端部3032之间没有液体,则当在所述第一电极与所述第二电极之间施加电压时,所述第一端部3011与所述第六端部3032之间不形成放电电弧。
在图3和图4所示的另一个可选实施例中,所述电极组件3还包括第二中间电极单元。所述第一电极301、所述第一中间电极单元、所述第二电极303和所述第二中间电极单元沿所述导管1周向依次间隔布置;所述第一电极301与所述第二中间电极单元之间具有间隙且构成电极对;所述第二中间电极单元与所述第二电极303之间具有间隙且构成电极对;当在所述第一电极301与所述第二电极303之间施加电压时,所述电极对被配置为可分别形成放电电弧,以允许电流依次通过所述第一电极301、所述第二中间电极单元与所述第二电极303。所述第二中间电极单元的电极数量可以与所述第一中间电极单元的电极数量相同或者不同,本申请对此不做限制;当所述第二中间电极单元具有多个中间电极时,多个所述中间电极沿导管周向间隔排列。
在本实施例中,所述第二中间电极单元包括第一中间电极A304;所述第一中间电极A304包括位于所述导管1周向一端的第七端部3041,以及位于所述导管周向另一端的第八端部3042;所述第六端部3032与所述第七端部3041相邻且限定形成间隙305;所述第八端部3042与所述第一端部3011相邻且限定形成间隙305;当在所述第一电极301与所述第二电极303之间施加电压时,所述第一电极301与所述第二电极被配置为在所述间隙305中形成放电电弧,形成两个并联的电流回路,第一个电流回路中,电流依次通过所述第一电极301、所述第一中间电极302与所述第二电极303;第二个电流回路中,电流依次通过所述第一电极301、所述第一中间电极A304与所述第二电极303。该实施例中,每个电极组件3具有四个放电位置,产生的冲击波数量更多,有利于钙化斑块的破碎。
可选的,相邻的两个所述电极组件3中,其中一个所述电极组件3的可形成放电冲击波的间隙与另一个所述电极组件3的可形成放电冲击波的间隙沿导管1周向间隔布置。这样的配置使得施加在病变位置的冲击波更加分散,有利于钙化斑块的破碎。
在一个可选实施例中,所述导管1的管体外壁上开设有沿周向延伸的安装槽;所述电极组件3设置在所述安装槽内,如图1所示。通过将所述电极组件3设置在所述安装槽内,可进一步减小所述电极组件3所在位置的横截面面积,提高导管1的通过性。
在电极组件3跟随导管1在人体脉管中运动过程及放电过程中,电极组件3会跟随导管1弯曲,受到脉管施加的阻力,以及机械振动,这都有可能导致电极组件3相对导管1产生位移,甚至从导管1上脱落。因此,在本申请的可选实施例中,所述冲击波球囊导管装置还包括定位件;所述定位件用于保持所述电极组件3与所述导管1之间的相对位置。
可选的,所述定位件是粘接层,通过粘接层,将所述电极组件3分别粘接在导管1上。
可选的,所述定位件是定位销、定位螺栓、定位螺钉、铆钉及其他等同构造,通过所述定位销、定位螺栓、定位螺钉、铆钉及其他等同构造,将电极组件3固定在导管1上,也可以通过所述定位销、定位螺栓、定位螺钉、铆钉及其他等同构造,将电极组件3的多个电极固定连接在一起。
可选的,所述定位件是榫卯结构、过盈配合结构及其他等同构造,通过所述榫卯结构、过盈配合结构及其他等同构造,将电极组件3分别固定在导管1上,也可以通过所述榫卯结构、过盈配合结构及其他等同构造,将电极组件3的多个电机固定连接在一起。
在一个可选实施例中,所述定位件包括设置在所述电极组件3外周的绝缘材质的定位护套4,如图5所示。可选的,所述定位护套4通过热塑成型。
通过热塑成型的所述定位护套4,将所述电极组件3包裹固定在所述导管1上,可有效避免术中各种因素导致的所述电极组件3从所述导管1上脱落,以及所述电极组件3相对所述导管1发生位移,提高了装置的安全可靠性。
如图6所示,所述定位护套4设置有多个第一放电孔401;每个所述第一放电孔401位于所述一个所述间隙305的外侧。所述第一放电孔401用于使得球囊2内的液体能够进入所述间隙305,并且所述间隙305的液体在电极放电产生气泡后,气泡产生的冲击波能量能通过所述第一放电孔401到达球囊2壁。
另外,本实施例的定位护套还可用于选择放电位置,例如,本实施例中由于所述第一电极与所述第二电极之间位置的定位护套不设开孔,所述第一端部3011与所述第六端部3032被所述定位护套隔离,不接触液体;因此所述第一端部3011与所述第六端部3032之间不会产生电弧放电,定位护套起到了绝缘屏蔽介质的作用。
当所述电极组件3的数量为至少2个时,可选的,如图6所示,在每个所述电极组件3外侧对应覆盖1个所述定位护套4;或者,如图7所示,1个所述定位护套4覆盖在至少2个所述电极组件3外侧;进一步的,热塑成型制作一个所述定位护套4,使其覆盖在导管1上所有所述电极组件3外侧。
上述实施例中,所述电极组件3所在位置的横截面上包括导管1,套装在导管1外周的电极组件3以及套装在电极组件3外周的定位护套4,该位置横截面的直径(即定位护套4的外壁直径)可小于1.2mm,在脉管中具有良好的通过性;其中通过热塑成型的所述定位护套4的厚度可低至0.01mm,因此所述定位护套4在有效固定电极组件3的同时,对于导管1的横截面尺寸影响极低。
在定位护套4的另一个可选实施方式,如图8所示,所述定位护套4上设置有第一放电开口、第二放电开口、第三放电开口、第四放电开口;所述第一放电开口位于所述第一电极301的外壁的外侧,使得所述第一电极301的部分外壁漏出构成第一放电区306;所述第二放电开口和所述第三放电开口离散分布在所述第一中间电极302的外壁的外侧,所述第二放电开口使得所述第一中间电极302的第一部分外壁漏出构成第二放电区307,所述第三放电开口使得所述第一中间电极302的第二部分外壁漏出构成第三放电区308;所述第四放电开口位于所述第二电极303的外壁的外侧,使得所述第二电极303的部分外壁漏出构成第四放电区309;所述第一电极301的所述第一放电区306与所述第一中间电极302的所述第二放电区307构成所述电极对;所述第一中间电极302的所述第三放电区308与所述第二电极303的所述第四放电区309构成所述电极对。该实施例中,所述定位护套4使得电极组件3中各电极之间的间隙与液体隔离,仅保留了所述第一放电区306、所述第二放电区307、所述第三放电区308及所述第四放电区309;所述第一放电区306与所述第二放电区307的距离、所述第三放电区308与所述第四放电区309的距离被分别配置为当在所述第一电极301与所述第二电极303之间施加电压时,所述电极对可分别在液体中形成放电电弧;所述第一放电区306与所述第二放电区307的距离、所述第三放电区308与所述第四放电区309的距离可根据情况进行适应性调整;并且所述第一放电开口、所述第二放电开口、所述第三放电开口、所述第四放电开口的形状本申请并不做限制,可以是圆形、矩形、梯形等;所述第一放电开口与所述第二放电开口也可以在轴向错位布置。本申请中的所述第一电极301的外壁指的是所述第一电极301的周向外壁,以及所述第一电极301的沿导管1轴向的两侧外壁;其他电极的外壁同理。
另外,本实施例的定位护套4还可用于选择放电位置,例如,本实施例中由于所述第一电极301与所述第二电极303之间的间隙被所述定位护套4隔离,不接触液体;并且所述第一放电区306与所述第四放电区309的距离足够远,不会产生电弧放电;因此所述第一电极301与所述第二电极303之间不会产生电弧放电,定位护套4起到了绝缘屏蔽介质的作用。
当所述电极组件3还包括第一中间电极A304组件时,所述定位护套4上设置有第一放电开口、第二放电开口、第三放电开口、第四放电开口、第五放电开口、第六放电开口、第七放电开口、第八放电开口;所述第一放电开口和所述第八放电开口离散分布在所述第一电极301的外壁的外侧,所述第一放电开口使得所述第一电极301的第一部分外壁漏出构成第一放电区306,所述第八放电开口使得所述第一电极301的第二部分外壁漏出构成第八放电区;所述第二放电开口和所述第三放电开口离散分布在所述第一中间电极302的外壁的外侧,所述第二放电开口使得所述第一中间电极302的第一部分外壁漏出构成第二放电区307,所述第三放电开口使得所述第一中间电极302的第二部分外壁漏出构成第三放电区308;所述第四放电开口和所述第五放电开口离散分布在所述第二电极303的外壁的外侧,所述第四放电开口使得所述第二电极303的第一部分外壁漏出构成第四放电区309,所述第五放电开口使得所述第二电极303的第二部分外壁漏出构成第五放电区;所述第六放电开口和所述第七放电开口离散分布在所述第一中间电极A304的外壁的外侧,所述第六放电开口使得所述第一中间电极A304的第一部分外壁漏出构成第六放电区,所述第七放电开口使得所述第一中间电极A304的第二部分外壁漏出构成第七放电区;所述第一电极301的所述第一放电区306与所述第一中间电极302的所述第二放电区307构成电极对;所述第一中间电极302的所述第三放电区308与所述第二电极303的所述第四放电区309构成电极对;所述第二电极303的所述第五放电区与所述第一中间电极A304的所述第六放电区构成电极对;所述第一中间电极A304的所述第七放电区与所述第一电极301的所述第八放电区构成电极对。
当所述电极组件3的电极数量为其他时,在需要放电的两个电极的外侧的定位护套4上开设距离合适的放电开口即可,本申请不再赘述。
在另一个可选实施例中,所述导管1的管体上开设有沿周向延伸管体内腔;所述电极组件嵌入在所述管体内腔;所述管体内腔构成所述定位件,可以保持所述电极组件3与所述导管1之间的相对位置;并且将所述第一电极301、所述第一中间电极302和所述第二电极303分别嵌入在所述管体内,可进一步降低所述导管1上的所述电极组件3所在位置的横截面的尺寸。所述导管的外壁上开设有第二放电孔;所述第二放电孔位于所述间隙305处。所述第二放电孔101用于使得球囊2内的液体能够进入所述间隙305,并且所述间隙305的液体在电极放电产生气泡后,气泡产生的冲击波能量能通过所述第二放电孔101到达球囊2壁。
需要说明的是,所述定位件也可以是上述实施例之间的结合。
上述实施例中,间隙305使得所述第一电极301、所述第一中间电极302和所述第二电极303分隔开;所述定位件用于保持所述电极组件3与所述导管1之间的相对位置,即可以使得所述第一电极301、所述第一中间电极302和所述第二电极303保持分隔状态。因此所述间隙305处,并不必须设置绝缘介质。
但是,为了有利于放电的产生,所述间隙305的距离较小,极端情况下,有可能出现因所述第一电极301、所述第一中间电极302或所述第二电极303固定不牢固,或者因所述导管1弯曲,使得所述第一电极301、所述第一中间电极302与所述第二电极303的相对位置产生变化,导致了所述第一电极301、所述第一中间电极302与所述第二电极303之间接触而短路,这种情况需要避免出现。因此,在一个可选实施例中,所述间隙305处设置有绝缘介质5,防止所述第一电极301、所述第一中间电极302与所述第二电极303之间接触,提高装置的可靠性。
所述间隙305的空间需要有液体,以在电极放电时,在所述间隙305的液体分别产生气泡。因此,所述绝缘介质5被配置为占据所述间隙305的部分空间,所述间隙305的空间并不全部被所述绝缘介质5占据;即所述间隙305处的所述绝缘介质5的体积小于所述间隙305的体积。
可选的,所述第二端部3012与所述第三端部3021之间的间隙305处的所述绝缘介质5与所述第二端部3012相接,且两者的接触面积小于所述第二端部3012的表面积;所述第二端部3012与所述第三端部3021之间的间隙305处的所述绝缘介质5与所述第三端部3021相接,且两者的接触面积小于所述第三端部3021的表面积。其他所述间隙305处的所述绝缘介质5同理。
可选的,所述第二端部3012与所述第三端部3021之间的间隙305处的所述绝缘介质5与所述第二端部3012固定相接,对于两者之间的固定方式,本申请不做限制,可采用粘接、螺钉、卯榫等固定结构,以下同理;所述第二端部3012与所述第三端部3021之间的间隙305处的所述绝缘介质5与所述第三端部3021固定相接;本实施例中,所述第一电极301与所述第一中间电极302通过间隙305处的绝缘介质5固定连接,使得所述第一电极301与所述第一中间电极302在所述导管1上的位置更加牢固稳定。进一步,当各个间隙305处的绝缘介质5与相邻的电极端面固定连接,使得所述第一电极301、所述第一中间电极302与所述第二电极303在所述导管1上形成整体,位置更加牢固稳定,可有效防止所述第一电极301、所述第一中间电极302与所述第二电极303从所述导管1上脱落。
在图9所示的可选实施例中,在所述第二端部3012与所述第三端部3021之间的间隙305处,所述绝缘介质5沿所述导管1径向的宽度小于所述第二端部3012的宽度,所述绝缘介质5沿所述导管1径向的宽度小于所述第三端部3021的宽度;且所述绝缘介质5位于靠近所述导管1外壁的一侧。在该实施例中,所述间隙305沿所述导管1径向远离所述导管1外壁的一侧的部分空间内为可产生气泡的液体,气泡产生的冲击波能量能无障碍的到达球囊2壁。其他所述间隙305处的所述绝缘介质5也可采用类似构造,在此不做赘述。
在另一个可选实施例中,在所述第二端部3012与所述第三端部3021之间的间隙305处,所述绝缘介质5沿导管1轴向的长度小于所述第二端部3012的长度,所述绝缘介质5沿导管1轴向的长度小于所述第三端部3021的长度。在该实施例中,所述绝缘介质5可以设置在间隙305沿导管1轴向的中心位置,也可以设置在靠近轴向任意一侧的位置。在该实施例中,所述间隙305沿导管1轴向的部分空间内为可产生气泡的液体,气泡产生的冲击波能量能无障碍的到达球囊2壁。其他所述间隙305处的所述绝缘介质5也可采用类似构造,在此不做赘述。
在另一个可选实施例中,在所述第二端部3012与所述第三端部3021之间的间隙305处,所述绝缘介质5包括第一绝缘条和第二绝缘条。其中可选的,如图10,所述第一绝缘条与所述第二绝缘条沿导管1径向间隔排布,则所述第一绝缘条与所述第二绝缘条之间的空间内为可产生气泡的液体,气泡产生的冲击波能量能到达球囊2壁;或者如图11,所述第一绝缘条501与所述第二绝缘条502沿导管1轴向间隔排布,则所述第一绝缘条501与所述第二绝缘条502之间的空间内为可产生气泡的液体,气泡产生的冲击波能量能无障碍的到达球囊2壁。其他所述间隙305处的所述绝缘介质5也可采用类似构造,在此不做赘述。
在图12至图14所示的可选实施例中,在所述第二端部3012与所述第三端部3021之间的间隙305处,所述第二端部3012上设置有沿轴向或径向延伸的凸起部;所述第三端部3021的相应位置上设置有沿轴向或径向延伸的凹槽;所述凸起部及所述凹槽为轴向延伸。所述第二端部3012上的所述凸起部与所述第三端部3021上的所述凹槽的形状适应性配合,可以均是三角形、均是梯形或者均是圆弧形所。所述第二端部3012上的所述凸起部与所述第三端部3021上的所述凹槽之间限定形成沿轴向或径向延伸的所述间隙305。所述第二端部3012上接触所述绝缘介质5的区域位于所述凸起之外;所述第三端部3021上接触所述绝缘介质5的区域位于所述凹槽之外。其他所述间隙305处的所述绝缘介质5也可采用类似构造,在此不做赘述。
在另一个可选实施例中,所述绝缘介质5占据了所述第一电极301与所述第一中间电极302之间的所述间隙305的全部空间,则所述第一电极301与所述第一中间电极302被配置为,当在所述第一电极301与所述第二电极303之间施加电压时,所述第一电极301的外壁与所述第一中间电极302的外壁之间产生放电电弧。
在本实施例中可选的,所述绝缘介质5与所述第二端部3012固定连接,所述绝缘介质5与所述第三端部3021固定连接,将所述第一电极301与所述第一中间电极302连接在一起。同理,可通过绝缘介质5将所述第一电极301、所述第一中间电极302与所述第二电极303连接在一起构成闭合环状,防止电极组件3从导管1上脱落。
本实施例中,通过所述凸起部与所述凹槽的配合,增大了用于放电的相邻端面面积,有利于电极的相邻端面之间产生放电。
在一个可选实施例中,所述导管1的外侧套装有显影环7。所述显影环7位于球囊2内,用于通过成像系统,标记球囊2在人体中的位置。优选的,所述显影环7位于所述电极组件3之外的区域,而不与所述电极组件3叠加放置,防止导管1局部横截面尺寸过大。
对于所述电极组件3的供电方案,本申请提供的一个可选实施例,每个所述电极组件3的所述第一电极301均电连接在脉冲电压发生器6的同一个第一供电端子上;每个所述电极组件3的所述第二电极303均电连接在脉冲电压发生器6的同一个第二供电端子上;所述脉冲电压发生器6用于为所述电极组件3提供脉冲电压;所述第一供电端子和所述第二供电端子中,一个是电源正极,另一个是电源负极。
本申请的另一个可选实施例中,所述电极组件3通过脉冲电压发生器6供应脉冲电压;所述脉冲电压发生器6包括多个供电单元,每个所述供电单元与一个所述电极组件3对应并形成一个供电回路;每个所述供电单元包括第一供电端子和第二供电端子;所述第一供电端子和所述第二供电端子中,一个是电源正极,另一个是电源负极;每个供电回路的所述第一供电端子电连接在对应的一个所述电极组件3的所述第一电极301上;每个所述供电回路的所述第二供电端子电连接在对应的一个所述电极组件3的所述第二电极303上。该实施例中,每个所述电极组件3通过独立的供电回路供电,能够单独控制每个电极组件3的工作状态。
本申请的又一个可选实施例中,至少一个所述电极组件3包括第一电极组件和第二电极组件;所述第一电极组件的所述第二电极电连接至所述第二电极组件的所述第一电极;当在所述第一电极组件的所述第一电极与所述第二电极组件的所述第二电极之间施加电压时,每个所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极组件的所述第一电极、所述第一电极组件的所述第一中间电极单元、所述第一电极组件的所述第二电极、所述第二电极组件的所述第一电极、所述第二电极组件的所述第一中间电极单元、所述第二电极组件的所述第二电极。
上一实施例中,所述电极组件的数量可以更多。至少一个所述电极组件包括第一电极组件、第二电极组件、…、第Y电极组件;其中,Y≥3;
第k电极组件的所述第二电极303电连接至第k+1电极组件的所述第一电极;其中,1≤k≤Y-1;
当在所述第一电极组件的第一电极301与所述第Y电极组件的第二电极303之间施加电压时,每个所述电极组件3的所述电极对形成放电电弧,以允许电流依次通过所述第一电极组件、所述第二电极组件、…、所述第N电极组件。
在一个可选实施例中,所述电极组件3的数量至少为两个,至少两个所述电极组件3包括远端电极组件3a和近端电极组件3b;所述近端电极组件3b位于所述脉冲电压发生器6与所述远端电极组件3a之间;所述脉冲电压发生器用于为所述电极组件提供脉冲电压。其中,所述远端电极组件3a和所述近端电极组件3b用于通过两个所述电极组件3之间的相对位置关系区分两个所述电极组件3。当所述电极组件3的数量大于两个时,所述远端电极组件3a和所述近端电极组件3b均并不特指某一个电极组件3,任选其中两个所述电极组件3,均可称其为远端电极组件3a和近端电极组件3b。
所述装置还包括第一导线801;所述第一导线801电连接在所述脉冲电压发生器6与所述远端电极组件3a之间。
所述第一导线801沿着所述导管1延伸方向铺设,则必须经过所述近端电极沿导管1轴向所在的区间,将位于所述近端电极沿导管1轴向所在的区间内的部分第一导线801定义为第一近端重叠段801b。
可选的,所述第一近端重叠段801b叠放在所述近端电极组件3b的外壁上。该实施例中,第一导线801会导致近端电极组件3b处的外轮廓横截面积增大,降低导管1的通过性和顺应性。
在另一个可选实施例中,如图15所示所述第一近端重叠段801b设置在所述近端电极组件3b的所述间隙305,或所述第一近端重叠段设置在所述近端电极组件的所述第一端面与所述第六端面之间。该实施例中,避免了第一导线801在近端电极组件3b处占用空间导致近端电极组件3b处的外轮廓横截面积增大,相比于上一实施例,导管1在脉管中具有更良好的通过性。
一方面,当所述第一近端重叠段801b设置在所述近端电极组件3b的所述间隙305内,可用于所述近端电极组件3b的电极之间保持绝缘隔离。可选的,所述第一近端重叠段801b设置在所述近端电极组件3b的任意一个所述电极对的间隙305内;所述第一近端重叠段801b与所述近端电极组件3b的所述第一端部3011固定连接,对于两者之间的固定方式,本申请不做限制,可采用粘接、卡扣等固定结构;所述第一近端重叠段801b与所述近端电极组件3b的所述第四端部3022固定连接。该实施例中,所述近端电极组件3b的所述第一电极301与所述第一中间电极302通过所述间隙305处的第一近端重叠段801b固定连接,使得所述第一电极301与所述第一中间电极302在所述导管1上的位置更加牢固稳定。
另一方面,也存在由于间隙305过小,所述第一导线801难以嵌入的情况,因此如图16所示,当所述近端电极组件3b的所述第一端面与所述第六端面的距离被配置为,所述第一端面与所述第六端面在所述第一电极与所述第二电极之间被施加电压的情况下不形成放电电弧时,所述第一端面与所述第六端面之间的空间较大,将所述第一近端重叠段设置在所述近端电极组件的所述第一端面与所述第六端面之间。
在一个可选实施例中,当所述近端电极组件3b的间隙305均设置有绝缘介质5;则所述绝缘介质5与所述第一近端重叠段801b位于所述近端电极组件3b位于同一间隙;当所述近端电极组件3b的两个所述间隙305中,仅有一个间隙内设置有绝缘介质5,则所述绝缘介质5与所述第一近端重叠段801b,位于不同的间隙305。
当所述绝缘介质5与所述第一近端重叠段801b均位于所述近端电极组件3b的同一间隙305时:
在一个可选实施例中,如图17所示,所述绝缘介质5沿导管1径向的宽度小于第二端部3012的宽度,所述绝缘介质5沿导管1径向的宽度小于所述第三端部3021的宽度;且所述绝缘介质5位于所述第一近端重叠段801b与所述导管1外壁之间。
在另一个可选实施例中,所述绝缘介质5沿导管1轴向的长度小于所述第二端部3012的长度,所述绝缘介质5沿导管1轴向的长度小于所述第三端部3021的长度;且所述绝缘介质5上设置有沿导管1轴向贯穿的通道;所述第一近端重叠段801b设置在所述通道内。
在另一个可选实施例中,如图18所示,所述绝缘介质5包括第一绝缘条501和第二绝缘条502;其中,所述第一绝缘条501与所述第二绝缘条502沿导管1径向间隔排布,所述第一近端重叠段801b位于所述第一绝缘条501与所述第二绝缘条502之间;或者所述第一绝缘条501与所述第二绝缘条502沿导管1轴向间隔排布,所述第一绝缘条501与所述第二绝缘条502分别设置有沿导管1轴向贯穿的通道;所述第一近端重叠段801b设置在所述第一绝缘条501与所述第二绝缘条502所述通道内。
在另一个可选实施例中,所述第二端部3012上设置有凸起部;所述第三端部3021的相应位置上设置有凹槽;所述第二端部3012上接触所述绝缘介质5的区域位于所述凸起部之外;所述第三端部3021上接触所述绝缘介质5的区域位于所述凹槽之外;所述第一近端重叠段801b位于所述凸起部与所述凹槽之间。
所述远端电极组件3a与所述近端电极组件3b,可以分别通过一个独立的供电回路,电连接到所述脉冲电压发生器6;也可以共用一个供电回路,所述远端电极组件3a与所述近端电极组件3b串接到所述脉冲电压发生器6。
如图19,在所述远端电极组件3a与所述近端电极组件3b分别通过一个独立的供电回路,电连接到所述脉冲电压发生器6的实施例中,连接在所述脉冲电压发生器6与所述远端电极组件3a之间的所述导线还包括第二导线802;所述第二导线802包括第二近端重叠段,所述第二近端重叠段位于所述近端电极沿导管1轴向所在的区间内;所述第一导线801电连接在所述脉冲电压发生器6与所述远端电极组件3a的所述第一电极301之间;所述第二导线802电连接在所述脉冲电压发生器6与所述远端电极组件3a的所述第二电极303之间,所述远端电极组件3a的所述第一电极301与所述第二电极303中,一个电连接所述脉冲电压发生器6的阳极,另一个电连接所述脉冲电压发生器6的阴极。
相应的,所述近端电极组件3b的第一电极301和第二电极303,一个通过导线电连接所述脉冲电压发生器6的阳极,另一个通过导线电连接所述脉冲电压发生器6的阴极。
该实施例中,所述第一近端重叠段801b和所述第二近端重叠段均位于同一间隙,或者如图20所示,所述第一近端重叠段801b和所述第二近端重叠段分别位于不同的间隙。
上述实施例中,可选的,所述第一导线801电连接在所述远端电极组件3a的所述第一电极301靠近所述脉冲电压发生器6一侧的轴向端面;所述第二导线802电连接在所述远端电极组件3a的所述第二电极303靠近所述脉冲电压发生器6一侧的轴向端面;因此所述第一导线801及所述第二导线802与所述远端电极组件3a并无轴向上的重叠区间。
当所述远端电极组件3a的间隙305内未设置所述绝缘介质5时,考虑到所述远端电极组件3a的所述第一电极301、所述第一中间电极302与所述第二电极303之间的绝缘可靠性,可选的,所述第一导线801电连接在远端电极组件3a的所述第一电极301远离所述脉冲电压发生器6一侧的轴向端面,和/或,所述第二导线802电连接在远端电极组件3a的所述第一中间电极302远离所述脉冲电压发生器6一侧的轴向端面。
可选的,所述第一导线801包括第一远端重叠段,所述第一远端重叠段位于所述远端电极组件3a沿导管1轴向所在的区间内;所述第二导线802包括第二远端重叠段,所述第二远端重叠段位于所述远端电极组件3a沿导管1轴向所在的区间内;
该实施例中,所述第一远端重叠段和所述第二远端重叠段排布的方式包括:
可选的,所述第一远端重叠段设置在所述远端电极组件3a的一个所述间隙305内;所述第二远端重叠段设置在所述远端电极组件3a的另一个所述间隙305内。该实施方式,使得所述远端电极组件3a的间隙305保持绝缘隔离,设备的可靠性更高。
所述远端电极组件3a与所述近端电极组件3b串接到所述脉冲电压发生器6的实施例中,连接在所述脉冲电压发生器6与所述近端电极组件3b之间的所述导线包括第三导线;所述近端电极组件3b的所述第二电极303通过第三导线电连接所述脉冲电压发生器6;所述近端电极组件3b的所述第一电极301通过第四导线电连接所述远端电极组件3a的所述第二电极303;所述远端电极组件3a的所述第一电极301通过所述第一导线801电连接所述脉冲电压发生器6。当所述脉冲电压发生器6的通过所述第一导线801和所述第三导线施加脉冲电压时,所述远端电极组件3a及所述近端电极组件3b的间隙305产生放电电弧,电流依次流过所述远端电极组件3a的所述第一电极301、所述远端电极组件3a的所述第一中间电极302、所述远端电极组件3a的所述第二电极303、所述近端电极组件3a的所述第一电极301、所述近端电极组件3a的所述第一中间电极302、所述近端电极组件3a的所述第二电极303。
为了提升治疗效果,可选的,一个电极组件3上的多个放电位置沿导管周向基本均匀分布。如图21所示的电极组件3包括第一电极301、第一中间电极302和第二电极303;所述第一电极301包括位于所述导管1周向一端的第一端部3011,以及位于所述导管1周向另一端的第二端部3012;所述第一中间电极302包括位于所述导管1周向一端的第三端部3021,以及位于所述导管1周向另一端的第四端部3022;所述第二电极303包括位于所述导管1周向一端的第五端部3031,以及位于所述导管周向另一端的第六端部3032;所述第二端部3012与所述第三端部3021相邻且限定形成间隙305;所述第四端部3022与所述第五端部3031相邻且限定形成间隙305。所述电极组件3的横截面上,两个间隙305相对导管1圆心基本对称分布;具体的,其中一个间隙305内任意一点与另一个间隙305内任意一点相对于导管1圆心的圆心角的数值范围是160°至200°。图3所示的实施例中,一个电极组件3的四个所述间隙305中也是沿导管1周向基本均匀分布。当所述间隙305的数量为其他数值时,所述间隙305的分布与上述实施例同理。
需要说明的是,在本说明书的描述中,术语“第一”、“第二”等仅用于描述目的和区别类似的对象,两者之间并不存在先后顺序,也不能理解为指示或暗示相对重要性。此外,在本说明书的描述中,除非另有说明,“多个”的含义是两个或两个以上。
上述实施例只为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。

Claims (15)

  1. 一种冲击波球囊导管装置,包括导管、密封围绕在导管外周的球囊和设置在球囊内的电极组件,所述球囊内可填充液体;其特征在于:所述电极组件包括第一电极、第一中间电极单元和第二电极;所述第一电极、所述第一中间电极单元与所述第二电极沿所述导管周向依次间隔布置;所述第一电极与所述第一中间电极单元之间具有间隙且构成电极对;所述第一中间电极单元与所述第二电极之间具有间隙且构成电极对;当在所述第一电极与所述第二电极之间施加电压时,每个所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极、所述第一中间电极单元、所述第二电极。
  2. 如权利要求1所述的装置,其特征在于:所述第一中间电极单元包括第一中间电极、第二中间电极、…、第N中间电极,N≥1;所述第一电极、所述第一中间电极、所述第二中间电极、…、所述第N中间电极、所述第二电极沿导管周向依次间隔布置;其中,所述第一电极与所述第一中间电极具有间隙且构成电极对;第i中间电极与第i+1中间电极具有间隙且构成电极对,1≤i≤N-1;所述第N中间电极与所述第二电极具有间隙且构成电极对;当在所述第一电极与所述第二电极之间施加电压时,每个所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极、所述第一中间电极、所述第二中间电极、…、所述第N中间电极、所述第二电极。
  3. 如权利要求1所述的装置,其特征在于:所述第一电极包括位于所述导管周向一端的第一端部;所述第二电极包括位于所述导管周向另一端的第六端部;所述第一端部与所述第六端部间隔相邻;所述第一端部与所述第六端部之间的距离被配置为,当在所述第一电极与所述第二电极之间施加电压时,所述第一端部与所述第六端部之间在液体中不形成放电电弧。
  4. 如权利要求1所述的装置,其特征在于:所述第一电极包括位于所述导管周向一端的第一端部;所述第二电极包括位于所述导管周向另一端的第六端部;所述第一端部与所述第六端部间隔相邻;所述第一端部与所述第六端部之间设置有绝缘屏蔽介质,以使得当在所述第一电极与所述第二电极之间施加电压时,所述第一端部与所述第六端部之间在液体中不形成放电电弧。
  5. 如权利要求1所述的装置,其特征在于:还包括定位件;所述定位件用于保持所述 电极组件与所述导管之间的相对位置。
  6. 如权利要求5所述的装置,其特征在于:所述定位件包括包裹在所述电极组件外壁的绝缘材质的定位护套。
  7. 如权利要求6所述的装置,其特征在于:所述定位护套在所述电极对的间隙处设置有第一放电孔;所述第一放电孔使得所述电极对的所述间隙可与所述球囊内的液体连通。
  8. 如权利要求2所述的装置,其特征在于:还包括包裹在所述电极组件外表面的绝缘材质的定位护套;所述定位护套上设置有第一放电开口和第二放电开口;所述第一放电开口位于所述第一电极的外壁的外侧,使得所述第一电极的部分外壁漏出构成第一放电区;所述第二放电开口位于所述第二电极的外壁的外侧,使得所述第二电极的第一部分外壁漏出构成第二放电区;所述第一电极的所述第一放电区与所述第二电极的所述第二放电区构成所述电极对。
  9. 如权利要求2所述的装置,其特征在于:所述间隙处设置有绝缘介质;所述绝缘介质被配置为占据所述电极对的所述间隙的至少部分空间。
  10. 如权利要求1所述的装置,其特征在于:所述电极组件的数量至少是两个;所述电极组件通过脉冲电压发生器供应脉冲电压;所述脉冲电压发生器包括第一供电端子和第二供电端子;所述第一供电端子和所述第二供电端子中,一个是电源正极,另一个是电源负极;每个所述电极组件的所述第一电极均电连接在所述脉冲电压发生器的所述第一供电端子上;每个所述电极组件的所述第二电极均电连接在所述脉冲电压发生器的所述第二供电端子上。
  11. 如权利要求1所述的装置,其特征在于:所述电极组件的数量至少是两个;所述电极组件通过脉冲电压发生器供应脉冲电压;所述脉冲电压发生器包括多个供电单元,每个所述供电单元与一个所述电极组件对应并形成一个供电回路;每个所述供电单元包括第一供电端子和第二供电端子;所述第一供电端子和所述第二供电端子中,一个是电源正极,另一个是电源负极;每个所述供电回路的所述第一供电端子电连接在对应的所述电极组件的所述第一电极上;每个所述供电回路的所述第二供电端子电连接在对应的所述电极组件 的所述第二电极上。
  12. 如权利要求1所述的装置,其特征在于:所述电极组件的数量至少是两个,包括第一电极组件和第二电极组件;所述第一电极组件的所述第二电极电连接至所述第二电极组件的所述第一电极;当在所述第一电极组件的所述第一电极与所述第二电极组件的所述第二电极之间施加电压时,每个所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极组件的所述第一电极、所述第一电极组件的所述第一中间电极单元、所述第一电极组件的所述第二电极、所述第二电极组件的所述第一电极、所述第二电极组件的所述第一中间电极单元、所述第二电极组件的所述第二电极。
  13. 如权利要求1所述的装置,其特征在于:所述电极组件的数量至少是两个,包括远端电极组件和近端电极组件;所述近端电极组件位于脉冲电压发生器与所述远端电极组件之间;所述脉冲电压发生器用于为所述电极组件提供脉冲电压;
    所述装置还包括第一导线;所述第一导线电连接在所述脉冲电压发生器与所述远端电极组件之间;
    所述第一导线包括第一近端重叠段;所述第一近端重叠段位于所述近端电极组件沿导管轴向所在的区间内;所述第一近端重叠段设置在所述近端电极组件中任意两个相邻电极之间的区域内。
  14. 如权利要求1所述的装置,其特征在于:所述电极组件还包括第二中间电极单元;所述第一电极、所述第一中间电极单元、所述第二电极和所述第二中间电极单元沿所述导管周向依次间隔布置;所述第一电极与所述第二中间电极单元之间具有间隙且构成电极对;所述第二中间电极单元与所述第二电极之间具有间隙且构成电极对;当在所述第一电极与所述第二电极之间施加电压时,所述电极对被配置为可分别形成放电电弧,以允许电流依次通过所述第一电极、所述第二中间电极单元与所述第二电极。
  15. 如权利要求1所述的装置,其特征在于:所述第一中间电极单元包括第一中间电极;所述第一电极与所述第一中间电极构成电极对;所述第一中间电极与所述第二电极构成电极对;当在所述第一电极与所述第二电极之间施加电压时,所述电极对被配置为可分别在液体中形成放电电弧,以允许电流依次通过所述第一电极、所述第一中间电极与所述第二电极。
PCT/CN2023/079491 2022-09-20 2023-03-03 一种冲击波球囊导管装置 WO2024060518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211141393.9A CN116999118A (zh) 2022-09-20 2022-09-20 一种冲击波球囊导管装置
CN202211141393.9 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024060518A1 true WO2024060518A1 (zh) 2024-03-28

Family

ID=88562466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079491 WO2024060518A1 (zh) 2022-09-20 2023-03-03 一种冲击波球囊导管装置

Country Status (2)

Country Link
CN (1) CN116999118A (zh)
WO (1) WO2024060518A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11020135B1 (en) * 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
CN113598878A (zh) * 2021-08-13 2021-11-05 苏州中荟医疗科技有限公司 一种导管及冲击波发生系统
CN113633346A (zh) * 2021-08-31 2021-11-12 苏州中荟医疗科技有限公司 一种电极装置及冲击波发生系统
CN114191034A (zh) * 2020-09-18 2022-03-18 上海微创投资控股有限公司 医疗导管及医疗导管系统
CN114569194A (zh) * 2022-03-09 2022-06-03 江苏朴芃医疗科技有限公司 一种冲击波电极装置及冲击波导管系统
CN114831697A (zh) * 2022-05-19 2022-08-02 杭州天路医疗器械有限公司 一种用于体内腔道塑形的冲击波发生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11020135B1 (en) * 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
CN114191034A (zh) * 2020-09-18 2022-03-18 上海微创投资控股有限公司 医疗导管及医疗导管系统
CN113598878A (zh) * 2021-08-13 2021-11-05 苏州中荟医疗科技有限公司 一种导管及冲击波发生系统
CN113633346A (zh) * 2021-08-31 2021-11-12 苏州中荟医疗科技有限公司 一种电极装置及冲击波发生系统
CN114569194A (zh) * 2022-03-09 2022-06-03 江苏朴芃医疗科技有限公司 一种冲击波电极装置及冲击波导管系统
CN114831697A (zh) * 2022-05-19 2022-08-02 杭州天路医疗器械有限公司 一种用于体内腔道塑形的冲击波发生装置

Also Published As

Publication number Publication date
CN116999118A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN111601560B (zh) 用于冲击波导管的低剖面电极
US20220015785A1 (en) Low profile electrodes for an angioplasty shock wave catheter
CN104582597B (zh) 具有多个冲击波源的冲击波球囊导管
CN113951972A (zh) 一种压力波球囊导管
CN114760940A (zh) 病灶穿过式冲击波导管
CN113877044A (zh) 医疗装置
US20220183708A1 (en) Lesion crossing shock wave catheter
CN113842190A (zh) 电极球囊导管
CN214966283U (zh) 一种压力波球囊导管
CN114569194A (zh) 一种冲击波电极装置及冲击波导管系统
CN114366237A (zh) 一种电极结构及球囊
CN216167694U (zh) 电极球囊导管
WO2024060518A1 (zh) 一种冲击波球囊导管装置
CN218832829U (zh) 一种冲击波球囊导管装置
CN115463317B (zh) 一种冲击波球囊导管
WO2024021604A1 (zh) 一种冲击波球囊导管装置
JP7316350B2 (ja) 医療デバイス
WO2024021613A1 (zh) 一种冲击波球囊导管装置
CN219166540U (zh) 一种冲击波球囊导管装置
WO2024066203A1 (zh) 一种冲击波球囊导管装置
CN216319437U (zh) 医疗装置
US20230218309A1 (en) Adapter for an electrical modular catheter system
JP2020025731A (ja) 医療デバイス
CN215275333U (zh) 一种医用导管体、球囊导管及医用装置
JP2022173169A (ja) 医療デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866821

Country of ref document: EP

Kind code of ref document: A1