WO2024060087A1 - Led器件、发光基板、背光模组、显示面板及显示装置 - Google Patents

Led器件、发光基板、背光模组、显示面板及显示装置 Download PDF

Info

Publication number
WO2024060087A1
WO2024060087A1 PCT/CN2022/120316 CN2022120316W WO2024060087A1 WO 2024060087 A1 WO2024060087 A1 WO 2024060087A1 CN 2022120316 W CN2022120316 W CN 2022120316W WO 2024060087 A1 WO2024060087 A1 WO 2024060087A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
type semiconductor
layer
nano
led device
Prior art date
Application number
PCT/CN2022/120316
Other languages
English (en)
French (fr)
Inventor
周晓东
颜玺轩
倉澤隼人
蔡基成
小川剛
木下智豊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/120316 priority Critical patent/WO2024060087A1/zh
Publication of WO2024060087A1 publication Critical patent/WO2024060087A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes

Definitions

  • the present application relates to the field of display technology, and in particular to an LED device, a light-emitting substrate, a backlight module, a display panel and a display device.
  • Nano-column LED full name in English: light-emitting diode, full name in Chinese: light-emitting diode
  • light-emitting technology is a new light-emitting technology based on nano-column LED.
  • a first alignment electrode and a second alignment electrode are first formed on the substrate, and an alignment electric field can be generated between the two. Then, a first dielectric layer covering the first alignment electrode and the second alignment electrode is formed. In the alignment process, multiple nano-column LED devices are placed on the first dielectric layer. Driven by the alignment electric field, the multiple nano-column LED devices The LED device rotates so that the length extension direction of the nano-column LED device points to the first alignment electrode and the second alignment electrode. Finally, a first electrode and a second electrode are formed on the side of the nanocolumn LED device away from the substrate, and the first electrode and the second electrode are arranged along the length extension direction of the nanocolumn LED device.
  • the probability that the p-type semiconductor layer of the nano-column LED device is close to the first electrode and the probability of being close to the second electrode are each 50%. Therefore, after the orientation process, among the plurality of nano-column LED devices, half of the nano-column LED devices have the p-type semiconductor layer close to the first electrode and connected to the first electrode; half of the nano-column LED devices have the p-type semiconductor layer close to the second electrode. electrode and connected to the second electrode.
  • One of the first electrode and the second electrode is the positive electrode, and the other is the negative electrode. Only when the p-type semiconductor layer of the nano-column LED device is connected to the positive electrode and the n-type semiconductor layer is connected to the negative electrode, the nano-column LED device can Glow normally. On the contrary, when the p-type semiconductor layer of the nano-column LED device is connected to the negative electrode and the n-type semiconductor layer is connected to the positive electrode, the nano-column LED device does not emit light.
  • nano-column LED devices within a driving cycle of emitting light, only half of the nano-column LED devices can emit light normally, and the other half of the nano-column LED devices do not emit light, resulting in the actual utilization rate of multiple nano-column LED devices being only 50%, resulting in nano-column LED Device utilization is low.
  • Some embodiments of the present application provide an LED device, a light-emitting substrate, a backlight module, a display panel and a display device, aiming to improve the utilization rate of nano-column LED devices in the light-emitting substrate, so as to improve the utilization rate of the LED devices in the light-emitting substrate.
  • a light-emitting substrate is provided.
  • the light-emitting substrate is a nano-column LED light-emitting substrate, which can be used to prepare backlight modules and display panels.
  • the light-emitting substrate includes a substrate, a nano-column LED device, a first electrode, a second electrode and a third electrode, wherein the nano-column LED device is disposed on the substrate, and the length extension direction of the nano-column LED device is parallel to the substrate,
  • the nanocolumn LED device includes a first p-type semiconductor layer, a first multi-quantum well layer and an n-type semiconductor layer arranged along the length extension direction.
  • the third electrode is located between the first electrode and the second electrode, and the n-type semiconductor layer is connected to the third electrode.
  • the first p-type semiconductor layer is connected to the first Electrode connections.
  • the first p-type semiconductor layer is connected to the second electrode.
  • the first direction and the second direction are opposite, and the first direction and the second direction are parallel to the arrangement directions of the first electrode, the second electrode and the third electrode.
  • the first electrode, the second electrode and the third electrode are symmetrically designed.
  • the first electrode and the second electrode are the positive electrode
  • the third electrode is the negative electrode
  • the third electrode is located on the first electrode. and between the second electrode.
  • the first p-type semiconductor layer When the length extension direction of the nano-column LED device is toward the first direction (the first p-type semiconductor layer is turned to the left), the first p-type semiconductor layer may be connected to the first electrode located on the left side.
  • the first p-type semiconductor layer When the length extension direction of the nano-column LED device is toward the second direction (the first p-type semiconductor layer is turned to the right), the first p-type semiconductor layer may be connected to the second electrode located on the right side. That is, no matter whether the first p-type semiconductor layer of the nanopillar LED device is turned to the left or right, there is a positive electrode (first electrode or second electrode) corresponding to and connected to it.
  • the n-type semiconductor layer is close to the middle region. Therefore, no matter whether the first p-type semiconductor layer of the nano-column LED device is located on the left or right side, the n-type semiconductor layer can be connected to the third p-type semiconductor layer.
  • the three-electrode connection ensures that the first p-type semiconductor layer of the nano-column LED device can be accurately connected to the first electrode or the second electrode, and the n-type semiconductor layer can be accurately connected to the third electrode. In this way, within a light-emitting driving cycle, all nano-column LED devices can emit light at the same time, and the utilization rate of nano-column LED devices can reach 100%.
  • the symmetrical design of the three electrodes eliminates the need to add a corresponding driving circuit to achieve the function of changing the signal polarity, which can simplify the structural design of the driving circuit in the light-emitting substrate and reduce the difficulty of designing the driving circuit.
  • the nanopillar LED device further includes an insulating layer located on a side of the n-type semiconductor layer away from the first multi-quantum well layer.
  • the insulating layer is connected to the second electrode; when the length extension direction of the nano-column LED device is along the second direction, the insulating layer is connected to the first electrode.
  • the insulating layer can be connected to the second electrode.
  • the insulating layer can be connected to the first electrode, and the high resistance characteristics of the insulating layer can be used to reduce the leakage problem of the electrode (first electrode or second electrode) connected to the insulating layer, thereby helping to reduce the power consumption of the light-emitting substrate.
  • the material of the insulating layer includes intrinsic gallium nitride.
  • Intrinsic gallium nitride has higher resistance and better insulation performance.
  • the nano-column LED device further includes a high resistance layer located between the n-type semiconductor layer and the insulating layer.
  • the high-resistance property of the high-resistance layer can be used to improve the electrode (the first electrode or the second electrode) connected to the insulating layer.
  • the resistance of the transmission path between the n-type semiconductor layer and the n-type semiconductor layer further reduces the leakage problem of the electrode connected to the insulating layer, thereby helping to reduce the power consumption of the light-emitting substrate.
  • the material of the high resistance layer includes aluminum gallium nitride, and aluminum gallium nitride has relatively high resistance.
  • the nanocolumn LED device further includes a second p-type semiconductor layer and a second multiple quantum well layer, both of which are located on a side of the n-type semiconductor layer away from the first multiple quantum well layer.
  • the second multiple quantum well layer A layer is located between the second p-type semiconductor layer and the n-type semiconductor layer.
  • the second p-type semiconductor layer is connected to the second electrode; when the length extension direction of the nano-column LED device is along the second direction, the second p-type semiconductor layer is connected to the second electrode.
  • the semiconductor layer is connected to the first electrode.
  • the nanocolumn LED device adopts a centrally symmetrical structural design. After the orientation process, regardless of whether the length extension direction of the nanocolumn LED device is along the first direction or the second direction, the first p-type semiconductor layer and the second p-type semiconductor layer of the nanocolumn LED device are respectively connected to the first electrode or the second electrode.
  • the n-type semiconductor layer is close to the middle region thereof. No matter the length extension direction of the nano-column LED device is along the first direction or the second direction, the n-type semiconductor layer is always connected to the third electrode. In this way, within a light-emitting driving cycle, all nano-column LED devices can emit light at the same time, and the utilization rate of nano-column LED devices can reach 100%.
  • the nano-column LED device has a double-ended light-emitting structure, the luminous density and intensity of the nano-column LED device will be increased, which is beneficial to improving the luminous efficiency of the light-emitting substrate.
  • the nanopillar LED device is a centrosymmetric structure.
  • the n-type semiconductor layer includes two sub-layers, and the two sub-layers are connected through an adhesive layer to improve the connection strength of the two sub-layers.
  • the nanocolumn LED device further includes a first contact layer, which is located on a side of the first p-type semiconductor layer away from the first multi-quantum well layer, and the first p-type semiconductor layer is connected to the first electrode or the second electrode through the first contact layer.
  • the nano-column LED device further includes a second p-type semiconductor layer and a second multi-quantum well layer
  • the nano-column LED device further includes a second contact layer, and the second contact layer is located away from the second p-type semiconductor layer.
  • the second p-type semiconductor layer is connected to the second electrode or the first electrode through the second contact layer.
  • the first p-type semiconductor layer is electrically connected to the first contact layer, and the first p-type semiconductor layer and the first contact layer are both connected to the first p-type semiconductor layer.
  • the electrical connection of one electrode or the second electrode is beneficial to improving the ohmic contact performance between the first p-type semiconductor layer and the first electrode or the second electrode.
  • the second p-type semiconductor layer is electrically connected to the second contact layer, and both the second p-type semiconductor layer and the second contact layer are connected to the first electrode or the second contact layer.
  • the electrical connection of the electrodes is beneficial to improving the ohmic contact performance between the second p-type semiconductor layer and the first electrode or the second electrode.
  • the first electrode and the second electrode respectively cover two ends of the nanopillar LED device.
  • the nanocolumn LED device further includes a first dielectric layer surrounding the side of the first multi-quantum well layer and surrounding the side of a portion of the n-type semiconductor layer close to the first multi-quantum well layer.
  • the first dielectric layer separates the first electrode from the first multiple quantum well layer, and separates the first electrode from the n-type semiconductor layer, or the first dielectric layer separates the second electrode from the first multiple quantum well layer, and separates the second electrode and the n-type semiconductor layer.
  • the nano-pillar LED device further includes a second p-type semiconductor layer and a second multi-quantum well layer
  • the nano-pillar LED device further includes a second dielectric layer
  • the second dielectric layer surrounds the side of the second multi-quantum well layer, and surrounds the side of a portion of the n-type semiconductor layer close to the second multi-quantum well layer.
  • the second dielectric layer separates the second electrode from the second multi-quantum well layer, and separates the second electrode from the n-type semiconductor layer, or the second dielectric layer separates the first electrode from the second multi-quantum well layer, and separates the first electrode from the n-type semiconductor layer.
  • the first electrode and the second electrode respectively cover the two ends of the nano-column LED device.
  • the first dielectric layer can separate the first The electrode and the first multiple quantum well layer, and the first dielectric layer can separate the first electrode and the n-type semiconductor layer to prevent the first electrode from contacting the first multiple quantum well layer and the n-type semiconductor layer and causing a short circuit problem.
  • the second dielectric layer can separate the second electrode and the second multi-quantum well layer, and the second dielectric layer can separate the second electrode and the n-type semiconductor layer to prevent the second electrode from being connected to the second multi-quantum well layer and the n-type semiconductor. layer contact may cause a short circuit problem.
  • the first dielectric layer can separate the second electrode from the first multi-quantum well layer, and the first dielectric layer can separate the second electrode from the first multi-quantum well layer.
  • the n-type semiconductor layer prevents the second electrode from contacting the first multiple quantum well layer and the n-type semiconductor layer to cause a short circuit problem.
  • the second dielectric layer can separate the first electrode and the second multi-quantum well layer, and the second dielectric layer can separate the first electrode and the n-type semiconductor layer to prevent the first electrode from the second multi-quantum well layer and the n-type semiconductor. layer contact may cause a short circuit problem.
  • the light-emitting substrate further includes a third dielectric layer, which separates the third electrode from the first electrode, and separates the third electrode from the second electrode.
  • the third dielectric layer has an opening, the opening exposes a portion of the n-type semiconductor layer away from the first multiple quantum well layer, and the third electrode is connected to the n-type semiconductor layer through the opening.
  • the third dielectric layer can separate the third electrode and the first electrode, and separate the third electrode and the second electrode to avoid the positive electrode (first electrode and second electrode) and the negative electrode (third electrode). A short circuit problem occurs between them.
  • the center line of the opening perpendicular to the length extension direction of the nano-column LED device coincides with the center line perpendicular to the length extension direction of the nano-column LED device, which ensures that the opening can expose the n-type semiconductor layer of the nano-column LED device. , so that the third electrode is accurately connected to the n-type semiconductor layer through the opening.
  • the lengths of the parts of the first electrode and the second electrode covering the nano-column LED device are equal to ensure that the distance between the nano-column LED device and the first electrode and the second electrode is equal.
  • the relative position accuracy ensures that the first p-type semiconductor layer of the nano-column LED device can be accurately connected to the first electrode or the second electrode.
  • the material of at least one of the first electrode, the second electrode, and the third electrode includes a light-transmitting material.
  • the first electrode, the second electrode and the third electrode are all located on the light exit side of the nano-column LED device, and the light needs to pass through the first electrode, the second electrode and the third electrode. Therefore, at least one of the first electrode, the second electrode, and the third electrode is made of a light-transmitting material, which is beneficial to increasing the emission rate of light, thereby improving the luminous efficiency of the light-emitting substrate.
  • the material of at least one of the first electrode, the second electrode, and the third electrode includes at least one of indium tin oxide, zinc tin oxide, and graphene, and these materials have good light transmission. sex.
  • the light-emitting substrate includes a plurality of nano-column LED devices arranged sequentially along a third direction, and the third direction is perpendicular to the length extension direction of the nano-column LED device.
  • the first electrode, the second electrode and the third electrode extend along the third direction.
  • the first electrode covers the ends of the plurality of nano-column LED devices located on one side of the third electrode.
  • the second electrode covers the ends of the plurality of nano-column LED devices located on the side of the third electrode.
  • the third electrode covers the middle part of the plurality of nano-column LED devices on the other side of the third electrode to drive the plurality of nano-column LED devices to emit light through the first electrode, the second electrode and the third electrode.
  • the light-emitting substrate further comprises a first alignment electrode, a second alignment electrode and a fourth dielectric layer disposed on the substrate, wherein the first alignment electrode and the second alignment electrode are arranged along the length extension direction of the nanocolumn LED device.
  • the nanocolumn LED device is located between the first alignment electrode and the second alignment electrode.
  • the fourth dielectric layer covers the first alignment electrode and the second alignment electrode and is located between the substrate and the nanocolumn LED device.
  • the first alignment electrode and the second alignment electrode can generate an alignment electric field.
  • the plurality of nano-column LED devices rotate until the length of the plurality of nano-column LED devices extends.
  • the direction is toward the first direction or toward the second direction.
  • a nano-column LED device in a second aspect, includes an insulating layer, an n-type semiconductor layer, a multi-quantum well layer and a p-type semiconductor layer arranged in sequence.
  • the nanopillar LED device further includes a high resistance layer located between the n-type semiconductor layer and the insulating layer.
  • the nanopillar LED device further includes a contact layer located on a side of the p-type semiconductor layer away from the multi-quantum well layer.
  • the nanocolumn LED device further includes a first dielectric layer surrounding a side of the multi-quantum well layer and surrounding a side of a portion of the n-type semiconductor layer close to the multi-quantum well layer.
  • a method for preparing a nanocolumn LED device includes: forming a stacked structure on a first substrate.
  • the stacked structure includes an insulating film, an n-type semiconductor film, a multi-quantum well film, and an insulating film, which are sequentially stacked.
  • p-type semiconductor film is etched to form a nano-column LED device.
  • a nano-column LED device in a fourth aspect, includes a first p-type semiconductor layer, a first multi-quantum well layer, an n-type semiconductor layer, a second multi-quantum well layer and a second multi-quantum well layer. p-type semiconductor layer.
  • the nanopillar LED device is a centrosymmetric structure.
  • the n-type semiconductor layer includes two sub-layers, and the two sub-layers are connected by an adhesive layer.
  • the nanocolumn LED device further includes a first contact layer and a second contact layer.
  • the first contact layer is located on a side of the first p-type semiconductor layer away from the first multi-quantum well layer.
  • the second contact layer is located on A side of the second p-type semiconductor layer away from the second multiple quantum well layer.
  • the nanocolumn LED device further includes a first dielectric layer and a second dielectric layer.
  • the first dielectric layer surrounds the side of the first multi-quantum well layer and surrounds the n-type semiconductor layer close to the first multi-quantum well layer. side of the part.
  • the second dielectric layer surrounds the side of the second multi-quantum well layer and surrounds the side of a portion of the n-type semiconductor layer close to the second multi-quantum well layer.
  • a method for preparing a nano-column LED device includes: forming a stacked structure on a first substrate.
  • the stacked structure includes an insulating film, an n-type semiconductor film, a multi-quantum well film and a multi-quantum well film. p-type semiconductor film.
  • the stacked structure was inverted and transferred to the second substrate.
  • the insulating film on top of the stacked structure is removed to obtain the structure to be bonded.
  • the two structures to be bonded are bonded, and the n-type semiconductor films of the two structures to be bonded are bonded to form a bonding structure.
  • the second substrate on top of the bonded structure is removed.
  • the bonding structure is etched to form a nano-column LED device.
  • a method for preparing a light-emitting substrate includes: placing a nano-column LED device on a substrate, the length extension direction of the nano-column LED device is parallel to the substrate, and the nano-column LED device is any of the above.
  • a nano-column LED device is provided in one embodiment.
  • a first electrode and a second electrode are formed, and the first electrode and the second electrode respectively cover two ends of the nanocolumn LED device.
  • a third dielectric layer is formed, and the third dielectric layer has an opening exposing the n-type semiconductor layer of the nanopillar LED device.
  • a third electrode is formed, the third electrode is located between the first electrode and the second electrode, and the third electrode is connected to the n-type semiconductor layer through the opening.
  • a seventh aspect provides a backlight module, which includes the light-emitting substrate provided in any of the above embodiments, and a plurality of optical films disposed on the light-emitting side of the light-emitting substrate.
  • a display device in an eighth aspect, includes the backlight module provided in the above embodiment, and a display panel disposed on the light emitting side of the backlight module.
  • a ninth aspect provides a display panel, which includes the light-emitting substrate provided in any of the above embodiments, and a color filter layer disposed on the light-emitting side of the light-emitting substrate.
  • a display device in a tenth aspect, includes the display panel provided in the above embodiment, and a circuit board electrically connected to the display panel.
  • Figure 1 is a top view of a nano-column LED light-emitting substrate in the related art
  • Figure 2 is a cross-sectional view of the light-emitting substrate in Figure 1 along the section line A-A';
  • Figure 3 is a top view of a light-emitting substrate according to some embodiments.
  • Figure 4 is a partial enlarged view of the light-emitting substrate in Figure 3 at position M;
  • Figure 5 is a cross-sectional view of the light-emitting substrate in Figure 4 along the section line B-B';
  • Figure 6 is a cross-sectional view of the light-emitting substrate in Figure 4 along the section line C-C';
  • Figure 7 is a structural diagram of a nano-column LED device in a light-emitting substrate according to some embodiments.
  • Figures 8A to 8D are diagrams of steps for preparing nanocolumn LED devices according to some embodiments.
  • Figures 9A to 9D are diagrams of steps for preparing a light-emitting substrate according to some embodiments.
  • Figure 10 is another structural diagram of a light-emitting substrate according to some embodiments.
  • Figure 11 is another structural diagram of a nanopillar LED device according to some embodiments.
  • Figures 12A to 12H are diagrams of steps for preparing nanocolumn LED devices according to some embodiments.
  • Figures 13A to 13D are diagrams of steps for preparing another light-emitting substrate according to some embodiments.
  • Figure 14 is a structural diagram of a backlight module according to some embodiments.
  • FIG15 is a structural diagram of a display device according to some embodiments.
  • Figure 16 is a structural diagram of a display panel according to some embodiments.
  • Figure 17 is a structural diagram of another display device according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • “multiple” means two or more.
  • connection and its derivatives may be used.
  • some embodiments may be described using the term “connected” to indicate that two or more components are in direct physical or electrical contact with each other.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • Exemplary embodiments are described herein with reference to cross-sectional illustrations and/or plan illustrations that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • Nano-column LED light-emitting technology is a new light-emitting technology based on nano-column LED devices.
  • Figure 1 is a top view of a nano-column LED light-emitting substrate in related technology;
  • Figure 2 is a cross-sectional view of the light-emitting substrate in Figure 1 along the section line A-A'.
  • the nanocolumn LED light-emitting substrate 100' includes a substrate 101', a first orientation electrode 102' and a second orientation electrode 103' disposed on the substrate 101', covering the first orientation electrode 102' and The first dielectric layer 104' of the second alignment electrode 103', the nano-column LED device 105' provided on the side of the first dielectric layer 104' away from the substrate 101', and connected to both ends of the nano-column LED device 105' The first electrode 106' and the second electrode 107'.
  • the length extension direction of the nano-column LED device 105' is parallel to the substrate 101'
  • the first electrode 106' and the second electrode 107' are arranged along the length extension direction of the nano-column LED device 105'
  • the plurality of nano-column LED devices 105 ' is arranged horizontally between the first electrode 106' and the second electrode 107'.
  • the nanocolumn LED device 105' includes a p-type semiconductor layer 105a', a multi-quantum well layer 105b' and an n-type semiconductor layer 105c' arranged in sequence to form a p-n junction. Since the p-n junction has unidirectional conductivity, when the p-type semiconductor layer 105a' of the nano-column LED device 105' is connected to the anode and the n-type semiconductor layer 105c' is connected to the cathode, the nano-column LED device 105' can be The light emitting device is driven by the voltage between the first electrode 106' and the second electrode 107'.
  • the nano-column LED device 105' does not emit light.
  • the first electrode 106' is a positive electrode
  • the second electrode 107' is a negative electrode.
  • the p-type semiconductor layer 105a' of a part of the nano-column LED device 105' is connected to the p-type semiconductor layer 105a' of the nano-column LED device 105'.
  • One electrode 106' is connected, and the n-type semiconductor layer 105c' is connected with the second electrode 107'.
  • This part of the nano-column LED device 105' can emit light driven by the voltage between the first electrode 106' and the second electrode 107'.
  • the p-type semiconductor layer 105a' of another part of the nano-column LED device 105' is connected to the second electrode 107', and the n-type semiconductor layer 105c' is connected to the first electrode 106'.
  • This part of the nano-column LED device 105' does not emit light, resulting in nanometer
  • the utilization rate of the column LED device 105' cannot reach 100%, thereby reducing the luminous efficiency of the nano-column LED light-emitting substrate 100'.
  • the first orientation electrode 102' and the second orientation electrode 103' are first formed on the substrate 101', and the first orientation electrode 102' and The second alignment electrode 103' is arranged along the direction X, and an alignment electric field can be generated between them.
  • a first dielectric layer 104' covering the first alignment electrode 102' and the second alignment electrode 103' is formed.
  • a plurality of nano-column LED devices 105' are placed on the first dielectric layer 104'. Driven by the orientation electric field, the plurality of nano-column LED devices 105' rotate until the length extension direction of the plurality of nano-column LED devices 105' is parallel to the direction X.
  • the probability that the p-type semiconductor layer 105a' of the nano-column LED device 105' is close to the first alignment electrode 102' and the probability of being close to the second alignment electrode 103' are each 50 %. Therefore, after the alignment process, among the plurality of nano-column LED devices 105', the p-type semiconductor layer 105a' of half of the nano-column LED devices 105' is close to the first alignment electrode 102', and the p-type semiconductor layer of half of the nano-column LED devices 105' Layer 105a' is close to the second alignment electrode 103'.
  • the p-type semiconductor layer 105a' of half of the nano-column LED devices 105' is connected to the first electrode 106', and the p-type semiconductor layer 105a of half of the nano-column LED device 105' 'Connected to the second electrode 107'. Based on this, within a driving cycle of emitting light, only half of the nano-column LED devices 105' can emit light normally, and the other half of the nano-column LED devices 105' are in an inactive state, resulting in the actual utilization rate of multiple nano-column LED devices 105'. Only 50%, which leads to a reduction in the luminous efficiency of the nano-column LED light-emitting substrate 100'.
  • a light-emitting driving cycle includes at least a first phase and at least a second phase.
  • the first electrode 106' receives a positive voltage signal (the first electrode 106' is a positive electrode), and the second electrode 107' receives a negative voltage signal (the second electrode 107' is a negative electrode).
  • the first electrode 106' receives a negative voltage signal (the first electrode 106' is a negative electrode), and the second electrode 107' receives a positive voltage signal (the second electrode 107' is a positive electrode).
  • the nano-column LED devices 105' in the first stage, half of the nano-column LED devices 105' can emit light normally, and the other half of the nano-column LED devices 105' cannot emit light.
  • the nano-column LED devices 105' that emit light in the first stage stop emitting light, and the nano-column LED devices 105' that do not emit light in the first stage start to emit light, realizing that all nano-column LED devices 105' Emit light during the drive cycle.
  • FIG 3 is a top view of the light-emitting substrate according to some embodiments;
  • Figure 4 is a partial enlarged view of the light-emitting substrate in Figure 3 at M;
  • Figure 5 is a diagram
  • Figure 6 is a cross-sectional view of the light-emitting substrate in Figure 4 along section line B-B';
  • Figure 6 is a cross-sectional view of the light-emitting substrate in Figure 4 along section line C-C';
  • Figure 7 is a structural diagram of a nano-column LED device in the light-emitting substrate according to some embodiments .
  • the light-emitting substrate 100 includes a substrate 101 and a driving circuit layer D disposed on the substrate 101 .
  • the driving circuit layer D includes a driving circuit composed of a plurality of transistors T for driving the light-emitting substrate 100 glow.
  • the light-emitting substrate 100 shown in FIG. 5 adopts an active driving design, that is, the driving circuit in the light-emitting substrate 100 is arranged on the substrate 101 in the form of a film layer structure (driving circuit layer D).
  • the light-emitting substrate 100 may also adopt a passive driving design, that is, no driving circuit layer D is set on the substrate 101, and the driving circuit of the light-emitting substrate 100 is integrated on a separate circuit board, which is bound to the light-emitting substrate 100 to drive the light-emitting substrate 100 to emit light.
  • the light-emitting substrate 100 further includes a first alignment electrode 102 and a second alignment electrode 103 disposed on the substrate 101 , and a dielectric layer 104 covering the first alignment electrode 102 and the second alignment electrode 103 , wherein the first alignment electrode 102 and the second alignment electrode 103 are disposed on the substrate 101 .
  • the alignment electrode 102 and the second alignment electrode 103 are arranged along the direction X, and an alignment electric field is generated between them.
  • the light-emitting substrate 100 further includes a nano-column LED device 105 disposed on the substrate 101 .
  • the nano-column LED device 105 is located on a side of the dielectric layer 104 away from the substrate 101 .
  • the nanocolumn LED device 105 has a columnar structure, and its length extending direction L is parallel to the substrate 101 .
  • the orthographic projection of the nanocolumn LED device 105 on the substrate 101 is located between the orthographic projection of the first alignment electrode 102 on the substrate 101 and the orthographic projection of the second alignment electrode 103 on the substrate 101.
  • the plurality of nano-column LED devices 105 rotate until the length extension direction L of the plurality of nano-column LED devices 105 extends along the first One direction X1 or along the second direction X2, the first direction X1 and the second direction X2 are opposite.
  • the nano-column LED device 105 includes a first p-type semiconductor layer 105a, a first multiple quantum well layer 105b and an n-type semiconductor layer 105c arranged along the length extension direction L. It can be understood that the nano-column LED device 105 is It is a p-n junction.
  • the material of the first p-type semiconductor layer 105a includes a semiconductor material doped with p-type ions, for example, the material of the first p-type semiconductor layer 105a may include p-type gallium nitride.
  • the material of the n-type semiconductor layer 105c includes a semiconductor material doped with n-type ions, for example, the material of the n-type semiconductor layer 105c may include n-type gallium nitride.
  • the light-emitting substrate 100 also includes a first electrode 106, a second electrode 107 and a third electrode 108, which are arranged along the length extension direction L of the nano-column LED device 105, and the third electrode 108 is located on the first between the electrode 106 and the second electrode 107.
  • the first electrode 106 and the second electrode 107 are positive electrodes and receive the same positive voltage signal; the third electrode 108 is a negative electrode and receive the negative voltage signal.
  • the first electrode 106 and the second electrode 107 are symmetrically arranged with respect to the center line E1 of the third electrode 108, that is, the three electrodes are symmetrically designed.
  • first direction X1 and the second direction X2 are parallel to the arrangement directions of the first electrode 106 , the second electrode 107 and the third electrode 108 .
  • the first p-type semiconductor layer 105 a of the nanocolumn LED device 105 is connected to the first electrode 106 .
  • the first p-type semiconductor layer 105 a of the nanocolumn LED device 105 is connected to the second electrode 107 .
  • the n-type semiconductor layer 105c of the nano-column LED device 105 is connected to the third electrode 108.
  • the nano-column LED device 105 can emit light under the driving of the first electrode 106 and the third electrode 108, or under the driving of the second electrode 107 and the third electrode 108.
  • the electrode 108 emits light when driven.
  • the light-emitting substrate 100 further includes a dielectric layer 109.
  • the dielectric layer 109 can separate the third electrode 108 and the first electrode 106, and can separate the third electrode 108 and the second electrode 107, To avoid short circuit problems between the positive and negative poles.
  • the dielectric layer 109 has an opening H, which can expose the n-type semiconductor layer 105c of the nanopillar LED device 105, so that the third electrode 108 can be connected to the n-type semiconductor layer 105c through the opening H.
  • the light-emitting substrate 100 provided in the above embodiment of the application adopts a symmetrical design of three electrodes.
  • the first electrode 106 and the second electrode 107 are positive electrodes, and the third electrode 108 is a negative electrode.
  • the third electrode 108 is located between the first electrode 106 and the second electrode 107 . between the second electrodes 107.
  • multiple nano-column LED devices 105 are placed on the dielectric layer 104.
  • the multiple nano-columns The LED device 105 rotates until the length extending direction L of the plurality of nano-column LED devices 105 faces the first direction X1 or the second direction X2.
  • the first p-type semiconductor layer 105a can be connected to the first electrode 106 located on the left.
  • the first p-type semiconductor layer 105a can be connected to the second electrode 107 located on the right. That is, no matter whether the first p-type semiconductor layer 105a of the nanocolumn LED device 105 turns to the left or the right, there is a positive electrode (the first electrode 106 or the second electrode 107) corresponding to and connected to it.
  • the n-type semiconductor layer 105 c is close to the middle region thereof. Therefore, no matter whether the first p-type semiconductor layer 105 a of the nano-column LED device 105 is located On the left or right side, the n-type semiconductor layer 105c can be connected to the third electrode 108, ensuring that the first p-type semiconductor layer 105a of the nano-column LED device 105 can be accurately connected to the first electrode 106 or the second electrode 107, n The type semiconductor layer 105c can be accurately connected to the third electrode 108. In this way, within a driving cycle of emitting light, all the nano-column LED devices 105 can emit light at the same time, and the utilization rate of the nano-column LED devices 105 can reach 100%.
  • the embodiment of the present application when the total operating current of the light-emitting substrate 100 remains unchanged, all the nano-column LED devices 105 can emit light at the same time. Emitting light can improve the luminous efficiency of the luminescent substrate 100 . Alternatively, when the luminous efficiency of the light-emitting substrate 100 remains unchanged, the total operating current of the light-emitting substrate 100 can be reduced by about 50%.
  • a symmetrical design of three electrodes is adopted, and there is no need to add a corresponding driving circuit on the substrate 101 to realize the function of converting the signal polarity, which can simplify the film of the driving circuit layer D in the light-emitting substrate 100
  • the layer structure reduces the difficulty of designing the drive circuit.
  • the length of the portion of the first electrode 106 covering the nanocolumn LED device 105 is equal to the length of the portion covered by the second electrode 107 .
  • the lengths of parts of the nano-column LED device 105 are equal to ensure the relative position accuracy between the nano-column LED device 105 and the first electrode 106 and the second electrode 107, so as to ensure that the first p-type semiconductor layer 105a of the nano-column LED device 105 can Accurately connected to the first electrode 106 or the second electrode 107.
  • the n-type semiconductor layer 105 c is close to the middle region thereof. Based on this, by setting the center line E2 of the opening H perpendicular to the length extension direction L of the nano-column LED device 105 to coincide with the center line E3 of the nano-column LED device 105 perpendicular to the length extension direction L, it can be ensured that the opening H can expose the n-type semiconductor layer 105c, so that the third electrode 108 is accurately connected to the n-type semiconductor layer 105c through the opening H.
  • the material of at least one of the first electrode 106, the second electrode 107, and the third electrode 108 includes a light-transmitting material.
  • the first electrode 106, the second electrode 107 and the third electrode 108 are all located on the light exit side of the nanocolumn LED device 105, and the light needs to pass through the first electrode 106, the second electrode 107 and the third electrode 108. Therefore, at least one of the first electrode 106 , the second electrode 107 and the third electrode 108 is made of a light-transmitting material, which is beneficial to increasing the light emission rate, thereby improving the luminous efficiency of the light-emitting substrate 100 .
  • the material of the first electrode 106 includes at least one of indium tin oxide, zinc tin oxide, and graphene; the material of the second electrode 107 includes at least one of indium tin oxide, zinc tin oxide, and graphene; The material of the third electrode 108 includes at least one of indium tin oxide, zinc tin oxide, and graphene, all of which have good light transmittance.
  • the light-emitting substrate 100 includes a plurality of nano-column LED devices 105 arranged sequentially along a third direction Y, which is perpendicular to the length extension direction of the nano-column LED devices 105 L.
  • the first electrode 106, the second electrode 107 and the third electrode 108 extend along the third direction Y.
  • the first electrode 106 covers the ends of the plurality of nano-column LED devices 105 located on the third electrode 108 side, and the second electrode 107 covers The end of the plurality of nano-column LED devices 105 located on the other side of the third electrode 108.
  • the third electrode 108 covers the middle part of the plurality of nano-column LED devices 105 to pass through the first electrode 106, the second electrode 107 and the third electrode. 108 drives multiple nano-column LED devices 105 to emit light.
  • the length of the nanocolumn LED device 105 ranges from 3 ⁇ m to 10 ⁇ m
  • the widths of the first electrode 106 and the second electrode 107 are greater than 3 ⁇ m
  • the width of the third electrode 108 ranges from 2 ⁇ m to 3 ⁇ m.
  • the length of the portion of the first electrode 106 covering the nano-column LED device 105 ranges from 1 ⁇ m to 3 ⁇ m
  • the length of the portion of the second electrode 107 covering the nano-column LED device 105 ranges from 1 ⁇ m to 3 ⁇ m.
  • the first p-type semiconductor layer 105a of the nano-column LED device 105 can be accurately connected to the first electrode 106 or the second electrode 107, and the n-type semiconductor layer 105c can be accurately connected to the third electrode.
  • the electrodes 108 are connected, and some embodiments of the present application provide a structural design of a nanopillar LED device as shown in FIG. 7 .
  • the nanocolumn LED device 105 further includes an insulating layer 105d located on a side of the n-type semiconductor layer 105c away from the first multi-quantum well layer 105b.
  • the material of the insulating layer 105d includes intrinsic gallium nitride.
  • Intrinsic gallium nitride is not doped with other elements and has higher resistance and better insulation performance.
  • the first p-type semiconductor layer 105 a is connected to the first electrode 106
  • the insulating layer 105 d is connected to the second electrode 107 .
  • the first p-type semiconductor layer 105 a is connected to the second electrode 107
  • the insulating layer 105 d is connected to the first electrode 106 .
  • the insulating layer 105d may be connected to the second electrode 107.
  • the insulating layer 105d can be connected to the first electrode 106, and the high resistance characteristic of the insulating layer 105d can be used to weaken the connection with the insulating layer 105d.
  • the leakage problem of the connected electrodes (the first electrode 106 or the second electrode 107) is beneficial to reducing the power consumption of the light-emitting substrate 100.
  • the nanopillar LED device 105 further includes a high resistance layer 105e located between the n-type semiconductor layer 105c and the insulating layer 105d.
  • the material of the high-resistance layer 105e may include aluminum gallium nitride, and aluminum gallium nitride has a relatively high resistance.
  • the high-resistance property of the high-resistance layer 105e can be used to improve the electrode connected to the insulating layer 105d (the first electrode).
  • the resistance of the transmission path between the second electrode 106 or the second electrode 107) and the n-type semiconductor layer 105c further reduces the leakage problem of the electrode connected to the insulating layer 105d, thereby helping to reduce the power consumption of the light-emitting substrate 100.
  • the nanopillar LED device 105 further includes a first contact layer 105f , the first contact layer 105f is located away from the first p-type semiconductor layer 105a and away from the first multi-quantum well layer 105b On one side, the first p-type semiconductor layer 105a may be connected to the first electrode 106 through the first contact layer 105f.
  • the first p-type semiconductor layer 105a may be connected to the second electrode 107 through the first contact layer 105f.
  • the first p-type semiconductor layer 105a is electrically connected to the first contact layer 105f, and the first p-type semiconductor layer 105a and the first contact layer 105f are electrically connected.
  • the contact layers 105f are all electrically connected to the first electrode 106 or the second electrode 107, which is beneficial to improving the ohmic contact performance between the first p-type semiconductor layer 105a and the first electrode 106 or the second electrode 107.
  • low-resistance ohmic contact is the basis for realizing high-quality devices.
  • the contact barrier height between the first p-type semiconductor layer 105a and the metal mainly depends on: the work function of the metal material.
  • a metal with a larger work function can be selected to contact the first p-type semiconductor layer 105a.
  • the material of the first contact layer 105f includes at least one of nickel and gold. The height of the contact barrier between the first p-type semiconductor layer 105a and the metal is reduced.
  • a metal with a smaller work function can be selected to contact the n-type semiconductor layer 105c, thereby reducing the contact barrier height between the n-type semiconductor layer 105c and the metal.
  • the material of the first electrode 106 and the second electrode 107 is at least one of indium tin oxide, zinc tin oxide, and graphene.
  • the work function of these materials is small, so that the contact barrier height of the first p-type semiconductor layer 105a directly contacting the first electrode 106 or the second electrode 107 is large, which will result in a higher resistance of the ohmic contact between the two.
  • a first contact layer 105f is added outside the first p-type semiconductor layer 105a, and the work function of the material of the first contact layer 105f is greater than that of the first contact layer 105f.
  • the work function of the materials of the first electrode 106 and the second electrode 107 can reduce the contact barrier height between the first p-type semiconductor layer 105a and the first contact layer 105f, and realize the contact barrier height between the first p-type semiconductor layer 105a and the first contact layer 105f. Low resistance ohmic contact.
  • the third electrode 108 is made of at least one of indium tin oxide, zinc tin oxide, and graphene.
  • the work functions of these materials are small. Therefore, as shown in Figures 5 and 7, the n-type The semiconductor layer 105c can be in direct contact with the second electrode 108, so that there is a lower contact barrier height between the two, thereby achieving low-resistance ohmic contact between the n-type semiconductor layer 105c and the second electrode 108.
  • the nanocolumn LED device 105 further includes a first dielectric layer 105g, which is disposed around the side of the columnar structure.
  • the n-type semiconductor layer 105c is divided into two parts.
  • the n-type semiconductor layer 105c includes a part close to the first multiple quantum well layer 105b and a part far away from the first multiple quantum well layer 105b.
  • the first dielectric layer 105g surrounds the first multiple quantum well The side surface of the layer 105b and surrounds the side surface of the portion of the n-type semiconductor layer 105c close to the first multi-quantum well layer 105b.
  • the first electrode 106 and the second electrode 107 respectively cover the two ends of the nano-column LED device 105, in the length extension direction L of the nano-column LED device 105 along the third
  • the first dielectric layer 105g can separate the first electrode 106 and the first multiple quantum well layer 105b
  • the first dielectric layer 105g can separate the first electrode 106 and the n-type semiconductor layer 105c to avoid the third
  • An electrode 106 contacts the first multiple quantum well layer 105b and the n-type semiconductor layer 105c, causing a short circuit problem.
  • the first dielectric layer 105g can separate the second electrode 107 and the first multi-quantum well layer 105b, and the first dielectric layer 105g can separate the second electrode 107 and the n-type semiconductor layer 105c, preventing the second electrode 107 from contacting the first multi-quantum well layer 105b and the n-type semiconductor layer 105c and causing a short circuit problem.
  • the boundary of the first dielectric layer 105g close to the first multi-quantum well layer 105b exceeds the first multi-quantum well layer 105b, that is, the first dielectric layer 105g will also surround the side of the first p-type semiconductor layer 105a close to the first multi-quantum well layer 105b.
  • Some embodiments of the present application also provide a method for preparing the nano-column LED device 105 shown in Figure 7.
  • Figures 8A to 8D are diagrams of steps for preparing the nano-column LED device according to some embodiments.
  • the above preparation method includes the following S10 ⁇ S12:
  • a stacked structure F is formed on the first substrate K1.
  • the stacked structure F includes an insulating film d, an n-type semiconductor film c, a multi-quantum well film b and a p-type semiconductor film a stacked in sequence.
  • the stacked structure F also includes a high-resistance film e and a contact film f, wherein the high-resistance film e is located between the insulating film d and the n-type semiconductor film c, and the contact film f is located away from the p-type semiconductor film a.
  • the thickness range of the insulating film d is 1 ⁇ m to 3 ⁇ m
  • the thickness range of the high resistance film e is 0.05 ⁇ m to 0.5 ⁇ m
  • the thickness range of the n-type semiconductor film c is 3 ⁇ m to 4 ⁇ m
  • the thickness range of the multi-quantum well film b is 0.05 ⁇ m to 0.2 ⁇ m
  • the thickness range of the p-type semiconductor film a is 0.05 ⁇ m to 0.5 ⁇ m.
  • the stacked structure F is etched to form the nanocolumn LED device 105.
  • a mask layer G is formed on the top of the stacked structure F, and the mask layer G includes a plurality of circular patterns.
  • multiple nano-column LED devices 105 can be formed by etching the stacked structure F through the mask layer G.
  • the above preparation method further includes the following S30:
  • a first dielectric layer 105g is formed.
  • the first dielectric layer 105g surrounds the side of the first multiple quantum well layer 105b and surrounds the portion of the n-type semiconductor layer 105c close to the first multiple quantum well layer 105b. side.
  • FIGS. 9A to 9D are diagrams of steps for preparing a light-emitting substrate according to some embodiments.
  • the above preparation method includes the following S20 ⁇ S23:
  • S20 As shown in Figure 9A, provide the nano-column LED device 105 shown in Figure 7, place the nano-column LED device 105 on the substrate 101, and the length extension direction L of the nano-column LED device 105 is parallel to the substrate 101 .
  • an alignment electric field can be generated between the first alignment electrode 102 and the second alignment electrode 103, and the plurality of nano-column LED devices 105 rotate under the driving of the alignment electric field until the length of the plurality of nano-column LED devices 105 extends.
  • the direction L is along the first direction X1 or along the second direction X2.
  • a first electrode 106 and a second electrode 107 are formed, and the first electrode 106 and the second electrode 107 respectively cover both ends of the nanocolumn LED device 105.
  • a dielectric layer 109 is formed.
  • the dielectric layer 109 has an opening H exposing the n-type semiconductor layer 105c of the nanopillar LED device 105.
  • a third electrode 108 is formed.
  • the third electrode 108 is located between the first electrode 106 and the second electrode 107 , and the third electrode 108 passes through the opening H of the dielectric layer 109 and is connected to the n-type semiconductor layer 105 c.
  • Some embodiments of the present application also provide a structural design of a light-emitting substrate and a nano-column LED device.
  • Figure 10 is another structural diagram of a light-emitting substrate according to some embodiments;
  • Figure 11 is a nano-column LED according to some embodiments. Another structural diagram of the device.
  • the nanocolumn LED device 105 includes a first p-type semiconductor layer 105a, a first multi-quantum well layer 105b, an n-type semiconductor layer 105c, a second multi-quantum well layer 105h and a second p-type semiconductor layer 105c, which are arranged in sequence.
  • the semiconductor layer 105i it can be understood that the nano-column LED device 105 has a centrally symmetric structure.
  • the first p-type semiconductor layer 105a of the nano-column LED device 105 is connected to the first electrode 106, and the second p-type Type semiconductor layer 105i is connected to the second electrode 107.
  • the first p-type semiconductor layer 105a of the nano-column LED device 105 is connected to the second electrode 107, and the second p-type semiconductor layer 105i connected to the first electrode 106 .
  • the length extension direction L of the nano-column LED device 105 is along the first direction X1 or the second direction X2, the first p-type semiconductor layer 105a and the second p-type semiconductor layer 105i of the nano-column LED device 105 are respectively Correspondingly connected to the first electrode 106 or the second electrode 107 .
  • the n-type semiconductor layer 105c of the nano-column LED device 105 is always connected to the third electrode 108, so that both ends of the nano-column LED device 105 are driven by the first electrode 106 and the third electrode 108, and the second electrode 107 and The nano-column LED device 105 emits light when driven by the third electrode 108, that is, the nano-column LED device 105 has a double-ended light-emitting structure.
  • the light-emitting substrate 100 further includes a dielectric layer 109.
  • the dielectric layer 109 can separate the third electrode 108 and the first electrode 106, and can separate the third electrode 108 and the second electrode 107, This is to avoid the problem of short circuit between the positive electrode (the first electrode 106 and the second electrode 107) and the negative electrode (the third electrode 108).
  • the dielectric layer 109 has an opening H, which can expose the n-type semiconductor layer 105c of the nanopillar LED device 105, so that the third electrode 108 can be connected to the n-type semiconductor layer 105c through the opening H.
  • the first electrode 106 and the second electrode 107 are positive electrodes
  • the third electrode 108 is a negative electrode
  • the third electrode 108 is located between the first electrode 106 and the second electrode 107 between.
  • the nano-column LED device 105 adopts a centrally symmetric structural design. After the orientation process, regardless of the length extension direction L of the nano-column LED device 105 along the first direction X1 or the second direction X2, the first p-type semiconductor of the nano-column LED device 105 The layer 105a and the second p-type semiconductor layer 105i are respectively connected to the first electrode 106 or the second electrode 107.
  • the n-type semiconductor layer 105 c is close to the middle region thereof, regardless of whether the length extension direction L of the nano-column LED device 105 is along the first direction X1 or In the second direction X2, the n-type semiconductor layer 105c is always connected to the third electrode 108. In this way, within a driving cycle of emitting light, all the nano-column LED devices 105 can emit light at the same time, and the utilization rate of the nano-column LED devices 105 can reach 100%.
  • the nano-column LED device 105 since the nano-column LED device 105 has a double-ended light-emitting structure, the luminous density and intensity of the nano-column LED device 105 will be increased, which is beneficial to improving the luminous efficiency of the light-emitting substrate 100.
  • the n-type semiconductor layer 105c includes two sub-layers 1051 , and the two sub-layers 1051 are connected through an adhesive layer N to improve the connection strength of the two sub-layers 1051 .
  • the material of the adhesive layer N includes gold.
  • the thickness of the adhesive layer N is 0.3 ⁇ m.
  • the nanopillar LED device 105 includes a first contact layer 105f and a second contact layer 105j.
  • the first contact layer 105f is located away from the first p-type semiconductor layer 105a and away from the first multi-quantum well.
  • the first p-type semiconductor layer 105a may be connected to the first electrode 106 or the second electrode 107 through the first contact layer 105f.
  • the first p-type semiconductor layer 105a is electrically connected to the first contact layer 105f, and the first p-type semiconductor layer 105a and the first contact layer 105f are electrically connected.
  • the contact layers 105f are all electrically connected to the first electrode 106 or the second electrode 107, which is beneficial to improving the ohmic contact performance between the first p-type semiconductor layer 105a and the first electrode 106 or the second electrode 107.
  • the second contact layer 105 j is located on a side of the second p-type semiconductor layer 105 i away from the second multi-quantum well layer 105 h , and the second p-type semiconductor layer 105 i may be connected to the first electrode 106 or the second electrode 107 through the second contact layer 105 j .
  • the second contact layer 105j is electrically connected to the second contact layer 105j, and the second p-type semiconductor layer 105i and the second contact layer 105j are electrically connected.
  • the contact layers 105j are all electrically connected to the first electrode 106 or the second electrode 107, which is beneficial to improving the ohmic contact performance between the second p-type semiconductor layer 105i and the first electrode 106 or the second electrode 107.
  • the material of the first contact layer 105f includes at least one of nickel and gold.
  • the material of the second contact layer 105j includes at least one of nickel and gold.
  • the nanocolumn LED device 105 includes a first dielectric layer 105g and a second dielectric layer 105k.
  • the first dielectric layer 105g and the second dielectric layer 105k respectively surround the side surfaces of the columnar structure. set up.
  • the n-type semiconductor layer 105c is divided into three parts.
  • the n-type semiconductor layer 105c includes a part close to the first multiple quantum well layer 105b, a part close to the second multiple quantum well layer 105h, and a connecting part between the two. It is understood that the connection part is far away from both the first multi-quantum well layer 105b and the second multi-quantum well layer 105h, and the opening H of the dielectric layer 109 exposes the connection part of the n-type semiconductor layer 105c.
  • the first dielectric layer 105g surrounds the side of the first multi-quantum well layer 105b and surrounds the side of the portion of the n-type semiconductor layer 105c close to the first multi-quantum well layer 105b.
  • the second dielectric layer 105k surrounds the side of the second multi-quantum well layer 105h and surrounds the side of the portion of the n-type semiconductor layer 105c close to the second multi-quantum well layer 105h.
  • the first electrode 106 and the second electrode 107 respectively cover the two ends of the nano-column LED device 105, in the length extension direction L of the nano-column LED device 105 along the third In one direction X1, the first dielectric layer 105g can separate the first electrode 106 and the first multiple quantum well layer 105b, and the first dielectric layer 105g can separate the first electrode 106 and the n-type semiconductor layer 105c, to avoid An electrode 106 contacts the first multiple quantum well layer 105b and the n-type semiconductor layer 105c, causing a short circuit problem.
  • the second dielectric layer 105k can separate the second electrode 107 from the second multi-quantum well layer 105h, and the second dielectric layer 105k can separate the second electrode 107 from the n-type semiconductor layer 105c, to prevent the second electrode 107 from contacting the second multi-quantum well layer 105h and the n-type semiconductor layer 105c and causing a short circuit.
  • the first dielectric layer 105g can separate the second electrode 107 and the first multi-quantum well layer 105b, and the first dielectric layer 105g
  • the second electrode 107 and the n-type semiconductor layer 105c can be separated to prevent the second electrode 107 from contacting the first multiple quantum well layer 105b and the n-type semiconductor layer 105c and causing a short circuit problem.
  • the second dielectric layer 105k can separate the first electrode 106 and the second multi-quantum well layer 105h, and the second dielectric layer 105k can separate the first electrode 106 and the n-type semiconductor layer 105c to avoid the first electrode 106 and the second multi-quantum well layer 105c.
  • the quantum well layer 105h and the n-type semiconductor layer 105c are in contact, causing a short circuit problem.
  • Some embodiments of the present application also provide a method for preparing the nano-column LED device 105 shown in Figure 11.
  • Figures 12A to 12H are diagrams of steps for preparing the nano-column LED device according to some embodiments.
  • the above preparation method includes the following S30 ⁇ S35:
  • a stacked structure F is formed on the first substrate K1 , the stacked structure F comprising an insulating film d, an n-type semiconductor film c, a multi-quantum well film b and a p-type semiconductor film a stacked in sequence.
  • the stacked structure F further includes a contact film f, which is located on a side of the p-type semiconductor film a away from the multi-quantum well film b.
  • the thickness of the insulating film d ranges from 1 ⁇ m to 3 ⁇ m
  • the thickness of the n-type semiconductor film c ranges from 3 ⁇ m to 4 ⁇ m
  • the thickness of the multiple quantum well film b ranges from 0.05 ⁇ m to 0.2 ⁇ m
  • the thickness of the p-type semiconductor film a The range is 0.05 ⁇ m ⁇ 0.5 ⁇ m.
  • the stacked structure F and the first substrate K1 can be placed upside down on the second substrate K2, and the contact film f at the bottom of the stacked structure F and the second substrate K2 can be connected through an adhesive material to ensure that the stacked structure F Strength of connection to second substrate K2. Then, the first substrate K1 is removed to expose the insulating film d on top of the stacked structure F.
  • a dry etching process can be used to remove the insulating film d on the top of the stacked structure F to expose the n-type semiconductor film c, thereby obtaining the structure B1 to be bonded.
  • an adhesive material may be formed on the surfaces of the n-type semiconductor films c of the two structures B1 to be bonded.
  • the adhesive material may include gold, for example.
  • a friction bonding process is used to rub the surfaces of the two to-be-bonded structures B1 with each other, causing the bonding material to diffuse toward the n-type semiconductor films c of the two to-be-bonded structures B1, thereby making the two to-be-bonded structures B1
  • the n-type semiconductor film c is bonded to form a bonding structure B2.
  • the surfaces of the two n-type semiconductor films c of the structure B1 to be bonded are treated, for example, by bombarding the surface of the n-type semiconductor film c with ions to form a dangling bond.
  • the dangling bond can be, for example, a chemical bond that has no electron energy to pair. .
  • the surfaces of the two to-be-bonded structures B1 are bonded together to bond the n-type semiconductor films c of the two to-be-bonded structures B1 to form the bonded structure B2.
  • a mask layer G is formed on top of the bonding structure B2, and the mask layer G includes a plurality of circular patterns.
  • multiple nano-column LED devices 105 can be formed by etching the bonding structure B2 through the mask layer G.
  • the above preparation method further includes the following S36:
  • S36 As shown in FIG. 12H, form a first dielectric layer 105g and a second dielectric layer 105k.
  • the first dielectric layer 105g surrounds the side of the first multi-quantum well layer 105b and surrounds the n-type semiconductor layer 105c close to the first multi-quantum well layer.
  • the second dielectric layer 105k surrounds the side of the second multi-quantum well layer 105h and surrounds the side of the portion of the n-type semiconductor layer 105c close to the second multi-quantum well layer 105h.
  • FIGS. 13A to 13D are diagrams of steps for preparing another light-emitting substrate according to some embodiments.
  • the above preparation method includes the following S40 ⁇ S43:
  • an alignment electric field can be generated between the first alignment electrode 102 and the second alignment electrode 103, and the plurality of nano-column LED devices 105 rotate under the driving of the alignment electric field until the length of the plurality of nano-column LED devices 105 extends.
  • the direction L is along the first direction X1 or along the second direction X2.
  • a first electrode 106 and a second electrode 107 are formed, and the first electrode 106 and the second electrode 107 respectively cover both ends of the nanocolumn LED device 105.
  • a dielectric layer 109 is formed.
  • the dielectric layer 109 has an opening H exposing the n-type semiconductor layer 105c of the nanopillar LED device 105.
  • a third electrode 108 is formed.
  • the third electrode 108 is located between the first electrode 106 and the second electrode 107, and the third electrode 108 passes through the opening H of the dielectric layer 109 and the n-type semiconductor layer 105c. connect.
  • Figure 14 is a structural diagram of a backlight module according to some embodiments.
  • the backlight module 200 includes the light-emitting substrate 100 provided in any of the above embodiments, and a plurality of optical films 201.
  • the plurality of optical films 201 are disposed on the light-emitting side C1 of the light-emitting substrate 100 for adjusting the light-emitting substrate. 100% light.
  • FIG. 15 is a structural diagram of a display device according to some embodiments.
  • the display device 300 includes the backlight module 200 provided in the above embodiment, and a display panel 301 disposed on the light emitting side C2 of the backlight module 200 .
  • the display panel 301 may be a liquid crystal display panel (Liquid Crystal Display, LCD for short), in which case the display device 300 is a liquid crystal display device.
  • LCD Liquid Crystal Display
  • the above-described display device 300 may be any device that displays images, whether moving (eg, video) or fixed (eg, still images), and whether text or text. More specifically, it is contemplated that the embodiments may be implemented in or in association with a variety of electronic devices, such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs) , handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, television monitors, flat panel displays, computer monitors, automotive displays (e.g., odometer display, etc.), navigator, cockpit controller and/or display, camera view display (e.g. display of a rear view camera in a vehicle), electronic photos, electronic billboards or signs, projectors, building structures, packaging and aesthetic structure (e.g., for a display of an image of a piece of jewelry), etc.
  • PDAs personal data assistants
  • GPS receivers/navigators cameras
  • the backlight module 200 and the display device 300 provided by the above-mentioned embodiments of the present application include the light-emitting substrate 100 provided by any of the above-mentioned embodiments.
  • the beneficial effects they can achieve can be referred to the beneficial effects of the light-emitting substrate 100 mentioned above. No further details will be given.
  • FIG. 16 is a structural diagram of a display panel according to some embodiments.
  • the display panel 400 includes the light-emitting substrate 100 provided in any of the above embodiments, and a color film layer 401 disposed on the light-emitting side C3 of the light-emitting substrate 100 .
  • the color film layer 401 can filter the light emitted by the light-emitting substrate 100 . , to obtain primary colors such as red light, green light, blue light or white light, which can then be used for screen display on the display panel 400 .
  • the display panel 400 further includes a substrate 402.
  • the color filter layer 401 is disposed on the substrate 402.
  • the color filter layer 401 and the substrate 402 constitute a color filter substrate.
  • the color filter substrate is disposed on the light-emitting side C3 of the light-emitting substrate 100, and the color filter layer 401 is located between the light-emitting substrate 100 and the substrate 402.
  • a display device which may be any device that displays images, whether moving (eg, video) or fixed (eg, still images), and whether text or text. More specifically, it is contemplated that the embodiments may be implemented in or in association with a variety of electronic devices, such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs) , handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, television monitors, flat panel displays, computer monitors, automotive displays (e.g., odometer display, etc.), navigator, cockpit controller and/or display, camera view display (e.g. display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, building structures, packaging and aesthetic structure (for example, for the display of an image of a piece of jewelry), etc.
  • PDAs personal data assistants
  • handheld or portable computers GPS receivers/navigators
  • MP4 video players cam
  • FIG. 17 is a structural diagram of another display device according to some embodiments.
  • the display device 500 mainly includes a cover 501 , a display panel 400 , a middle frame 502 and a rear case 503 .
  • the back case 503 and the display panel 400 are respectively located on both sides of the middle frame 502, and the middle frame 502 and the display panel 400 are disposed in the back case 503.
  • the cover 501 is disposed on the side of the display panel 400 away from the middle frame 502.
  • the display panel 400 The display surface faces the cover 501.
  • the middle frame 502 includes a carrier plate 5021 and a frame 5022 surrounding the carrier plate 5021.
  • the display device 500 also includes a circuit board 504, a battery, a camera and other electronic components arranged on the carrier plate 5021.
  • the display panel 400 is electrically connected to the circuit board 504.
  • the display panel 400 includes a flexible printed circuit (FPC) 403 bound thereto.
  • the display panel 400 can be bound to the circuit board 504 through the flexible circuit board 403.
  • the display panel 400 and the display device 500 provided by the above-mentioned embodiments of the present application include the light-emitting substrate 100 provided by any of the above-mentioned embodiments.
  • the beneficial effects they can achieve can be referred to the beneficial effects of the light-emitting substrate 100 mentioned above. Here No longer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

本申请的一些实施例提供了一种LED器件、发光基板、背光模组、显示面板及显示装置,涉及显示技术领域,可提高发光基板的LED器件的利用率。发光基板包括纳米柱LED器件、第一电极、第二电极和第三电极,纳米柱LED器件包括沿长度延伸方向设置的第一p型半导体层、第一多量子阱层和n型半导体层。第三电极位于第一电极与第二电极之间,n型半导体层与第三电极连接,在纳米柱LED器件的长度延伸方向沿第一方向的情况下,第一p型半导体层与第一电极连接。在纳米柱LED器件的长度延伸方向沿第二方向的情况下,第一p型半导体层与第二电极连接。发光基板为纳米柱LED发光基板,其可应用于背光模组,也可应用于显示面板。

Description

LED器件、发光基板、背光模组、显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种LED器件、发光基板、背光模组、显示面板及显示装置。
背景技术
纳米柱LED(英文全称:light-emitting diode,中文全称:发光二极管)发光技术是一种基于纳米柱LED的新型发光技术。
目前,在制备纳米柱LED发光基板的过程中,先在衬底上形成第一取向电极和第二取向电极,二者之间可产生取向电场。然后,形成覆盖第一取向电极和第二取向电极的第一介质层,在取向工艺中,将多个纳米柱LED器件置于第一介质层上,在取向电场的驱动下,多个纳米柱LED器件发生转动,使纳米柱LED器件的长度延伸方向指向第一取向电极和第二取向电极。最后,在纳米柱LED器件远离衬底的一侧形成第一电极和第二电极,第一电极和第二电极沿纳米柱LED器件的长度延伸方向排列。
由于纳米柱LED器件的转动具有随机性,使得纳米柱LED器件的p型半导体层靠近第一电极的概率,及靠近第二电极的概率各为50%。因此,在取向工艺后,多个纳米柱LED器件中,半数纳米柱LED器件的p型半导体层靠近第一电极,并与第一电极连接;半数纳米柱LED器件的p型半导体层靠近第二电极,并与第二电极连接。
第一电极和第二电极中一者为正极,另一者为负极,在纳米柱LED器件的p型半导体层与正极连接,n型半导体层与负极连接的情况下,纳米柱LED器件才可正常发光。相反地,在纳米柱LED器件的p型半导体层与负极连接,n型半导体层与正极连接的情况下,纳米柱LED器件不发光。因此,在一个发光的驱动周期内,仅有半数纳米柱LED器件可以正常发光,另半数纳米柱LED器件不发光,导致多个纳米柱LED器件的实际利用率仅有50%,导致纳米柱LED器件的利用率较低。
发明内容
本申请的一些实施例提供了一种LED器件、发光基板、背光模组、显示面板及显示装置,旨在提高发光基板中纳米柱LED器件的利用率,以提高发光基板的LED器件的利用率。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种发光基板,该发光基板为纳米柱LED发光基板,其可用于制备背光模组,也可用于制备显示面板。
发光基板包括衬底、纳米柱LED器件、第一电极、第二电极和第三电极,其中,纳米柱LED器件设置于衬底上,且纳米柱LED器件的长度延伸方向平行于衬底,该纳米柱LED器件包括沿长度延伸方向设置的第一p型半导体层、第一多量子阱层和n型半导体层。第三电极位于第一电极与第二电极之间,n型半导体层与第三电极连接,在纳米柱LED器件的长度延伸方向沿第一方向的情况下,第一p型半导体层与第一电极连接。在纳米柱LED器件的长度延伸方向沿第二方向的情况下,第一p型半导体层与第二电极连接。第一方向和第二方向相反,且第一方向和第二方向平行于第一电极、 第二电极和第三电极的排列方向。
本申请的上述实施例所提供的发光基板,第一电极、第二电极和第三电极呈对称设计,第一电极和第二电极为正极,第三电极为负极,第三电极位于第一电极和第二电极之间。在制备发光基板的取向工艺过程中,在取向电场的驱动下,多个纳米柱LED器件发生转动,直至多个纳米柱LED器件的长度延伸方向朝向第一方向或朝向第二方向。
在纳米柱LED器件的长度延伸方向朝向第一方向(第一p型半导体层转向左侧)的情况下,第一p型半导体层可与位于左侧的第一电极连接。在纳米柱LED器件的长度延伸方向朝向第二方向(第一p型半导体层转向右侧)的情况下,第一p型半导体层可与位于右侧的第二电极连接。即,无论纳米柱LED器件的第一p型半导体层转向左侧或右侧,都有正极(第一电极或第二电极)与其对应且连接。
并且,沿纳米柱LED器件的长度延伸方向,n型半导体层靠近其中间区域,因此,无论纳米柱LED器件的第一p型半导体层位于左侧或者右侧,n型半导体层都可与第三电极连接,保证纳米柱LED器件的第一p型半导体层可以准确地与第一电极或第二电极连接,n型半导体层可以准确地与第三电极连接。这样,在一个发光的驱动周期内,所有的纳米柱LED器件均可同时发光,纳米柱LED器件的利用率可达到100%。
此外,采用三个电极对称的设计,不需要增设相应的驱动电路来实现变换信号极性的功能,可简化发光基板中驱动电路的结构设计,降低了驱动电路的设计难度。
在一些实施例中,纳米柱LED器件还包括绝缘层,该绝缘层位于n型半导体层的远离第一多量子阱层的一侧。在纳米柱LED器件的长度延伸方向沿第一方向的情况下,绝缘层与第二电极连接;在纳米柱LED器件的长度延伸方向沿第二方向的情况下,绝缘层与第一电极连接。
本申请的上述实施例中,通过在n型半导体层的远离第一多量子阱层的一侧增设绝缘层,在纳米柱LED器件的第一p型半导体层与第一电极连接的情况下,绝缘层可与第二电极连接。在纳米柱LED器件的第一p型半导体层与第二电极连接的情况下,绝缘层可与第一电极连接,利用绝缘层的高阻特性,可减弱与绝缘层连接的电极(第一电极或第二电极)的漏电问题,从而有利于降低发光基板的功耗。
在一些实施例中,绝缘层的材料包括本征氮化镓,本征氮化镓的电阻较高、绝缘性能较好。
在一些实施例中,纳米柱LED器件还包括高电阻层,该高电阻层位于n型半导体层与绝缘层之间。
本申请的上述实施例中,通过在n型半导体层与绝缘层之间插入高电阻层,利用高电阻层的高阻特性,可提高与绝缘层连接的电极(第一电极或第二电极)与n型半导体层之间的传输路径的电阻,进一步减弱与绝缘层连接的电极的漏电问题,从而有利于降低发光基板的功耗。
在一些实施例中,高电阻层的材料包括铝镓氮,铝镓氮的电阻较高。
在一些实施例中,纳米柱LED器件还包括第二p型半导体层和第二多量子阱层,二者位于n型半导体层的远离第一多量子阱层的一侧,第二多量子阱层位于第二p型半导体层与n型半导体层之间。
在纳米柱LED器件的长度延伸方向沿第一方向的情况下,第二p型半导体层与第二电极连接;在纳米柱LED器件的长度延伸方向沿第二方向的情况下,第二p型半导体层与第一电极连接。
本申请的上述实施例中,基于三个电极对称的设计,纳米柱LED器件采用中心对称的结构设计,在取向工艺后,无论纳米柱LED器件的长度延伸方向沿第一方向或第二方向,纳米柱LED器件的第一p型半导体层和第二p型半导体层,分别与第一电极或第二电极对应连接。
并且,沿纳米柱LED器件的长度延伸方向,n型半导体层靠近其中间区域,无论纳米柱LED器件的长度延伸方向沿第一方向或第二方向,n型半导体层始终与第三电极连接。这样,在一个发光的驱动周期内,所有的纳米柱LED器件均可同时发光,纳米柱LED器件的利用率可达到100%。
此外,由于纳米柱LED器件为双端发光结构,纳米柱LED器件的发光密度和强度会提高,有利于提高发光基板的发光效率。
在一些实施例中,纳米柱LED器件为中心对称结构。
在一些实施例中,n型半导体层包括两个子层,两个子层之间通过粘接层连接,以提高两个子层的连接强度。
在一些实施例中,纳米柱LED器件还包括第一接触层,第一接触层位于第一p型半导体层的远离第一多量子阱层的一侧,第一p型半导体层通过第一接触层与第一电极或第二电极连接。
在纳米柱LED器件还包括第二p型半导体层和第二多量子阱层的情况下,纳米柱LED器件还包括第二接触层,第二接触层位于第二p型半导体层的远离第二多量子阱层的一侧,第二p型半导体层通过第二接触层与第二电极或第一电极连接。
上述实施例中,通过在第一p型半导体层的外侧增设第一接触层,第一p型半导体层与第一接触层电连接,且第一p型半导体层和第一接触层均与第一电极或第二电极电连接,有利于提高第一p型半导体层与第一电极或第二电极之间欧姆接触的性能。
通过在第二p型半导体层的外侧增设第二接触层,第二p型半导体层与第二接触层电连接,且第二p型半导体层和第二接触层均与第一电极或第二电极电连接,有利于提高第二p型半导体层与第一电极或第二电极之间欧姆接触的性能。
在一些实施例中,第一电极和第二电极分别覆盖纳米柱LED器件的两个端部。纳米柱LED器件还包括第一介质层,第一介质层围绕第一多量子阱层的侧面,且围绕n型半导体层中靠近第一多量子阱层的部分的侧面。第一介质层隔开第一电极与第一多量子阱层,且隔开第一电极与n型半导体层,或第一介质层隔开第二电极与第一多量子阱层,且隔开第二电极与n型半导体层。
在纳米柱LED器件还包括第二p型半导体层和第二多量子阱层的情况下,纳米柱LED器件还包括第二介质层,第二介质层围绕第二多量子阱层的侧面,且围绕n型半导体层中靠近第二多量子阱层的部分的侧面。第二介质层隔开第二电极与第二多量子阱层,且隔开第二电极与n型半导体层,或第二介质层隔开第一电极与第二多量子阱层,且隔开第一电极与n型半导体层。
上述实施例中,第一电极和第二电极分别覆盖纳米柱LED器件的两个端部,在纳 米柱LED器件的长度延伸方向沿第一方向的情况下,第一介质层可隔开第一电极与第一多量子阱层,且第一介质层可隔开第一电极与n型半导体层,避免第一电极与第一多量子阱层和n型半导体层接触而引发短路问题。第二介质层可隔开第二电极与第二多量子阱层,且第二介质层可隔开第二电极与n型半导体层,避免第二电极与第二多量子阱层和n型半导体层接触而引发短路问题。
同理,在纳米柱LED器件的长度延伸方向沿第二方向的情况下,第一介质层可隔开第二电极与第一多量子阱层,且第一介质层可隔开第二电极与n型半导体层,避免第二电极与第一多量子阱层和n型半导体层接触而引发短路问题。第二介质层可隔开第一电极与第二多量子阱层,且第二介质层可隔开第一电极与n型半导体层,避免第一电极与第二多量子阱层和n型半导体层接触而引发短路问题。
在一些实施例中,发光基板还包括第三介质层,第三介质层隔开第三电极与第一电极,且隔开第三电极与第二电极。第三介质层具有开口,开口暴露n型半导体层中远离第一多量子阱层的部分,第三电极穿过开口与n型半导体层连接。
上述实施例中,第三介质层可隔开第三电极与第一电极,且隔开第三电极与第二电极,以避免正极(第一电极和第二电极)与负极(第三电极)之间发生短路的问题。
在一些实施例中,开口的垂直于纳米柱LED器件的长度延伸方向的中线,与纳米柱LED器件的垂直于长度延伸方向的中线重合,可保证开口能够暴露纳米柱LED器件的n型半导体层,以便于第三电极通过开口准确地与n型半导体层连接。
在一些实施例中,沿纳米柱LED器件的长度延伸方向,第一电极和第二电极的覆盖纳米柱LED器件的部分的长度相等,保证纳米柱LED器件与第一电极和第二电极之间的相对位置精度,以确保纳米柱LED器件的第一p型半导体层可以准确地与第一电极或第二电极连接。
在一些实施例中,第一电极、第二电极和第三电极中的至少一者的材料包括透光材料。
上述实施例中,第一电极、第二电极和第三电极均位于纳米柱LED器件的出光侧,光线的出射需要经过第一电极、第二电极和第三电极。因此,第一电极、第二电极和第三电极中的至少一者的材料采用透光材料,有利于提高光线的出射率,从而可提高发光基板的发光效率。
在一些实施例中,第一电极、第二电极和第三电极中的至少一者的材料包括氧化铟锡、氧化锌锡、石墨烯中的至少一种,这些材料均具有较好的透光性。
在一些实施例中,发光基板包括沿第三方向依次排列的多个纳米柱LED器件,第三方向垂直于纳米柱LED器件的长度延伸方向。第一电极、第二电极和第三电极沿第三方向延伸,第一电极覆盖多个纳米柱LED器件的位于第三电极一侧的端部,第二电极覆盖多个纳米柱LED器件的位于第三电极另一侧的端部,第三电极覆盖多个纳米柱LED器件的中部,以通过第一电极、第二电极和第三电极驱动多个纳米柱LED器件发光。
在一些实施例中,发光基板还包括设置于衬底上的第一取向电极、第二取向电极和第四介质层,第一取向电极和第二取向电极沿纳米柱LED器件的长度延伸方向排列。在向衬底上的正投影中,纳米柱LED器件位于第一取向电极与第二取向电极之间。第 四介质层覆盖第一取向电极和第二取向电极,且位于衬底与纳米柱LED器件之间。
上述实施例中,第一取向电极和第二取向电极可产生取向电场,在取向工艺中,在取向电场的驱动下,多个纳米柱LED器件发生转动,直至多个纳米柱LED器件的长度延伸方向朝向第一方向或朝向第二方向。
第二方面,提供了一种纳米柱LED器件,该纳米柱LED器件包括依次设置的绝缘层、n型半导体层、多量子阱层和p型半导体层。
在一些实施例中,纳米柱LED器件还包括高电阻层,高电阻层位于n型半导体层与绝缘层之间。
在一些实施例中,纳米柱LED器件还包括接触层,接触层位于p型半导体层的远离多量子阱层的一侧。
在一些实施例中,纳米柱LED器件还包括第一介质层,第一介质层围绕多量子阱层的侧面,且围绕n型半导体层中靠近多量子阱层的部分的侧面。
第三方面,提供了一种纳米柱LED器件的制备方法,该制备方法包括:在第一基底上形成堆叠结构,堆叠结构包括依次层叠设置的绝缘薄膜、n型半导体薄膜、多量子阱薄膜和p型半导体薄膜。刻蚀堆叠结构,形成纳米柱LED器件。
第四方面,提供了一种纳米柱LED器件,该纳米柱LED器件包括依次设置的第一p型半导体层、第一多量子阱层、n型半导体层、第二多量子阱层及第二p型半导体层。
在一些实施例中,纳米柱LED器件为中心对称结构。
在一些实施例中,n型半导体层包括两个子层,两个子层之间通过粘接层连接。
在一些实施例中,纳米柱LED器件还包括第一接触层和第二接触层,第一接触层位于第一p型半导体层的远离第一多量子阱层的一侧,第二接触层位于第二p型半导体层的远离第二多量子阱层的一侧。
在一些实施例中,纳米柱LED器件还包括第一介质层和第二介质层,第一介质层围绕第一多量子阱层的侧面,且围绕n型半导体层中靠近第一多量子阱层的部分的侧面。第二介质层围绕第二多量子阱层的侧面,且围绕n型半导体层中靠近第二多量子阱层的部分的侧面。
第五方面,提供了一种纳米柱LED器件的制备方法,该制备方法包括:在第一基底上形成堆叠结构,堆叠结构包括依次层叠设置的绝缘薄膜、n型半导体薄膜、多量子阱薄膜和p型半导体薄膜。将堆叠结构倒置并转移至第二基底上。去除位于堆叠结构顶部的绝缘薄膜,得到待键合结构。将两个待键合结构进行键合,两个待键合结构的n型半导体薄膜粘接,形成键合结构。去除位于键合结构顶部的第二基底。刻蚀键合结构,形成纳米柱LED器件。
第六方面,提供了一种发光基板的制备方法,该制备方法包括:将纳米柱LED器件置于衬底上,纳米柱LED器件的长度延伸方向平行于衬底,纳米柱LED器件为上述任一实施例所提供的纳米柱LED器件。形成第一电极和第二电极,第一电极和第二电极分别覆盖纳米柱LED器件的两个端部。形成第三介质层,第三介质层具有暴露所述纳米柱LED器件的n型半导体层的开口。形成第三电极,第三电极位于第一电极和第二电极之间,且第三电极穿过开口与n型半导体层连接。
第七方面,提供了一种背光模组,该背光模组包括上述任一实施例所提供的发光基板,以及设置于发光基板的出光侧的多个光学膜片。
第八方面,提供了一种显示装置,该显示装置包括上述实施例所提供的背光模组,以及设置于背光模组的出光侧的显示面板。
可以理解地,本申请的上述实施例提供的背光模组和显示装置,其所能达到的有益效果可参考上文中发光基板的有益效果,此处不再赘述。
第九方面,提供了一种显示面板,该显示面板包括上述任一实施例所提供的发光基板,以及设置于发光基板的出光侧的彩膜层。
第十方面,提供了一种显示装置,该显示装置包括上述实施例所提供的显示面板,以及与显示面板电连接的电路板。
可以理解地,本申请的上述实施例提供的显示面板和显示装置,其所能达到的有益效果可参考上文中发光基板的有益效果,此处不再赘述。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对本申请一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本申请实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为相关技术中的纳米柱LED发光基板的俯视图;
图2为图1中的发光基板沿剖面线A-A'的剖视图;
图3为根据一些实施例的发光基板的俯视图;
图4为图3中的发光基板在M处的局部放大图;
图5为图4中的发光基板沿剖面线B-B'的剖视图;
图6为图4中的发光基板沿剖面线C-C'的剖视图;
图7为根据一些实施例的发光基板中纳米柱LED器件的一种结构图;
图8A~图8D为根据一些实施例的制备纳米柱LED器件的各步骤图;
图9A~图9D为根据一些实施例的制备一种发光基板的各步骤图;
图10为根据一些实施例的发光基板的另一种结构图;
图11为根据一些实施例的纳米柱LED器件的另一种结构图;
图12A~图12H为根据一些实施例的制备纳米柱LED器件的各步骤图;
图13A~图13D为根据一些实施例的制备另一种发光基板的各步骤图;
图14为根据一些实施例的背光模组的结构图;
图15为根据一些实施例的一种显示装置的结构图;
图16为根据一些实施例的显示面板的结构图;
图17为根据一些实施例的另一种显示装置的结构图。
具体实施方式
下面将结合附图,对本申请一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护 的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例性地”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们 的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
纳米柱LED发光技术是一种基于纳米柱LED器件的新型发光技术,图1为相关技术中的纳米柱LED发光基板的俯视图;图2为图1中的发光基板沿剖面线A-A'的剖视图。
参见图1和图2,纳米柱LED发光基板100'包括衬底101',设置于衬底101'上的第一取向电极102'和第二取向电极103',覆盖第一取向电极102'和第二取向电极103'的第一介质层104',设置于第一介质层104'的远离衬底101'一侧的纳米柱LED器件105',以及与纳米柱LED器件105'的两端连接的第一电极106'和第二电极107'。
其中,纳米柱LED器件105'的长度延伸方向平行于衬底101',第一电极106'和第二电极107'沿纳米柱LED器件105'的长度延伸方向排列,多个纳米柱LED器件105'水平排布于第一电极106'与第二电极107'之间。
纳米柱LED器件105'包括依次设置的p型半导体层105a'、多量子阱层105b'和n型半导体层105c',形成p-n结。由于p-n结具有单向导电性,因此,在纳米柱LED器件105'的p型半导体层105a'与正极连接,n型半导体层105c'与负极连接的情况下,纳米柱LED器件105'可在第一电极106'与第二电极107'之间的电压的驱动下发光。相反地,在纳米柱LED器件105'的p型半导体层105a'与负极连接,n型半导体层105c'与正极连接的情况下,纳米柱LED器件105'不发光。
继续参见图1和图2,第一电极106'为正极,第二电极107'为负极,多个纳米柱LED器件105'中,一部分纳米柱LED器件105'的p型半导体层105a'与第一电极106'连接,n型半导体层105c'与第二电极107'连接,这部分纳米柱LED器件105'可在第一电极106'与第二电极107'之间的电压的驱动下发光。另一部分纳米柱LED器件105'的p型半导体层105a'与第二电极107'连接,n型半导体层105c'与第一电极106'连接,这部分纳米柱LED器件105'不发光,导致纳米柱LED器件105'的利用率不能达到100%,进而降低了纳米柱LED发光基板100'的发光效率。
本申请的发明人经研究发现,导致上述问题的原因在于:
参考图1和图2,在制备上述纳米柱LED发光基板100'的过程中,先在衬底101'上形成第一取向电极102'和第二取向电极103',第一取向电极102'与第二取向电极103'沿方向X排布,二者之间可产生取向电场。
然后,形成覆盖第一取向电极102'和第二取向电极103'的第一介质层104',在取向工艺中,将多个纳米柱LED器件105'置于第一介质层104'上,在取向电场的驱动下,多个纳米柱LED器件105'发生转动,直至多个纳米柱LED器件105'的长度延伸方向平行于方向X。
由于纳米柱LED器件105'的转动具有随机性,使得纳米柱LED器件105'的p型半导体层105a'靠近第一取向电极102'的概率,及靠近第二取向电极103'的概率各为50%。因此,在取向工艺后,多个纳米柱LED器件105'中,半数纳米柱LED器件105'的p型半导体层105a'靠近第一取向电极102',半数纳米柱LED器件105'的p型半导体层105a'靠近第二取向电极103'。
在形成第一电极106'和第二电极107'之后,半数纳米柱LED器件105'的p型半导体层105a'与第一电极106'连接,半数纳米柱LED器件105'的p型半导体层105a'与第二电极107'连接。基于此,在一个发光的驱动周期内,仅有半数纳米柱LED器件105'可以正常发光,另半数纳米柱LED器件105'处于非工作状态,导致多个纳米柱LED器件105'的实际利用率仅有50%,进而导致纳米柱LED发光基板100'的发光效率降低。
因此,在相关技术中,在一个发光的驱动周期内,可通过采用变换信号极性的方法,例如,一个发光的驱动周期包括至少一个第一阶段和至少一个第二阶段,在第一阶段内第一电极106'接收正极电压信号(第一电极106'为正极),第二电极107'接收负极电压信号(第二电极107'为负极)。在第二阶段内第一电极106'接收负极电压信号(第一电极106'为负极),第二电极107'接收正极电压信号(第二电极107'为正极)。
采用上述方法,在第一阶段内,半数纳米柱LED器件105'可以正常发光,另半数纳米柱LED器件105'不能发光。在第二阶段内,正好相反,第一阶段内发光的纳米柱LED器件105'停止发光,第一阶段内不发光的纳米柱LED器件105'开始发光,实现了所有纳米柱LED器件105'在驱动周期内发光。
但是,所有纳米柱LED器件105'并不能同时发光,即多个纳米柱LED器件105'的实际利用率依然为50%,纳米柱LED器件105'的利用率并没有提高。并且,上述变换信号极性的功能实现,需要在衬底101'上增设相应的驱动电路,这也增加了产品的设计难度。
本申请的一些实施例提供了一种纳米柱LED发光基板,图3为根据一些实施例的发光基板的俯视图;图4为图3中的发光基板在M处的局部放大图;图5为图4中的发光基板沿剖面线B-B'的剖视图;图6为图4中的发光基板沿剖面线C-C'的剖视图;图7为根据一些实施例的发光基板中纳米柱LED器件的一种结构图。
参见图3~图5,发光基板100包括衬底101,以及设置于衬底101上的驱动电路层D,该驱动电路层D包括由多个晶体管T组成的驱动电路,用以驱动发光基板100发光。
需要说明的是,图5示出的发光基板100采用有源驱动的设计,即发光基板100中驱动电路以膜层结构(驱动电路层D)的形式设置于衬底101上。
在另一些实施例中,发光基板100也可采用无源驱动的设计,即衬底101上不设置驱动电路层D,发光基板100的驱动电路集成于单独的电路板上,将该电路板与发光基板100绑定,以驱动发光基板100发光。
参见图5,发光基板100还包括设置于衬底101上的第一取向电极102和第二取向电极103,以及覆盖第一取向电极102和第二取向电极103的介质层104,其中,第一取向电极102与第二取向电极103沿方向X排列,二者之间产生取向电场。
参见图4和图5,发光基板100还包括设置于衬底101上的纳米柱LED器件105,纳米柱LED器件105位于介质层104的远离衬底101的一侧。纳米柱LED器件105呈柱状结构,其长度延伸方向L平行于衬底101。纳米柱LED器件105在衬底101上的正投影,位于第一取向电极102在衬底101上的正投影与第二取向电极103在衬底 101上的正投影之间。
需要说明的是,在第一取向电极102和第二取向电极103产生的取向电场的驱动下,多个纳米柱LED器件105发生转动,直至多个纳米柱LED器件105的长度延伸方向L沿第一方向X1或沿第二方向X2,第一方向X1和第二方向X2相反。
参见图7,纳米柱LED器件105包括沿长度延伸方向L设置的第一p型半导体层105a、第一多量子阱层105b和n型半导体层105c,可以理解的是,纳米柱LED器件105即为p-n结。
示例性地,第一p型半导体层105a的材料包括掺杂p型离子的半导体材料,例如,第一p型半导体层105a的材料可包括p型氮化镓。同理,n型半导体层105c的材料包括掺杂n型离子的半导体材料,例如,n型半导体层105c的材料可包括n型氮化镓。
参见图4~图7,发光基板100还包括第一电极106、第二电极107和第三电极108,三者沿纳米柱LED器件105的长度延伸方向L排列,且第三电极108位于第一电极106与第二电极107之间。
需要说明的是,参考图4,第一电极106和第二电极107为正极,接收相同的正极电压信号;第三电极108为负极,接收负极电压信号。第一电极106和第二电极107以第三电极108的中线E1呈对称排布,即三个电极呈对称设计。
并且,第一方向X1和第二方向X2平行于第一电极106、第二电极107和第三电极108的排列方向。如图5所示,在纳米柱LED器件105的长度延伸方向L沿第一方向X1的情况下,纳米柱LED器件105的第一p型半导体层105a与第一电极106连接。
如图6所示,在纳米柱LED器件105的长度延伸方向L沿第二方向X2的情况下,纳米柱LED器件105的第一p型半导体层105a与第二电极107连接。
并且,纳米柱LED器件105的n型半导体层105c与第三电极108连接,纳米柱LED器件105可在第一电极106和第三电极108的驱动下发光,或在第二电极107和第三电极108的驱动下发光。
示例性地,参考图5和图7,发光基板100还包括介质层109,介质层109可隔开第三电极108与第一电极106,且可隔开第三电极108与第二电极107,以避免正极与负极之间发生短路的问题。介质层109具有开口H,开口H可暴露纳米柱LED器件105的n型半导体层105c,这样,第三电极108可通过开口H与n型半导体层105c连接。
本申请的上述实施例所提供的发光基板100,采用三个电极对称的设计,第一电极106和第二电极107为正极,第三电极108为负极,第三电极108位于第一电极106和第二电极107之间。在制备发光基板100的取向工艺过程中,将多个纳米柱LED器件105置于介质层104上,在第一取向电极102和第二取向电极103产生的取向电场的驱动下,多个纳米柱LED器件105发生转动,直至多个纳米柱LED器件105的长度延伸方向L朝向第一方向X1或朝向第二方向X2。
如图5所示,在纳米柱LED器件105的长度延伸方向L朝向第一方向X1(第一p型半导体层105a转向左侧)的情况下,第一p型半导体层105a可与位于左侧的第一电极106连接。如图6所示,在纳米柱LED器件105的长度延伸方向L朝向第二方 向X2(第一p型半导体层105a转向右侧)的情况下,第一p型半导体层105a可与位于右侧的第二电极107连接。即,无论纳米柱LED器件105的第一p型半导体层105a转向左侧或右侧,都有正极(第一电极106或第二电极107)与其对应且连接。
并且,如图5和图6所示,沿纳米柱LED器件105的长度延伸方向L,n型半导体层105c靠近其中间区域,因此,无论纳米柱LED器件105的第一p型半导体层105a位于左侧或者右侧,n型半导体层105c都可与第三电极108连接,保证纳米柱LED器件105的第一p型半导体层105a可以准确地与第一电极106或第二电极107连接,n型半导体层105c可以准确地与第三电极108连接。这样,在一个发光的驱动周期内,所有的纳米柱LED器件105均可同时发光,纳米柱LED器件105的利用率可达到100%。
相较于相关技术中仅半数的纳米柱LED器件105'能同时发光,本申请的实施例中,在发光基板100的总工作电流不变的情况下,所有的纳米柱LED器件105均可同时发光,可提高发光基板100的发光效率。或者,在发光基板100的发光效率不变的情况下,发光基板100的总工作电流可降低约50%。
此外,本申请的实施例中,采用三个电极对称的设计,不需要在衬底101上增设相应的驱动电路来实现变换信号极性的功能,可简化发光基板100中驱动电路层D的膜层结构,降低了驱动电路的设计难度。
在一些实施例中,如图5~图7所示,沿纳米柱LED器件105的长度延伸方向L,第一电极106的覆盖纳米柱LED器件105的部分的长度,与第二电极107的覆盖纳米柱LED器件105的部分的长度相等,保证纳米柱LED器件105与第一电极106和第二电极107之间的相对位置精度,以确保纳米柱LED器件105的第一p型半导体层105a可以准确地与第一电极106或第二电极107连接。
在一些实施例中,如图5~图7所示,沿纳米柱LED器件105的长度延伸方向L,n型半导体层105c靠近其中间区域。基于此,通过设置开口H的垂直于纳米柱LED器件105的长度延伸方向L的中线E2,与纳米柱LED器件105的垂直于长度延伸方向L的中线E3重合,可保证开口H能够暴露n型半导体层105c,以便于第三电极108通过开口H准确地与n型半导体层105c连接。
在一些实施例中,第一电极106、第二电极107和第三电极108中的至少一者的材料包括透光材料。
可以理解的是,第一电极106、第二电极107和第三电极108均位于纳米柱LED器件105的出光侧,光线的出射需要经过第一电极106、第二电极107和第三电极108。因此,第一电极106、第二电极107和第三电极108中的至少一者的材料采用透光材料,有利于提高光线的出射率,从而可提高发光基板100的发光效率。
示例性地,第一电极106的材料包括氧化铟锡、氧化锌锡、石墨烯中的至少一种;第二电极107的材料包括氧化铟锡、氧化锌锡、石墨烯中的至少一种;第三电极108的材料包括氧化铟锡、氧化锌锡、石墨烯中的至少一种,这些材料均具有较好的透光性。
在一些实施例中,如图3和图4所示,发光基板100包括沿第三方向Y依次排列的多个纳米柱LED器件105,第三方向Y垂直于纳米柱LED器件105的长度延伸方向L。
第一电极106、第二电极107和第三电极108沿第三方向Y延伸,第一电极106覆盖多个纳米柱LED器件105的位于第三电极108一侧的端部,第二电极107覆盖多个纳米柱LED器件105的位于第三电极108另一侧的端部,第三电极108覆盖多个纳米柱LED器件105的中部,以通过第一电极106、第二电极107和第三电极108驱动多个纳米柱LED器件105发光。
示例性地,参考图4,纳米柱LED器件105的长度范围为3μm~10μm,第一电极106和第二电极107的宽度大于3μm,第三电极108的宽度范围为2μm~3μm。并且,第一电极106的覆盖纳米柱LED器件105的部分的长度范围为1μm~3μm,第二电极107的覆盖纳米柱LED器件105的部分的长度范围为1μm~3μm。
为适配三个电极对称的设计,保证纳米柱LED器件105的第一p型半导体层105a可以准确地与第一电极106或第二电极107连接,n型半导体层105c可以准确地与第三电极108连接,本申请的一些实施例提供了如图7示出的纳米柱LED器件的结构设计。
在一些实施例中,如图5~图7所示,纳米柱LED器件105还包括绝缘层105d,绝缘层105d位于n型半导体层105c的远离第一多量子阱层105b的一侧。
示例性地,绝缘层105d的材料包括本征氮化镓,本征氮化镓中未掺杂其它元素,其电阻较高、绝缘性能较好。
如图5所示,在纳米柱LED器件105的长度延伸方向L沿第一方向X1的情况下,第一p型半导体层105a与第一电极106连接,绝缘层105d与第二电极107连接。
如图6所示,在纳米柱LED器件105的长度延伸方向L沿第二方向X2的情况下,第一p型半导体层105a与第二电极107连接,绝缘层105d与第一电极106连接。
本申请的上述实施例中,通过在n型半导体层105c的远离第一多量子阱层105b的一侧增设绝缘层105d,在纳米柱LED器件105的第一p型半导体层105a与第一电极106连接的情况下,绝缘层105d可与第二电极107连接。在纳米柱LED器件105的第一p型半导体层105a与第二电极107连接的情况下,绝缘层105d可与第一电极106连接,利用绝缘层105d的高阻特性,可减弱与绝缘层105d连接的电极(第一电极106或第二电极107)的漏电问题,从而有利于降低发光基板100的功耗。
在一些实施例中,如图7所示,纳米柱LED器件105还包括高电阻层105e,高电阻层105e位于n型半导体层105c与绝缘层105d之间。
示例性地,高电阻层105e的材料可包括铝镓氮,铝镓氮的电阻较高。
本申请的上述实施例中,通过在n型半导体层105c与绝缘层105d之间插入高电阻层105e,利用高电阻层105e的高阻特性,可提高与绝缘层105d连接的电极(第一电极106或第二电极107)与n型半导体层105c之间的传输路径的电阻,进一步减弱与绝缘层105d连接的电极的漏电问题,从而有利于降低发光基板100的功耗。
在一些实施例中,如图5和图7所示,纳米柱LED器件105还包括第一接触层105f,第一接触层105f位于第一p型半导体层105a的远离第一多量子阱层105b的一侧,第一p型半导体层105a可通过第一接触层105f与第一电极106连接。
如图6和图7所示,第一p型半导体层105a可通过第一接触层105f与第二电极107连接。
可以理解的是,通过在第一p型半导体层105a的外侧增设第一接触层105f,第一p型半导体层105a与第一接触层105f电连接,且第一p型半导体层105a和第一接触层105f均与第一电极106或第二电极107电连接,有利于提高第一p型半导体层105a与第一电极106或第二电极107之间欧姆接触的性能。
需要说明的是,低阻的欧姆接触是实现高质量器件的基础,为实现第一p型半导体层105a与金属的低阻的欧姆接触,需满足二者之间具有较低的接触势垒高度。
在第一p型半导体层105a的材料包括p型氮化镓的情况下,由于氮化镓是一种离子晶体,其金属半导体接触性质体现为,费米能级钉扎效应较弱,氮化镓与金属的界面处的表面态密度较低,因此,第一p型半导体层105a与金属的接触势垒高度主要取决于:金属的材料的功函数。
在不考虑表面态影响的前提下,可选择材料的功函数较大的金属与第一p型半导体层105a接触,例如,第一接触层105f的材料包括镍和金中的至少一种,可降低第一p型半导体层105a与金属的接触势垒高度。并且,可选择材料的功函数较小的金属,与n型半导体层105c接触,可降低n型半导体层105c与金属的接触势垒高度。
根据前文所述,第一电极106和第二电极107的材料采用氧化铟锡、氧化锌锡、石墨烯中的至少一种,这些的材料的功函数较小,使得第一p型半导体层105a与第一电极106或第二电极107直接接触的接触势垒高度较大,会导致二者的欧姆接触的电阻较高。
基于此,在一些实施例中,如图5~图7所示,通过在第一p型半导体层105a的外侧增设第一接触层105f,且第一接触层105f的材料的功函数,大于第一电极106和第二电极107的材料的功函数,可降低第一p型半导体层105a与第一接触层105f的接触势垒高度,实现第一p型半导体层105a与第一接触层105f的低阻的欧姆接触。
根据前文所述,第三电极108的材料采用氧化铟锡、氧化锌锡、石墨烯中的至少一种,这些的材料的功函数较小,因此,如图5和图7所示,n型半导体层105c可与第二电极108直接接触,使二者之间具有较低的接触势垒高度,实现n型半导体层105c与第二电极108的低阻的欧姆接触。
在一些实施例中,如图5~图7所示,纳米柱LED器件105还包括第一介质层105g,该第一介质层105g围绕柱状结构的侧面设置。
将n型半导体层105c划分为两部分,n型半导体层105c包括靠近第一多量子阱层105b的部分和远离第一多量子阱层105b的部分,第一介质层105g围绕第一多量子阱层105b的侧面,且围绕n型半导体层105c中靠近第一多量子阱层105b的部分的侧面。
采用上述纳米柱LED器件105的结构设计,参考图5,第一电极106和第二电极107分别覆盖纳米柱LED器件105的两个端部,在纳米柱LED器件105的长度延伸方向L沿第一方向X1的情况下,第一介质层105g可隔开第一电极106与第一多量子阱层105b,且第一介质层105g可隔开第一电极106与n型半导体层105c,避免第一电极106与第一多量子阱层105b和n型半导体层105c接触而引发短路问题。
参考图6,在纳米柱LED器件105的长度延伸方向L沿第二方向X2的情况下,第一介质层105g可隔开第二电极107与第一多量子阱层105b,且第一介质层105g可 隔开第二电极107与n型半导体层105c,避免第二电极107与第一多量子阱层105b和n型半导体层105c接触而引发短路问题。
需要说明的是,参考图5~图7,为保证第一介质层105g能够完全隔开第一电极106与第一多量子阱层105b,或保证第一介质层105g能够完全隔开第二电极107与第一多量子阱层105b,第一介质层105g的靠近第一多量子阱层105b的边界超出第一多量子阱层105b,即第一介质层105g也会围绕第一p型半导体层105a的靠近第一多量子阱层105b的部分的侧面。
本申请的一些实施例还提供了图7示出的纳米柱LED器件105的制备方法,图8A~图8D为根据一些实施例的制备纳米柱LED器件的各步骤图。
上述制备方法包括如下S10~S12:
S10:如图8A所示,在第一基底K1上形成堆叠结构F,该堆叠结构F包括依次层叠设置的绝缘薄膜d、n型半导体薄膜c、多量子阱薄膜b和p型半导体薄膜a。
示例性地,堆叠结构F还包括高电阻薄膜e和接触薄膜f,其中,高电阻薄膜e位于绝缘薄膜d与n型半导体薄膜c之间,接触薄膜f位于p型半导体薄膜a的远离多量子阱薄膜b的一侧。
示例性地,绝缘薄膜d的厚度范围为1μm~3μm,高电阻薄膜e的厚度范围为0.05μm~0.5μm,n型半导体薄膜c的厚度范围为3μm~4μm,多量子阱薄膜b的厚度范围为0.05μm~0.2μm,p型半导体薄膜a的厚度范围为0.05μm~0.5μm。
S11:如图8B和图8C所示,刻蚀堆叠结构F,形成纳米柱LED器件105。
示例性地,如图8B所示,在堆叠结构F的顶部形成掩膜层G,该掩膜层G包括多个圆形图案。
如图8B和图8C所示,经掩膜层G刻蚀堆叠结构F,可形成多个纳米柱LED器件105。
在一些实施例中,在S20之后,上述制备方法还包括如下S30:
S12:如图8D所示,形成第一介质层105g,第一介质层105g围绕第一多量子阱层105b的侧面,且围绕n型半导体层105c中靠近第一多量子阱层105b的部分的侧面。
本申请的一些实施例还提供了一种发光基板的制备方法,图9A~图9D为根据一些实施例的制备一种发光基板的各步骤图。
上述制备方法包括如下S20~S23:
S20:如图9A所示,提供图7示出的纳米柱LED器件105,将该纳米柱LED器件105置于衬底101上,且纳米柱LED器件105的长度延伸方向L平行于衬底101。
需要说明的是,第一取向电极102和第二取向电极103之间可产生取向电场,多个纳米柱LED器件105在取向电场的驱动下发生转动,直至多个纳米柱LED器件105的长度延伸方向L沿第一方向X1或沿第二方向X2。
S21:如图9B所示,形成第一电极106和第二电极107,第一电极106和第二电极107分别覆盖纳米柱LED器件105的两个端部。
S22:如图9C所示,形成介质层109,介质层109具有暴露纳米柱LED器件105的n型半导体层105c的开口H。
S23:如图9D所示,形成第三电极108,第三电极108位于第一电极106和第二 电极107之间,且第三电极108穿过介质层109的开口H与n型半导体层105c连接。
本申请的一些实施例还提供了一种发光基板及纳米柱LED器件的结构设计,图10为根据一些实施例的发光基板的另一种结构图;图11为根据一些实施例的纳米柱LED器件的另一种结构图。
参见图10和图11,纳米柱LED器件105包括依次设置的第一p型半导体层105a、第一多量子阱层105b、n型半导体层105c、第二多量子阱层105h及第二p型半导体层105i,可以理解的是,纳米柱LED器件105为中心对称结构。
参见图10和图11,在纳米柱LED器件105的长度延伸方向L沿第一方向X1的情况下,纳米柱LED器件105的第一p型半导体层105a与第一电极106连接,第二p型半导体层105i与第二电极107连接。
同理,在纳米柱LED器件105的长度延伸方向L沿第二方向X2的情况下,纳米柱LED器件105的第一p型半导体层105a与第二电极107连接,第二p型半导体层105i与第一电极106连接。
可以理解的是,无论纳米柱LED器件105的长度延伸方向L沿第一方向X1或第二方向X2,纳米柱LED器件105的第一p型半导体层105a和第二p型半导体层105i,分别与第一电极106或第二电极107对应连接。并且,纳米柱LED器件105的n型半导体层105c始终与第三电极108连接,使得纳米柱LED器件105的两端在第一电极106和第三电极108的驱动下,及第二电极107和第三电极108的驱动下发光,即纳米柱LED器件105为双端发光结构。
示例性地,参考图10和图11,发光基板100还包括介质层109,介质层109可隔开第三电极108与第一电极106,且可隔开第三电极108与第二电极107,以避免正极(第一电极106和第二电极107)与负极(第三电极108)之间发生短路的问题。介质层109具有开口H,开口H可暴露纳米柱LED器件105的n型半导体层105c,这样,第三电极108可通过开口H与n型半导体层105c连接。
本申请的上述实施例中,基于三个电极对称的设计,第一电极106和第二电极107为正极,第三电极108为负极,第三电极108位于第一电极106和第二电极107之间。纳米柱LED器件105采用中心对称的结构设计,在取向工艺后,无论纳米柱LED器件105的长度延伸方向L沿第一方向X1或第二方向X2,纳米柱LED器件105的第一p型半导体层105a和第二p型半导体层105i,分别与第一电极106或第二电极107对应连接。
并且,如图10和图11所示,沿纳米柱LED器件105的长度延伸方向L,n型半导体层105c靠近其中间区域,无论纳米柱LED器件105的长度延伸方向L沿第一方向X1或第二方向X2,n型半导体层105c始终与第三电极108连接。这样,在一个发光的驱动周期内,所有的纳米柱LED器件105均可同时发光,纳米柱LED器件105的利用率可达到100%。
此外,由于纳米柱LED器件105为双端发光结构,纳米柱LED器件105的发光密度和强度会提高,有利于提高发光基板100的发光效率。
在一些实施例中,如图11所示,n型半导体层105c包括两个子层1051,该两个子层1051之间通过粘接层N连接,以提高两个子层1051的连接强度。
示例性地,粘接层N的材料包括金。
示例性地,粘接层N的厚度为0.3μm。
在一些实施例中,如图11所示,纳米柱LED器件105包括第一接触层105f和第二接触层105j,第一接触层105f位于第一p型半导体层105a的远离第一多量子阱层105b的一侧,第一p型半导体层105a可通过第一接触层105f与第一电极106或第二电极107连接。
可以理解的是,通过在第一p型半导体层105a的外侧增设第一接触层105f,第一p型半导体层105a与第一接触层105f电连接,且第一p型半导体层105a和第一接触层105f均与第一电极106或第二电极107电连接,有利于提高第一p型半导体层105a与第一电极106或第二电极107之间欧姆接触的性能。
如图11所示,第二接触层105j位于第二p型半导体层105i的远离第二多量子阱层105h的一侧,第二p型半导体层105i可通过第二接触层105j与第一电极106或第二电极107连接。
可以理解的是,通过在第二p型半导体层105i的外侧增设第二接触层105j,第二p型半导体层105i与第二接触层105j电连接,且第二p型半导体层105i和第二接触层105j均与第一电极106或第二电极107电连接,有利于提高第二p型半导体层105i与第一电极106或第二电极107之间欧姆接触的性能。
示例性地,第一接触层105f的材料包括镍和金中的至少一种。
示例性地,第二接触层105j的材料包括镍和金中的至少一种。
在一些实施例中,如图10和图11所示,纳米柱LED器件105包括第一介质层105g和第二介质层105k,第一介质层105g和第二介质层105k分别围绕柱状结构的侧面设置。
将n型半导体层105c划分为三部分,n型半导体层105c包括靠近第一多量子阱层105b的部分,靠近第二多量子阱层105h的部分,以及位于二者之间的连接部分,可以理解的是,连接部分既远离第一多量子阱层105b,又远离第二多量子阱层105h,介质层109的开口H即暴露n型半导体层105c的连接部分。
其中,第一介质层105g围绕第一多量子阱层105b的侧面,且围绕n型半导体层105c中靠近第一多量子阱层105b的部分的侧面。第二介质层105k围绕第二多量子阱层105h的侧面,且围绕n型半导体层105c中靠近第二多量子阱层105h的部分的侧面。
采用上述纳米柱LED器件105的结构设计,参考图10,第一电极106和第二电极107分别覆盖纳米柱LED器件105的两个端部,在纳米柱LED器件105的长度延伸方向L沿第一方向X1的情况下,第一介质层105g可隔开第一电极106与第一多量子阱层105b,且第一介质层105g可隔开第一电极106与n型半导体层105c,避免第一电极106与第一多量子阱层105b和n型半导体层105c接触而引发短路问题。
第二介质层105k可隔开第二电极107与第二多量子阱层105h,且第二介质层105k可隔开第二电极107与n型半导体层105c,避免第二电极107与第二多量子阱层105h和n型半导体层105c接触而引发短路问题。
同理,在纳米柱LED器件105的长度延伸方向L沿第二方向X2的情况下,第一介质层105g可隔开第二电极107与第一多量子阱层105b,且第一介质层105g可隔开 第二电极107与n型半导体层105c,避免第二电极107与第一多量子阱层105b和n型半导体层105c接触而引发短路问题。
第二介质层105k可隔开第一电极106与第二多量子阱层105h,且第二介质层105k可隔开第一电极106与n型半导体层105c,避免第一电极106与第二多量子阱层105h和n型半导体层105c接触而引发短路问题。
本申请的一些实施例还提供了图11示出的纳米柱LED器件105的制备方法,图12A~图12H为根据一些实施例的制备纳米柱LED器件的各步骤图。
上述制备方法包括如下S30~S35:
S30:如图12A所示,在第一基底K1上形成堆叠结构F,该堆叠结构F包括依次层叠设置的绝缘薄膜d、n型半导体薄膜c、多量子阱薄膜b和p型半导体薄膜a。
示例性地,堆叠结构F还包括接触薄膜f,接触薄膜f位于p型半导体薄膜a的远离多量子阱薄膜b的一侧。
示例性地,绝缘薄膜d的厚度范围为1μm~3μm,n型半导体薄膜c的厚度范围为3μm~4μm,多量子阱薄膜b的厚度范围为0.05μm~0.2μm,p型半导体薄膜a的厚度范围为0.05μm~0.5μm。
S31:如图12B所示,将堆叠结构F倒置并转移至第二基底K2上。
示例性地,可将堆叠结构F和第一基底K1倒置于第二基底K2上,堆叠结构F底部的接触薄膜f与第二基底K2之间可通过粘接材料进行连接,以保证堆叠结构F与第二基底K2的连接强度。然后,去除第一基底K1,以暴露堆叠结构F顶部的绝缘薄膜d。
S32:如图12B和图12C所示,去除位于堆叠结构F顶部的绝缘薄膜d,得到待键合结构B1。
示例性地,可采用干法刻蚀工艺,将堆叠结构F顶部的绝缘薄膜d刻蚀去除,以暴露n型半导体薄膜c,得到待键合结构B1。
S33:如图12D所示,将两个待键合结构B1进行键合,两个待键合结构B1的n型半导体薄膜c粘接,形成键合结构B2。
示例性地,如图12D所示,可在两个待键合结构B1的n型半导体薄膜c的表面形成粘接材料,该粘接材料例如可包括金。然后,采用摩擦键合工艺,使两个待键合结构B1的表面相互摩擦,使粘接材料向两个待键合结构B1的n型半导体薄膜c扩散,从而使两个待键合结构B1的n型半导体薄膜c粘接,形成键合结构B2。
或者,对两个待键合结构B1的n型半导体薄膜c的表面进行处理,例如,采用离子轰击n型半导体薄膜c的表面以形成悬挂键,该悬挂键例如可以是没有电子能配对的化学键。然后,将两个待键合结构B1的表面贴合,使两个待键合结构B1的n型半导体薄膜c粘接,形成键合结构B2。
S34:如图12E所示,去除位于键合结构B2顶部的第二基底K2。
S35:如图12F和图12G所示,刻蚀键合结构B2,形成纳米柱LED器件105。
示例性地,如图12F所示,在键合结构B2的顶部形成掩膜层G,该掩膜层G包括多个圆形图案。
如图12F和图12G所示,经掩膜层G刻蚀键合结构B2,可形成多个纳米柱LED 器件105。
在一些实施例中,在S35之后,上述制备方法还包括如下S36:
S36:如图12H所示,形成第一介质层105g和第二介质层105k,第一介质层105g围绕第一多量子阱层105b的侧面,且围绕n型半导体层105c中靠近第一多量子阱层105b的部分的侧面。第二介质层105k围绕第二多量子阱层105h的侧面,且围绕n型半导体层105c中靠近第二多量子阱层105h的部分的侧面。
本申请的一些实施例还提供了另一种发光基板的制备方法,图13A~图13D为根据一些实施例的制备另一种发光基板的各步骤图。
上述制备方法包括如下S40~S43:
S40:如图13A所示,提供图11示出的纳米柱LED器件105,将该纳米柱LED器件105置于衬底101上,且纳米柱LED器件105的长度延伸方向L平行于衬底101。
需要说明的是,第一取向电极102和第二取向电极103之间可产生取向电场,多个纳米柱LED器件105在取向电场的驱动下发生转动,直至多个纳米柱LED器件105的长度延伸方向L沿第一方向X1或沿第二方向X2。
S41:如图13B所示,形成第一电极106和第二电极107,第一电极106和第二电极107分别覆盖纳米柱LED器件105的两个端部。
S42:如图13C所示,形成介质层109,介质层109具有暴露纳米柱LED器件105的n型半导体层105c的开口H。
S43:如图13D所示,形成第三电极108,第三电极108位于第一电极106和第二电极107之间,且第三电极108穿过介质层109的开口H与n型半导体层105c连接。
本申请的一些实施例还提供了一种背光模组,图14为根据一些实施例的背光模组的结构图。
参见图14,背光模组200包括上述任一实施例所提供的发光基板100,以及多个光学膜片201,多个光学膜片201设置于发光基板100的出光侧C1,用于调节发光基板100的出光。
本申请的一些实施例还提供了一种显示装置,图15为根据一些实施例的一种显示装置的结构图。
参见图15,显示装置300包括上述实施例所提供的背光模组200,以及设置于背光模组200的出光侧C2的显示面板301。
示例性地,显示面板301可以为液晶显示面板(Liquid Crystal Display,简称LCD),在此情况下,显示装置300为液晶显示装置。
上述显示装置300可以是显示无论运动(例如,视频)还是固定(例如,静止图像)的且无论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的 图像的显示器)等。
本申请的上述实施例所提供的背光模组200和显示装置300,包括上述任一实施例所提供的发光基板100,其所能达到的有益效果可参考上文中发光基板100的有益效果,此处不再赘述。
本申请的一些实施例还提供了一种显示面板,图16为根据一些实施例的显示面板的结构图。
参见图16,显示面板400包括上述任一实施例所提供的发光基板100,以及设置于发光基板100的出光侧C3的彩膜层401,彩膜层401可对发光基板100发出的光进行过滤,以得到红光、绿光、蓝光或白光等基色,进而可用于显示面板400的画面显示。
示例性地,显示面板400还包括基板402,彩膜层401设置于基板402上,彩膜层401与基板402构成彩膜基板。彩膜基板设置于发光基板100的出光侧C3,且彩膜层401位于发光基板100与基板402之间。
本申请的一些实施例还提供了一种显示装置,该显示装置可以是显示无论运动(例如,视频)还是固定(例如,静止图像)的且无论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
以显示装置为手机为例进行举例说明,图17为根据一些实施例的另一种显示装置的结构图。
参见图17,显示装置500主要包括盖板501、显示面板400、中框502以及后壳503。后壳503和显示面板400分别位于中框502的两侧,且中框502和显示面板400设置于后壳503内,盖板501设置在显示面板400远离中框502的一侧,显示面板400的显示面朝向盖板501。
其中,中框502包括承载板5021以及围绕承载板5021一周的边框5022,显示装置500中还包括设置于承载板5021上的电路板504、电池、摄像头等电子元器件。显示面板400与电路板504电连接,例如,显示面板400包括与其绑定的柔性线路板(Flexible Printed Circuit,简称FPC)403,显示面板400可通过柔性线路板403与电路板504绑定。
本申请的上述实施例所提供的显示面板400和显示装置500,包括上述任一实施例所提供的发光基板100,其所能达到的有益效果可参考上文中发光基板100的有益效果,此处不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种发光基板,其特征在于,包括:
    衬底;
    纳米柱LED器件,设置于所述衬底上,所述纳米柱LED器件的长度延伸方向平行于所述衬底;所述纳米柱LED器件包括沿所述长度延伸方向设置的第一p型半导体层、第一多量子阱层和n型半导体层;
    第一电极、第二电极和第三电极,所述第三电极位于所述第一电极与所述第二电极之间;所述n型半导体层与所述第三电极连接,在所述纳米柱LED器件的长度延伸方向沿第一方向的情况下,所述第一p型半导体层与所述第一电极连接;在所述纳米柱LED器件的长度延伸方向沿第二方向的情况下,所述第一p型半导体层与所述第二电极连接;
    其中,所述第一方向和所述第二方向相反,且所述第一方向和所述第二方向平行于所述第一电极、所述第二电极和所述第三电极的排列方向。
  2. 根据权利要求1所述的发光基板,其特征在于,所述纳米柱LED器件还包括绝缘层,位于所述n型半导体层的远离所述第一多量子阱层的一侧;
    在所述纳米柱LED器件的长度延伸方向沿第一方向的情况下,所述绝缘层与所述第二电极连接;
    在所述纳米柱LED器件的长度延伸方向沿第二方向的情况下,所述绝缘层与所述第一电极连接。
  3. 根据权利要求2所述的发光基板,其特征在于,所述绝缘层的材料包括本征氮化镓。
  4. 根据权利要求2或3所述的发光基板,其特征在于,所述纳米柱LED器件还包括高电阻层,位于所述n型半导体层与所述绝缘层之间。
  5. 根据权利要求4所述的发光基板,其特征在于,所述高电阻层的材料包括铝镓氮。
  6. 根据权利要求1所述的发光基板,其特征在于,所述纳米柱LED器件还包括第二p型半导体层和第二多量子阱层,位于所述n型半导体层的远离所述第一多量子阱层的一侧;所述第二多量子阱层位于所述第二p型半导体层与所述n型半导体层之间;
    在所述纳米柱LED器件的长度延伸方向沿第一方向的情况下,所述第二p型半导体层与所述第二电极连接;
    在所述纳米柱LED器件的长度延伸方向沿第二方向的情况下,所述第二p型半导体层与所述第一电极连接。
  7. 根据权利要求6所述的发光基板,其特征在于,所述纳米柱LED器件为中心对称结构。
  8. 根据权利要求6或7所述的发光基板,其特征在于,所述n型半导体层包括两个子层,所述两个子层之间通过粘接层连接。
  9. 根据权利要求1~8中任一项所述的发光基板,其特征在于,所述纳米柱LED器件还包括第一接触层,位于所述第一p型半导体层的远离所述第一多量子阱层的一侧;所述第一p型半导体层通过所述第一接触层与所述第一电极或所述第二电极连接;
    在所述纳米柱LED器件还包括第二p型半导体层和第二多量子阱层的情况下,所述纳米柱LED器件还包括第二接触层,位于所述第二p型半导体层的远离所述第二多量子阱层的一侧;所述第二p型半导体层通过所述第二接触层与所述第二电极或所述第一电极连接。
  10. 根据权利要求1~9中任一项所述的发光基板,其特征在于,所述第一电极和所述第二电极分别覆盖所述纳米柱LED器件的两个端部;
    所述纳米柱LED器件还包括第一介质层,所述第一介质层围绕所述第一多量子阱层的侧面,且围绕所述n型半导体层中靠近所述第一多量子阱层的部分的侧面;所述第一介质层隔开所述第一电极与所述第一多量子阱层,且隔开所述第一电极与所述n型半导体层;或,所述第一介质层隔开所述第二电极与所述第一多量子阱层,且隔开所述第二电极与所述n型半导体层;
    在所述纳米柱LED器件还包括第二p型半导体层和第二多量子阱层的情况下,所述纳米柱LED器件还包括第二介质层,所述第二介质层围绕所述第二多量子阱层的侧面,且围绕所述n型半导体层中靠近所述第二多量子阱层的部分的侧面;所述第二介质层隔开所述第二电极与所述第二多量子阱层,且隔开所述第二电极与所述n型半导体层;或,所述第二介质层隔开所述第一电极与所述第二多量子阱层,且隔开所述第一电极与所述n型半导体层。
  11. 根据权利要求1~10中任一项所述的发光基板,其特征在于,所述发光基板还包括:
    第三介质层,隔开所述第三电极与所述第一电极,且隔开所述第三电极与所述第二电极;所述第三介质层具有开口,所述开口暴露所述n型半导体层中远离所述第一多量子阱层的部分;所述第三电极穿过所述开口与所述n型半导体层连接。
  12. 根据权利要求11所述的发光基板,其特征在于,所述开口的垂直于所述纳米柱LED器件的长度延伸方向的中线,与所述纳米柱LED器件的垂直于所述长度延伸方向的中线重合。
  13. 根据权利要求1~12中任一项所述的发光基板,其特征在于,沿所述纳米柱LED器件的长度延伸方向,所述第一电极和所述第二电极的覆盖所述纳米柱LED器件的部分的长度相等。
  14. 根据权利要求1~13中任一项所述的发光基板,其特征在于,所述第一电极、所述第二电极和所述第三电极中的至少一者的材料包括透光材料。
  15. 根据权利要求1~14中任一项所述的发光基板,其特征在于,所述第一电极、所述第二电极和所述第三电极中的至少一者的材料包括氧化铟锡、氧化锌锡、石墨烯中的至少一种。
  16. 根据权利要求1~15中任一项所述的发光基板,其特征在于,所述发光基板包括沿第三方向依次排列的多个所述纳米柱LED器件,所述第三方向垂直于所述纳米柱LED器件的长度延伸方向;
    所述第一电极、所述第二电极和所述第三电极沿所述第三方向延伸;所述第一电极覆盖多个所述纳米柱LED器件的位于所述第三电极一侧的端部,所述第二电极覆盖多个所述纳米柱LED器件的位于所述第三电极另一侧的端部,所述第三电极覆盖多个 所述纳米柱LED器件的中部。
  17. 根据权利要求1~16中任一项所述的发光基板,其特征在于,所述发光基板还包括:
    第一取向电极和第二取向电极,设置于所述衬底上,且沿所述纳米柱LED器件的长度延伸方向排列;在向所述衬底上的正投影中,所述纳米柱LED器件位于所述第一取向电极与所述第二取向电极之间;
    第四介质层,覆盖所述第一取向电极和所述第二取向电极,且位于所述衬底与所述纳米柱LED器件之间。
  18. 一种纳米柱LED器件,其特征在于,包括:依次设置的绝缘层、n型半导体层、多量子阱层和p型半导体层。
  19. 根据权利要求18所述的纳米柱LED器件,其特征在于,所述纳米柱LED器件还包括高电阻层,位于所述n型半导体层与所述绝缘层之间。
  20. 根据权利要求18或19所述的纳米柱LED器件,其特征在于,所述纳米柱LED器件还包括接触层,位于所述p型半导体层的远离所述多量子阱层的一侧。
  21. 根据权利要求18~20中任一项所述的纳米柱LED器件,其特征在于,所述纳米柱LED器件还包括第一介质层,所述第一介质层围绕所述多量子阱层的侧面,且围绕所述n型半导体层中靠近所述多量子阱层的部分的侧面。
  22. 一种纳米柱LED器件的制备方法,其特征在于,包括:
    在第一基底上形成堆叠结构,所述堆叠结构包括依次层叠设置的绝缘薄膜、n型半导体薄膜、多量子阱薄膜和p型半导体薄膜;
    刻蚀所述堆叠结构,形成纳米柱LED器件。
  23. 一种纳米柱LED器件,其特征在于,包括:依次设置的第一p型半导体层、第一多量子阱层、n型半导体层、第二多量子阱层及第二p型半导体层。
  24. 根据权利要求23所述的纳米柱LED器件,其特征在于,所述纳米柱LED器件为中心对称结构。
  25. 根据权利要求23或24所述的纳米柱LED器件,其特征在于,所述n型半导体层包括两个子层,所述两个子层之间通过粘接层连接。
  26. 根据权利要求23~25中任一项所述的纳米柱LED器件,其特征在于,所述纳米柱LED器件还包括第一接触层和第二接触层;
    所述第一接触层位于所述第一p型半导体层的远离所述第一多量子阱层的一侧;
    所述第二接触层位于所述第二p型半导体层的远离所述第二多量子阱层的一侧。
  27. 根据权利要求23~26中任一项所述的纳米柱LED器件,其特征在于,所述纳米柱LED器件还包括第一介质层和第二介质层;
    所述第一介质层围绕所述第一多量子阱层的侧面,且围绕所述n型半导体层中靠近所述第一多量子阱层的部分的侧面;
    所述第二介质层围绕所述第二多量子阱层的侧面,且围绕所述n型半导体层中靠近所述第二多量子阱层的部分的侧面。
  28. 一种纳米柱LED器件的制备方法,其特征在于,包括:
    在第一基底上形成堆叠结构,所述堆叠结构包括依次层叠设置的绝缘薄膜、n型 半导体薄膜、多量子阱薄膜和p型半导体薄膜;
    将所述堆叠结构倒置并转移至第二基底上;
    去除位于所述堆叠结构顶部的所述绝缘薄膜,得到待键合结构;
    将两个所述待键合结构进行键合,两个所述待键合结构的n型半导体薄膜粘接,形成键合结构;
    去除位于所述键合结构顶部的第二基底;
    刻蚀所述键合结构,形成纳米柱LED器件。
  29. 一种发光基板的制备方法,其特征在于,包括:
    将纳米柱LED器件置于衬底上,所述纳米柱LED器件的长度延伸方向平行于所述衬底,所述纳米柱LED器件为如权利要求18~21或如权利要求23~27所述的纳米柱LED器件;
    形成第一电极和第二电极,所述第一电极和所述第二电极分别覆盖所述纳米柱LED器件的两个端部;
    形成第三介质层,所述第三介质层具有暴露所述纳米柱LED器件的n型半导体层的开口;
    形成第三电极,所述第三电极位于所述第一电极和所述第二电极之间,且所述第三电极穿过所述开口与所述n型半导体层连接。
  30. 一种背光模组,其特征在于,包括:
    如权利要求1~17中任一项所述的发光基板;
    多个光学膜片,设置于所述发光基板的出光侧。
  31. 一种显示装置,其特征在于,包括:
    如权利要求30所述的背光模组;
    显示面板,设置于所述背光模组的出光侧。
  32. 一种显示面板,其特征在于,包括:
    如权利要求1~17中任一项所述的发光基板;
    彩膜层,设置于所述发光基板的出光侧。
  33. 一种显示装置,其特征在于,包括:
    如权利要求32所述的显示面板;
    电路板,与所述显示面板电连接。
PCT/CN2022/120316 2022-09-21 2022-09-21 Led器件、发光基板、背光模组、显示面板及显示装置 WO2024060087A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120316 WO2024060087A1 (zh) 2022-09-21 2022-09-21 Led器件、发光基板、背光模组、显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120316 WO2024060087A1 (zh) 2022-09-21 2022-09-21 Led器件、发光基板、背光模组、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2024060087A1 true WO2024060087A1 (zh) 2024-03-28

Family

ID=90453538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120316 WO2024060087A1 (zh) 2022-09-21 2022-09-21 Led器件、发光基板、背光模组、显示面板及显示装置

Country Status (1)

Country Link
WO (1) WO2024060087A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130269763A1 (en) * 2010-12-09 2013-10-17 The University Of Nottingham Electrical Device
WO2015104547A1 (en) * 2014-01-13 2015-07-16 Seren Photonics Limited Semiconductor devices and fabrication methods
CN106374023A (zh) * 2016-10-31 2017-02-01 华南理工大学 生长在镓酸锂衬底上的非极性纳米柱led及其制备方法
CN108493309A (zh) * 2018-04-28 2018-09-04 华南理工大学 一种纳米柱紫外led及其制备方法与应用
CN113972339A (zh) * 2020-07-24 2022-01-25 三星显示有限公司 发光元件、制造发光元件的方法以及显示装置
CN114788023A (zh) * 2019-12-10 2022-07-22 三星显示有限公司 发光元件和包括该发光元件的显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130269763A1 (en) * 2010-12-09 2013-10-17 The University Of Nottingham Electrical Device
WO2015104547A1 (en) * 2014-01-13 2015-07-16 Seren Photonics Limited Semiconductor devices and fabrication methods
CN106374023A (zh) * 2016-10-31 2017-02-01 华南理工大学 生长在镓酸锂衬底上的非极性纳米柱led及其制备方法
CN108493309A (zh) * 2018-04-28 2018-09-04 华南理工大学 一种纳米柱紫外led及其制备方法与应用
CN114788023A (zh) * 2019-12-10 2022-07-22 三星显示有限公司 发光元件和包括该发光元件的显示装置
CN113972339A (zh) * 2020-07-24 2022-01-25 三星显示有限公司 发光元件、制造发光元件的方法以及显示装置

Similar Documents

Publication Publication Date Title
KR102289220B1 (ko) 표시 장치
US20210050497A1 (en) Driving Backplane, Method for Manufacturing the Same, and Display Device
CN110471219B (zh) Led基板及显示装置
US11139356B2 (en) Array substrate and manufacturing method thereof, display panel and display device
CN109860224B (zh) 显示基板及其制作方法、显示面板、显示装置
US11735602B2 (en) Display device
US10777635B2 (en) Display substrate, method for manufacturing the same and display device
US11977292B2 (en) Color filter substrate, display panel, and display device
US20240164179A1 (en) Light-emitting substrate and manufacturing method thereof, and light-emitting apparatus
WO2015096310A1 (zh) 一种oled阵列基板的对置基板及其制备方法、显示装置
CN111785760A (zh) 一种显示基板及其制备方法、显示装置
WO2021063390A1 (zh) 显示基板、显示面板及显示设备
WO2024060087A1 (zh) Led器件、发光基板、背光模组、显示面板及显示装置
US11329194B2 (en) Display panel and display device
WO2023245899A1 (zh) 显示面板及显示装置
CN111509140A (zh) 显示用基板及其制备方法、显示装置
WO2021196817A1 (zh) 无机发光二极管基板及其制备方法
WO2024000653A1 (zh) 显示面板
WO2023245352A1 (zh) 芯片结构及其制备方法、显示基板和显示装置
WO2023206381A1 (zh) 显示背板、显示装置
US20230352624A1 (en) Light emitting substrate and display device
US20240122039A1 (en) Display device and method for manufacturing the same
US20240047628A1 (en) Flexible double-sided display screen and manufacturing method thereof
US20240063197A1 (en) Display panel, manufacturing method thereof and display device
US20240130202A1 (en) Display panel, display device and wearable device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959097

Country of ref document: EP

Kind code of ref document: A1